
AFRL-OSR-VA-TR-2014-0338

SAFEGUARDING END-USER MILITARY SOFTWARE

Gregg Rothermel
UNIVERSITY OF NEBRSKA

Final Report
12/04/2014

DISTRIBUTION A: Distribution approved for public release.

AF Office Of Scientific Research (AFOSR)/ RTC
Arlington, Virginia 22203

Air Force Research Laboratory

Air Force Materiel Command

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

2. REPORT TYPE

3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION REPORT
 NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

 11. SPONSOR/MONITOR’S REPORT
 NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

17. LIMITATION
OF ABSTRACT

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON

a. REPORT

b. ABSTRACT

c. THIS PAGE

19b. TELEPHONE NUMBER (include area
code)

 Standard Form 298 (Re . 8-98) v
Prescribed by ANSI Std. Z39.18

SAFEGUARDING END-USER MILITARY
SOFTWARE

FA9550-10-1-0406

FINAL REPORT
NOVEMBER 30, 2014.

As technology advances we are moving toward an age of military systems of particularly
high complexity: ultra-large-scale (ULS) systems – ecosystems involving interdependent sys-
tems of systems. ULS systems include not only software, but also the hardware platforms
on which the software runs, the people who interact with the systems, and the policies and
resources that govern them. People are elements, not just users of the systems, and both
affect and are affected by their behavior. Current software engineering techniques fail to
address the salient characteristics of ULS systems. Furthermore, they do not integrate the
feedback, expertise and preferences of users into the systems, yet these are integral to system
behavior.

To address this problem, we have performed research on approaches for integrating the
various groups of personnel who interact with ULS systems more directly in a collaborative
effort of developing, deploying, validating and maintaining the various components of the
systems, with the primary objective of enhancing their dependability. We have created
techniques that capture and encode user expertise, verification and other dependability-
enhancing techniques that use this expertise to function cost-effectively both collaboratively
and across system lifetimes, and mechanisms for better coordinating the development and
maintenance processes for these systems.

In the years covered by this final report, we have performed research in all three of the
primary focus areas of this grant, including: (A) capturing and modeling user expertise,
(B) creating techniques for enhancing dependability, and (C) coordinating development and
maintenance processes. We summarize the results of our efforts in each of these three areas,
in turn.

1 Capturing and Modeling User Expertise

1.1 Conditional component dependence analysis for distributed
robotics software [13]

Modern robotics systems are composed of complex assemblies of hardware and software
components. Distributed event-based frameworks are used to facilitate the assembly of
software for such systems out of collections of reusable components. These frameworks
express component dependencies in data that encode event publish-subscribe relations. This
makes it difficult for developers to understand the dependencies and to predict the impacts
of a change to a component. Moreover, this encoding of dependencies renders traditional
techniques for analyzing component dependencies inapplicable.

We have created a program analysis technique that automatically extracts a model of
component dependencies from distributed system source components, but also the condi-
tions under which those dependencies are realized. We have implemented the analysis and
applied it to systems developed in ROS. The resulting models are succinct and precise, which
suggests that programmers will find them comprehensible, and they can be used to docu-
ment important global dependencies in a system, to compare different versions to identify
the impacts of component changes, and to help locate errors.

1.2 Probabilistic symbolic execution [4]

It is important to develop techniques to capture and model human and environmental compo-
nents of large systems. These components are often modeled using stochastic or probabilistic
techniques since this permits a reasonable level of fidelity even when the underlying mech-
anisms that generate component behavior are not well understood (e.g. human cognitive
processes) or cannot be effectively modeled (e.g., dynamic models of weather). Incorporat-
ing such models into system level analysis requires methods that can incorporate information
from probabilistic/stochastic components into software analysis. In this work we have layed
the foundations for how to achieve this for symbolic execution, a widely studied software
analysis technique.

More specifically, we have explored the adaptation of symbolic execution to perform a
more quantitative type of reasoning – the calculation of estimates of the probability of ex-
ecuting portions of a program. We have created an extension of the widely used Symbolic
PathFinder symbolic execution system that calculates path probabilities. Our approach ex-
ploits state-of-the-art computational algebra techniques to count the number of solutions
to path conditions, yielding exact results for path probabilities. To mitigate the cost of

using these techniques, we have created two optimizations, PC slicing and count memoiza-
tion, that significantly reduce the cost of probabilistic symbolic execution. Finally, we have
conducted an empirical evaluation applying our technique to challenging library container
implementations and shown the benefits that adding probabilities to program analyses may
offer.

1.3 Easing the generation of predictive human systems perfor-
mance models from legacy systems [23]

There has been an increase in tools for predictive human performance modeling – tools
that mimic an experienced user and predict how long particular tasks will take to perform
on an interface. Often these are used on legacy systems to compare new designs against
old, or to compare two competing versions of a similar system. However, the state of the
art tools still require a large amount of manual effort because a designer must re-create
each interface for analysis. We have created CogTool-Helper as an exemplar of a tool that
eases the manual burden on the UI designer. CogTool-Helper leverages research and tools
from graphical user interface (GUI) testing community, (automatic UI-model extraction and
test case generation), to automatically create storyboards and models, and infer methods to
accomplish tasks beyond what the UI designer has specified. A walk through of the approach
with experienced UI designers has supported the potential for its use.

1.4 AutoInSpec: Using missing test coverage to improve specifi-
cations in GUIs [2]

Developers of a software system’s graphical user interface (GUI) often fail to document the
interface specifications. Without these, models used for automated test generation and ex-
ecution, remain imperfect and incomplete. This leads to unexpected behavior that creates
unrecoverable situations for test harnesses, and missed coverage. To help with this, we have
created AutoInSpec, a technique to infer an important class of specifications, temporal and
state-based invariants between GUI events that have been incorrectly modeled. Unlike ex-
isting specification mining approaches that require full execution traces or source code, and
that mine all invariants, we have simplified the problem by guiding AutoInSpec with cover-
age criteria and using a previously develop repair framework that builds coverage-adequate
test suites, removing un-executable sub-sequences from consideration. These failing sub-
sequences are input to a logic-based inference engine, that returns the missing specifications.
We have validated AutoInSpec on a set of well-studied GUI applications.

1.5 Solving the search for source code [21]

Programmers frequently search for source code to reuse using keyword searches. The search
effectiveness in facilitating reuse, however, depends on the programmer’s ability to specify a
query that captures how the desired code may have been implemented. Further, the results
often include many irrelevant matches that must be filtered manually. More semantic search
approaches could address these limitations, yet existing approaches are either not flexible
enough to find approximate matches or require the programmer to define complex specifi-
cations as queries. In this work we propose a novel approach to semantic code search that
addresses several of these limitations and is designed for queries that can be described using
a concrete input/output example. In this approach, programmers write lightweight speci-
fications as inputs and expected output examples. Unlike existing approaches to semantic
search, we use an SMT solver to identify programs or program fragments in a repository,
which have been automatically transformed into constraints using symbolic analysis, that
match the programmer-provided specification. We instantiated and evaluated this approach
in subsets of three languages, the Java String library, Yahoo! Pipes mashup language, and
SQL select statements, exploring its generality, utility, and trade-offs. The results indicate
that this approach is effective at finding relevant code, can be used on its own or to filter
results from keyword searches to increase search precision, and is adaptable to find approx-
imate matches and then guide modifications to match the user specifications when exact
matches do not already exist. These gains in precision and flexibility come at the cost of
performance, for which underlying factors and mitigation strategies are identified.

2 Creating Techniques for Enhancing Dependability

2.1 SimTester: A controllable and observable testing framework
for embedded systems [26]

In software for embedded systems, the frequent use of interrupts for timing, sensing, and I/O
processing can cause concurrency faults to occur due to interactions between applications,
device drivers, and interrupt handlers. This type of fault is considered by many practitioners
to be among the most difficult to detect, isolate, and correct, in part because it can be
sensitive to execution interleavings and often occurs without leaving any observable incorrect
output. As such, commonly used testing techniques that inspect program outputs to detect
failures are often ineffective at detecting them. To test for these concurrency faults, test
engineers need to be able to control interleavings so that they are deterministic. Furthermore,
they also need to be able to observe faults as they occur instead of relying on observable
incorrect outputs.

To address this problem we have created SimTester, a framework that allows engineers
to effectively test for subtle and non-deterministic concurrency faults by providing them
with greater controllability and observability. We have implemented our framework on a
commercial virtual platform that is widely used to support hardware/software co-designs to
promote ease of adoption. We have evaluated its effectiveness by using it to test for data
races and deadlocks. The result shows that our framework can be effective and efficient at
detecting these faults.

2.2 Detecting problematic message sequences and frequencies in
distributed systems [12]

Testing the components of a distributed system is challenging as it requires consideration of
not just the state of a component, but also the sequence of messages it may receive from the
rest of the system or the environment. Such messages may vary in type and content, and
more particularly, in the frequency at which they are generated. All of these factors, in the
right combination, may lead to faulty behavior.

We have created an approach to address these challenges by systematically analyzing a
component in a distributed system to identify specific message sequences and frequencies
at which a failure can occur. At the core of the analysis is the generation of a test driver
that defines the space of message sequences to be generated, the exploration of that space
through the use of dynamic symbolic execution, and the timing and analysis of the generated
tests to identify problematic frequencies. We have implemented our approach in the context
of the popular Robotic Operating System and investigated its application on three systems
of increasing complexity.

2.3 Integration testing of software product lines using composi-
tional symbolic execution [17]

Software product lines are families of products defined by feature commonality and vari-
ability, with a well-managed asset base. Recent work in testing of software product lines
has exploited similarities across development phases to reuse shared assets and reduce test
effort. The use of feature dependence graphs has also been employed to reduce testing ef-
fort, but little work has focused on code level analysis of dataflow between features. We
have developed a compositional symbolic execution technique that works in concert with a
feature dependence graph to extract the set of possible interaction trees in a product family.
It composes these to incrementally and symbolically analyze feature interactions. Our ex-
periments have shown that our technique can reduce the overall number of interactions that
must be considered during testing, and requires less time to run than traditional techniques.

2.4 Using feature locality: Can we leverage history to avoid fail-
ures during reconfiguration? [3]

Despite the best efforts of software engineers, faults still escape into deployed software. De-
velopers need time to prepare and distribute fixes, and in the interim deployments must
either tolerate or avoid failures. Self-adaptive systems — systems that adapt to meet chang-
ing requirements in a dynamic environment — have a daunting task if their reconfiguration
involves adding or removing functional features, because configurable software is known to
suffer from failures that appear only under certain feature combinations.

Although configuration-dependent failures may be difficult to provoke, and thus hard to
detect in testing, we believe that they also constitute opportunities for reconfiguration to
increase system reliability. We also believe that the failures that are sensitive to a system
configuration depend on similar feature combinations, a phenomenon we call feature-locality,
and that this locality can be combined with historical data to predict failure-prone config-
urations. To investigate these beliefs, we conducted a case study on 128 failures reported
against released versions of an open source configurable system. We have found evidence to
support both of our hypotheses. We have shown that only a small number of features affect
the visibility of these failures and that over time we can learn these features to avoid future
failures.

2.5 On the relative strengths of model-based and dynamic event
extraction-based GUI testing techniques [1]

Many software systems rely on graphical-user interfaces (GUIs) to support user interactions.
The correctness of these GUIs affects the overall quality of the systems, and thus, it is
important that GUIs be tested. To support such testing, GUI test case generation techniques
based on graph models such as event flow graphs (EFGs) have been used to generate test
cases in the form of sequences of events. Models, however, are abstractions of dynamic
behavior and may not accurately reflect actual system behavior; thus, test case generation
techniques based on models may create nonexecutable test cases and miss important events.
Test case generation techniques based on dynamic event extraction-based approaches, in
contrast, may suffer less from these effects. As a consequence, we expect that the two
approaches will differ in terms of cost and effectiveness. To investigate this expectation,
we have conducted an empirical study comparing the cost and effectiveness of model-based
and dynamic event extraction-based test case generation approaches. Our results show that
event extraction-based approaches, though more expensive than model-based approaches,
are indeed more effective in terms of their ability to achieve code coverage and to cover
events, but at additional cost, with implications for both researchers and practitioners.

2.6 Oracle-centric test case prioritization [19]

Recent work in testing has demonstrated the benefits of considering test oracles in the
testing process. Unfortunately, this work has focused primarily on developing techniques for
generating test oracles, in particular techniques based on mutation testing. While effective
for test case generation, existing research has not considered the impact of test oracles in the
context of regression testing tasks. Of interest here is the problem of test case prioritization,
in which a set of test cases are ordered to attempt to detect faults earlier and to improve the
effectiveness of testing when the entire set cannot be executed. We have created a technique
for prioritizing test cases that explicitly takes into account the impact of test oracles on the
effectiveness of testing. Our technique operates by first capturing the flow of information
from variable assignments to test oracles for each test case, and then prioritizing to “cover”
variables using the shortest paths possible to a test oracle. As a result, we favor test orderings
in which many variables impact the test oracle’s result early in test execution. Our results
demonstrate improvements in rate of fault detection relative to both random and structural
coverage based prioritization techniques when applied to faulty versions of three synchronous
reactive systems.

2.7 Understanding user understanding: Determining correctness
of generated program invariants [18]

Recently, work has begun on automating the generation of test oracles, which are necessary
to fully automate the testing process. One approach to such automation involves dynamic
invariant generation, which extracts invariants from program executions. To use such invari-
ants as test oracles, however, it is necessary to distinguish correct from incorrect invariants,
a process that currently requires human intervention. We have empirically examined this
process. In particular, we have studied the ability of 30 users, across two empirical stud-
ies, to classify invariants generated from three Java programs. Our results indicate that
users struggle to classify generated invariants: on average, they misclassify 9.1% to 31.7%
of correct invariants and 26.1%-58.6% of incorrect invariants. These results contradict prior
studies that suggest that classification by users is easy, and indicate that further work needs
to be done to bridge the gap between the effectiveness of dynamic invariant generation in
theory, and the ability of users to apply it in practice.

2.8 On-demand test suite reduction [5]

Most test suite reduction techniques aim to select, from a given test suite, a minimal rep-
resentative subset of test cases that retains the same code coverage as the suite. Empirical

studies have shown, however, that test suites reduced in this manner may lose fault detec-
tion capability. Techniques have been proposed to retain certain redundant test cases in
the reduced test suite so as to reduce the loss in fault-detection capability, but these still
do concede some degree of loss. Thus, these techniques may be applicable only in cases
where loose demands are placed on the upper limit of loss in fault-detection capability. We
have created an on-demand test suite reduction approach, which attempts to select a rep-
resentative subset satisfying the same test requirements as an initial test suite conceding
at most l% loss in fault-detection capability for at least c% of the instances in which it is
applied. Our technique collects statistics about loss in fault-detection capability at the level
of individual statements and models the problem of test suite reduction as an integer linear
programming problem. We have evaluated our approach in the contexts of three scenarios
in which it might be used. Our results show that most test suites reduced by our approach
satisfy given fault detection capability demands, and that the approach compares favorably
with an existing test suite reduction approach.

2.9 A hybrid directed test suite augmentation technique [24]

Test suite augmentation techniques are used in regression testing to identify code elements
affected by changes and to generate test cases to cover those elements. In previous work, we
studied two approaches to augmentation, one using a concolic test case generation algorithm
and one using a genetic test case generation algorithm. We found that these two approaches
behaved quite differently in terms of their costs and their abilities to generate effective test
cases for evolving programs. In this work, we present a hybrid test suite augmentation
technique that combines these two test case generation algorithms. We report the results of
an empirical study that shows that this hybrid technique can be effective, but with varying
degrees of costs, and we analyze our results further to provide suggestions for reducing costs.

2.10 Monitoring finite state properties: Algorithmic approaches
and their relative strengths [14]

One key class of techniques for enhancing the dependability of end-user military software,
especially as it relates to self-healing, is the runtime monitoring of software to detect vio-
lations of correctness properties, security policies, and other characterizations of expected
usage. In the literature, there have been two basic approaches to monitoring of temporal
properties put forth: “state” and “object” based approaches. In this work, we have defined
a third orthogonal “symbol” based approach. We have compared the three and discovered
several strenghts and weaknesses.

2.11 Compositional load test generation for software pipelines [30]

A key issue in preparing software for acceptable use is not only the correctness of computed
results, but also non-functional properties such as performance. We have been exploring
test generation techniques that target system performance. Load tests validate whether a
systems performance is acceptable under extreme conditions. Traditional load testing ap-
proaches are black-box, inducing load by increasing the size or rate of the input. Symbolic
execution based load testing techniques complement traditional approaches by enabling the
selection of precise input values. However, as the programs under analysis or their required
inputs increase in size, the analyses required by these techniques either fail to scale up or
sacrifice test effectiveness. We have proposed a new approach that addresses this limitation
by performing load test generation compositionally. Our approach uses existing symbolic
execution based techniques to analyze the performance of each system component in isola-
tion, summarizes the results of those analyses, and then performs an analysis across those
summaries to generate load tests for the whole system. In its current form, the approach can
be applied to any system that is structured in the form of a software pipeline. A study of
the approach revealed that it can generate effective load tests for Unix and XML pipelines
while outperforming state-of-the-art techniques.

2.12 Reducing masking effects in combinatorial interaction testing
[25]

Masking effects occur in configurable software systems. This phenomenon is encountered
when unknown constraints exist between configurations that are tested together. The tests
may fail to run to completion (i.e. they may “skip”) despite the lack of a fault. While
these configurations appear to be tested, they are in fact only partially tested, due to this
masking and thereby reduce the quality of testing. During development and system main-
tenance, constraints may be added and removed, but these are rarely documented. We
have developed an iterative technique (FDA-CIT) for automatically exposing combinations
of configurations that mask each other, and then regenerate samples of configurations that
avoid those combinations. We have applied this technique on several open source systems to
evaluate its effectiveness measured as the increase in both combinatorial and code coverage.
FDA-CIT outperforms traditional combinatorial testing as well as another state-of-the-art
approach, using error locating arrays.

2.13 Beyond the rainbow: Self-adaptive failure avoidance in con-
figurable systems [22]

Self-adaptive software systems monitor their state and then adapt when certain conditions
are met, guided by a global utility function. These may, for instance, guide UAVs to use
different navigation strategies during unique environmental conditions. In prior work we
developed algorithms and conducted a post-hoc analysis demonstrating the possibility of
adapting to avoid software failures by judiciously changing configurations (adding or remov-
ing features in the system). In this work we have created the REFRACT framework that
realizes this idea in practice by building on the self-adaptive Rainbow architecture. RE-
FRACT extends Rainbow with new components and algorithms targeting failure avoidance.
We used REFRACT in a case study running four independently executing Firefox clients .
The study showed that workarounds for all but one of the seeded faults are found and the
one that is not found never fails because it is guarded.

2.14 PrefFinder: Getting the right preference in configurable soft-
ware systems [9]

Highly configurable software systems have a large number of preferences that the user can
customize, but documentation of them may be scarce or distributed. A user, tester or
service technician may have to search through hundreds or thousands of choices in multiple
documents when trying to identify which preference will modify a particular system behavior.
In this work we created PrefFinder, a natural language framework that finds (and changes)
user preferences. It is tied into an application’s preference system and static documentation.
We instantiated PrefFinder as a plugin on two open source applications, and as a stand-alone
GUI for an industrial application. PrefFinder found the correct answer between 76-96% of
the time on more than 175 queries. When compared to asking questions on a help forum or
through the company’s service center, we can potentially save days or even weeks of time.

2.15 Configurations everywhere: Implications for testing and de-
bugging in practice [8]

Many industrial systems are highly-configurable, complicating the testing and debugging
process. While researchers have developed techniques to statically extract, quantify and
manipulate the valid system configurations by creating models, we conjecture that many of
these techniques will fail in practice. In this work we analyzed a highly-configurable industrial
application and two open source applications in order to quantify the true challenges that
configurability creates for software testing and debugging. We found that (1) all three

applications consist of multiple programming languages, hence static analyses need to cross
programming language barriers to work, (2) there are many access points and methods
to modify configurations, implying that practitioners need configuration traceability and
should gather and merge metadata from more than one source and (3) the configuration
state of an application on failure cannot be reliably determined by reading persistent data; a
runtime memory dump or other heuristics must be used for accurate debugging. We present
a roadmap and lessons learned to help practitioners better handle configurability now, and
that may lead to new configuration-aware testing and debugging techniques in the future.

2.16 Amplifying tests to validate exception handling code [31]

Validating code handling exceptional behavior is difficult, as it requires (1) systematic ex-
ploration of the space of exceptions that may be thrown by the external resources, and (2)
setup of the context to trigger specific patterns of exceptions. In this work we first conducted
a study quantifying the magnitude of the problem by inspecting the bug repositories of a set
of popular applications in the increasingly relevant domain of Android mobile applications.
The study revealed that 22% of the confirmed and fixed bugs have to do with poor excep-
tional handling code, and half of those correspond to interactions with external resources.
We present an approach that addresses this challenge by performing an systematic ampli-
fication of the program space explored by a test by manipulating the behavior of external
resources. Each amplification attempts to expose a program’s exception handling constructs
to new behavior by mocking an external resource so that it returns normally or throws an
exception following a predefined set of patterns. Our assessment of the approach indicates
that it can be fully automated, is powerful enough to detect 67% of the faults reported in
the bug reports of this kind, and is precise enough that 78% of the detected anomalies are
fixed, and it has a great potential to assist developers.

2.17 Safely reducing the cost of unit level symbolic execution
through read/write analysis [15]

Symbolic execution is a powerful tool to systematically explore programs, but it must be
applied judiciously to be cost-effective, particularly with large program units. Existing ap-
proaches addressing this problem either incur considerable overhead or can skip valuable
sequences. In this work we reduce this cost by leveraging a read/write analysis to track
possible changes between methods. By identifying calls to a class’s fields, sequences involv-
ing methods that cannot interact with accesses by previous methods may be pruned. This
drastically reduces the cost to determine whether a method call could lead to unique states
while considerably reducing the method tree. Preliminary evaluations show our technique
can be more efficient than alternative approaches that guarantee complete path coverage.

2.18 Reducing failure rates of robotic systems though inferred
invariants monitoring [7]

System monitoring can help to detect abnormalities and avoid failures. Crafting monitors
for today’s robotic systems, however, can be very difficult due to the systems’ inherent
complexity. In this work we address this challenge through an approach that automatically
infers system invariants and synthesizes those invariants into monitors. The approach is novel
in that it derives invariants by observing the messages passed between system nodes and the
invariants types are tailored to match the spatial, temporal, and operational attributes of
robotic systems. Further, the generated monitor can be seamlessly integrated into systems
built on top of publish-subscribe architectures. An application of the technique on a system
consisting of a unmanned aerial vehicle (UAV) landing on a moving platform shows that it
can significantly reduce the number of crashes in unexpected landing scenarios.

2.19 SimRT: An automated framework to support regression test-
ing for data races [29]

Concurrent programs are prone to various classes of difficult-to-detect faults, of which data
races are particularly prevalent. Prior work has attempted to increase the cost-effectiveness
of approaches for testing for data races by employing race detection techniques, but to date,
no work has considered cost-effective approaches for re-testing for races as programs evolve.
In this work we developed SimRT, an automated regression testing framework for use in
detecting races introduced by code modifications. SimRT employs a regression test selection
technique, focused on sets of program elements related to race detection, to reduce the
number of test cases that must be run on a changed program to detect races that occur
due to code modifications, and it employs a test case prioritization technique to improve the
rate at which such races are detected. Our empirical study of SimRT reveals that it is more
efficient and effective for revealing races than other approaches, and that its constituent test
selection and prioritization components each contribute to its performance.

2.20 SimLatte: A framework to support testing for worst-case
interrupt latencies in embedded software [27]

Embedded systems tend to be interrupt-driven, yet the presence of interrupts can affect
system dependability because there can be delays in servicing interrupts. Such delays can
occur when multiple interrupt service routines and interrupts of different priorities com-
pete for resources on a given CPU. For this reason, researchers have sought approaches by
which to estimate worst-case interrupt latencies (WCILs) for systems. Most existing ap-

proaches, however, are based on static analysis. In this work, we developed SIMLATTE, a
testing-based approach for finding WCILs. SIMLATTE uses a genetic algorithm for test case
generation that converges on a set of inputs and interrupt arrival points that are likely to
expose WCILs. It also uses an opportunistic interrupt invocation approach to invoke inter-
rupts at a variety of feasible locations. Our evaluation of SIMLATTE on several non-trivial
embedded systems reveals that it is considerably more effective and efficient than random
testing. We also determine that the combination of the genetic algorithm and opportunistic
interrupt invocation allows SIMLATTE to perform better than it can when using either one
in isolation.

2.21 An empirical comparison of the fault-detection capabilities
of internal oracles [28]

Modern computer systems are prone to various classes of runtime faults due to their reliance
on features such as concurrency and peripheral devices such as sensors. Testing remains
a common method for uncovering faults in these systems, but many runtime faults are
difficult to detect using typical testing oracles that monitor only program output. In this
work we empirically investigate the use of internal test oracles: oracles that detect faults
by monitoring aspects of internal program and system states. We compare these internal
oracles to each other and to output-based oracles for relative effectiveness and examine
tradeoffs between oracles involving incorrect reports about faults (false positives and false
negatives). Our results reveal several implications that test engineers and researchers should
consider when testing for runtime faults.

3 Coordinating Development and Maintenance Pro-

cesses

3.1 The onion patch: Migration in open source ecosystems [6]

Today’s systems form an ecosystem of related projects and products that have common
underlying components, technology, and social norms. Understanding how the common
technical and social structures of related projects in such systems allow newcomers to easily
join a project is essential in understanding how expertise is transferred in larger software
ecosystems. Typical migration process in a community (e.g., Open Source community)
follows a socialization process called “the onion model”, where newcomers join a project
by first contributing at the periphery through mailing list discussions and bug trackers and
as they develop skill and reputation within the community they advance to central roles of

contributing code and making design decisions. However, participants in an ULS ecosystem
may be able to utilize a significant amount of transferable knowledge when moving between
projects in the ecosystem and, thereby, skip steps in the onion model. We have shown how
developers are able to leverage their knowledge of technical as well as social structures in one
project and apply it to another project, and are thereby able to reduce their socialization
(training) times.

3.2 End-user programmers and their communities: An artifact-
based analysis [20]

End-user programmers outnumber professionals programmers, write software that matters
to an increasingly large number of users, and face software engineering challenges that are
similar to their professionals counterparts. Yet, we know little about how these end-user pro-
grammers create and share artifacts as part of a community. To gain a better understanding
of these issues, we have performed an artifact-based community analysis of 32,000 mashups
from the Yahoo! Pipes repository. We observed that, like with other online communities,
there is great deal of attrition but authors that persevere tend to improve over time, creating
pipes that are more configurable, diverse, complex, and popular. We also discovered, how-
ever, that end-user programmers employ the repository in different ways than professionals,
do not effectively reuse existing programs, and in most cases do not have an awareness of
the community.

3.3 History repeats itself more easily when you log it: Versioning
for mashups [10]

Web mashup environments provide a way for professional and end-user programmers to
combine data from various web applications and services to create new content. By making
mashups available in repositories, these environments also help mashup programmers under-
stand and reuse mashups. Current mashup environments, however, do not provide support
for tracking the development histories of mashups. To address this lack, we have been work-
ing to add configuration management support to the Yahoo! Pipes mashup environment. We
have presented results of a controlled experiment studying both end-user and experienced
programmers, in terms of their ability to create and debug mashups in the presence of that
support. Our results show that versioning support can help both groups of users do both
tasks better.

3.4 Development context driven change awareness and analysis
framework [16]

Distributed software development requires coordination across members of the team, who
are often isolated from each other and performing development tasks in parallel. In such sit-
uations a developer needs to understand how his changes may impact other ongoing changes
and how changes made by other developers may impact his tasks. Traditional change impact
analysis techniques identify the impact of a change set on the original code base, whereas
conflict prediction requires the computation of a developers changes on not only the central
code base, but, also on the other ongoing changes in remote, parallel workspaces. Designing
the right change impact analysis technique that can assist in development tasks requires
determining (a) how to perform an analysis when there are no changes, (b) which versions
should be treated as source and target programs when there are many developers, (c) how
to bound the scope of the analysis to answer specific questions and facilitate scalability, (d)
how to configure the precision of the analysis such that it provides meaningful results in
a timely manner, and (e) how to process and present the results such that they are useful
to the developers. In this work, we propose a novel context driven change awareness and
analysis framework, Development Context Analysis Framework (DeCAF) that leverages the
context of the distributed software development environment to scope the analysis space.
DeCAF can be configured to scope the region over which impact is calculated, the precision
of the analysis, and the extent of analysis based on the client requirements. DeCAF uses a
multi-stage change impact analysis as the underlying analysis engine.

3.5 On the benefits of providing versioning support for end-users:
An empirical study [11]

End users with little formal programming background are creating software in many different
forms, including spreadsheets, web macros, and web mashups. Web mashups are particularly
popular because they are relatively easy to create, and because many programming environ-
ments that support their creation are available. These programming environments, however,
provide no support for tracking versions or provenance of mashups. We believe that version-
ing support can help end users create, understand, and debug mashups. To investigate this
belief, we have added versioning support to a popular wire-oriented mashup environment,
Yahoo! Pipes. Our enhanced environment, which we call “Pipes Plumber,” automatically
retains versions of pipes and provides an interface with which pipe programmers can browse
histories of pipes and retrieve specific versions. We have conducted two studies of this en-
vironment: an exploratory study and a larger controlled experiment. Our results provide
evidence that versioning helps pipe programmers create and debug mashups. Subsequent
qualitative results provide further insights into the barriers faced by pipe programmers, the
support for reuse provided by our approach, and the support for debugging provided.

References

[1] G. Bae, G. Rothermel, and D. H. Bae. On the relative strengths of model-based and
dynamic event extraction-based GUI testing techniques: An empirical study. In Pro-
ceedings of the International Symposium on Software Reliability Engineering, November
2012, (to appear).

[2] M.B. Cohen, S. Huang, and A. M Memon. AutoInSpec: Using missing test coverage
to improve specifications in GUIs. In Proceedings of the International Symposium on
Software Reliability Engineering, November 2012 (to appear).

[3] B. J. Garvin, M. B. Cohen, and M. B. Dwyer. Using feature locality: Can we leverage
history to avoid failures during reconfiguration? In Proceedings of the ESEC/FSE
Workshop on Assurances for Self-Adaptive Systems, pages 24–33, September 2011.

[4] J. Geldenhuys, M. B. Dwyer, and W. Visser. Probabilistic symbolic execution. In
Proceedings of the 2012 International Symposium on Software Testing and Analysis,
pages 166–176, July 2012.

[5] D. Hao, L. Zhang, X. Wu, H. Mei, and G. Rothermel. On-demand test suite reduction.
In Proceedings of the International Conference on Software Engineering, pages 738–748,
June 2012.

[6] C. Jergensen, A. Sarma, and P. Wagstrom. The onion patch: Migration in open source
ecosystems. In Proceedings of the 19th ACM SIGSOFT Symposium on Foundations of
Software Engineering, pages 70–80, September 2011.

[7] H. Jiang, S. Elbaum, and C. Detweiler. Reducing failure rates of robotic systems though
inferred invariants monitoring. In IROS, 2013.

[8] D. Jin, X. Qu, M. B. Cohen, and B. Robinson. Configurations everywhere: Implications
for testing and debugging in practice. In Proceedings of the International Conference
on Software Engineering, June 2014.

[9] D. Jin, X. Qu, M. B. Cohen, and B. Robinson. PreFinder: Getting the right preference
in configurable software systems. In Proceedings of Automated Software Engineering,
September 2014.

[10] S. K. Kuttal, A. Sarma, and G. Rothermel. History repeats itself more easily when
you log it: Versioning for mashups. In Proceedings of the IEEE Symposium on Visual
Languages and Human-Centric Computing, pages 69–72, September 2011.

[11] Sandeep K. Kuttal, Anita Sarma, and Gregg Rothermel. On the benefits of providing
versioning support for end users: An empirical study. ACM Transactions on Computer-
Human Interaction, 21(2):9:1–9:43, 2014.

[12] C. Lucas, S. Elbaum, and D. S. Rosenblum. Detecting problematic message sequences
and frequencies in distributed systems. In Proceedings of the International Conference
on Object Oriented Programming, Systems, Languages and Applications, October 2012,
(to appear).

[13] R. Purandare, J. Darsie, S. Elbaum, and M. B. Dwyer. Conditional component depen-
dence analysis for distributed robotics software. In Proceedings of the 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems, October 2012, (to appear).

[14] R. Purandare, M. B. Dwyer, and S. Elbaum. Monitoring finite state properties: Algo-
rithmic approaches and their relative strengths. In Proceedings of the 2nd International
Conference on Runtime Verification, pages 381–395, September 2011.

[15] E. F. Rizzi, M. B. Dwyer, and S. B. Elbaum. Safely reducing the cost of unit level
symbolic execution through read-write analysis. ACM SIGSOFT Software Engineering
Notes, 39(1), 2014.

[16] A. Sarma, B. Branchaud, M. B. Dwyer, S. Person, and N. Rungta. Development context
driven change awareness and analysis framework. In Proceedings of the International
Conference on Software Engineering, June 2014.

[17] J. Shi, M. B. Cohen, and M. B. Dwyer. Integration testing of software product lines
using compositional symbolic execution. In Proceedings of the International Conference
on Fundamental Approaches to Software Engineering, pages 270–284, March 2012.

[18] M. Staats, S. Hong, M. Kim, and G. Rothermel. Understanding user understanding:
Determining correctness of generated program invariants. In Proceedings of the Inter-
national Symposium on Software Testing and Analysis, pages 188–198, July 2012.

[19] M. Staats, P. Loyola, and G. Rothermel. Oracle-centric test case prioritization. In Pro-
ceedings of the International Symposium on Software Reliability Engineering, November
2012, (to appear).

[20] K. T. Stolee, S. Elbaum, and A. Sarma. End-user programmers and their communities:
An artifact-based analysis. In Proceedings of the International Symposium on Empirical
Software Engineering and Measurement, pages 147–156, September 2011.

[21] K. T. Stolee, S. G. Elbaum, and D. Dobos. Solving the search for source code. ACM
Transactions on Software Engineering and Methodology, 23(3), 2014.

[22] J. Swanson, M. B. Cohen, M. B. Dwyer, B. J. Garvin, and J. Firestone. Beyond the
rainbow: Self-adaptive failure avoidance in configurable systems. In Proceedings of the
19th ACM SIGSOFT Symposium on Foundations of Software Engineering, November
2014.

[23] A. Swearngin, M. B. Cohen, B. E. John, and R. K. E. Bellamy. Easing the generation of
predictive human systems performance models from legacy systems. In Proceedings of
the ACM SIGCHI Conference on Human Factors in Computing Systems, pages 2489–
2498, May 2012.

[24] Z. Xu, Y. Kim, M. Kim, and G. Rothermel. A hybrid directed test suite augmenta-
tion technique. In Proceedings of the International Symposium on Software Reliability
Engineering, pages 150 – 159, November 2011.

[25] C. Yilmaz, E. Dumlu, M. B. Cohen, and A. A. Porter. Reducing masking effects in com-
binatorial interaction testing: A feedback driven adaptive approach. IEEE Transactions
on Software Engineering, 41(1):43–66, 2014.

[26] T. Yu, W. Srisa-an, and G. Rothermel. SimTester: A controllable and observable testing
framework for embedded systems. In Proceedings of the ACM International Conference
on Virtual Execution Environments, pages 51–62, March 2012.

[27] Tingting Yu, Witawas Srisa-an, Myra B. Cohen, and Gregg Rothermel. SimLatte: A
framework to support testing for worst-case interrupt latencies in embedded software.
In Proceedings of the IEEE International Conference on Software Testing, Verification,
and Validation, pages 313–322, 2014.

[28] Tingting Yu, Witawas Srisa-an, and Gregg Rothermel. An empirical comparison of
the fault-detection capabilities of internal oracles. In Proceedings of the International
Conference on Software Reliability Engineering, pages 11–20, 2013.

[29] Tingting Yu, Witawas Srisa-an, and Gregg Rothermel. SimRT: An automated frame-
work to support regression testing for data races. In Proceedings of the 36th International
Conference on Software Engineering, pages 48–59, 2014.

[30] P. Zhang, S. Elbaum, and M. B. Dwyer. Compositional load test generation for software
pipelines. In Proceedings of the 2012 International Symposium on Software Testing and
Analysis, pages 89–99, July 2012.

[31] P. Zhang and S. G. Elbaum. Amplifying tests to validate exception handling code:
An extended study in the mobile application domain. ACM Transactions on Software
Engineering and Methodology, 23(4), 2014.

	1 REPORT DATE DDMMYYYY: 31-11-2014
	2 REPORT TYPE: Final Report
	3 DATES COVERED From To: 1-9-2010 -- 31-8-2014
	4 TITLE AND SUBTITLE: Safeguarding End-user Military Software
	5a CONTRACT NUMBER:
	5b GRANT NUMBER: FA9550-10-1-0406
	5c PROGRAM ELEMENT NUMBER:
	6 AUTHORS: Rothermel, Gregg
Cohen, Myra
Dwyer, Matthew
Elbaum, Sebastian
Sarma, Anita
Srisa-an, Witawa
	5d PROJECT NUMBER:
	5e TASK NUMBER:
	5f WORK UNIT NUMBER:
	7 PERFORMING ORGANIZATION NAMES AND ADDRESSES: University of Nebraska - Lincoln
2200 Vine St, 151 Whittier
Lincoln, NE 68583-0861
	8 PERFORMING ORGANIZATION REPORT NUMBER:
	9 SPONSORING MONITORING AGENCY NAMES AND ADDRESSES: AFOSR/RTC
875 N Randolph
Arlington, Va 22203

	10 SPONSORMONITORS ACRONYMS:
	11 SPONSORMONITORS REPORT NUMBERS:
	12 DISTRIBUTION AVAILABILITY STATEMENT:
Distribution A - Approved for Public Release
	13 SUPPLEMENTARY NOTES:
	14 ABSTRACT: We have performed research on approaches for integrating the of personnel who interact with software systems more directly in a collaborative effort of developing, deploying, validating and maintaining the various components of the systems, with the primary objective of enhancing their dependability. We have created techniques that capture and encode user expertise, verification and other dependability-enhancing techniques that use this expertise to function cost-effectively both collaboratively and across system lifetimes, and mechanisms for better coordinating the development and maintenance processes for these systems.
	15 SUBJECT TERMS: Modeling systems, modeling user expectations, testing software, test oracles, performance analysis, combinatorial testing, regression testing, configuration management, coordinating development processes
	16 SECURITY CLASSIFICATION OF:
	a REPORT: U
	b ABSTRACT: U
	c THIS PAGE: U
	17 LIMITATION OF ABSTRACT: UU
	18 NUMBER OF PAGES:
	19a NAME OF RESPONSIBLE PERSON: Gregg Rothermel
	19b TELEPHONE NUMBER include area code: (402) 472-2184

