
Quality Attribute-Guided Evaluation of NoSQL
Databases: A Case Study

John Klein, Ian Gorton, Neil Ernst, Patrick Donohoe
Architecture Practices, Software Solutions Division

Carnegie Mellon University Software Engineering Institute
Pittsburgh, PA, USA

{jklein, igorton, nernst, pd}@sei.cmu.edu

Kim Pham, Chrisjan Matser
Telemedicine and Advanced Technology Research Center

US Army Medical Research and Material Command
Frederick, MD, USA

kim.solutionsit@gmail.com, cmatser@codespinnerinc.com

Abstract— For software developers, the selection of a
particular NoSQL technology imposes a specific distributed
software architecture and data model, making the technology
selection difficult to defer. NoSQL database technologies provide
high levels of performance, scalability, and availability by
simplifying data models and supporting horizontal scaling and
data replication. Each NoSQL product embodies a particular set
of consistency, availability, and partition tolerance (CAP)
tradeoffs, along with a data model that reduces the conceptual
mismatch between data access and data storage models. This
means technology selection must be done early, often with limited
information about specific application requirements, and the
decision must balance speed with precision, as the NoSQL
solution space is large and evolving rapidly. In this paper we
present the method and results of a study to compare the
architecturally-relevant characteristics of three NoSQL
databases for use in a large, distributed healthcare organization.
We reflect on some of the fundamental difficulties of performing
detailed technical evaluations of NoSQL databases specifically,
and big data systems in general, that have become apparent
during our study.

Keywords—NoSQL, distributed databases, technology
evaluation

I. INTRODUCTION
The exponential growth of data in the last decade has

fueled a new specialization for software technology, namely
that of big data, software systems [1]. At the heart of big data
systems are a collection of database technologies that are more
simple and lightweight, and provide higher scalability and
availability than traditional relational databases [2]. Pioneering
efforts from Internet-born organizations such as Google and
Amazon [3][4], along with those of numerous other big data
innovators, have created a variety of open source and
commercial database technologies for organizations to
construct and operate massively scalable, highly available data
repositories.

These highly scalable “NoSQL” databases [5] are typically
designed to scale horizontally across clusters of low cost,
moderate performance servers. They achieve high
performance, elastic storage capacity, and availability by
replicating and partitioning data sets across a cluster. Each
database specifies its own proprietary data model and query
language, as well as specific mechanisms for achieving
distributed data consistency and availability. Prominent

examples of NoSQL databases include Cassandra, Riak, and
MongoDB.

Due to the inherent diversity in NoSQL technologies,
database selection must be carefully considered. When a
particular database and its data model is chosen for a
application, the associated consistency and distribution models
imposed by the database have a pervasive impact on the design
of the associated applications [6]. Hence, the selection of a
particular NoSQL database must be made early in the design
process and is difficult and expensive to change downstream.
In other words, NoSQL database selection becomes a critical
architectural decision for big data systems.

COTS product selection has been extensively studied in
software engineering [7][8][9]. In complex technology
landscapes with multiple competing products, organizations
must balance the cost and speed of the technology selection
process against the fidelity of the decision [10]. While there is
rarely a single ‘right’ answer in selecting a complex component
for an application, selection of inappropriate components can
be costly, reduce downstream productivity due to rework, and
even lead to project cancelation. This is especially true for
large scale, big data systems due to their complexity and the
magnitude of the investment.

In this context, COTS selection of NoSQL databases for
big data applications presents several unique challenges:

• This is an early architecture decision that must be made
with inevitably incomplete definitions of requirements;

• The capabilities and features of NoSQL products vary
widely, making generalized comparisons difficult;

• Prototyping at production scale is usually impractical, as
this would require hundreds of servers, multi-terabyte data
sets, and thousands or millions of clients;

• The solution space is changing rapidly, with new products
constantly emerging, and existing products releasing
several versions per year with ever-evolving feature sets.

We faced these challenges during a recent project for a
healthcare provider seeking to adopt NoSQL technology for an
Electronic Health Record (EHR) system. The system supports
healthcare delivery for over nine million patients in more than
100 facilities across the globe. Data currently grows at over
one terabyte per month, and all data must be retained for 99
years.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
16 JAN 2015

2. REPORT TYPE
N/A

3. DATES COVERED

4. TITLE AND SUBTITLE
Quality Attribute-Guided Evaluation of NoSQL Databases: A Case Study

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Matser /John Klein Ian Gorton Neil Ernst Patrick Donohoe Kim Pham
Chrisjan

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Software Engineering Institute Carnegie Mellon University Pittsburgh,
PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited.

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

SAR

18. NUMBER
OF PAGES

10

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

In this paper, we outline a technology evaluation and
selection method we have devised for big data systems.

We then describe a quantitative and qualitative study we
performed for the health-care provider described above. We
introduce the study context, our evaluation approach, and the
results of both extensive performance and scalability testing
and a detailed feature comparison. We also reflect on our
experience, describing some of the essential and accidental
challenges we overcame in conducting this evaluation. The
specific contributions of the paper are as follows:

• A rigorous method that organizations can follow to
evaluate the performance and scalability of NoSQL
databases.

• Performance and scalability results that empirically
demonstrate significant variability in the capabilities of
the databases we tested to support the requirements of
our healthcare customer.

• Practical insights and recommendations that
organizations can follow to help streamline a NoSQL
database evaluation for their own applications.

II. RELATED WORK
Rigorous evaluation methods support data-driven analysis

and insightful comparisons of the capabilities of candidate
components for an application. Prototyping as part of
component evaluation provides important benefits that include
both quantitative assessment of performance and qualitative
understanding of other factors related to adoption. Gorton
describes a rigorous evaluation method for middleware
platforms, which can be viewed as a precursor for our work
[10].

Benchmarking of databases is generally based on the
execution of a specific workload against a specific data set,
such as the Wisconsin benchmark for general SQL processing
[11] or the TPC-B benchmark for transaction processing [12].
These publically available workload definitions have long
enabled vendors and others to publish measurements, which
consumers can then attempt to map to their target workload,
configuration, and infrastructure for product comparison and
selection. These benchmarks were developed for relational data
models, and are not relevant for NoSQL systems.

YCSB [13] has recently emerged as the default data set and
workload generator for executing simple benchmarks for
NoSQL systems. YCSB++ [14] extends YCSB with more
sophisticated, multi-phase workload definitions and support for
multiple coordinated clients to increase the load on the
database server. There is an emerging collection of published
measurements using YCSB and YCSB++, from product
vendors [15][16] and from researchers [17][18]. In this project,
we built on the YCSB framework, incorporating a more
complex data set and workload definition that was specific to
our healthcare system requirements.

All of the work discussed above has used “generic” data
sets and workloads. In contrast, the T-Check method [19]
performs evaluation by defining selection criteria and then
prototyping and measuring the candidate technology in the
context of use. The results reported by Dede and colleagues

[20] is an example of the type of hybrid qualitative and
quantitative analysis that we performed, using system-specific
data sets and workloads to answer specific questions about the
candidate technologies within a particular context of use.

III. EVALUATION METHOD
Our method is inspired by earlier work on middleware

evaluation [22][23] and customized to address the
characteristics of big data systems. The basic main steps are
depicted in Fig. 1 and outlined below:

Fig. 1 Lightweight Evaluation and Prototyping for Big Data (LEAP4BD)

1. Specify Requirements: First, we elicit the high priority
functional and quality requirements for the system. For big
data applications, we focus on specific requirements for
performance, scalability, availability, consistency, and
security. We also define a use case that is representative of
the customer’s application domain. The use case defines
both a data model and workload that will be used as the
basis of performance and scalability assessment in Step 4.

2. Select Candidate NoSQL Databases: We select 2-4
candidate NoSQL databases for deeper evaluations.
Selection criteria are both contextual (e.g. experience with
a specific technology) and technical, and require
evaluation of database features against the requirements .

3. Design Use Case Specific Data Model: Based on the use
case defined for evaluation, we map the application logical
data model to the physical model supported by the
candidate NoSQL databases. We also deploy the database
and load the test data (synthetic or actual) into the database
instances.

4. Execute Performance and Scalability Tests: We
implement a test case driver that executes the specified
workload on each database. Load is scaled by increasing
the number of concurrent client requests to assess how
each database reacts to increased workloads.

5. Report Results: The evaluation report includes both
qualitative and quantitative results. This details the
performance and scalability results we obtained from
testing each NoSQL database in a consistent environment.

It also describes how easily the logical data model maps to
the specific NoSQL data models that were tested, and the
specific features of each database that will influence the
identified quality requirements for the application.

In the rest of this paper we describe our experiences
applying this method to the EHR project and reflect on the key
issues that we faced during the project.

IV. EHR CASE STUDY

A. Project Context
Our customer was a large healthcare provider developing a

new electronic healthcare record (EHR) system. This will
replace their existing system, which utilizes thick client
applications hosted at sites around the world, all connected to a
centralized relational database. NoSQL technologies were
considered attractive candidates for two specific uses, namely:

• the primary data store for the EHR system

• a local cache at each site to improve request latency and
availability

As the customer was familiar with RDMS technology for
these use cases, but had no experience using NoSQL, they
directed us to focus the technology evaluation only on NoSQL
technology.

B. Specifying Requirements
We began the engagement with a stakeholder workshop,

using a tailored version of the Quality Attribute Workshop
Method [21], to elicit key functional and quality attribute
requirements to guide our technology evaluation. These
requirements fell in to two broad categories, one quantitative,
one qualitative, as follows:

Performance/Scalability: The main quantitative
requirements were the ability to easily distribute and replicate
data across geographically distributed databases, and to
achieve high availability and low latencies under load in
distributed database deployments. Hence understanding the
inherent performance and scalability that is achievable with
each candidate NoSQL database was an essential part of the
evaluation.

Data Model Mapping Complexity: Health care systems
have clearly defined logical data models that need to be
supported by a NoSQL database. As data models vary
considerably between NoSQL technologies, an important
qualitative requirement was to understand how the health care
data model could be supported in the NoSQL alternatives. This
required us to evaluate the specific features of each database
for data modeling and querying, along with the mechanisms for
maintaining consistency in a distributed deployment.

We also worked with the customer to define two driving
use cases for the EHR system. These provided the basis for
data model evaluation and performance and scalability
assessment we performed in subsequent steps in the project.
The first use case was retrieving recent medical test results for
a particular patient, which is a core EHR function used to
populate the user interface whenever a clinician selects a new
patient. The second use case was achieving strong consistency

for all readers when a new medical test result is written for a
patient, because all clinicians using the EHR to make patient
care decisions should see the same information about that
patient, whether they are at the same site as the patient, or
providing telemedicine support from another location.

C. Select Candidate NoSQL Databases
Our customer was specifically interested in evaluating how

different NoSQL data models (key-value, column, document,
graph) would support their application domain. For this reason
we selected one NoSQL database from each category to
investigate in detail. We subsequently ruled out graph
databases as they did not support the horizontal partitioning
required for the customer’s requirements. After a short feature
assessment of various databases, we settled on Riak, Cassandra
and MongoDB as our three candidate technologies, as these are
the market leaders in each NoSQL category. In addition to
satisfying functional requirements for the EHR application,
each of these products is stable and mature, with enterprise
technical support available, and hence is compatible with the
customer’s operational and business constraints.

D. Design and Execute Performance Tests
A thorough evaluation and comparison of complex

database platforms requires prototyping with each to reveal the
performance and scalability capabilities [10]. To this end, we
developed and performed a systematic procedure that provides
a foundation for an “apples to apples” comparison of the 3
databases we evaluated. Based on the use cases defined during
the requirements step, we:

• Defined a consistent test environment for evaluating
each database, including server platform, test client
platform, and network topology.

• Mapped the patient record logical model to each
database’s data model and loaded the resulting
database with a large collection of synthetic test data.

• Created a load test client that implements the database
read and write operations defined for each use case.
This client is capable of issuing many simultaneous
requests so that we can analyze how each technology
responds as the request load increases.

• Defined and executed test scripts that exerted a
specified load on the database using the test client.

We executed each test case on several distributed
configurations to measure performance and scalability. These
test scenarios ranged from baseline testing on a single server to
9 server instances that sharded and replicated data.

Based on this approach, we are able to produce a consistent
set of test results that assess the likely performance and
scalability of each database for this customer’s EHR system.

V. PROTOTYPE AND EVALUATION SETUP

A. Test Environment
The three databases we tested were:

1. MongoDB version 2.2, a document store
(http://docs.mongodb.org/v2.2/);

2. Cassandra version 2.0, a column store
(http://www.datastax.com/documentation/cassandra/2.
0);

3. Riak version 1.4, a key-value store
(http://docs.basho.com/riak/1.4.10/).

Prototyping and evaluation were performed on two
database server configurations: Single node server, and a nine-
node configuration that was representative of a production
deployment. A single node test allowed us to validate our base
test environment for each database. The nine-node
configuration used a topology that represented a geographically
distributed deployment across three data centers. The data set
was partitioned (i.e. “sharded”) across three nodes, and
replicated to two additional groups of three nodes each. We
used MongoDB’s primary/secondary feature, and Cassandra’s
data center aware distribution feature. Riak did not support this
“3x3” data distribution, so we used a configuration where the
data was sharded across all nine nodes, with three replicas of
each shard stored across the nine nodes.

All testing was performed using the Amazon EC2 cloud
(http://aws.amazon.com/ec2/). Database servers were run on
“m1.large” instances, with the database data and log files
stored on separate EBS volumes attached to each server
instance. The EBS volumes were “standard”, not provisioned
with the EC2 IOPS feature, to minimize the tuning parameters
used in each test configuration. Server instances ran the
CentOS operating system (http://www.centos.org). The test
client was also run on an “m1.large” instance, and also used the
CentOS operating system. All instances were in the same EC2
availability zone (i.e. the same cloud data center).

B. Mapping the data model
We used a subset of the HL7 Fast Healthcare

Interoperability Resources (FHIR) data model
(http://www.hl7.org/implement/standards/fhir/) for our analysis
and prototyping. The logical data model consisted of FHIR
Patient Resources (e.g., demographic information such as
names, addresses, and telephone numbers), and laboratory test
results represented as FHIR Observation Resources (e.g., test
type, result quantity, and result units). There was a one-to-
many relation from each patient to the associated test results.
Although this was a relatively simple model, the internal
complexity of the FHIR Patient Resource, with multiple
addresses and phone numbers, along with the one-to-many
relation from patient to observations, required a number of data
modeling design decisions and tradeoffs in the data mapping.

A synthetic data set was used for testing. This data set
contained one million patient records, and 10 million lab result
records. The number of lab results for a patient ranged from
zero to 20, with an average of seven. The Patient and
Observation Resources were both mapped into the data model
for each of the databases we tested.

C. Create load test client
Our test client was based on the YCSB framework [13],

which provides capabilities to manage test execution and test
measurement. For test execution, YCSB has default data
models, data sets, and workloads. We therefore modified

YCSB and replaced these default behaviors with
implementations specific to our use case data and requests.

We were able to leverage YCSB’s built-in capabilities for
specifying the total number of operations to be performed and
the percentage of read and write operations in the workload.
The test execution capabilities also allow the use of multiple
execution threads to create concurrent client sessions.

 In the measurement framework, for each operation
performed, YCSB measures the operation latency, which is the
time from when the request is sent to the database until the
response is received back from the database. The YCSB
reporting framework records latency measurements separately
for read and write operations. Latency distribution is a key
scalability measure for big data systems [4][24], so we
recorded both average and 95th percentile values.

We extended the YCSB reporting framework to report
Overall Throughput, in operations per second. This
measurement was calculated by dividing the total number of
operations performed (read plus write) by the workload
execution time. The execution time was measured from the
start of the first operation to the completion of the last
operation in the workload execution, and did not include initial
setup and final cleanup times.

D. Define and execute test scripts
The stakeholder workshop identified that the typical

workload for the EHR system was 80% read and 20% write
operations. For this operation mix, we defined a read operation
to retrieve the five most recent observations for a single patient,
and a write operation to insert a single new observation record
for a single existing patient.

Our customer was also interested in using the NoSQL
technology as a local cache, so we defined a write-only
workload that was representative of a daily load of a local
cache from a centralized primary data store with records for
patients with scheduled appointments for that day. Finally, we
defined a read-only workload that was representative of
flushing the cache to the centralized primary data store.

For each database configuration tested, every workload was
run three times in order to minimize the impact of any transient
events in the cloud infrastructure. For each of these three runs,
the workload execution was repeated for a defined range of test
client threads (1, 2, 5, 10, 25, 50, 100, 200, 500, and 1000),
which created a corresponding number of concurrent database
connections. During the testing, the standard deviation of the
throughput for any three-run set for a particular thread count
never exceeded 2% of the average. We post-processed the
results to combine the measurements by averaging across the
three runs for each thread count.

Operating with a large number of concurrent database
client sessions is not typical for a NoSQL database. Clients
usually connect first to a web server tier and/or an application
server tier, which aggregates the client operations on the
database using a pool of perhaps 16-64 concurrent sessions.
However, our prototyping was in support of the modernization
of a system that used thick clients with direct database

connections, and so our customer wanted to understand the
implications of retaining this thick client architecture.

VI. PERFORMANCE AND SCALABILITY RESULTS
We report here on our results for a nine-node configuration

that reflected a typical production configuration. As noted
above, we also performed testing on a number of
configurations for each database under evaluation, ranging
from a single server up to a nine-node cluster. The single-node
configuration’s availability and scalability limitations make it
impractical for production use, and so we do not present
performance comparisons across databases for this
configuration. However, in the following discussion, we
compare the single node configuration for a specific database
to distributed configurations. This provides insights into the
efficiency of that database’s distributed coordination
mechanisms and guides scalability tradeoffs between adding
more nodes versus using faster nodes with more storage.

Defining a test configuration required several design
decisions. The first was how to distribute client connections
across the server nodes. MongoDB uses a centralized router
node, and all clients connected to the single router node.
Cassandra’s data center aware distribution feature created three
sub-clusters of three nodes each, and client connections were
spread uniformly across the three nodes in one of the sub-
clusters. In the case of Riak, the product architecture only
allowed client connections to be spread uniformly across the
full set of nine nodes. An alternative might have been to test
Riak on three nodes with no replication, however other
constraints in the Riak architecture resulted in extremely poor
performance in this configuration, and so the nine-node
configuration was used.

A second design decision was how to achieve strong
consistency, which requires defining both write operation
settings and read operation settings [6]. Each of the three
databases offered slightly different options, and we explored
two approaches, discussed in the next two sections. The first
reports results using strong consistency, and the second reports
results using eventual consistency.

A. Performance Evaluation – Strong Consistency
The selected options are summarized in TABLE I. For

MongoDB, the effect is that all writes were committed on the
primary server, and all reads were from the primary server. For
Cassandra, the effect is that all writes were committed on a
majority quorum at each of the three sub-clusters, while a read
required a majority quorum only on the local sub-cluster. For
Riak, the effect was to require a majority quorum on the entire
nine-node cluster for both write operations and read operations.

TABLE I SETTINGS FOR REPRESENTATIVE PRODUCTION CONFIGURATION

Database Write Options Read Options
MongoDB Primary Acknowledged Primary Preferred
Cassandra EACH_QUORUM LOCAL_QUORUM
Riak quorum Quorum

The throughput performance for the representative
production configuration for each of the workloads is shown in
Figs. 2, 3, and 4.

Fig. 2 Throughput, Representative Production Configuration, Read-Only

Workload (higher is better)

Fig. 3 Throughput, Representative Production Configuration, Write-Only

Workload

Fig. 4 Throughput, Representative Production Configuration, Read/Write

Workload

In all cases, Cassandra provided the best overall
performance, with read-only workload performance roughly
comparable to the single node configuration, and write-only
and read/write workload performance slightly better than the
single node configuration. This implies that, for Cassandra, the
performance gains that accrue from decreased contention for
disk I/O and other per node resources (compared to the single
node configuration) are greater than the additional work of
coordinating write and read quorums across replicas and data
centers. Furthermore, Cassandra’s “data center aware” features
provide some separation of replication configuration from
sharding configuration. In this test configuration, this allowed a
larger portion of the read operations to be completed without
requiring request coordination (i.e. peer-to-peer proxying of the
client request), compared to Riak.

Riak performance in this representative production
configuration is better than the single node configuration. In
test runs using the write-only workload and the read/write
workload, our Riak client had insufficient socket resources to
execute the workload for 500 and 1000 concurrent sessions.
These data points are hence reported as zero values in Figs. 3
and 4. We later determined that this resource exhaustion was
due to ambiguous documentation of Riak’s internal thread pool
configuration parameter, which creates a pool for each client
session and not a pool shared by all client sessions. After
determining that this did not impact the results for one through
250 concurrent sessions, and given that Riak had qualitative
capability gaps with respect to our strong consistency
requirements (discussed below), we decided not to re-execute
the tests for those data points.

MongoDB performance is significantly lower here than the
single node configuration. Two factors influenced the
MongoDB results. First, the representative production
configuration is sharded, which introduces the router and
configuration nodes into the MongoDB deployment
architecture. The router node proxies each request to the
appropriate shard, based on key mapping information
contained in the configuration node. In our tests, the router
node became a performance bottleneck. Figs. 5 and 6 show
read and write operation latency for the read/write workload,
with nearly constant average latency for MongoDB as the
number of concurrent sessions is increased, which we attribute
to saturation of the rapid saturation of the router node.

The second factor affecting MongoDB performance is the
interaction between the sharding scheme used by MongoDB
and the write-only and read/write workloads that we used. Both
Cassandra and Riak use a hash-based sharding scheme, which
provides a uniformly distributed mapping from the range of
keys onto the physical nodes. In contrast, MongoDB used a
range-based sharding scheme with rebalancing1.

1 http://docs.mongodb.org/v2.2/core/sharded-clusters/

Fig. 5 Read Latency, Representative Production Configuration, Read/Write

Workload

Fig. 6 Write Latency, Representative Production Configuration, Read/Write

Workload

The use cases for our write-only and read/write workloads
generated a monotonically increasing sequential key for new
records to be written, which caused all write operations to be
directed to the same shard, since all of the write keys mapped
into the space stored in that shard. This key generation
approach is typical (in fact, many SQL databases have
“autoincrement” key types that do this automatically), but in
this case, it concentrates the write load for all new records in a
single node and thus negatively impacts performance. A
different indexing scheme was not available to us, as it would
impact other systems that our customer operates. (We note that
MongoDB introduced hash-based sharding in v2.4, after our
testing had concluded.)

Our tests also measured latency of read and write
operations. While Cassandra achieved the highest overall
throughput, it also delivered the highest average latencies. For
example, at 32 client connections, Riak’s read operation latency
was 20% of Cassandra (5x faster), and MongoDB’s write
operation latency was 25% of Cassandra’s (4x faster). Figs. 5

and 6 show average and 95th percentile latencies for each test
configuration.

B. Performance Evaluation – Eventual Consistency
Finally we report performance results that quantify the

performance cost of strong replica consistency. These tests
were limited to the Cassandra and Riak databases – the
performance of MongoDB in the representative production
configuration was such that no additional characterization of
that database was warranted for our application. These tests
used a combination of write and read operation settings that
resulted in eventual consistency, rather than the strong
consistency settings used in the tests described above. Again,
each of the databases offered slightly different options. The
selected options are summarized in TABLE II. The effect of
these settings for both Cassandra and Riak was that writes were
committed on one node (with replication occurring after the
operation was acknowledged to the client), and read operations
were executed on one replica, which may or may not return the
latest value written.

TABLE II SETTINGS FOR EVENTUAL CONSISTENCY CONFIGURATION

Database Write Options Read Options
Cassandra ONE ONE
Riak noquorum noquorum

For Cassandra, at 32 client sessions, there is a 25%
reduction in throughput moving from eventual to strong
consistency. Figure 7 shows throughput performance for the
read/write workload on the Cassandra database, comparing the
representative production configuration with the eventual
consistency configuration.

The same comparison is shown for Riak in Figure 8. Here,
at 32 client sessions, there is only a 10% reduction in
throughput moving from eventual to strong consistency (As
discussed above, test client configuration issues resulted in no
data recorded for 500 and 1000 concurrent sessions.)

In summary, the Cassandra database provided the best
throughput performance, but with the highest latency, for the
specific workloads and configurations tested here. We attribute
this to several factors. First, hash-based sharding spread the
request and storage load better than MongoDB. Second,
Cassandra’s indexing features allowed efficient retrieval of the
most recently written records, particularly compared to Riak.
Finally, Cassandra’s peer-to-peer architecture and data center
aware features provide efficient coordination of both read and
write operations across replicas and data centers.

VII. DATA MODEL MAPPING RESULTS
Throughout the prototype design and development, we

developed a set of findings that are qualitative. Here we report
on these qualitative findings in the area of alignment of our
data model with the capabilities provided by each database.

The most significant data modeling challenge was the
representation of the one-to-many relation from patient to lab
results, coupled with the need to efficiently access the most-
recently written lab results for a particular patient.

Fig. 7 Cassandra – Comparison of strong and eventual consistency

Fig. 8 Riak – Comparison of strong and eventual consistency

Zola has analyzed the various approaches and tradeoffs of
representing the one-to-many relation in MongoDB [25]. We
used a composite index of ⟨Patient	
 ID,	
 Observation	
 ID⟩ for lab
result records, and also indexed by the lab result date-time
stamp. This allowed efficient retrieval of the most recent lab
result records for a particular patient.

A similar approach was used for Cassandra. Here we used a
composite index of ⟨PatientID,	
 lab	
 result,	
 date-­‐time	
 stamp⟩.
This caused the result set returned by the query to be sorted by
the server, making it efficient to find and filter the most recent
lab records for a particular patient.

Representing the one-to-many relation in Riak was more
complicated. Riak’s key-value data model provides the
capability to retrieval a value, given a unique key. Riak also
provides a “secondary index” capability that allows record
retrieval when the key is not known, however each server node
in the cluster stores only the secondary indexes for the portion
of the records that are managed by the node. When an
operation requests all records with a particular secondary index
value, the request coordinator must perform a “scatter-gather”,
asking all storage node for records with the desired secondary

index value, waiting for all nodes to respond, and then sending
the list of keys back to the requester. The requester must then
make a second database request with the list of keys, in order
to retrieve the record values.

 The latency of the “scatter-gather” to locate records, and
the need for two request/response round trips had a negative
impact on Riak’s performance for our data model.
Furthermore, there is no mechanism in Riak for the server to
filter and return only the most recent observations for a patient.
All observations must be returned to the client, and then sorted
and filtered. We attempted to de-normalize further, by
introducing a data set where each record contained a list of the
most recently written observations for each patient. However,
this required an atomic read-modify-write of that list every
time a new observation is added for the patient, and that
capability was not supported in Riak version 1.4.

We also performed a systematic categorization of the major
features available in the three databases for issuing queries. For
each feature, we classified the capabilities of each database
against a set of criteria so that they can be directly compared.
TABLE III shows the results of this comparison.

This comparison allows our customer to evaluate the
databases against their specific needs beyond the scope of this
evaluation, both for runtime and software development (e.g.
programming language support, data type support). Both these
sets of requirements are important factors in any technology
adoption decision, and must be weighted appropriately to best
satisfy organizational requirements.

Objectively, MongoDB and Cassandra both provided a
relatively straightforward data model mapping and both
provided the strong consistency needed for our customer’s
EHR application. Subjectively, the data model mapping in
MongoDB was more transparent than the use of the Cassandra
Query Language (CQL), and the indexing capabilities of
MongoDB were a better fit for this application.

VIII. LESSONS LEARNED
We present our lessons learned in two broad categories.

The first set are issues that arose from the essential complexity
of evaluating NoSQL products. The second set are issues that
arose from the accidental complexity of the available tools and

technologies.

A. Essential Issues
1) Defining selection criteria

NoSQL technology selection is an architecture decision
that must be made early in the design cycle, and is difficult and
expensive to change [6]. The selection must be made in a
setting where the problem definition may be incomplete, and
the solution space is large and rapidly changing as the open
source landscape continues to evolve.

Our experience was that the decision drivers were the size
and growth rate of the data (number of records and record
size), the complexity of the data model including key relations
and navigations, operational environment including system
management practices and tools, and user access patterns
including operation mix, queries, and number of concurrent
users. We found that using quality attribute scenarios to elicit
these requirements, followed by clustering and prioritization to
identify “go/no-go” criteria, was an effective approach to
defining selection criteria.

2) Validating quantitative criteria
Quantitative selection criteria, with hard “go/no-go”

thresholds, were problematic to validate through prototyping.
There are a large number of tunable parameters in the
infrastructure, operating system, and database product. While
the final architecture design must include that tuning, the
testing space can quickly explode during selection. We found it
useful to frame the performance criteria in terms of the shape
of the performance curve. For example, does throughput
increase linearly with increasing load throughout the range of
interest? Understanding the sensitivities and trade offs in a
product’s capabilities may be sufficient to make a selection,
and also provides valuable information to make downstream
architecture design decisions regarding the selected product.

3) Screening candidate products to prototype
We used architecturally significant requirements to perform

a manual survey of product documentation to identify viable
candidates for prototyping. The manual survey process was
slow and inefficient – as noted above, the solution space is
large and rapidly changing. We began to collect and aggregate
product feature and capability information into a queryable,
reusable knowledge base, which included general quality

TABLE III COMPARING THE DATA QUERYING CAPABILITIES FOR CASSANDRA, MONGODB, AND RIAK

attribute scenarios as templates for concrete scenarios, and
linked the quality attribute scenarios to particular product
features. This knowledge base was reused successfully for later
projects, and is an area for further research.

4) Tradeoff between evaluation cost and fidelity
The selection process must balance cost (in time and

resources) with fidelity and measurement precision. This is
essential for any COTS selection, but the NoSQL context
creates challenges as the solution space changes rapidly.
During the course of our evaluation, each of the candidate
products released at least one new version that included
changes to relevant features, so a lengthy evaluation process is
likely to produce results that are not relevant or valid.
Furthermore, if a public cloud infrastructure is used to support
the prototyping and measurement, then changes to that
environment can impact results. For example, during our
testing process, Amazon changed standard instance types
offered in EC2. Our recommendation is to perform prototyping
and measurement for just two or three products, in order to
complete quickly and deliver valid and relevant results.

B. Accidental Issues
1) Tradeoff between manual testing and automation

We performed all prototyping and measurement using the
Amazon cloud, which proved essential for efficient
management and execution of the tests. Our peak utilization
was over 50 concurrently executing server nodes (divided
across several product configurations), which is more than can
be efficiently managed in physical hardware environments.

We had a continual tension between using manual
processes for server deployment and management, and
automating some or all of these processes. Repeating manual
tasks conflicts with software engineering best practices such as
“don’t repeat yourself”2, but in retrospect we think that the
decision to always make slow forward progress, rather than
stopping to automate, was appropriate. Organizations that
already have a proven automation capability and expertise in
place may reach a different conclusion. We did develop scripts
to automate test execution and data collection, processing, and
visualization. These tasks were performed frequently, had
many steps, and needed to be repeatable.

2) Initial database loading
Evaluation of big data systems requires that the database

contain a large data set. Our use cases required the database to
be populated before running the workloads. We found that bulk
or batch loading requires special attention. Each database
product had specific recommendations and special APIs for
this function. In some cases (i.e., MongoDB),
recommendations like “pre-splitting” the data set significantly
improved bulk load performance. In other cases, we found that
following the recommendations was necessary to avoid failures
due to resource exhaustion in the database server during the
load processing. We recommend that if bulk load is not one of
your selection criteria, then take a brute force approach to load
the data once, and then use database backups, or virtual
machine or storage volume snapshots to return to the initial
state as needed.

2 http://c2.com/cgi/wiki?DontRepeatYourself

3) Deleting records at completion of a test
All of our tests that performed write operations ended the

test by restoring the database to its initial state. We found that
deleting records in most NoSQL databases is very slow, taking
as much as 10 times longer than a read or write operation. In
retrospect, we would consider using snapshots to restore state,
rather than cleaning up using delete operations.

4) Measurement framework
It is critical that you understand your measurement

framework. Although YCSB has become the de facto standard
for NoSQL database characterization, the 95th and 99th
percentile measurements that it reports are only valid under
certain latency distribution conditions. The YCSB
implementation could be modified to extend the validity of
those measurements to a broader range of latencies, or
alternative metrics can be used for selection criteria.

IX. FURTHER WORK AND CONCLUSIONS
NoSQL database technology offers benefits of scalability

and availability through horizontal scaling, replication, and
simplified data models, but the specific implementation must
be chosen early in the architecture design process.

Ultimately, technical capabilities are just one input to the
technology selection decision. Non-technical factors such as
development and operational cost, schedule, risk, alignment
with organizational standards are also considered, and may
have more influence on the final decision. However, a rigorous
technical evaluation, based on prototyping and measurement,
provides important information to assess both technical and
non-technical considerations.

We have described a systematic method to perform this
technology evaluation in a context where the solution space is
broad and changing fast, and the system requirements may not
be fully defined. Our method evaluates the products in the
specific context of use, starting with elicitation of quality
attribute scenarios to capture key architecture drivers and
selection criteria. Next, product documentation is surveyed to
identify viable candidate technologies, and finally, rigorous
prototyping and measurement is performed on a small number
of candidates to collect data to make the final selection.

We described the execution of this method to evaluate
NoSQL technologies for an electronic healthcare system, and
present the results of our measurements of performance, along
with a qualitative assessment of alignment of the NoSQL data
model with system-specific requirements. We presented
lessons learned from our application of the selection method,
and from our execution of the prototyping and measurements.

Our experience identified the benefits of having a trusted
knowledge base that can be queried to discover the features
and capabilities of particular NoSQL products, and accelerate
the initial screening to identify viable candidate products for a
particular set of quality attribute scenario requirements. This is
an area for further research.

ACKNOWLEDGMENT
This material is based upon work funded and supported by

the Department of Defense under Contract No. FA8721-05-C-

0003 with Carnegie Mellon University for the operation of the
Software Engineering Institute, a federally funded research and
development center. References herein to any specific
commercial product, process, or service by trade name, trade
mark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or
favoring by Carnegie Mellon University or its Software
Engineering Institute. This material has been approved for
public release and unlimited distribution. T-CheckSM. DM-
0002078.

REFERENCES
[1] D. Agrawal, S. Das, and A. El Abbadi, “Big data and cloud computing:

current state and future opportunities,” in Proc. 14th Int’l Conf. on
Extending Database Tech., 2011, pp. 530--533.

[2] M. Seltzer. Beyond Relational Databases. Communications of the ACM,
51(7), 2008.

[3] F. Chang, J. Dean, S. Ghemawat, et al., “Bigtable: A Distributed Storage
System for Structured Data,” ACM Trans. on Computing Systems, vol.
26, no. 2, 2008.

[4] G. DeCandia, D. Hastorun, M. Jampani, et al., “Dynamo: Amazon's
Highly Available Key-value Store,” in Proc. Twenty-first ACM SIGOPS
Symp. on Operating Systems Principles (SOSP '07), Stevenson,
Washington, USA, 2007, pp. 205-220. doi: 10.1145/1294261.1294281

[5] P. J. Sadalage and M. Fowler, NoSQL Distilled. Addison-Wesley
Professional, 2012.

[6] I. Gorton and J. Klein, “Distribution, Data, Deployment: Software
Architecture Convergence in Big Data Systems,” IEEE Software, vol.
PP, no. 99, 18 March 2014. doi: 10.1109/MS.2014.51

[7] S. Comella-Dorda, J. Dean, G. Lewis, et al., “A Process for COTS
Software Product Evaluation.” Software Engineering Institute,
Technical Report, CMU/SEI-2003-TR-017, 2004.

[8] J. Zahid, A. Sattar, and M. Faridi. "Unsolved Tricky Issues on COTS
Selection and Evaluation." Global Journal of Computer Science and
Technology 12.10-D (2012).

[9] Becker, C., Kraxner, M., Plangg, M., & Rauber, A. Improving decision
support for software component selection through systematic cross-
referencing and analysis of multiple decision criteria. In Proc. 46th
Hawaii International Conference on System Sciences (HICSS), 2013 ,
pp. 1193-1202.

[10] I. Gorton, A. Liu, and P. Brebner, “Rigorous evaluation of COTS
middleware technology,” Computer, vol. 36, no. 3, pp. 50-55, 2003.

[11] D. Bitton, D. J. DeWitt, and C. Turbyfill, “Benchmarking Database
Systems: A Systematic Approach,” in Proc. 9th Int’l Conf. on Very
Large Data Bases (VLDB '83), 1983, pp. 8-19.

[12] Anon, D. Bitton, M. Brown, et al., “A Measure of Transaction
Processing Power,” Datamation, vol. 31, no. 7, pp. 112-118, April 1985.

[13] B. F. Cooper, A. Silberstein, E. Tam, et al., “Benchmarking Cloud
Serving Systems with YCSB,” in Proc. 1st ACM Symposium on Cloud
Computing (SoCC '10), 2010, pp. 143-154. doi:
10.1145/1807128.1807152

[14] S. Patil, M. Polte, K. Ren, et al., “YCSB++: Benchmarking and
Performance Debugging Advanced Features in Scalable Table Stores,”
in Proc. 2nd ACM Symp. on Cloud Computing (SOCC '11), 2011, pp.
9:1--9:14. doi: 10.1145/2038916.2038925

[15] D. Nelubin and B. Engber, “Ultra-High Performance NoSQL
Benchmarking: Analyzing Durability and Performance Tradeoffs.”
Thumbtack Technology, Inc., White Paper, 2013.

[16] Datastax, “Benchmarking Top NoSQL Databases.” Datastax
Corporation, White Paper, 2013.

[17] V. Abramova and J. Bernardino, “NoSQL Databases: MongoDB vs
Cassandra,” in Proc. Int’l C* Conference on Computer Science and
Software Engineering (C3S2E '13), 2013, pp. 14-22. doi:
10.1145/2494444.2494447

[18] A. Floratou, N. Teletia, D. J. DeWitt, et al., “Can the Elephants Handle
the NoSQL Onslaught?,” Proc. VLDB Endowment, vol. 5, no. 12, pp.
1712-1723, 2012.

[19] G. A. Lewis and L. Wrage, “A Process for Context-Based Technology
Evaluation.” Carnegie Mellon Software Engineering Institute, Technical
Note, CMU/SEI-2005-TN-025, 2005.

[20] E. Dede, M. Govindaraju, D. Gunter, et al., “Performance Evaluation of
a MongoDB and Hadoop Platform for Scientific Data Analysis,” in
Proc. 4th ACM Workshop on Scientific Cloud Computing (Science
Cloud '13), 2013, pp. 13-20. doi: 10.1145/2465848.2465849

[21] M. R. Barbacci, R. J. Ellison, A. J. Lattanze, et al., “Quality Attribute
Workshops (QAWs).” Software Engineering Institute, Technical Report,
CMU/SEI-2003-TR-016, 2003,
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=6687.

[22] Y. Liu, I. Gorton, L. Bass, C. Hoang, & S. Abanmi. MEMS: a method
for evaluating middleware architectures. In Proceedings of the Second
international conference on Quality of Software Architectures
(QoSA'06), 2006, Springer-Verlag, Berlin, Heidelberg, pp. 9-26.

[23] A. Liu and I. Gorton. 2003. Accelerating COTS Middleware
Acquisition: The i-Mate Process. IEEE Software. 20, 2 (March 2003),
72-79.

[24] J. Dean and L. A. Barroso, “The Tail at Scale,” Communications of the
ACM, vol. 56, no. 2, pp. 74-80, February 2013. doi:
10.1145/2408776.2408794

[25] W. Zola. 6 Rules of Thumb for MongoDB Schema Design: Part 1
[Online]. http://blog.mongodb.org/post/87200945828/6-rules-of-thumb-
for-mongodb-schema-design-part-1 (Accessed 18 Sep 2014).

