An Incremental Life-cycle
Assurance Strategy for
Critical System Certification

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Peter H. Feiler
Nov 4, 2014

—= Software Engineering Institute = CarnegieMellon © 2014 Caregle alon Universiy

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
04 NOV 2014 2 REPORTTYPE 00-00-2014 to 00-00-2014
4. TITLEAND SUBTITLE 5a. CONTRACT NUMBER
An Ip(_:remental Life-cycle Assurance Strategy for Critical System £b. GRANT NUMBER
Certification

5¢c. PROGRAM ELEMENT NUMBER
6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Carnegie Mellon Univer sity,Softwar e Engineering REPORT NUMBER

Institute,Pittsburgh,PA,15213

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE Sa_me as 46
unclassified unclassified unclassified Report (SAR)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Copyright 2014 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8721-05-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the United States Department of Defense.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR
PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE
MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This material has been approved for public release and unlimited distribution except as restricted below.
This material may be reproduced in its entirety, without modification, and freely distributed in written or electronic form without
requesting formal permission. Permission is required for any other use. Requests for permission should be directed to the Software

Engineering Institute at permission@sei.cmu.edu.

Carnegie Mellon® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM-0001837

Incremental Life-Cycle Assurance

Software Engineering Institute | CarnegieMellon Feiter. Nov 4, 2014

© 2014 Carnegie Mellon University

Outline

Challenges in Safety-critical Software-intensive systems

An Architecture-centric Virtual Integration Strategy with SAE AADL
Improving the Quality of Requirements

Architecture Fault Modeling and Safety

Incremental Life-cycle Assurance of Systems

Summary and Conclusion

e Incremental Life-Cycle Assurance

—== Software Engineering Institute | CarnegieMellon Feiler. Nov 4, 2014

© 2014 Carnegie Mellon University

We Rely on Software for Safe Aircraft Operation

Quantas

Landing Even with the autopilot off, flight control computers still ™ * command control
e sUrfaces to protect the aircraft from unsafe conditions such as a stall,” the

Sovawan

investigatars said,

The unit continued to send false stall and speed warnings to the aircraft's
primary computer and about 2 minutes after the initial fault ™ " generated
very high, random and incorrect values for the aircraft's angle of attack.”

mayday call when it suddenly changed altitude during a flight
from Singapore to , Qantas said.

Embedded software systems Autopilat Off

5 |LIFIQE & " Tpreliminary analysis" of the Qantas plunge showed the error ocourred

| ntrOd uce a new CIaSS Of in one of the jet's three air data inertial reference units, which caused the

ro b I ems n Ot ad d ressed b autopilot to disconnect, the ATSE said in a statement on its Weh site,

p y The crew flew the aircraft manually to the end of the flight, except for a
tradltlonal System modellng & . period of a few seconds, the bureau said.
wide
. Irways Even with the autaopilot off, flight control computers still * " command cuntr?

Lt st ot e o @ﬂ@ly,s_|§ e o ey AUISING thE surfaces to protect the aircraft from unsafe conditions such as a stall,” the

jet to nosedive. investigators said,

The unit continued to send false stall and speed warnings to the aircraft's
primary computer and about 2 minutes after the initial fault * " generated
very high, random and incorrect values for the aircraft's angle of attack.”

was cruising at 37,000 feet (11,277 meters) wh
computer fed incorrect information to the flight control system, the
Australian Transport Safety Bureau said yvesterday, The aircraft dropped
650 feet within seconds, slamming passengers and crew into the cabin e thant control computer
cailing, heforedi etk scant)| movement, which resulted in the aircraft pitching down to a maximum of

about 8.5 degrees," it said.
" This appears to be a unique event,” the bureagw2aid, adding that

Mo " Simnilar Event’

" Airbus has advised that it is not aware of any similar event over the
fitted with the same air-data computer. The advisory 1S aimed at many years of operation of the Airbus," the bureau added, saying it will
minimizing the risk in the unlikely event of a similar occurrence,” continue investigating.

Incremental Life-Cycle Assurance

Software Engineering Institute | CarnegieMellon Feiter. Nov 4, 2014

© 2014 Carnegie Mellon University

Software Problems
not just in Aircraft

ConsumerReports

May 7, 2010

Lexus GX 460 passes retest; Consumer Reports lifts "Don't Buy"
label

This article appeared in

Many appliances now rely on electronic controls and operating softw May 2010 Consumer Reports Magazine . 3ut it
Consumer Reports is lifting the Don't Buy turned out to be a problem for the Kenmore 4027 front-loader, which scored near the bottom in our February 2010 report.
Risk designation from the 2010 Lexus GX
SUV after recall work corrected the problem it
displayed in one of our emergency handling tests.
(See the original report and video: "Don't Buy:
Safety Risk--2010 Lexus GX 460.")

Our tests found that the rinse cycles on some models worked improperly, resulting in an unimpressive cleaning.

(When Sears, which sells the washer, saw our February 2010 Ratings (available to subscribers), it worked with LG, which makes
the washer, to figure out what was wrong. They quickly determined that a software problem was causing short or missing rinse
and wash cycles, affecting wash performance. Sears and LG say they have reprogrammed the software on the models in their
warehouses and on about 65 percent of the washers already sold, including the ones we had purchased.

We originally experienced the problemin a test
that we use to evaluate what's called lift-off
oversteer. In this test, as the vehicle is driven Our retests of the reprogrammed Kenmore 4027 found that the cycles now worked properly, and the machine excelled. It now

through a turn, the driver quickly lifts his foot off tops our Ratings (available to subscribers) of more than 50 front-loaders and we've made it a CR Best Buy.
NG

the accelerator pedal to see how the vehicle
reacts. When we did this with our GX 480, its rear If you own the washer, or a related model such as the Kenmore 4044 or Kenmore Elite 4051 or 4219, you should get a letter from

end slid out until the vehicle was almost sideways. Sears for a free service call. Or you can call 800-733-2299.

Although the GX 460 has electronic stability
control, which is designed to prevent a vehicle

< A - 100 unckly
enough to stop the slide. We consider this a safety risk because in a real-world situation this could cause a rear Y .
tire to strike a curb or slide off of the pavement, possibly causing the vehicle to roll over. Tall vehicles with a high HOW d (@) yO uu p g rad e was h N g

center of gravity, such as the GX 460, heighten our concern. We are not aware, however, of any reports of injury

related to this problem maChlne SOftwal’e?

upgrade for the vehicle's
: fix last week and

Lexus recently duplicated the problem on its own test track and developed a soft
ESC system that would prevent the problem from happening. Dealers receivec
began notifying GX 460 owners to bring their vehicles in for repair.

|

We contacted the Lexus dealership from which we had anonymously bought the vehicle and made an
appointment to have the recall work performed. The work took about an hour and a half.

Following that, we again put the SUV through our full series of emergency handling tests. This time, the ESC
system intervened earlier and its rear did not slide out in the lift-off oversteer test. Instead, the vehicle
understeered—or plowed—when it exceeded its limits of traction, which is a more common result and makes the
vehicle more predictable and less likely to roll over. Overall, we did not experience any safety concerns with the
corrected GX 460 in our handling tests.

e Incremental Life-Cycle Assurance

——= Software Engineering Institute | CarnegieMellon Feier. Nov 4, 2014

~— © 2014 Carnegie Mellon University

High Fault Leakage Drives Major Increase in Rework Cost
Aircraft industry has reached limits of affordability 0.5% 300_100

due to exponential growth in SW size and complexity.

Requirements

Engineering . Acceptance
70% Requirements & Test

) : 0
system interaction errors _80/0 late S
discovery at high

system rework cost
Design Test.
Test
% 3.5% 1x
70%, 3.5% 10%, 50.5% 20x
Software

Architectural Integration

pesign | Major cost savings through rework avoidance i
by early discovery and correction

A $10k architecture phase correction saves $3M

Component
Software \
Design 20%, 16% Total System Cost
) 5 Unit Boeing 777 $12B
Where faults are introduced X Test Boeing 787 $24B
J
Where faults are found
The estimated nominal cost for fault removal Software as % of total system cost)
Sources: 1997: 45% — 2010: 66% — 2024: 88%
S

NIST Planning report 02-3, The Economic Impacts of Inadequate

Post-unit test software rework cost

D. Galin, Software Quality Assurance: From Theory to Code .
0% of total system cost and growin
y growing |

Infrastructure for Software Testing, May 2002.
Implementation, Pearson/Addison-Wesley (2004) [5

. ; .) Development
B.W. Boehm, Software Engineering Economics, Prentice Hall (1981)

e Incremental Life-Cycle Assurance

=== Software Engineering Institute | CarnegieMellon Feier. Nov 4 2014

© 2014 Carnegie Mellon University

Mismatched Assumptions in System Interactions

p System Engineer Physical Plant Control Engineer

) Hazards Characteristics Measurement Units, value range

- Impact of Lag, proximity Boolean/Integer abstraction

g system failures Air Canada, Ariane, 7500 Boolean
= variable architecture

z2 4> System Contro o

©

L Under Data Stream Systen =

B Contro| Characteristics 8

N Latency jitter affects —.

- Operator Error I control behavior g

c Automation & Potential event loss

@ human act’ c?

1 Application

2 compute 46 Runtime AN prp:ftcat 0 o

\ Platform Architecture ware IS
Hardware Distribution & Redundancy @
Eng ineer Virtualization, load balancing, Concurrency

mode confusion Communication
Embedded SW System Engine\ ITunes crashes on dual-cores
Embedded software system Why do system level failures still occur despite fault
as major source of hazards tolerance techniques being deployed in systems?

e Incremental Life-Cycle Assurance

—== Software Engineering Institute Carnegie Mellon Feiler, Nov 4, 2014

© 2014 Carnegie Mellon University

Model-based Engineering Pitfalls

The system

Inconsistency between
independently developed o
analytical models

== System models

(conf,{b}) !
/e o, et fesnt,
T e T — / o wr {a})

{ecret (b} PI

Confidence that model
reflects implementation

System implementation

This aircraft industry experience has led to the System
Architecture Virtual Integration (SAVI) initiative

e Incremental Life-Cycle Assurance

—== Software Engineering Institute | CarnegieMellon Feier. Nov 4, 2014

© 2014 Carnegie Mellon University

Why UML, SysML Are Not Sufficient

e System engineering
— Focus on system architecture and operational environment
— SysML developed to capture interactions with outside world, as a
standardized UML profile
— 4 pillars/diagrams: requirements, parameterics (added in SysML),
structure, behavior
« Conceptual architecture
— UML-based component model
— Architecture views (DoDAF, IEEE 1471)
— Platform Independent model (PIM)
« Embedded software system engineering
— OMG Modeling and Analysis of Real Time Embedded systems
(MARTE) as UML profile
* Borrowed Meta model concepts from AADL
* Focus on modeling implementations
— XUML insufficient for PSM (Kennedy-Carter, NATO ALWI study)

Incremental Life-Cycle Assurance

%: Software Engineering Institute | CarnegieMellon Feiter. Nov 4, 2014

© 2014 Carnegie Mellon University

Impact of Three Step Data Request Protocol

‘ Data Provider I

Data Consumer

i
|
loop 4 :
|
[

Request Sensor Data

I
|
|
T
|
|
l

arequesis
Receive Sensor Data

#«responses

Request Current State

arequesis
Receive Current State

#rgsponses

Request Target State

arequesis
Receive Target State
#responses

Apply algorithm

loop Publish Updated State /

=== Software Engineering Institute ‘ Carnegie Mellon

Incremental Life-Cycle Assurance
Feiler, Nov 4, 2014

© 2014 Carnegie Mellon University

Operating as ARINC653 Partitioned System

Data Consumer Requirement
 Process data in 1 second
Partitions

* Provide space and time boundary enforcement
« Execute periodically on a static timeline at 1 second rate

Data request protocols across partitions

Requestl Providel Request2 Provide2 Request3 Provide3 Process
I Provider I Consumer Provider Consumer Provider Consumer Provider Consumer
l } } } -

How much time does consumer actually have to process the data?
Who pays for the communication overhead?

— Incremental Life-Cycle Assurance

—== Software Engineering Institute | CarnegieMellon Feiler. Nov 4, 2014

© 2014 Carnegie Mellon University

Model-based Engineering in Practice

Modeling is used in practice

* Modeling, analysis, and simulation in mechanical, control, computer
hardware engineering

Current practice: software modeling close to source code

— Remember software through pictures
— MDE and MDA with UML
— Automatically generated documents

We need language for architecture modeling and analysis
 Strongly typed
» Well-defined execution and communication timing semantics
« Systematic approach to dealing with exceptional conditions
« Support for large-scale development

e Incremental Life-Cycle Assurance

—== Software Engineering Institute | CarnegieMellon Feiler. Nov 4, 2014

© 2014 Carnegie Mellon University

Outline

Challenges in Safety-critical Software-intensive systems

An Architecture-centric Virtual Integration Strategy with SAE AADL
Improving the Quality of Requirements

Architecture Fault Modeling and Safety

Incremental Life-cycle Assurance of Systems

Summary and Conclusion

e Incremental Life-Cycle Assurance

—== Software Engineering Institute | CarnegieMellon Feiler. Nov 4, 2014

© 2014 Carnegie Mellon University

SAE Architecture Analysis & Design Language
(AADL) for Software-reliant Systems

SW Design & Runtime

The Mechanical System | Architecture
Command & | B _

Control S,

hvsical platf Embedded Operational -
FUEIEEL [?t ofm <:> Avionics & Mission g
Alrcraft Software b "=}

. The Software System —

Deployed on S e
Utilizes 5 R = R

B

Physical interface
Platform component | Computer System
Hardware & OS

AADL focuses on interaction between the three elements of a
software-reliant mission and safety-critical systems.

Incremental Life-Cycle Assurance

=== Software Engineering Institute | CarnegieMellon Feier. Nov 4 2014

© 2014 Carnegie Mellon University

The SAE AADL Standard Suite (AS-5506 series)
Core AADL language standard (V2.1-Sep 2012, V1-Nov 2004)

« Strongly typed language with well-defined execution and communication semantics
e Textual and graphical notation
» Standardized XMl interchange format

Standardized AADL Extensions

Error Model language for safety, reliability, security analysis
ARINC653 extension for partitioned architectures
Behavior Specification Language for modes and interaction behavior
Data Modeling extension for interfacing with data models (UML, ASN.1, ...)

AADL Annex Extensions in Progress
Requirements Definition and Assurance Annex
Synchronous System Specification Annex
Hybrid System Specification Annex
System Constraint Specification Annex
Network Specification Annex

e Incremental Life-Cycle Assurance

=== Software Engineering Institute | CarnegieMellon Feier. Nov 4 2014

© 2014 Carnegie Mellon University

AADL: The Language

Precise execution semantics for components
* Thread, process, data, subprogram, system, processor, memory, bus, device,
virtual processor, virtual bus
Continuous control & event response processing

 Data and event flow, call/return, shared access
* End-to-End flow specifications

Operational modes & fault tolerant configurations
 Modes & mode transition

Modeling of large-scale systems

« Component variants, layered system modeling, packages, abstract,
prototype, parameterized templates, arrays of components, connection

patterns
Accommodation of diverse analysis needs
e Extension mechanism, standardized extensions

Incremental Life-Cycle Assurance

—== Software Engineering Institute | CarnegieMellon Feiler. Nov 4, 2014

© 2014 Carnegie Mellon University

Architecture-Centric Quality Attribute Analysis

Single Annotated Architecture Model Addresses
Impact Across Operational Quality Attributes

Safety S :
.7 ecurit
& Reliabilit eIntrusion y
‘MTBF :
*Integrity
‘FMEA A vdel o
AL G E -t | *Confidentiality
*Hazard >
analysis '
Auto-generated
Data analytical models
Qua“ty 4
*Data precision/ Real-ti Resource i
accuracy eal-time Consumption
Temporal Performance -Bandwidth
correctness *Execution time/ «CPU time
Deadline
«Confidence _ *Power
sDeadlock/starvation consumption
e[atency

Incremental Life-Cycle Assurance

—== Software Engineering Institute | CarnegieMellon Feiler. Nov 4, 2014

© 2014 Carnegie Mellon University

Multi-Fidelity End-to-end Latency in Control
Systems

af

System Engineer Control Engineer
Operational
Environment
System ﬁ Control
Under System
Control P
Common latency data from system engineering | _' & 4

 Processing latency
« Sampling latency |
* Physical signal latency L et

tFunicton J
@

Impact of Scheduler Choice on Controller Stability
A. Cervin, Lund U., CCACSD 2006

o Incremental Life-Cycle Assurance

—== Software Engineering Institute | CarnegieMellon Feiler. Nov 4, 2014

© 2014 Carnegie Mellon University

Software-Based Latency Contributors

Execution time variation: algorithm, use of cache
Processor speed

Resource contention Flow Use Scenario through Subsystem Architecture
Preemption

Legacy & shared variable communicatior cﬂ?‘fﬁ'&l’Si’fﬁefﬁ!?

IOProcessor-> Modem ->

|OProcessor-> Nav -> Comm -

Rate group optimization

Latency = Partition hops +

processing + transfer

Protocol specific communication delay [Piependeniis o
Partitioned architecture

Migration of functionality
Fault tolerance strategy

[Multiple rates and

e Incremental Life-Cycle Assurance

—== Software Engineering Institute | CarnegieMellon Feiler. Nov 4, 2014

© 2014 Carnegie Mellon University

Early Discovery and Incremental V&V through
Sistem Architecture Virtual Integration (SAVI)
Aircraft: (Tier 0))

<< Bus

Acoessy TEr_ T T, TSI, =TT

<<Bushfcess}>
I0CONN_B |0COMN_A

LRU/IMA System: (Tier 2) e
Hardware platform, software partitions M
Power, MIPS, RAM capacity & budgets
End-to-end flow latency

System & SW Engineering: -
Mechatronics: Actuator & Wings " Subcontracted software subsystem: (Tier 3)

Tasks, periods, execution time
Safety Analysis (FHA, FMEA)
gl“ty Analysis (MTTP) Software allocation, schedulability

Generated executables

= HydraulicPower
=TT i ! 0o I |
- N . 5 e Znanga dfepeEe -. :
I | H
pely 5

OEM & Subcontractor: R G— Repeated Virtual Integration Analyses:
Subsystem proposal validation LSl T o Power/weight :
Functional integration consistency i MIPS/RAM, Scheduling
Data bus protocol mappings A End-to-end latency
Network bandwidth

Proof of Concept Demonstration and Transition by Aerospace industry initiative
» Architecture-centric model-based software and system engineering
* Architecture-centric model-based acquisition and development process
e Multi notation, multi team model repository & standardized model interchange

B Multi-tier system & software architecture (in AADL)
B Incremental end-to-end validation of system properties

Incremental Life-Cycle Assurance

—== Software Engineering Institute | CarnegieMellon Feiler. Nov 4, 2014

© 2014 Carnegie Mellon University

Multi-Notation Approach to Architecture-centric
Virtual System and Software Integration

Embedded Software Engineering System Engineering

SysML

Application Software

Runtime Architecture
(task & communication)

Physical System

Architecture
(interface with embedded

Operational
Environment

SW/HW) (People, Use
Control Application Software scenarios)
Engineering Components Physical Components UML
(source code) (mechanical , electrical, heat)
\ Java, UML, Simulink Simulink, Modelica
VA
Application Mechanical
Software Computer Platform echanica
Engineering Architecture T ——A Engineering

rocessors & a
\ (pnetworks) P SAVI Approach
e — Model delivery with interchange standards

Electrical CEhEnEniE Model repository content with intra and inter-
Engineering (circuits & logic) ol i
VHDL model consistency

Tool chain flexibility for contractor

e Incremental Life-Cycle Assurance

=== Software Engineering Institute | CarnegieMellon Feier. Nov 4 2014

© 2014 Carnegie Mellon University

Architecture-centric Virtual Integration Practice
(ACVIP)

Iterative architecture
design, safety analysis, and
requirement decomposition

Transformation and
code generation based
Model-based architecture on verified architecture
specifications & multi- specifications

dimensional QA analysis
Stakeholder and

Quality Attribute (QA)
driven architecture-
centric requirement

specification

BUSINESS
AND ARCHITECTURE SYSTEM

MISSION GOALS

verified specifications

| Testing against
| and models

Architecture-centric virtual
integration and compositional
verification of requirements

Assurance plan
and execution

o Incremental Life-Cycle Assurance

=== Software Engineering Institute | CarnegieMellon Feier. Nov 4 2014

© 2014 Carnegie Mellon University

Outline

Challenges in Safety-critical Software-intensive systems

An Architecture-centric Virtual Integration Strategy with SAE AADL
Improving the Quality of Requirements

Architecture Fault Modeling and Safety

Incremental Life-cycle Assurance of Systems

Summary and Conclusion

e Incremental Life-Cycle Assurance

—== Software Engineering Institute | CarnegieMellon Feiler. Nov 4, 2014

© 2014 Carnegie Mellon University

Certification & Recertification Challenges

Certification: assure the guality of the delivered system
 Sufficient evidence that a system implementation meets system requirements
« Quality of requirements and quality of evidence determines quality of system
Certification related rework cost
« Currently 50% of total system cost and growing
Recertification Challenge
» Desired cost of recertification in_proportion to change

Improve quality of requirements and evidence

Perform verification compositionally
throughout the life cycle

e Incremental Life-Cycle Assurance

—== Software Engineering Institute | CarnegieMellon Feiler. Nov 4, 2014

© 2014 Carnegie Mellon University

Industry Practice in DO-178B Compliant

Requirements Capture

Industry Survey in 2009 FAA Requirements Engineering Study

Notation

[
]

Enter an “x” in every row/column cell that applies

em Requirements
Low-Level Sofliware Requiremer

Data Interconnect {1CD

% | ‘8||Hardware Requirements

RIS =g = High-Level Software Requiremer

>

A
English Text or Shall Statements 39127 32
Tables and Diagrams 31| 30 19
UML Use Cases 1 4
UML Sequence Diagrams 6
UML State Diagrams 1|7
Exe.cumble Models (e.g. Simulink. SCADE Suite. 11l sl gl
efe.)
Data Flow Diagrams (e.g. Yourdon) 4 6|9

Need analyzable & executable specifications

Other (Specify) XML 1 i
Operational models or prototypes 1|1 1
UML 1|1

Tool
a8 ;T £ 8
Eater an “x” in every row/column cell that | = | © | 5 ﬁ 5
applies 5| = 5 2 E
E] Z z | g
5 2| | £ =
-5 g = =) =
= E W) 51
Sl 2lz|s|*”
=7 7] o = 2
= = i e =
o = | &) 5
= = 20 = E
Fla|l=| 5] =2
| Database (e e _Microsoft Access) 4 13 13
[DOORS 23 | 13 | 22 | 18 [12
Rational ROSE" 1|3
RDD-100"
Requisite Pro” 5 3 5 4 4
Rhapsody 1
SCADE Suite 2 3 1
Simulink 5 1 5 3 1
Slate 1 1 1
Spreadsheet (e g.. Microsoft Excel) 5 4 5 4 3
Statemate
[Word Processor (e.g.. Microsoft Word) 19 | 20 | 18 | 17 | 16
WVAPST™ 1 3 3
Designer’s Workbench™ 1 1
Proprietary Database, SCADE like pic tool 1 1
Interleaf 1 1 1 1 1
BEACON 1 1 1 1
CaliberRM 1 1 1 1 1
XM: 1
Wiring diagram 1 1

Incremental Life-Cycle Assurance

Software Engineering Institute | CarnegieMellon Feiter. Nov 4, 2014

© 2014 Carnegie Mellon University

Requirement Quality Challenge

There is more to requirements quality than “shall”s and stakeholder traceability

IEEE 830-1998 Recommended Practice for SW Requirements Specification
error

Incomplete 21%

User Reqts Technical Reqts Design Test Cases
Missing 33% : ' = : : :
Incorrect 24% - / = \ e T
Ambiguous 6% ' . :
Browsable links/Coverage metrics
Inconsistent 5%

IEEE Std 830-1998 characteristics of a good requirements specification:

Correct
Unambiguous System to SW requirements gap [Boehm 2006]
Complete How do we verify low level SW requirements
Consistent against system requirements?
Ranked for importance and/or stability
Verifiable When StartUpComplete is TRUE in both FADECs and
Modifiable SlowStartupComplete is FALSE,

the FADECStartupSW shall set SlowStartupinComplete
Traceable to TRUE

e Incremental Life-Cycle Assurance

—== Software Engineering Institute | Carnegie Mellon Feiler Nov4 2014

— © 2014 Carnegie Mellon University

Stakeholder Needs and Requirement Categories

ISOJIECSIEEE. 2011, Systems and Sofftware Engineering - Reguirements Engineering. Geneva, Switzerland: International Organization for Standardization (130WInternational Electrotechnical Commission/
Institute of Electrical and Electronics Engineers (IEEE), (IEC), ISQ/IEC/IEEE 25148.

Table 2. Example of Stakeholder Requirements Classification. (SEBoK Originaly
Table 2. Example of System Requirements Classification. (SEBoK Original)

Type of

Stakeholder Types of System Description
Requirement Requirement

& .| Functional Describe gualitatively the sysiem functions or {fask= {o be performed in operation
Service or Sets of actio :
- Requirements 1
Functional | SYSTEM DEVELOPMENT |
- _ Performance Define gquantitatively the exte S¥sT i SYSTEM OPERATIONS |
Operational This categon)
Requirements system performance and are
+ Operatio or task. Congress and Legislatures Congress and Legislatures
- po - G i A LAErTiTil HaBans
& Operatio| Usability Define the quality of system U Lagisiation 1 ' L:.::;::e ' Riapets Legklation l] Lotabying .
e Operatio| Requirements Hearings and open mestings ::“.";ng and opan maelings
Acddenls RICRE
of-intere{ Interface Define how the system is reqg Government Regulalory Agencles Government Regulatory Agencies
Requirements system, including human elen| Industry Associations, Indusiry Associations,
Interface Matter, energ systems or internal system : User nss::.l:clatlon.'l,. Llnér;lns. i User n.-asgclallunrr urgons.
R nsurance L-ompanias, ourts nsuranca L-ompanias, ourts
Environmental External con - - —
- Operational Define the operational conditig Fegulations — et ’

ili i "ilities" - e . N Standard: . idard and incident repars.
Utilization The -ilties'y Requirements maintainabilty, refiabilty, and Camenon | Leveson System Theoretic Framework Cparainss reparte
Characteristics Modes andior States Define the various operationa g BT e e e Tegar penahies g:;:;:an:zfxm
Human Factors Ca pabil'rti&s Requirements Company Casa Law ‘Whistishirsnars
Logistical Acqguisition, | Adaptability Define potential extension, gr Management Com

X Safety Palicy i Zalus Baporis M pany
Design and Reuse of ex| Requirements Standanis Risk Azsasements anagamant
Realization Physical Constraints Defing constraints on weight Pl Wciclent Flegiorts Sﬂc';:ﬂ::g Operatlona Regors
- - — - Folicy, stds. Project 5
Constraints Dezign Constraints Define the limitz on the option Mangement Rrasaurces
provided system element, or Hazard Anal Operations
Process These are = N b yses e
. Environmental Define the environmental con Salely Siandands J Hazard Analysas Safaty-Ralated Changas Management
Constraints system, but " Prograss Reparta Fragrass Repoits Changa raquests
_ | Conditions temperature, fauna, sal, dus Design \Work Instrucions St regons
laws, admin societal environment (e.g. leg Documentation Frobiem repars
aralifng AooumpEcrs
corporate P o oietical Define the logistical condition Saloly Constrants Tas reports e up;' ating Process
agreement d . - Standayds Hazard Analyass -
Requirements personnel, spare parts, trainiy Tast Bagdramants B Hon
- - oo Hosudls " % (8 Pl 7
Project Censtraintz | Policies and Define relevant and applicabl
. R IIHPIEFI'IEHIBIIQH
Constraints Regulations regulatory agony, heatth or s and assurance
Business Model Constraintz { Costand Schedule Define, for example, the cost i’;;fm) aper Bﬁ'?;"s" e Cerirsilar
i i Constraints azird Sy I I T [ac {5} Sansor(s)
Constraints (local, natio Manufacturing F—— HE:.;.‘:;%;.,.,..: b:m tusrians) \jﬂﬁé_’
eyenue model ete Management Dasign Rationale [Physcal |
i R Wioek safaly reparts | _ Maintenance Process
System, operational environment, Pracedqus | audits and Evalution Probim Reparts
wairs logs Incidants
development and V&V process inspacticns Ghangs Fequests
Manufacturing Parformancs Ausils

U 2Ul4 Cdlllieylie Wiehuin UIversity

Mixture of Requirements & Architecture Design Constraints

Requirements and Design Information

|. The patient shall never be infused
with a single air bubble more than

The patient shall never be infused Smlvolume.
with a single air bubble more than 2. When asingle air bubble more

Sml volume. than 5ml volume is detected,

Requirements for a
Patient Therapy System

.
"ﬁATIEHT THERAPY 5Y5TEM . .
/ the system shall stop infusion

VWhen a single air bubble more f
than 5ml volume is detected, ﬂl;usmﬂ EYSTEM within 0.2 seconds.
the system shall stop infusion DRUG AIR BUBELE
ithi DELIVERY SEN SOR
within 0.2 seconds. HARDWARE

When piston stop is received, the

system shall stop piston movement FUMPF SYSTEM
within 0.01 seconds. FUMP PUMP 4. The system shall always
HARDWARE CONTROLLER

stop the piston at the
bottom or top of the
chamber.

The system shall always

. L
stop the piston at the L K R

bottom or top of the = ‘\

chamber.

3. When piston stop is received,the
system shall stop piston movement
within 0.01 seconds.

Typical requirement documents span multiple levels of
a system architecture

We have made architecture design decisions.

We have effectively specified a partial architecture y

_

Adapted from M. Whalen presentation

Incremental Life-Cycle Assurance

Software Engineering Institute | CarnegieMellon Feiter. Nov 4, 2014

© 2014 Carnegie Mellon University

System Specification and Requirements
Coverage e, Qualiy aturbute ulty tree

D
[] [] .
: Reguirem entS : B N
: | ______ E _[¥:23‘;ﬁ'ﬂ o) Deliver vide in real time.
. MOdlflab|||ty 1 - New products Lol Add CORBAmiddleware
: —————— :é/_ Modifiability —[Chan . in < 20 persen-menths.
s (T T e . Cors (L) GhapgsWeb uearmeriace
: ASSU rablllty I : 3&“_] (H.H) Power outage at site 1 requires traffic
B o o o e o o -’ n H/W failure redirected to site in < 3 seconds.
: u — Availability —|: Network failure detected and recovered
- . u COTSSW (H,H) in< 1.5 minutes.
- failures \
| } "] (H,M) . .
. . * R | D8R iy L SRe e e e Seeue
Environmental Assumptions pRLLLLEELLLLE LS see { oats Customer DB sutrorizton works
integrity H,L} 99.988% of the time.
I ________________________ ';
Requirements Environment " - e — " e
Guarantees : { Mission \ { Dependablllty\
Assumptions I I Requirements " I Requnements "
1 T s T s
I « ' Function | - | Reliability
| I 2 " EEaEeRees - "
| v bpmzemes L pngnnas I
— I I . | Behavior . Safety |
Precondition =+ I Prtiulinliuliwiot - = Putiuliliuiwiot - =
.y I 1 1 i
Postcondltlon | I :Performance| | : Security | |
Invariant I I . v . " e - .
I 1 - -
. o\ s\ /
1

Exceptional condition

Interaction contract:
match input assumption <
with guarantee

Incremental Life-Cycle Assurance

Software Engineering Institute | CarnegieMellon Feiter. Nov 4, 2014

© 2014 Carnegie Mellon University

Architecture-led Requirement & Hazard Specification

System Specification Coverage

. [i
Requirements ~.i Environment

Guarantees \ .
Assumptions \';\
I

\\\\.

Postcondition

Invariant

Implementation constraints

Error Propagation Ontology

_ Exceptional

condition

Service errors

M

Omission Commission

Value errors Sequence errors |

-—— e = o= =)

Timing errors Replication errors 1

-— e = = o= o)

———— -y — e o o

Rate errors | Concurrency errors |
—_—— - — —_—— ==

Extensions to Powell/Vasiliades
Ontologies

Fault Lattice for |V | Ix |T' . I
Data streams dlue errors Iming errors

=== Software Engineering Institute

7

* Safety- A Y + Mission-
| critical =

crltlcal .

Con

P

1)
Control input or
extermal information
Wrong or missing
troller

Inappropriate,

.2) Inadequate Control

Algorithm
(Flaws in creation,

proces‘; ch%ﬁgest.r incomplete, or
incorrect modification incomect

or adaptation Inadequate or

'13;"P rocess Model ™
inconsistent,

ineffective or missing
control action

Actuator

“* Inadequate
operation

Delayed
operation

missing feedback
Feedback Delays

Sensor

Leveson pattern =
' Inadequate
Operatlon

Incorrect or no
information provided

Measurement

inaccuracies
Controlled Process

) - Feedback delays
2 Component failures

Changes over time

Process input
missing or wrong

Process output
contributes to

Unidentified or system hazarf

out-of-range
disturbance

Incremental Life-Cycle Assurance

Carnegie Mell()ll Feiler, Nov 4, 2014

© 2014 Carnegie Mellon University

Outline

Challenges in Safety-critical Software-intensive systems

An Architecture-centric Virtual Integration Strategy with SAE AADL
Improving the Quality of Requirements

Architecture Fault Modeling and Safety

Incremental Life-cycle Assurance of Systems

Summary and Conclusion

e Incremental Life-Cycle Assurance

—== Software Engineering Institute | CarnegieMellon Feiler. Nov 4, 2014

© 2014 Carnegie Mellon University

AADL Error Model Scope and Purpose

System safety process uses many individual methods and analyses, e.qg.
* hazard analysis CSystem > Capture hazards

o failure modes and effects analysis

o fault trees
» Markov processes

Capture risk mitigation architecture

Capture FMEA model

Goal: a general facility for modeling fault/error/failure behaviors that can be

used for several modeling and analysis activities.

Annotated architecture model permits checking for consistency
and completeness between these various declarations.

Related analyses are also useful for other purposes, e.g.

e maintainability SAE ARP 4761 Guidelines and Methods for Conducting the Safety

. ilabilit Assessment Process on Civil Airborne Systems and Equipment
avallapbiiity Demonstrated in SAVI Wheel Braking System Example

 Integrity

* Security Error Model Annex can be adapted to other ADLs

Incremental Life-Cycle Assurance

—== Software Engineering Institute | CarnegieMellon Feiler. Nov 4, 2014

© 2014 Carnegie Mellon University

Legend Propagation

of Error Types
Direction

Error Propagation Contracts

Port

Propagated

|

Not
| _propagated __

NoD
Incoming obata / ._-—#'ml Error Flow through component
Component C

l@ 3> X Nopata Path P1.NoData->P2.NoData —
Outgoing Source P2.BadData *—>
T [I__ateEata_ 1 Path processor.NoResource -> P2.NoData e
B:d\ZIl‘I: ‘ ¥ Processor|
{ e Memory
Bus NoResource
Binding “Not“ on propagated indicates that this
error type is intended to be contained.
This allows us to determine whether
eropagation specification is complete.
Incoming/Assumed Outgoing/Contract Bound resources
* Error Propagation * Error Propagation * Error Propagation
Propagated errors . .
Pag * Error Containment * Error Containment

e Error Containment;:

Errors not propagated « Propagation to resource

— Incremental Life-Cycle Assurance

—== Software Engineering Institute | CarnegieMellon Feiler. Nov 4, 2014

© 2014 Carnegie Mellon University

Original Preliminary System Safety Analysis
(PSSA)

4 Anticipated:
EGI W h\loVEGI data}/FIight Mgnt Syste

)
Auto Pilot

Operational
Failed

{ Anticipated:
NoService

Oper’l NoData NoData

Airspeed
Failed j
_

FMS)

Processor

Anticipated: No
Stall Propagation

Operational

FMS Power

System engineering activity with
focus on failing components.

e Incremental Life-Cycle Assurance

—== Software Engineering Institute | CarnegieMellon Feiler. Nov 4, 2014

© 2014 Carnegie Mellon University

Discovery of Unexpected PSSA Hazard through
Repeated Virtual Integration

system |Sef
features
trueairspeed: out data port DataDictionary::Velocity;
flows

f1: fou sof” EGI) Anticipated:)
3 NoEGldata] Flight Mgnt Syste

H
annex EMV2 {1

el (EGl Logic)

use beha

rary;
eeErrorStates;

)
Auto Pilot

trued {Failure, CorruptedData};
Flows Oper’l ’ ‘I NoData
efl:errd lure} when FailedState; . N
ef2:errd . tedData}l when BadVaJ’.ueStateAlrspeed Op eratl O n al
properties Fa'led ————————
EMV2: :hazard

Failed

ata
[crossrefd ' Corrupted Data_
feilure 1 [CoOrruptedy ;
phase =>
descriptd ‘ peed reading due to synchronizatm

e e\ ! FMS)

comment 1 EGI HW : f Unexpected propagation of Processor Anticipated: No
cveten implen Oper’l corrupted Airspeed data results - Stall Propagation
ysu:c,;ngne.n D !l |'in stall due to miss-correction Operational

ilotGrip

Position§ 1

EGI: syst k\ \\ Falled L
FMS: proces® = —

Actuatorl: device Actuator ; V|b|"at|0n causes boards to

Actuator2: device Actuator ;

FMSProcessor: processor PowerP tOUCh Wthh causes EGI

connections H FMS Power
pilotCmd: pert PilotGrip.Desir data Corruptlon
sensedPosition: peort PositionSensor.PositionReading -> FMS.Position;
ActuatorlCnd: port FMS.ActCmd -> Actuatorl.ActCmd; EGI maintainer adds corrupted data hazard to model.
Actuator2Cmd: port FMS5.ActCmd -> Actuator2.ActCmd; . .
vix; port EGI.TrueAirSpeed -» EMS.TrueAirSpeed: Error Model analysis of integrated model detects
f B Outgoing propagation {Failure, CorruptedData} is not handled. Expected incoming {Failure}”s_Fp unhand|ed propagation_
: -
Latency => 15 ms .. 28 ms;
¥

Incremental Life-Cycle Assurance

Software Engineering Institute ‘ Carnegie Mellon Feiler, Nov 4, 2014

© 2014 Carnegie Mellon University

Recent Automated FMEA Experience

Failure Modes and Effects Analyses are rigorous and comprehensive

reliability and safety design evaluations
« Required by industry standards and Government policies
 When performed manually are usually done once due to cost and schedule

o |f automated allows for
— multiple iterations from conceptual to detailed design

— Tradeoff studies and evaluation of alternatives
— Early identification of potential problems

2nd Level Effect Transition 3rd Level Effect
Workir

i) Item Initial State
Warkin

Initial Failure Mode | 1st Level Effect Transition
1 Sat_Bus Working Failure Failed Failed Recover Y Waorking
Standby Bus Recovery Causes Payload Transition

i Sat_Payload Working Workjng Bus failure causes payload transition
Vorking 5

2 | Sat_Bus orking forking
2 Sat_Payload orking Failure

Largest anaIyS|s of satellite to date consists of 26,000 failure modes

* Includes detailed model of satellite bus

» 20 states perform failure mode
» Longest failure mode sequences have 25 transitions (i.e., 25 effects)

Myron Hecht, Aerospace Corp.
Safety Analysis for JPL, member of DO-178C committee

Incremental Life-Cycle Assurance

CarnegleMg]]()n Feiler, Nov 4, 2014

Failed Recover

=== Software Engineering Institute
—— © 2014 Carnegie Mellon University

Outline

Challenges in Safety-critical Software-intensive systems

An Architecture-centric Virtual Integration Strategy with SAE AADL
Improving the Quality of Requirements

Architecture Fault Modeling and Safety

Incremental Life-cycle Assurance of Systems

Summary and Conclusion

e Incremental Life-Cycle Assurance

—== Software Engineering Institute | CarnegieMellon Feiler. Nov 4, 2014

© 2014 Carnegie Mellon University

Reliability & Qualification

2010 SEI Study for AMRDEC
Aviation Engineering Directorate

Improvement Strategy

Architecture-led
Requirement
Specification

Architecture-centric
Virtual System
Integration

Static Analysis &
Compositional
Verification

Incremental Assurance
Plans & Cases
throughout Life Cycle

(QN (SN
R @
Mission) e Operational
i Repository & failure
Requirements
Function Architecture modes
Behavior Model
Performance Resource,
/ Col\TopdoeTgm Timing &
Survivability) Performance
i Analysis
Regu ;_ret?:_ents System y
eliability Implementation Reliability,
Safety Safety,
configuration Analysis

S = é\\é — =

Four pillars for Improving Quality of Critical Software-reliant Systems

e Incremental Life-Cycle Assurance

Carnegie Mell()ll Feiler, Nov 4, 2014

© 2014 Carnegie Mellon University

=== Software Engineering Institute

Verification Actions

Table 2. Main Ontology Elements as Handled within Verification. (SEBoK Original)

Element

Definition

Attributes (examples)

Verification Action

A verification action describes what must be verified (the element as reference), on which element, the expected result, the verification
technique to apply, on which level of decomposition.

Identifier, name, description

Verification
Procedure

A we

Verification Tool

Verification
Technique

Table 3. Verification Techniques. (SEBoK Original)

Description

Inspection Technigue based on visual or dimensional examination of an element; the verification relies on the human senses or uses simple methods of
Ider measurement and handling. Inspection is generally non-destructive, and typically includes the use of sight, hearing, smell, touch, and taste,
simple physical manipulation, mechanical and electrical gauging, and measurement. No stimuli (tests) are necessary. The technique is used
Verification Aw to check properties or characteristics best determined by observation (e.g. - paint color, weight, documentation, listing of code, etc.).
Configuration Proy Analysis Technique based on analytical evidence obtained without any intervention on the submitted element using mathematical or probabilistic
Ider calculation, logical reasoning (including the theory of predicates), modeling and/or simulation under defined conditions to show theoretical
compliance. Mainly used where testing to realistic conditions cannot be achieved or is not cost-effective.
Risk An | Analogy or Technique based on evidence of similar elements to the submitted element or on experience feedback. It is absolutely necessary to show by
(us¢| Similarity prediction that the context is invariant that the outcomes are transposable (models, investigations, experience feedback, etc.). Similarity can
Rationale An: only be used if the submitted element is similar in design, manufacture, and use; equivalent or more stringent verification actions were used
for the similar element, and the intended operational environment is identical to or less rigorous than the similar element.
Idel| pemonstration

Technigue used to demonstrate correct operation of the submitted element against operational and observable characteristics without using
physical measurements (no or minimal instrumentation or test equipment). Demonstration is sometimes called *field testing'. It generally
consists of a set of tests selected by the supplier to show that the element response to stimuli is suitable or to show that operators can
perform their assigned tasks when using the element. Observations are made and compared with predetermined/expected responses.
Demonstration may be appropriate when requirements or specification are given in statistical terms (e.g. meant time to repair, average power
consumption, etc.).

Test Technique performed onto the submitted element by which functional, measurable characteristics, operability, supportability, or performance
capability is quantitatively verified when subjected to controlled conditions that are real or simulated. Testing often uses special test
equipment or instrumentation to obtain accurate quantitative data to be analyzed.

Sampling Technique based on verification of characteristics using samples. The number, tolerance, and other characteristics must be specified to be in

agreement with the experience feedback.

Incremental Life-Cycle Assurance

—== Software Engineering Institute | CarnegieMellon Feiler. Nov 4, 2014

© 2014 Carnegie Mellon University

Integrated Approach to Requirement V&V

through Assurance Automation

CasePositionControl.aadl

5 requirements.rdal_diagram
15MS

jPCs
PCS-IA-REQL input.. | | # PCS-OG-REQ4: posi.

PCS-SB-REQS: sum

2 SMS-1A-REQL Input

PCSIC # PCS-SB-REQE: all b.

REQ3: conw.

2 SMS-0G-REQ2: Outp

PCS-OG-REQY: ..

2 PCS-5B-REQR: i

PCS-SS-REQD. < # PCS-POS]

PCS-0G-REQLD: Co

2 PCS-PRE-REQLL: P

SMS-POST-REQ3: At CIACT

< valldation engineer

P ACTSSHEQT com. || # ACT-IC-REQY: data.. | | # ACT-0G-REQS [\
#:508-55-REQ4: Desir | Evidence |
ACT-SB-REQu: Step. ¢)
SMS-55-REQS: com # ACT-IA-REQS: Stepr. -
SMS-S5-REQE: imme
Tiioto
¥ SMS-EA-REQT: devic.. i
SMM-1A-REQL in. | SM1-S-REQ3:
£ SMS-EA-REQS: Poe. e Gen erated
‘ # SMM-SB-REQ4: MM-55-REQH
S assurance cases
SMS-PRE-REQIC: in 0. ¥ SMS-REQ3 Subrequirements are sufficient Z
Requirement coverage e
Assumptlon evidence # SH-Req1: All safety h.
i Problems | B Froperties | [t AAUL Fropery Values | (5] |raceabiity i | @ Assurance (e # SMS-Haz2: Sluggish st..
SMS-Haz1: Misaligned ...
Element Verified Level (%) Risk <<refinedBy> >
: —u <=<refinedBy> >
D Requirements Group SafetyHazards] MNaM
4 [j Requirements Group ACT = NaN y Delivery.. | | # ACT-Haz2: High rate command LIS %2 pes ha 0es no
Requirement ACT-SB-REQ2: queue size zero and abort overflow [1000 ¢ <<refinedBy >
; Requirement ACT-55_REQS: Homing command results in SMM 13 Mal E } T S ffA ~
Requirement ACT-0G-REQS: MaxStepCount of 15 is used as steg |3 1000 2 o - <<refinedBys>
i . Inter- | ti tion ...
Requirement ACT-SB-REQ6: StepCount == zero when reset to ni [1000 & A e N AR . Safety h azards are
i -Hazl.Z: Ste| er Motor 1S no’ H
Requirement ACT-IA-REQT: Stepcount within range | NaN 2 oe part Of the pICtUI’e
Requirement ACT-55-REQL: command arrival driven command [1000 & <ederivedFioms >
pl..
/ Reqmrement ACT-5B-REQ4: StepCount == # of step signalsto n (53 NaM = # SMS-SREQ2: step |.. # SMM-SREQL: max(StepDuratioaverfiegf Byssrequ: ¢
& Ao T 1. Dr S 'i‘j NaM 2
; ; ; ndin [5 1000 ! < <verifiedBys >
Evidence records in terms of claims o
LB

that requirements have been met

Linkage to automated test harnesses

Incremental Life-Cycle Assurance
Feiler, Nov 4, 2014

© 2014 Carnegie Mellon University

—== Software Engineering Institute

Carnegie Mellon

Contract-based Compositional Verification

Secure Mathematically-Assured Composition of Control Models

Key Problem TA4 — Research Integration and
Many vulnerabilities occur at component interfaces.

Formal Methods Workbench

Rockwell Collins and
How can we use formal methods to detect these University of Minnesota

vulnerabilities and build provably secure systems?

ARCHITECTURE-CENTRIC PROOF

16 months into the project

" St Draper Labs could not hack into the

[system in 6 weeks

System Architectun =H : H o
Systemn Design L

“’"’"::"32“,::‘:"2:2""& Had access to source code)
f— Mg

Control Conlrac'ts.
G L

Verification and
Synthesis

Accomplishments

Military Vehicle ¢ Created AADL model of vehicle hardware & software
architecture

« Identified system-level requirements to be verified

Technical Approach based on input from Red Team evaluations
Develop a complete, formal architecture model for UAVs that « Developed Resolute analysis tool for capturing and
provides robustness against cyber attack evaluating assurance case arguments linked to
Develop compositional verification tools driven from the AADL model
architecture model for combining formal evidence from multiple + Developed example assurance cases for two
sources, components, and subsystems

security requirements

Developed synthesis tool for auto-generation of
configuration data and glue code for OS and platform
hardware

Develop synthesis tools to generate flight software for UAVs .
directly from the architecture model, verified components, and
verified operation system

source tools available at

=== Software Engineering Institute | CarnegieMellon Feier. ©P°" S0, comismacem

© 2014 Carney,.

Building the Assurance Case throughout the Life Cycle

Continuous Confidence Measure throughout Life Incremental Evolution and
Cycle that a System Meets its Requirements Execution of Assurance Plans

Architecture-centric Virtual Integration

Incremental Architecture &

Requirement Evolution

Architecture Led
Requirements Specification |’ beployment | Flight Test Requirement
= Coverage
Early Discovery through Architecture Analysis |

System&svﬁ\leads to Assurance Related Reworp~=—" Design & Req

R Wy ystem Integrator S
Virtual Architecture Lab Testing =
Integration & Analysis — =
Verification || "g(’;‘ffv‘;;‘:’em Code Covera Test l _ N
st ge Design & Req Compositional

Testing Refinemen Verification

Design Validation by | 5 -« : l
{] ONE [

Virtual Integration [|evelopment .
Auto-generation from

verified models
AADL&SCADE/Simulink | Incremental Contract-based

f Need for Multi-valued) The sysem = afe | Ada SPARK/Ravenscar Compositional Verification
Argumentation Logic . o MISRA C
N < ca
) Hazard A has Hazard B has
Confldence = b:enﬁml':abd | | bean ulln.m-cl
Requirement Quality + e P
Evidence Quality] { Sl Mo s I sl Build the System
X ALY e l:-/.' -..\: -:; J
Auto—generate_d Assurance Cases Build the Assurance Case FY15/16 line funded project

Incremental Life-Cycle Assurance

Software Engineering Institute | CarnegieMellon Feiter. Nov 4, 2014

© 2014 Carnegie Mellon University

Outline

Challenges in Safety-critical Software-intensive Systems

An Architecture-centric Virtual Integration Strategy with SAE AADL
Improving the Quality of Requirements

Architecture Fault Modeling and Safety

Incremental Life-cycle Assurance of Systems

Summary and Conclusion

e Incremental Life-Cycle Assurance

—== Software Engineering Institute | CarnegieMellon Feiler. Nov 4, 2014

© 2014 Carnegie Mellon University

Architecture-centric Virtual System Integration
& Incremental Life-cycle Assurance

Reduce risks
« Analyze system early and throughout life cycle
» Understand system wide impact
» Validate assumptions across system
Increase confidence
 Validate models to complement integration testing
» Validate model assumptions in operational system
* Evolve system models in increasing fidelity
Reduce cost
* Fewer system integration problems
* Incremental evidence through compositional verification

» Fewer verification steps through generation from single source and verified
models

o Incremental Life-Cycle Assurance

—== Software Engineering Institute | CarnegieMellon Feiler. Nov 4, 2014

© 2014 Carnegie Mellon University

References e

Engmeermg
AADL Website www.aadl.info and AADL Wiki www.aadl.info/wiki et

that 8
Aribitetan Aadvib l_,n...,

Blog entries and podcasts on AADL at www.sei.cmu.edu

AADL Book in SEI Series of Addison-Wesley
http://www.informit.com/store/product.aspx?isbn=0321888944

On AADL and Model-based Engineering

http://www.sei.cmu.edu/library/assets/ResearchandTechnology AADLandMBE.p
df

On an architecture-centric virtual integration practice and SAVI
http://www.sei.cmu.edu/architecture/research/model-based-

enqgineering/virtual system integration.cfm

On an a four pillar improvement strategy for software system verification and
gualification

http://blog.sei.cmu.edu/post.cfm/improving-safety-critical-systems-with-a-
reliability-validation-improvement-framework

Webinars on system verification https://www.csiac.org/event/architecture-centric-
virtual-integration-strateqy-safety-critical-system-verification and on architecture
trade studies with AADL https://www.webcasterd.com/\Webcast/Page/139/5357

Incremental Life-Cycle Assurance

%: Software Engineering Institute | CarnegieMellon Feier. Nov 4, 2014

© 2014 Carnegie Mellon University

http://www.aadl.info/
http://www.aadl.info/wiki
http://www.informit.com/store/product.aspx?isbn=0321888944
http://www.sei.cmu.edu/library/assets/ResearchandTechnology_AADLandMBE.pdf
http://www.sei.cmu.edu/library/assets/ResearchandTechnology_AADLandMBE.pdf
http://www.sei.cmu.edu/architecture/research/model-based-engineering/virtual_system_integration.cfm
http://www.sei.cmu.edu/architecture/research/model-based-engineering/virtual_system_integration.cfm
http://blog.sei.cmu.edu/post.cfm/improving-safety-critical-systems-with-a-reliability-validation-improvement-framework
http://blog.sei.cmu.edu/post.cfm/improving-safety-critical-systems-with-a-reliability-validation-improvement-framework
https://www.csiac.org/event/architecture-centric-virtual-integration-strategy-safety-critical-system-verification
https://www.csiac.org/event/architecture-centric-virtual-integration-strategy-safety-critical-system-verification
https://www.webcaster4.com/Webcast/Page/139/5357

Contact Information

Peter H. Feiler

Principal Researcher

RTSS

Telephone: +1 412-268-7790
Email: phf@sei.cmu.edu

Web
Wiki.sei.cmu.edu/aadl
www.aadl.info

=== Software Engineering Institute

U.S. Mall

Software Engineering Institute
Customer Relations

4500 Fifth Avenue

Pittsburgh, PA 15213-2612
USA

Customer Relations

Email: info@sei.cmu.edu

SEIl Phone: +1 412-268-5800
SEI Fax: +1 412-268-6257

Incremental Life-Cycle Assurance

Carneglel\/[g]]on Feiler, Nov 4, 2014

© 2014 Carnegie Mellon University

	An Incremental Life-cycle Assurance Strategy for Critical System Certification
	Slide Number 2
	Outline
	We Rely on Software for Safe Aircraft Operation
	Software Problems not just in Aircraft
	High Fault Leakage Drives Major Increase in Rework Cost
	Mismatched Assumptions in System Interactions
	Model-based Engineering Pitfalls
	Why UML, SysML Are Not Sufficient
	Impact of Three Step Data Request Protocol
	Operating as ARINC653 Partitioned System
	Model-based Engineering in Practice
	Outline
	SAE Architecture Analysis & Design Language (AADL) for Software-reliant Systems
	The SAE AADL Standard Suite (AS-5506 series)�
	AADL: The Language
	Architecture-Centric Quality Attribute Analysis
	Multi-Fidelity End-to-end Latency in Control Systems
	Software-Based Latency Contributors
	Slide Number 20
	Multi-Notation Approach to Architecture-centric Virtual System and Software Integration
	Architecture-centric Virtual Integration Practice (ACVIP)
	Outline
	Certification & Recertification Challenges
	Industry Practice in DO-178B Compliant Requirements Capture
	Requirement Quality Challenge
	Stakeholder Needs and Requirement Categories
	Mixture of Requirements & Architecture Design Constraints
	System Specification and Requirements Coverage
	Slide Number 30
	Outline
	AADL Error Model Scope and Purpose
	Error Propagation Contracts
	Original Preliminary System Safety Analysis (PSSA)
	Discovery of Unexpected PSSA Hazard through Repeated Virtual Integration
	Recent Automated FMEA Experience
	Outline
	Reliability & Qualification Improvement Strategy
	Verification Actions
	Integrated Approach to Requirement V&V through Assurance Automation
	Secure Mathematically-Assured Composition of Control Models
	Slide Number 42
	Outline
	Architecture-centric Virtual System Integration & Incremental Life-cycle Assurance
	References
	Contact Information

