ABSTRACT

Objective: The purpose of the present study is to determine the performance of tourniquet use by the placement of the tourniquet’s windlass on the extremity in four positions—medial, lateral, anterior, and posterior—to inform tourniquet instructors and develop best tourniquet practices. Methods: A HapMed™ Leg Tourniquet Trainer was used as a manikin to test the effectiveness of an emergency tourniquet, the Special Operations Forces Tactical Tourniquet. Two users made 10 tests, each in four positions. Results: Effectiveness rates of tourniquet use were 100% in all four positions. The two tourniquet users were both right-hand dominant and used their right hand to turn the windlass. One user turned the windlass clockwise, and the other turned it counterclockwise. The association between time to stop bleeding and tourniquet position was statistically significant but associations between time to stop bleeding and the user, user-by-position, and windlass turn number were not statistically significant. The association between tourniquet position and pressure under the tourniquet was statistically significant, and the association between user and pressure under the tourniquet was statistically significant, but the user-by-position and windlass turn number were not statistically significant. The associations between tourniquet position and blood loss volume, user and blood loss volume, and user-by-position and blood loss volume were statistically significant. Conclusions: The present study found that tourniquet effectiveness rates were uniformly 100% irrespective of whether the windlass position was medial, lateral, anterior, or posterior. These excellent clinical and statistical results indicate that users may continue to place the tourniquets as they prefer upon the proximal thigh.

Keywords: first aid, resuscitation, damage control, hemorrhage, trauma, shock

Introduction

Since 2003, the U.S. Army Institute of Surgical Research has run an Emergency Tourniquet Program that has helped develop best tourniquet practices associated with improved casualty survival.1-4 However, many questions remain inadequately evidenced as to what the best tourniquet practices should be. For example, in 2012, tourniquet users asked us two questions on how best to position the tourniquet on an extremity that is in need of hemorrhage control. The two questions were similar and regarded the orientation of the tourniquet in its circumferential envelopment of the extremity. The two questions came forward at about the same time from unrelated persons on different continents, but the questions dealt with whether the tourniquet is best used on the anterior thigh as opposed to the lateral, medial, or posterior thigh. One question, from an instructor contracted to train U.S. military personnel, was whether medial or lateral placement was better. Another question was whether the windlass should be medial, lateral, anterior, or posterior. The user, an Australian expert in disaster medicine, wanted this knowledge to be established in order to develop best practices. We found no adequate evidence of superiority of any position reported in clinical experience, both in studies of collapsible tube science and in published research of tourniquet use (either operative or emergency use). Both questioners oriented the tourniquet placement by the windlass position on the thigh, the most common limb segment in need of tourniquet use.

The purpose of the present study was to determine and compare the performance of tourniquet use by the placement of the tourniquet on the extremity in four positions (medial, lateral, anterior, and posterior) in order to inform tourniquet instruction and develop best tourniquet practices.

Methods

The approved laboratory protocol (U.S. Army Institute of Surgical Research Regulatory Office, Practical Biomedical Engineering Research of Tourniquet Application and Use, L-12-009) was executed from March to August 2013. This study was conducted under a protocol reviewed and approved by the regulatory office and in accordance with good laboratory practices. Tourniquet users included a pair of investigators familiar with military tourniquet training and their clinical use. One investigator was an expert in tourniquet use and tourniquet research; the other investigator was trained in tourniquet
Emergency tourniquet effectiveness in four positions on the proximal thigh.

United States Army Institute of Surgical Research, JBSA Fort Sam Houston, TX

Approved for public release, distribution unlimited

Security classification of:
- Report: unclassified
- Abstract: unclassified
- This page: unclassified

Limitation of abstract: UU

Number of pages: 5
use and was present when the middle third of the Baghdad tourniquet survey was made in 2006, but he did not participate in the Baghdad survey. Both tourniquet users were oriented to the manikin and its use.

The investigators used a HapMed™ Leg Tourniquet Trainer (CHI Systems, Fort Washington, PA), a simulated right-thigh body segment (leg number 000F) with an amputation injury just proximal to the knee; its use in the present study was similar to that described in previous reports.3,4 The medial hip–pelvic area had an effect on the performance of the tourniquet use by its placement on the thigh.

The present study was an experiment of tourniquet performance by placement in four positions on the thigh. The four positions were with the windlass placed anterior, posterior, medial, and lateral on the proximal thigh. Two users made 10 tests, each test in four positions, for a total of 80 tests. Performance criteria included hemorrhage control (yes–no), stopping the palpable pulse distal to the tourniquet (yes–no), time to stop bleeding (seconds), pressure applied to the skin by the tourniquet (mmHg), blood loss volume (mL), and the number of windlass turns executed (whole number). The user tightened the tourniquet until simulated bleeding was believed to have stopped, based on visual inspection of the lights and palpitation for the distal pulse in the device.

Statistical analysis included use of descriptive statistics. We used a least squares analysis of variance (ANOVA) to analyze the effects of tourniquet use on the factors of interest. Analysis allowed for detection of intervariable associations; namely, if there was an association between the user (User 1 versus User 2) and tourniquet position. This user-by-position meant that different users had different results by position overall. Significance level was set at \(p = .05 \).

Results

Effectiveness rates of tourniquet use were 100% in all four positions (medial, lateral, anterior, and posterior); there was no statistical or clinical difference among the effectiveness rates by position.

The two tourniquet users were both right-hand dominant and used their right hand to turn the windlass. The direction in which the windlass was turned differed between the two users. One user turned the windlass clockwise and the other counterclockwise. These two directions were consistent for both users in all their tests. Therefore, the results by turn direction and user were thus confounded as they essentially collapsed to mean the same thing; user identity and turn direction could not be separated effectively in the model.

When modeling time to stop bleeding, the association between tourniquet position and time to stop bleeding was not statistically significant. The windlass turn was a 180° excursion arc, which is the limit of wrist supination in turning the windlass. The users by convention regrip the windlass after 180°; this arc is what they deem one turn. The number of turns was recorded. The turn direction (clockwise, counterclockwise) was recorded. Users were categorized individually.
was statistically significant, but the user, user by position, and windlass turn number were not statistically significant (Table 1).

Table 1 Results of Time to Stop Bleeding.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Degrees of Freedom</th>
<th>Sum of Squares</th>
<th>F Ratio</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>User</td>
<td>1</td>
<td>341.5890</td>
<td>1.3088</td>
<td>.2565</td>
</tr>
<tr>
<td>Position</td>
<td>3</td>
<td>2501.8071</td>
<td>3.1953</td>
<td>.0286</td>
</tr>
<tr>
<td>User by position</td>
<td>3</td>
<td>336.5819</td>
<td>0.4299</td>
<td>.7322</td>
</tr>
<tr>
<td>Turn number</td>
<td>1</td>
<td>850.2389</td>
<td>3.2577</td>
<td>.753</td>
</tr>
</tbody>
</table>

When modeling pressure under the tourniquet, the association between tourniquet position and pressure under the tourniquet was statistically significant, and the association between user and pressure under the tourniquet was statistically significant. However, the user-by-position and windlass turn numbers were not statistically significant (Table 2).

Table 2 Results of Pressure Under the Tourniquet.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Degrees of Freedom</th>
<th>Sum of Squares</th>
<th>F Ratio</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>User</td>
<td>1</td>
<td>25,075.764</td>
<td>13.4540</td>
<td>.0005</td>
</tr>
<tr>
<td>Position</td>
<td>3</td>
<td>22,794.865</td>
<td>4.0767</td>
<td>.0099</td>
</tr>
<tr>
<td>User by position</td>
<td>3</td>
<td>12,818.854</td>
<td>2.2926</td>
<td>.0854</td>
</tr>
<tr>
<td>Turn number</td>
<td>1</td>
<td>3884.272</td>
<td>2.0840</td>
<td>.1532</td>
</tr>
</tbody>
</table>

When modeling blood loss volume, the association between tourniquet position and blood loss volume was statistically significant (Table 3), the association between user and blood loss volume was statistically significant, and the association between user-by-position and blood loss volume was statistically significant. However, the windlass turn number was not statistically significant.

Table 3 Results of Blood Loss Volume.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Degrees of Freedom</th>
<th>Sum of Squares</th>
<th>F Ratio</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>User</td>
<td>1</td>
<td>23,474.626</td>
<td>9.9458</td>
<td>.0024</td>
</tr>
<tr>
<td>Position</td>
<td>3</td>
<td>46,536.196</td>
<td>6.5722</td>
<td>.0006</td>
</tr>
<tr>
<td>User by position</td>
<td>3</td>
<td>31,399.288</td>
<td>4.4345</td>
<td>.0065</td>
</tr>
<tr>
<td>Turn number</td>
<td>1</td>
<td>1286.931</td>
<td>0.5453</td>
<td>.4627</td>
</tr>
</tbody>
</table>

Excluding effectiveness, the other results indicated that the position had significant associations with performance for time to stop bleeding, pressure, and blood loss volume. The anterior position had the shortest time to stop bleeding results, and the posterior had the longest. The anterior position had the highest pressures, and the lateral had the lowest pressures. The medial position had the lowest blood loss results, and the lateral had the highest. The differences in times, pressures, and volumes were small but clinically significant (Figure 1).

Discussion

The main finding of the present study was that tourniquet effectiveness rates were uniformly 100% regardless of whether the position was medial, lateral, anterior, or posterior. These clinical and statistical results are important because they indicate that users may continue to place the tourniquets as they wish on the proximal thigh according to their preference. This finding confirmed the hypothesis that effectiveness and position are not associated. However, effectiveness as a yes-no binary variable is a simple but crude outcome. Other outcomes, such as blood loss volumes, have value also, as discussed in the following minor findings.

The first minor finding was that several of the hypothesis-generating associations yielded interesting results unexpectedly. The experiment was able to detect associations among outcomes like blood loss volume and technique-associated variables like turn direction. However, the design of the experiment was not set up to answer definitively the meaning of such associations.

The second minor finding was that one user turned the windlass in an unexpected direction. Both users were right-hand dominant and preferentially used their right hand to turn the windlass, but one turned the windlass clockwise and the other counterclockwise. Turning the windlass is wrist-based, and turning is either with wrist supination or pronation. Supination turns the palm up, whereas pronation turns the palm down. The two are performed by muscles of substantially different strength as supination is stronger. The power supinator is the biceps...
The strength of the present report is its experimental design, which allowed a powerful statistical analysis of several variables of interest. By reporting on a tourniquet experiment, the present report shows investigators a scientific approach to studying emergency healthcare in a way that is understandable and practical. Such an approach is suitable for further experiments in addressing the questions of tourniquet users whether used by the present investigators or any others so interested.

Study Limitations and Future Directions

Limitations of the present report are several. An experiment on a manikin does not model clinical care complexity in its entirety but focuses on the controlled variables of interest. The experiment is mechanical in nature and does not allow easy study of human factors like user knowledge, experience, or skill.

Future directions for research are several. A clinical question remaining unanswered is whether a medial wound is best treated with lateral or medial tourniquet placement as it is not known whether one tourniquet position applies more pressure on an injury on the opposite side of the extremity. To date, evidence in mechanical models indicates that circumferential extremity tourniquets of conventional designs are generally symmetric in their medial-lateral pressure distribution.5,6

In summary, the present study reports a manikin experiment that found that medial, lateral, anterior, and posterior positioning of a windlass-and strap emergency tourniquet had 100% effectiveness irrespective of position, but that several associations detected, such as with blood loss volumes by position, are opportunities for further study in order to develop best tourniquet practices.

Acknowledgments

Otilia Sánchez aided in manuscript preparation.

Disclaimers

The opinions orAssertions contained herein are the private views of the authors and are not to be construed as official or reflecting the views of the Department of Defense or United States Government. The authors are employees of the U.S. Government. This work was prepared as part of their official duties and, as such, there is no copyright to be transferred.

Disclosures

This project was funded with internal USAISR funds and the Defense Health Program (Proposal 201105: Operational system management and postmarket surveillance of hemorrhage control devices used in medical care of U.S. Servicepersons in the current war).

The authors have nothing to disclose.

References
