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Abstract— For software developers, the selection of a 
particular NoSQL technology imposes a specific distributed 
software architecture and data model, making the technology 
selection difficult to defer. NoSQL database technologies provide 
high levels of performance, scalability, and availability by 
simplifying data models and supporting horizontal scaling and 
data replication. Each NoSQL product embodies a particular set 
of consistency, availability, and partition tolerance (CAP) 
tradeoffs, along with a data model that reduces the conceptual 
mismatch between data access and data storage models. This 
means technology selection must be done early, often with limited 
information about specific application requirements, and the 
decision must balance speed with precision, as the NoSQL 
solution space is large and evolving rapidly. In this paper we 
present the method and results of a study to compare the 
architecturally-relevant characteristics of three NoSQL 
databases for use in a large, distributed healthcare organization. 
We reflect on some of the fundamental difficulties of performing 
detailed technical evaluations of NoSQL databases specifically, 
and big data systems in general, that have become apparent 
during our study. 

Keywords—NoSQL, distributed databases, technology 
evaluation 

I. INTRODUCTION  
The exponential growth of data in the last decade has 

fueled a new specialization for software technology, namely 
that of big data, software systems [1]. At the heart of big data 
systems are a collection of database technologies that are more 
simple and lightweight, and provide higher scalability and 
availability than traditional relational databases [2]. Pioneering 
efforts from Internet-born organizations such as Google and 
Amazon [3][4], along with those of numerous other big data 
innovators, have created a variety of open source and 
commercial database technologies for organizations to 
construct and operate massively scalable, highly available data 
repositories.  

These highly scalable “NoSQL” databases [5] are typically 
designed to scale horizontally across clusters of low cost, 
moderate performance servers. They achieve high 
performance, elastic storage capacity, and availability by 
replicating and partitioning data sets across a cluster. Each 
database specifies its own proprietary data model and query 
language, as well as specific mechanisms for achieving 
distributed data consistency and availability. Prominent 

examples of NoSQL databases include Cassandra, Riak, and 
MongoDB. 

Due to the inherent diversity in NoSQL technologies, 
database selection must be carefully considered. When a 
particular database and its data model is chosen for a 
application, the associated consistency and distribution models 
imposed by the database have a pervasive impact on the design 
of the associated applications [6]. Hence, the selection of a 
particular NoSQL database must be made early in the design 
process and is difficult and expensive to change downstream. 
In other words, NoSQL database selection becomes a critical 
architectural decision for big data systems.  

COTS product selection has been extensively studied  in 
software engineering [7][8][9]. In complex technology 
landscapes with multiple competing products, organizations 
must balance the cost and speed of the technology selection 
process against the fidelity of the decision [10]. While there is 
rarely a single ‘right’ answer in selecting a complex component 
for an application, selection of inappropriate components can 
be costly, reduce downstream productivity due to rework, and 
even lead to project cancelation. This is especially true for 
large scale, big data systems due to their complexity and the 
magnitude of the investment. 

In this context, COTS selection of NoSQL databases for 
big data applications presents several unique challenges: 

• This is an early architecture decision that must be made 
with inevitably incomplete definitions of requirements; 

• The capabilities and features of NoSQL products vary 
widely, making generalized comparisons difficult; 

• Prototyping at production scale is usually impractical, as 
this would require hundreds of servers, multi-terabyte data 
sets, and thousands or millions of clients; 

• The solution space is changing rapidly, with new products 
constantly emerging, and existing products releasing 
several versions per year with ever-evolving feature sets.  

We faced these challenges during a recent project for a 
healthcare provider seeking to adopt NoSQL technology for an 
Electronic Health Record (EHR) system. The system supports 
healthcare delivery for over nine million patients in more than 
100 facilities across the globe. Data currently grows at over 
one terabyte per month, and all data must be retained for 99 
years.  
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In this paper, we outline a technology evaluation and 
selection method we have devised for big data systems.  

We then describe a quantitative and qualitative study we 
performed for the health-care provider described above. We 
introduce the study context, our evaluation approach, and the 
results of both extensive performance and scalability testing 
and a detailed feature comparison. We also reflect on our 
experience, describing some of the essential and accidental 
challenges we overcame in conducting this evaluation. The 
specific contributions of the paper are as follows: 

• A rigorous method that organizations can follow to 
evaluate the performance and scalability of NoSQL 
databases. 

• Performance and scalability results that empirically 
demonstrate significant variability in the capabilities of 
the databases we tested to support the requirements of 
our healthcare customer. 

• Practical insights and recommendations that 
organizations can follow to help streamline a NoSQL 
database evaluation for their own applications.  

II. RELATED WORK 
Rigorous evaluation methods support data-driven analysis 

and insightful comparisons of the capabilities of candidate 
components for an application. Prototyping as part of 
component evaluation provides important benefits that include 
both quantitative assessment of performance and qualitative 
understanding of other factors related to adoption. Gorton 
describes a rigorous evaluation method for middleware 
platforms, which can be viewed as a precursor for our work 
[10].  

Benchmarking of databases is generally based on the 
execution of a specific workload against a specific data set, 
such as the Wisconsin benchmark for general SQL processing 
[11] or the TPC-B benchmark for transaction processing [12]. 
These publically available workload definitions have long 
enabled vendors and others to publish measurements, which 
consumers can then attempt to map to their target workload, 
configuration, and infrastructure for product comparison and 
selection. These benchmarks were developed for relational data 
models, and are not relevant for NoSQL systems.  

YCSB [13] has recently emerged as the default data set and 
workload generator for executing simple benchmarks for 
NoSQL systems. YCSB++ [14] extends YCSB with more 
sophisticated, multi-phase workload definitions and support for 
multiple coordinated clients to increase the load on the 
database server. There is an emerging collection of published 
measurements using YCSB and YCSB++, from product 
vendors [15][16] and from researchers [17][18]. In this project, 
we built on the YCSB framework, incorporating a more 
complex data set and workload definition that was specific to 
our healthcare system requirements. 

All of the work discussed above has used “generic” data 
sets and workloads. In contrast, the T-Check method [19] 
performs evaluation by defining selection criteria and then 
prototyping and measuring the candidate technology in the 
context of use. The results reported by Dede and colleagues 

[20] is an example of the type of hybrid qualitative and 
quantitative analysis that we performed, using system-specific 
data sets and workloads to answer specific questions about the 
candidate technologies within a particular context of use. 

III. EVALUATION METHOD 
Our method is inspired by earlier work on middleware 

evaluation [22][23] and customized to address the 
characteristics of big data systems. The basic main steps are 
depicted in Fig. 1 and outlined below: 

 

 
Fig. 1 Lightweight Evaluation and Prototyping for Big Data (LEAP4BD) 

1. Specify Requirements: First, we elicit the high priority 
functional and quality requirements for the system. For big 
data applications, we focus on specific requirements for 
performance, scalability, availability, consistency, and 
security. We also define a use case that is representative of 
the customer’s application domain. The use case defines 
both a data model and workload that will be used as the 
basis of performance and scalability assessment in Step 4. 

2. Select Candidate NoSQL Databases: We select 2-4 
candidate NoSQL databases for deeper evaluations. 
Selection criteria are both contextual (e.g. experience with 
a specific technology) and technical, and require 
evaluation of database features against the requirements . 

3. Design Use Case Specific Data Model: Based on the use 
case defined for evaluation, we map the application logical 
data model to the physical model supported by the 
candidate NoSQL databases. We also deploy the database 
and load the test data (synthetic or actual) into the database 
instances. 

4. Execute Performance and Scalability Tests: We 
implement a test case driver that executes the specified 
workload on each database. Load is scaled by increasing 
the number of concurrent client requests to assess how 
each database reacts to increased workloads.  

5. Report Results: The evaluation report includes both  
qualitative and quantitative results. This details the 
performance and scalability results we obtained from 
testing each NoSQL database in a consistent environment. 



It also describes how easily the logical data model maps to 
the specific NoSQL data models that were tested, and the 
specific features of each database that will influence the 
identified quality requirements for the application.  

In the rest of this paper we describe our experiences 
applying this method to the EHR project and reflect on the key 
issues that we faced during the project. 

IV. EHR CASE STUDY 

A. Project Context 
Our customer was a large healthcare provider developing a 

new electronic healthcare record (EHR) system. This will 
replace their existing system, which utilizes thick client 
applications hosted at sites around the world, all connected to a 
centralized relational database. NoSQL technologies were 
considered attractive candidates for two specific uses, namely: 

• the primary data store for the EHR system 

• a local cache at each site to improve request latency and 
availability 

As the customer was familiar with RDMS technology for 
these use cases, but had no experience using NoSQL, they 
directed us to focus the technology evaluation only on NoSQL 
technology.  

B. Specifying Requirements 
We began the engagement with a stakeholder workshop, 

using a tailored version of the Quality Attribute Workshop 
Method [21], to elicit key functional and quality attribute 
requirements to guide our technology evaluation. These 
requirements fell in to two broad categories, one quantitative, 
one qualitative, as follows: 

Performance/Scalability: The main quantitative 
requirements were the ability to easily distribute and replicate 
data across geographically distributed databases, and to 
achieve high availability and low latencies under load in 
distributed database deployments. Hence understanding the 
inherent performance and scalability that is achievable with 
each candidate NoSQL database was an essential part of the 
evaluation.  

Data Model Mapping Complexity: Health care systems 
have clearly defined logical data models that need to be 
supported by a NoSQL database. As data models vary 
considerably between NoSQL technologies, an important 
qualitative requirement was to understand how the health care 
data model could be supported in the NoSQL alternatives. This 
required us to evaluate the specific features of each database 
for data modeling and querying, along with the mechanisms for 
maintaining consistency in a distributed deployment.  

We also worked with the customer to define two driving 
use cases for the EHR system. These provided the basis for 
data model evaluation and performance and scalability 
assessment we performed in subsequent steps in the project. 
The first use case was retrieving recent medical test results for 
a particular patient, which is a core EHR function used to 
populate the user interface whenever a clinician selects a new 
patient. The second use case was achieving strong consistency 

for all readers when a new medical test result is written for a 
patient, because all clinicians using the EHR to make patient 
care decisions should see the same information about that 
patient, whether they are at the same site as the patient, or 
providing telemedicine support from another location. 

C. Select Candidate NoSQL Databases 
Our customer was specifically interested in evaluating how 

different NoSQL data models (key-value, column, document, 
graph) would support their application domain. For this reason 
we selected one NoSQL database from each category to 
investigate in detail. We subsequently ruled out graph 
databases as they did not support the horizontal partitioning 
required for the customer’s requirements. After a short feature 
assessment of various databases, we settled on Riak, Cassandra 
and MongoDB as our three candidate technologies, as these are 
the market leaders in each NoSQL category. In addition to 
satisfying functional requirements for the EHR application, 
each of these products is stable and mature, with enterprise 
technical support available, and hence is compatible with the 
customer’s operational and business constraints. 

D. Design and Execute Performance Tests 
A thorough evaluation and comparison of complex 

database platforms requires prototyping with each to reveal the 
performance and scalability capabilities [10]. To this end, we 
developed and performed a systematic procedure that provides 
a foundation for an “apples to apples” comparison of the 3 
databases we evaluated. Based on the use cases defined during 
the requirements step, we: 

• Defined a consistent test environment for evaluating 
each database, including server platform, test client 
platform, and network topology. 

• Mapped the patient record logical model to each 
database’s data model and loaded the resulting 
database with a large collection of synthetic test data.  

• Created a load test client that implements the database 
read and write operations defined for each use case. 
This client is capable of issuing many simultaneous 
requests so that we can analyze how each technology 
responds as the request load increases. 

• Defined and executed test scripts that exerted a 
specified load on the database using the test client.  

We executed each test case on several distributed 
configurations to measure performance and scalability. These 
test scenarios ranged from baseline testing on a single server to 
9 server instances that sharded and replicated data.  

Based on this approach, we are able to produce a consistent 
set of test results that assess the likely performance and 
scalability of each database for this customer’s EHR system.  

V. PROTOTYPE AND EVALUATION SETUP 

A. Test Environment 
The three databases we tested were: 

1. MongoDB version 2.2, a document store 
(http://docs.mongodb.org/v2.2/);  



2. Cassandra version 2.0, a column store 
(http://www.datastax.com/documentation/cassandra/2.
0);  

3. Riak version 1.4, a key-value store 
(http://docs.basho.com/riak/1.4.10/).  

Prototyping and evaluation were performed on two 
database server configurations: Single node server, and a nine-
node configuration that was representative of a production 
deployment. A single node test allowed us to validate our base 
test environment for each database. The nine-node 
configuration used a topology that represented a geographically 
distributed deployment across three data centers. The data set 
was partitioned (i.e. “sharded”) across three nodes, and 
replicated to two additional groups of three nodes each. We 
used MongoDB’s primary/secondary feature, and Cassandra’s 
data center aware distribution feature. Riak did not support this 
“3x3” data distribution, so we used a configuration where the 
data was sharded across all nine nodes, with three replicas of 
each shard stored across the nine nodes.  

All testing was performed using the Amazon EC2 cloud 
(http://aws.amazon.com/ec2/). Database servers were run on 
“m1.large” instances, with the database data and log files 
stored on separate EBS volumes attached to each server 
instance. The EBS volumes were “standard”, not provisioned 
with the EC2 IOPS feature, to minimize the tuning parameters 
used in each test configuration. Server instances ran the 
CentOS operating system (http://www.centos.org). The test 
client was also run on an “m1.large” instance, and also used the 
CentOS operating system. All instances were in the same EC2 
availability zone (i.e. the same cloud data center).  

B. Mapping the data model 
We used a subset of the HL7 Fast Healthcare 

Interoperability Resources (FHIR) data model 
(http://www.hl7.org/implement/standards/fhir/) for our analysis 
and prototyping. The logical data model consisted of FHIR 
Patient Resources (e.g., demographic information such as 
names, addresses, and telephone numbers), and laboratory test 
results represented as FHIR Observation Resources (e.g., test 
type, result quantity, and result units). There was a one-to-
many relation from each patient to the associated test results. 
Although this was a relatively simple model, the internal 
complexity of the FHIR Patient Resource, with multiple 
addresses and phone numbers, along with the one-to-many 
relation from patient to observations, required a number of data 
modeling design decisions and tradeoffs in the data mapping. 

A synthetic data set was used for testing. This data set 
contained one million patient records, and 10 million lab result 
records. The number of lab results for a patient ranged from 
zero to 20, with an average of seven. The Patient and 
Observation Resources were both mapped into the data model 
for each of the databases we tested.  

C. Create load test client 
Our test client was based on the YCSB framework [13], 

which provides capabilities to manage test execution and test 
measurement. For test execution, YCSB has default data 
models, data sets, and workloads. We therefore modified 

YCSB and replaced these default behaviors with 
implementations specific to our use case data and requests.  

We were able to leverage YCSB’s built-in capabilities for 
specifying the total number of operations to be performed and 
the percentage of read and write operations in the workload. 
The test execution capabilities also allow the use of multiple 
execution threads to create concurrent client sessions.  

 In the measurement framework, for each operation 
performed, YCSB measures the operation latency, which is the 
time from when the request is sent to the database until the 
response is received back from the database. The YCSB 
reporting framework records latency measurements separately 
for read and write operations. Latency distribution is a key 
scalability measure for big data systems [4][24], so we 
recorded both average and 95th percentile values.  

We extended the YCSB reporting framework to report 
Overall Throughput, in operations per second. This 
measurement was calculated by dividing the total number of 
operations performed (read plus write) by the workload 
execution time. The execution time was measured from the 
start of the first operation to the completion of the last 
operation in the workload execution, and did not include initial 
setup and final cleanup times.  

D. Define and execute test scripts 
The stakeholder workshop identified that the typical 

workload for the EHR system was 80% read and 20% write 
operations. For this operation mix, we defined a read operation 
to retrieve the five most recent observations for a single patient, 
and a write operation to insert a single new observation record 
for a single existing patient. 

Our customer was also interested in using the NoSQL 
technology as a local cache, so we defined a write-only 
workload that was representative of a daily load of a local 
cache from a centralized primary data store with records for 
patients with scheduled appointments for that day. Finally, we 
defined a read-only workload that was representative of 
flushing the cache to the centralized primary data store. 

For each database configuration tested, every workload was 
run three times in order to minimize the impact of any transient 
events in the cloud infrastructure. For each of these three runs, 
the workload execution was repeated for a defined range of test 
client threads (1, 2, 5, 10, 25, 50, 100, 200, 500, and 1000), 
which created a corresponding number of concurrent database 
connections. During the testing, the standard deviation of the 
throughput for any three-run set for a particular thread count 
never exceeded 2% of the average. We post-processed the 
results to combine the measurements by averaging across the 
three runs for each thread count.  

Operating with a large number of concurrent database 
client sessions is not typical for a NoSQL database. Clients 
usually connect first to a web server tier and/or an application 
server tier, which aggregates the client operations on the 
database using a pool of perhaps 16-64 concurrent sessions. 
However, our prototyping was in support of the modernization 
of a system that used thick clients with direct database 



connections, and so our customer wanted to understand the 
implications of retaining this thick client architecture.  

VI. PERFORMANCE AND SCALABILITY RESULTS 
We report here on our results for a nine-node configuration 

that reflected a typical production configuration. As noted 
above, we also performed testing on a number of 
configurations for each database under evaluation, ranging 
from a single server up to a nine-node cluster. The single-node 
configuration’s availability and scalability limitations make it 
impractical for production use, and so we do not present 
performance comparisons across databases for this 
configuration. However, in the following discussion, we 
compare the single node configuration for a specific database 
to distributed configurations. This provides insights into the 
efficiency of that database’s distributed coordination 
mechanisms and guides scalability tradeoffs between adding 
more nodes versus using faster nodes with more storage.  

Defining a test configuration required several design 
decisions. The first was how to distribute client connections 
across the server nodes. MongoDB uses a centralized router 
node, and all clients connected to the single router node. 
Cassandra’s data center aware distribution feature created three 
sub-clusters of three nodes each, and client connections were 
spread uniformly across the three nodes in one of the sub-
clusters. In the case of Riak, the product architecture only 
allowed client connections to be spread uniformly across the 
full set of nine nodes. An alternative might have been to test 
Riak on three nodes with no replication, however other 
constraints in the Riak architecture resulted in extremely poor 
performance in this configuration, and so the nine-node 
configuration was used. 

A second design decision was how to achieve strong 
consistency, which requires defining both write operation 
settings and read operation settings [6]. Each of the three 
databases offered slightly different options, and we explored 
two approaches, discussed in the next two sections. The first 
reports results using strong consistency, and the second reports 
results using eventual consistency. 

A. Performance Evaluation – Strong Consistency 
The selected options are summarized in TABLE I. For 

MongoDB, the effect is that all writes were committed on the 
primary server, and all reads were from the primary server. For 
Cassandra, the effect is that all writes were committed on a 
majority quorum at each of the three sub-clusters, while a read 
required a majority quorum only on the local sub-cluster. For 
Riak, the effect was to require a majority quorum on the entire 
nine-node cluster for both write operations and read operations.  

TABLE I SETTINGS FOR REPRESENTATIVE PRODUCTION CONFIGURATION 

Database Write Options Read Options 
MongoDB Primary Acknowledged Primary Preferred 
Cassandra EACH_QUORUM LOCAL_QUORUM 
Riak quorum Quorum 
 

The throughput performance for the representative 
production configuration for each of the workloads is shown in 
Figs. 2, 3, and 4.  

 

 
Fig. 2 Throughput, Representative Production Configuration, Read-Only 

Workload (higher is better) 

 
Fig. 3 Throughput, Representative Production Configuration, Write-Only 

Workload 

 
Fig. 4 Throughput, Representative Production Configuration, Read/Write 

Workload 



In all cases, Cassandra provided the best overall 
performance, with read-only workload performance roughly 
comparable to the single node configuration, and write-only 
and read/write workload performance slightly better than the 
single node configuration. This implies that, for Cassandra, the 
performance gains that accrue from decreased contention for 
disk I/O and other per node resources (compared to the single 
node configuration) are greater than the additional work of 
coordinating write and read quorums across replicas and data 
centers. Furthermore, Cassandra’s “data center aware” features 
provide some separation of replication configuration from 
sharding configuration. In this test configuration, this allowed a 
larger portion of the read operations to be completed without 
requiring request coordination (i.e. peer-to-peer proxying of the 
client request), compared to Riak.  

Riak performance in this representative production 
configuration is better than the single node configuration. In 
test runs using the write-only workload and the read/write 
workload, our Riak client had insufficient socket resources to 
execute the workload for 500 and 1000 concurrent sessions. 
These data points are hence reported as zero values in Figs. 3 
and 4. We later determined that this resource exhaustion was 
due to ambiguous documentation of Riak’s internal thread pool 
configuration parameter, which creates a pool for each client 
session and not a pool shared by all client sessions. After 
determining that this did not impact the results for one through 
250 concurrent sessions, and given that Riak had qualitative 
capability gaps with respect to our strong consistency 
requirements (discussed below), we decided not to re-execute 
the tests for those data points. 

MongoDB performance is significantly lower here than the 
single node configuration. Two factors influenced the 
MongoDB results. First, the representative production 
configuration is sharded, which introduces the router and 
configuration nodes into the MongoDB deployment 
architecture. The router node proxies each request to the 
appropriate shard, based on key mapping information 
contained in the configuration node. In our tests, the router 
node became a performance bottleneck. Figs. 5 and 6 show 
read and write operation latency for the read/write workload, 
with nearly constant average latency for MongoDB as the 
number of concurrent sessions is increased, which we attribute 
to saturation of the rapid saturation of the router node. 

The second factor affecting MongoDB performance is the 
interaction between the sharding scheme used by MongoDB 
and the write-only and read/write workloads that we used. Both 
Cassandra and Riak use a hash-based sharding scheme, which 
provides a uniformly distributed mapping from the range of 
keys onto the physical nodes. In contrast, MongoDB used a 
range-based sharding scheme with rebalancing1.  

 

 

                                                             
1 http://docs.mongodb.org/v2.2/core/sharded-clusters/  

 
Fig. 5 Read Latency, Representative Production Configuration, Read/Write 

Workload 

 
Fig. 6 Write Latency, Representative Production Configuration, Read/Write 

Workload 

The use cases for our write-only and read/write workloads 
generated a monotonically increasing sequential key for new 
records to be written, which caused all write operations to be 
directed to the same shard, since all of the write keys mapped 
into the space stored in that shard. This key generation 
approach is typical (in fact, many SQL databases have 
“autoincrement” key types that do this automatically), but in 
this case, it concentrates the write load for all new records in a 
single node and thus negatively impacts performance. A 
different indexing scheme was not available to us, as it would 
impact other systems that our customer operates. (We note that 
MongoDB introduced hash-based sharding in v2.4, after our 
testing had concluded.) 

Our tests also measured latency of read and write 
operations. While Cassandra achieved the highest overall 
throughput, it also delivered the highest average latencies. For 
example, at 32 client connections, Riak’s read operation latency 
was 20% of Cassandra (5x faster), and MongoDB’s write 
operation latency was 25% of Cassandra’s (4x faster). Figs. 5 



and 6 show average and 95th percentile latencies for each test 
configuration. 

B. Performance Evaluation – Eventual Consistency 
Finally we report performance results that quantify the 

performance cost of strong replica consistency. These tests 
were limited to the Cassandra and Riak databases – the 
performance of MongoDB in the representative production 
configuration was such that no additional characterization of 
that database was warranted for our application. These tests 
used a combination of write and read operation settings that 
resulted in eventual consistency, rather than the strong 
consistency settings used in the tests described above. Again, 
each of the databases offered slightly different options. The 
selected options are summarized in TABLE II. The effect of 
these settings for both Cassandra and Riak was that writes were 
committed on one node (with replication occurring after the 
operation was acknowledged to the client), and read operations 
were executed on one replica, which may or may not return the 
latest value written. 

TABLE II SETTINGS FOR EVENTUAL CONSISTENCY CONFIGURATION 

Database Write Options Read Options 
Cassandra ONE ONE 
Riak noquorum noquorum 
 

For Cassandra, at 32 client sessions, there is a 25% 
reduction in throughput moving from eventual to strong 
consistency. Figure  7 shows throughput performance for the 
read/write workload on the Cassandra database, comparing the 
representative production configuration with the eventual 
consistency configuration. 

The same comparison is shown for Riak in Figure 8. Here, 
at 32 client sessions, there is only a 10% reduction in 
throughput moving from eventual to strong consistency (As 
discussed above, test client configuration issues resulted in no 
data recorded for 500 and 1000 concurrent sessions.) 

In summary, the Cassandra database provided the best 
throughput performance, but with the highest latency, for the 
specific workloads and configurations tested here. We attribute 
this to several factors. First, hash-based sharding spread the 
request and storage load better than MongoDB. Second, 
Cassandra’s indexing features allowed efficient retrieval of the 
most recently written records, particularly compared to Riak. 
Finally, Cassandra’s peer-to-peer architecture and data center 
aware features provide efficient coordination of both read and 
write operations across replicas and data centers. 

VII. DATA MODEL MAPPING RESULTS  
Throughout the prototype design and development, we 

developed a set of findings that are qualitative. Here we report 
on these qualitative findings in the area of alignment of our 
data model with the capabilities provided by each database. 

The most significant data modeling challenge was the 
representation of the one-to-many relation from patient to lab 
results, coupled with the need to efficiently access the most-
recently written lab results for a particular patient.  

 
Fig. 7 Cassandra – Comparison of strong and eventual consistency 

 
Fig. 8 Riak – Comparison of strong and eventual consistency 

Zola has analyzed the various approaches and tradeoffs of 
representing the one-to-many relation in MongoDB [25]. We 
used a composite index of ⟨Patient	
  ID,	
  Observation	
  ID⟩ for lab 
result records, and also indexed by the lab result date-time 
stamp. This allowed efficient retrieval of the most recent lab 
result records for a particular patient. 

A similar approach was used for Cassandra. Here we used a 
composite index of ⟨PatientID,	
   lab	
  result,	
  date-­‐time	
  stamp⟩. 
This caused the result set returned by the query to be sorted by 
the server, making it efficient to find and filter the most recent 
lab records for a particular patient.  

Representing the one-to-many relation in Riak was more 
complicated. Riak’s key-value data model provides the 
capability to retrieval a value, given a unique key. Riak also 
provides a “secondary index” capability that allows record 
retrieval when the key is not known, however each server node 
in the cluster stores only the secondary indexes for the portion 
of the records that are managed by the node. When an 
operation requests all records with a particular secondary index 
value, the request coordinator must perform a “scatter-gather”, 
asking all storage node for records with the desired secondary 



index value, waiting for all nodes to respond, and then sending 
the list of keys back to the requester. The requester must then 
make a second database request with the list of keys, in order 
to retrieve the record values.  

 The latency of the “scatter-gather” to locate records, and 
the need for two request/response round trips had a negative 
impact on Riak’s performance for our data model. 
Furthermore, there is no mechanism in Riak for the server to 
filter and return only the most recent observations for a patient. 
All observations must be returned to the client, and then sorted 
and filtered. We attempted to de-normalize further, by 
introducing a data set where each record contained a list of the 
most recently written observations for each patient. However, 
this required an atomic read-modify-write of that list every 
time a new observation is added for the patient, and that 
capability was not supported in Riak version 1.4. 

We also performed a systematic categorization of the major 
features available in the three databases for issuing queries. For 
each feature, we classified the capabilities of each database 
against a set of criteria so that they can be directly compared. 
TABLE III shows the results of this comparison. 

This comparison allows our customer to evaluate the 
databases against their specific needs beyond the scope of this 
evaluation, both for runtime and software development (e.g. 
programming language support, data type support). Both these 
sets of requirements are important factors in any technology 
adoption decision, and must be weighted appropriately to best 
satisfy organizational requirements.  

Objectively, MongoDB and Cassandra both provided a 
relatively straightforward data model mapping and both 
provided the strong consistency needed for our customer’s 
EHR application. Subjectively, the data model mapping in 
MongoDB was more transparent than the use of the Cassandra 
Query Language (CQL), and the indexing capabilities of 
MongoDB were a better fit for this application.  

VIII. LESSONS LEARNED 
We present our lessons learned in two broad categories. 

The first set are issues that arose from the essential complexity 
of evaluating NoSQL products. The second set are issues that 
arose from the accidental complexity of the available tools and 

technologies. 

A. Essential Issues 
1) Defining selection criteria 

NoSQL technology selection is an architecture decision 
that must be made early in the design cycle, and is difficult and 
expensive to change [6]. The selection must be made in a 
setting where the problem definition may be incomplete, and 
the solution space is large and rapidly changing as the open 
source landscape continues to evolve. 

Our experience was that the decision drivers were the size 
and growth rate of the data (number of records and record 
size), the complexity of the data model including key relations 
and navigations, operational environment including system 
management practices and tools, and user access patterns 
including operation mix, queries, and number of concurrent 
users. We found that using quality attribute scenarios to elicit 
these requirements, followed by clustering and prioritization to 
identify “go/no-go” criteria, was an effective approach to 
defining selection criteria. 

2) Validating quantitative criteria 
Quantitative selection criteria, with hard “go/no-go” 

thresholds, were problematic to validate through prototyping. 
There are a large number of tunable parameters in the 
infrastructure, operating system, and database product. While 
the final architecture design must include that tuning, the 
testing space can quickly explode during selection. We found it 
useful to frame the performance criteria in terms of the shape 
of the performance curve. For example, does throughput 
increase linearly with increasing load throughout the range of 
interest? Understanding the sensitivities and trade offs in a 
product’s capabilities may be sufficient to make a selection, 
and also provides valuable information to make downstream 
architecture design decisions regarding the selected product. 

3) Screening candidate products to prototype 
We used architecturally significant requirements to perform 

a manual survey of product documentation to identify viable 
candidates for prototyping. The manual survey process was 
slow and inefficient – as noted above, the solution space is 
large and rapidly changing. We began to collect and aggregate 
product feature and capability information into a queryable, 
reusable knowledge base, which included general quality 

TABLE III COMPARING THE DATA QUERYING CAPABILITIES FOR CASSANDRA, MONGODB, AND RIAK 



attribute scenarios as templates for concrete scenarios, and 
linked the quality attribute scenarios to particular product 
features. This knowledge base was reused successfully for later 
projects, and is an area for further research. 

4) Tradeoff between evaluation cost and fidelity 
The selection process must balance cost (in time and 

resources) with fidelity and measurement precision. This is 
essential for any COTS selection, but the NoSQL context 
creates challenges as the solution space changes rapidly. 
During the course of our evaluation, each of the candidate 
products released at least one new version that included 
changes to relevant features, so a lengthy evaluation process is 
likely to produce results that are not relevant or valid. 
Furthermore, if a public cloud infrastructure is used to support 
the prototyping and measurement, then changes to that 
environment can impact results. For example, during our 
testing process, Amazon changed standard instance types 
offered in EC2. Our recommendation is to perform prototyping 
and measurement for just two or three products, in order to 
complete quickly and deliver valid and relevant results. 

B. Accidental Issues 
1) Tradeoff between manual testing and automation 

We performed all prototyping and measurement using the 
Amazon cloud, which proved essential for efficient 
management and execution of the tests. Our peak utilization 
was over 50 concurrently executing server nodes (divided 
across several product configurations), which is more than can 
be efficiently managed in physical hardware environments. 

We had a continual tension between using manual 
processes for server deployment and management, and 
automating some or all of these processes. Repeating manual 
tasks conflicts with software engineering best practices such as 
“don’t repeat yourself”2, but in retrospect we think that the 
decision to always make slow forward progress, rather than 
stopping to automate, was appropriate. Organizations that 
already have a proven automation capability and expertise in 
place may reach a different conclusion. We did develop scripts 
to automate test execution and  data collection, processing, and 
visualization. These tasks were performed frequently, had 
many steps, and needed to be repeatable. 

2) Initial database loading 
Evaluation of big data systems requires that the database 

contain a large data set. Our use cases required the database to 
be populated before running the workloads. We found that bulk 
or batch loading requires special attention. Each database 
product had specific recommendations and special APIs for 
this function. In some cases (i.e., MongoDB), 
recommendations like “pre-splitting” the data set significantly 
improved bulk load performance. In other cases, we found that 
following the recommendations was necessary to avoid failures 
due to resource exhaustion in the database server during the 
load processing. We recommend that if bulk load is not one of 
your selection criteria, then take a brute force approach to load 
the data once, and then use database backups, or virtual 
machine or storage volume snapshots to return to the initial 
state as needed. 

                                                             
2 http://c2.com/cgi/wiki?DontRepeatYourself 

3) Deleting records at completion of a test  
All of our tests that performed write operations ended the 

test by restoring the database to its initial state. We found that 
deleting records in most NoSQL databases is very slow, taking 
as much as 10 times longer than a read or write operation. In 
retrospect, we would consider using snapshots to restore state, 
rather than cleaning up using delete operations. 

4) Measurement framework 
It is critical that you understand your measurement 

framework. Although YCSB has become the de facto standard 
for NoSQL database characterization, the 95th and 99th 
percentile measurements that it reports are only valid under 
certain latency distribution conditions. The YCSB 
implementation could be modified to extend the validity of 
those measurements to a broader range of latencies, or 
alternative metrics can be used for selection criteria. 

IX. FURTHER WORK AND CONCLUSIONS 
NoSQL database technology offers benefits of scalability 

and availability through horizontal scaling, replication, and 
simplified data models, but the specific implementation must 
be chosen early in the architecture design process.  

Ultimately, technical capabilities are just one input to the 
technology selection decision. Non-technical factors such as 
development and operational cost, schedule, risk, alignment 
with organizational standards are also considered, and may 
have more influence on the final decision. However, a rigorous 
technical evaluation, based on prototyping and measurement, 
provides important information to assess both technical and 
non-technical considerations. 

We have described a systematic method to perform this 
technology evaluation in a context where the solution space is 
broad and changing fast, and the system requirements may not 
be fully defined. Our method evaluates the products in the 
specific context of use, starting with elicitation of quality 
attribute scenarios to capture key architecture drivers and 
selection criteria. Next, product documentation is surveyed to 
identify viable candidate technologies, and finally, rigorous 
prototyping and measurement is performed on a small number 
of candidates to collect data to make the final selection. 

We described the execution of this method to evaluate 
NoSQL technologies for an electronic healthcare system, and 
present the results of our measurements of  performance, along 
with a qualitative assessment of alignment of the NoSQL data 
model with system-specific requirements. We presented 
lessons learned from our application of the selection method, 
and from our execution of the prototyping and measurements. 

Our experience identified the benefits of having a trusted 
knowledge base that can be queried to discover the features 
and capabilities of particular NoSQL products, and accelerate 
the initial screening to identify viable candidate products for a 
particular set of quality attribute scenario requirements. This is 
an area for further research.  
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