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Spacecraft Plasma M&S

• Applications: Hall thrusters, FRC, LIBS, 
Laser Plasma Interaction, Plasma Discharges

• Complex physics: excitation/ionization, transport, 
radiation, material, etc.

• Multiple spatial-temporal and density scales.
EP Plumes

Chamber Environment
FRC

Ionizing shocks

Current focus:
Develop advanced multiscale 
algorithms for plasma M&S 
in highly non‐equilibrium 
condition and with 
collisional‐radiative kinetics

Laser Plasma Interaction
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Plasma M&S

• Kinetic equation:

– Fluid regime: 

– Kinetic regime: 

– Collisional plasma: excitation/ionization, CE collisions, radiation, 
etc.

• Methods: moment method, PIC, DNS.

• Challenges: 

– Multiple species:

– Dynamical regime:
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Collisional-Radiative (CR) model

• Non-equilibrium modeling of the atomic state 
distribution function (ASDF)

– Detailed state-to-state model of atomic transition, 
i.e., excitation, ionization, line radiation, etc.

– Rates derived based on ab initio cross section.

• Examples: hypersonic shocks in Ar & N2

• Complications: 

– Accuracy can require many states

– Translational nonequilibrium
Atomic CR

Ar shock (31 levs)
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Maxwellian CR

• Hydrogen model:

• Analytical rates:
– Excitation/deexcitation:

– Ionization/recombination:

– Line radiation

• Rate equation:

En  IH 11/ n2  In  IH / n2 gn  n2
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Level grouping

• CR modeling: level-grouping
• Group effective rates of change

• Internal structure of group is assumed Boltzmann (Tn)
– Piecewise exponential

• This does NOT mean the entire ASDF is Boltzmann!!
• Group temperature must be determined     additional conservation 

equation, e.g.:
• Procedure?

– Solve:

– However…

with:

tabulatediterated computed

where
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Level grouping

• CR modeling: level-grouping
• Other approaches? 

– Sub-partitioning: lowest level n0 and total Nn (no need for En)

– Sub-partitioning: lowest level n0 and upper distribution Nn’

– Approximate Zn by expanding around mean energy:

• With n0, Nn partitioning: 1/ln(1+)
• With n0, Nn’ partitioning: 1/ln(

• Improve with successive iterations… 

…fails

…fails

where

…fails
…succeeds!
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Level grouping: Numerical test

• Isothermal heat bath:

Works very well (also tested in cooling regime). 
Much better than uniform (standard) grouping.
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Level grouping: Energy conservation

• Energy conservation:
• Conservation follows from definition
• Start with:

• Express in terms of conserved variables:
internal structure) :=

overall group population) : Nn

with
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Level grouping: Energy conservation

• Energy conservation:
• Finally…Procedure shown to be equivalent to replacing 

energies by “effective” (condition-dependent) values (≈ EOS)

• NOW, energy is conserved

Excitation: Ionization:

with

(down to round‐off)
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Multi-fluid equations

• Multi-fluid model:
• 5-moment:

• Add Maxwell’s equations:

• Add collisions:
– Elastic – Braginskii terms
– Inelastic – Rates depend on both T and relative velocity

– Multi-fluid CR model from fundamental principles being developed 
(incl. detailed balance)
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Multi-fluid equations

• Electromagnetic shock: generalized Brio-Wu1

– FV with WENO reconstruction and RK3

1Shumlak & Loverich, JCP 2003
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Two-Fluid model

• Assume fully ionized plasma, electrostatic field:

• Gauss’s law for electrostatic field

• Transport: Spitzer with flux limiter
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Electrodynamics

• Maxwell’s equations for laser E and B fields (different from plasma)

• Cold plasma response via Ohm’s law:

• Assuming monochromatic wave:

• Wave equations becomes:

Complex conductivity

Dielectric function

Refractive index
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Ponderomotive force and collisional 
heating

• Nonlinear force (Hora, PoF 1985)
– General: 

– Assume steady-state and time-average: ponderomotive force

• Collisional absorption:
– Poynting theorem:

– Time-average:

• Assume 1-d propagation:

Maxwell tensor

Poynting vector
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Laser-Plasma Interaction

• Ion acceleration due to ponderomotive force

laser
Ponderomotive

potential

Electrostatic 
field

(acceleration)

Particle 
acceleration

Laser EM field

ccoustic wave

Double layer, 
cavitonPonderomotive

bunching
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Beyond Maxwellian: Kn = O(1)

• Not-too-far from equilibrium (isotropic)

– Discretized EEDF yields rate equations for 
discrete elements (“bin”)

– DB enforced at microscopic level

– High-order, implicit and energy conserving

– More efficient compared to MCC.

• Far from equilibrium

– MCC algorithm for inelastic collisions

– Can resolve anisotropic vdf

– Drawback: slow convergence, reaction branching, 
singular rates, computational particle growth
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Beyond Maxwellian: Particle Merging

• Scheme built on merging 3+ particles to 2. 

• Mass, momentum and kinetic energy are 
exactly conserved; Electrostatic energy also 
conserved in physical space. 

• Split analogously defined by merging only 
fractions of original particles.

• Octree in velocity space inhibits 
thermalization by ensuring only near 
neighbor particles are merged.

• Higher-moment conserving schemes have 
been obtained with increased number of
merge result particles generated.
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Particle Merge: Importance of Octree
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Mass/Momentum/Energy
Conserving Merge for Both

Energy Conserved
‐But‐
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Particle Merge: DC Breakdown Case

• Tested in 3D ES-PIC of 
1-KV DC Breakdown

• MCC-Ionization, Chain 
Branching & Cathode 
Secondary Emission causes
exponential growth in cost

• With Merging: Density 
matches despite vastly 
different number of 
Computational Particles/Cell

• Negligible overheard 
demonstrated in comparison 
of wall-clock/iteration with 
merge every iteration

• Enables direct control of 
computational cost in particle 
methods

• Future Work: Test merge in 
non-Maxwellian laser plasma 
test case

Control Merge & Split Control Merge & Split

Density Computational
Particles/Cell

Particle Merge
Inhibits Growth in

Computational Cost!
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Conclusion

• Multiscale algorithms for nonequilibrium flows with CR 
kinetics
– Level grouping schemes of electronic states of atoms.

– Multi-fluid equations developed to efficiently capture 
electron “hydrodynamics”

– Particle merge/split for particle management, efficient 
sampling, inelastic collisions …

• Ongoing works:
– Multi-D simulation with level grouping

– Modeling of inelastic collisions in multi-fluid

– High-order particle merging schemes


