

Meteorological Sensor Array (MSA)–Phase I, Volume 2

(Data Management Tool: “Proof of Concept”)

by Sandra Harrison and Gail Vaucher

ARL-TR-7133 October 2014

Approved for public release; distribution unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position
unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or
approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory
White Sands Missile Range, NM 88002-5501

ARL-TR-7133 October 2014

Meteorological Sensor Array (MSA)–Phase I, Volume 2
(Data Management Tool: “Proof of Concept”)

Sandra Harrison

STS Systems Integration (SSI), LLC
San Antonio, TX

Gail Vaucher

Computational and Information Sciences Directorate, ARL

Approved for public release; distribution unlimited.

ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

October 2014

2. REPORT TYPE

Final
3. DATES COVERED (From - To)

March 2014–September 30, 2014
4. TITLE AND SUBTITLE

Meteorological Sensor Array (MSA)–Phase I, Volume 2 (Data Management
Tool: “Proof of Concept”)

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Sandra Harrison and Gail Vaucher
5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

US Army Research Laboratory
Computational and Information Sciences Directorate
Battlefield Environment Division (ATTN: RDRL-CIE-D)
White Sands Missile Range, NM 88002-5501

8. PERFORMING ORGANIZATION
 REPORT NUMBER

ARL-TR-7133

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.
13. SUPPLEMENTARY NOTES

14. ABSTRACT
The Meteorological Sensor Array (MSA) goal is to provide reliable and persistent atmospheric data resources, which allow
atmospheric modelers and sensor developers to validate and compare model and sensor performance with observations at and
near the surface and in close proximity to terrain of varying complexity. The MSA–Phase I (“Proof of Concept”) field
campaign was executed in 2014. Concurrently, a “Proof of Concept” data management tool was designed, created and initial
tests conducted. The Data Management task was divided into 2 parts: Data Processing and Data Distribution. The Data
Processing was defined as the data flow from field sensor measurements through the initial data averaging, data merging, and
time-series visualization plots used to quality control the data. The Data Distribution task began once the field data were
quality controlled and included the process of reconfiguring the field data files for MSA data users. An earlier report (ARL-
TR-7058) describes the Data Processing, in detail. Volume 2 focuses on the subsequent 2014-Data Distribution Tool
development. This Data Distribution Tool consisted of 4 functions: Data Storage, Data Extraction, Data Visualization, and
Data Documentation. Each function is elaborated in this report, along with a sample of the “lessons learned”. Data
management is a nontrivial, critical pillar of the MSA. With software technologies advancing daily, the possibilities for
improved data management tools are almost open ended. With this documentation, however, a foundation for creating a
successful MSA Data Management Tool has been initiated.
15. SUBJECT TERMS

meteorological sensor array, MSA, data management tool, data processing, data distribution, Access, MySQL

16. SECURITY CLASSIFICATION OF:
17. LIMITATION

 OF
 ABSTRACT

UU

18. NUMBER
 OF

 PAGES

82

19a. NAME OF RESPONSIBLE PERSON

Gail Vaucher
a. REPORT

Unclassified
b. ABSTRACT

Unclassified
c. THIS PAGE

Unclassified
19b. TELEPHONE NUMBER (Include area code)

575-678-3237
 Standard Form 298 (Rev. 8/98)
 Prescribed by ANSI Std. Z39.18

iii

Contents

List of Figures v

List of Tables v

Acknowledgments vii

Executive Summary ix

1. Background 1

1.1 MSA Vision ...1

1.2 MSA–Phase I (“Proof of Concept”) Field Campaign ...1

2. MSA Data Management Tool, Design, and Process 2

2.1 Data Distribution Tool Overview ..2

2.2 Data Storage ..3

2.3 Data Extraction ..5

2.4 Data Visualization ...9

2.5 Data Documentation ..9

3. Lessons Learned and Recommendations 10

4. Summary 11

5. References and Notes 14

Appendix A. Program to Load Meteorological Sensor Array (MSA) Tables 15

Appendix B. Program to Load Text Files 25

Appendix C. MSA_Plots_MST.vbs 35

Appendix D. MSA_Plots_MST.GLE 39

Appendix E. README File 59

iv

Appendix F. HELP File 61

List of Symbols, Abbreviations, and Acronyms 67

Distribution List 68

v

List of Figures

Fig. 1 MSA–Phase I database design including tables and relationships4

Fig. 2 An example of the Data Management Tool Application user inputs in the database
extraction process...6

Fig. 3 A Data Management Tool example screen display, after the user validated the input.
This output included a) extracted data in tabular format, b) a MySQL Select statement
created from the input data and sent to the database to generate the data, and c) the
remaining procedures to perform for producing the final data products.7

Fig. 4 An example of a data file extracted from the Data Management Tool database8

Fig. 5 A GLE script created time-series plots of extracted data ..8

Fig. 6 An example of the Log file, listing previous data requests, viewed in Excel9

List of Tables

Table Calculating a MSA database table size, for a single tower, over a 1-yr period5

vi

INTENTIONALLY LEFT BLANK.

vii

Acknowledgments

The authors wish to thank Mr “RW” Hornbaker (SpecPro Technical Services [STS] Systems
Integration, [SSI], LLC) and Mr. Pieter Haines (STS), for their invaluable contributions toward
the development and testing of the Meteorological Sensor Array (MSA)–Phase I: Data
Management Tool.

Special thanks go to the Technical Publishing Branch at White Sands Missile Range, NM, for
their consistent high standard of editing, specifically Mr Jim Le Noir, Ms Lisa Lacey, and Sherry
Larson.

viii

INTENTIONALLY LEFT BLANK.

ix

Executive Summary

Accurate atmospheric models are a critical element of environmentally-dependent Army
decisions. “Army-scale” atmospheric models include high-resolution (<1-km) models. To
validate these models, high-resolution meteorological observations are needed. Locating
atmospheric measurements at scales of 1 km or less is very difficult. This fact was recognized by
the National Research Council (NRC). The US Army Research Laboratory (ARL) has responded
to this critical, national and military technological gap by proposing to build an observational
data resource specifically designed to address the “Army-scale”, high-resolution atmospheric
model validation and verification issues. The resource is called the Meteorological Sensor Array
(MSA).

The MSA objective is to provide reliable and persistent atmospheric data resources, which allow
atmospheric modelers and sensor developers to validate and compare model and sensor
performance with observations at and near the surface and in close proximity to terrain of
varying complexity. The multiphase MSA program was initiated in 2014, with a MSA–Phase I
“Proof of Concept”. The field portion of Phase I consisted of the following: a) equally-spaced
meteorological towers located around a large Solar Photovoltaic Farm in southern New Mexico;
b) measurements of pressure, temperature, relative humidity, insolation, and winds; c) solar-
powered instrumentation; and d) wireless data download, monitoring, and time synchronization.
The subsequent phases were envisioned as having 36 meteorological towers placed in a gridded
pattern at multiple desert locations in the southwestern USA.

The MSA–Phase I field design and execution were documented in MSA–Phase I, Volume 1.1
The MSA–Phase I Data Management task was divided into 2 parts: Data Processing and Data
Distribution. The Data Processing was defined as the data flow from measurements sampled by a
sensor in the field, through the initial data averaging, data merging, and time-series visualization
plots used to execute the initial data quality control, at the MSA Headquarters. MSA–Phase I,
Volume 11 described this part, in detail. The Data Distribution task was defined as starting after
the MSA field data were quality controlled and as being the process of reconfiguring the field
data files for the MSA end users. The tool developed to execute the Data Distribution is the
primary focus of this technical report.

The MSA–Phase I Data Distribution Tool consists of 4 functions: Data Storage, Data Extraction,
Data Visualization, and Data Documentation.

1Vaucher GT, Swanson J, Raby J, Foley T, Harrison S, Brice R. D’Arcy S, Creegan E. Meteorological Sensor Array (MSA)–

Phase I, Volume 1 (“Proof of Concept” Overview). White Sands Missile Range (NM): Army Research Laboratory (US);
September 2014. Report No.: ARL-TR-7058. Also available at
http://www.arl.army.mil/www/default.cfm?technical_report=7179.

x

The Phase I: Data Storage was designed as a Windows MySQL database. The development of
this Phase I: Data Storage function, however, was subdivided into 3 steps. Due to delays in the
software acquisition, the initial data storage tool utilized the available Microsoft Access2
database. Figure 1 shows the MSA–Phase I database table design and relationships. A Visual
Basic Application script (Appendix A) was used in Microsoft Access to read and manage all the
MSA Merged Data files.

As an intermediate development step, the “Proof of Concept” data storage was reinstalled in a
UNIX-based MySQL environment. Populating the database was done using a Visual Basic
Application script (Appendix B) to read all the MSA Merged Data files and write them into a
formatted text file for each database table. A File Transfer Protocol (FTP) was used to transfer
these text files to the UNIX workstation. The MySQL3 LOAD command was then used to load
the tables with these data in text files. Throughout the development process of the Data
Management Tool, there were database table improvements. Implementing the improvements
required recreating the tables and reloading the data into the tables. To improve efficiency, this
process was automated.

The final step converted UNIX MySQL to Windows-based MySQL. At the time of this writing,
the conversion step was in progress.

Looking forward, the “Proof of Concept” data storage specifications were used to assess current
and future database size requirements. Based on the Phase I data volume, in 1 year (yr), for a
single tower, the maximum amount of disk storage needed for a merged data table would be
approximately 128 megabytes (MB). For 36 towers, the merged data table size would be
approximately 5-GB per year. For 72 towers, approximately 10-GB per year would be required.

The subsequent 3 Data Distribution Tool functions were initiated by the MSA Operator, using
desktop icons. To help visualize these 3 functions, here is an example of their usage from an
operator’s perspective:

When a user submitted a data request, the MSA Operator began processing this request
by clicking on the Data Management Extract function. The function initiated PuTTY
software, a terminal emulator providing access to the UNIX environment required by
MySQL database. The function then executed the extraction program MSA Extract. The
Operator entered the requested specifications, which then extracted the MSA–Phase I
data stored in a MySQL database. There was an option for choosing “all” variables, after
which one could reduce the selection through a toggle interface. The data requested were
instantaneously processed, and a sample of the results was shown on the screen. A Data
Management FTP icon facilitated a UNIX-to-Windows data file transfer. The extracted

2Microsoft Access is a registered trademark of Microsoft Corporation in the United States and/or other countries.
3The SQL part of “MySQL” stands for Structured Query Language.

xi

numerical file was converted into color-coded time-series plots, using the Data
Management Graphics Layout Engine (GLE) Plot icon. Clicking on the final icon—Data
Management Excel Log and using local key strokes, allowed the Operator to tabulate the
data request into an historical record of all MSA data requests received and processed, to
date.

This report elaborates on each of the 4 Data Distribution Tool functions in Section 2.

Lessons learned were gleaned throughout the MSA–Phase I Data Management “Proof of
Concept” exercise. Four of these lessons included:

1) The process of acquiring needed Software Application Tools takes a significant amount of
time.

2) Requesting multiple towers with 1 query for 1 output data file was very complex. This task
was simplified by having separate queries and output files generated for each tower.

3) A Rapid Application Development Methodology was used, based on time constraints and
the availability of fundamental algorithms needed to build the database queries. This
application used a command line interface, which does not easily accommodate user entry
errors. Using a graphical user interface (GUI) could be more user-friendly.

4) While the Data Management Tool successfully proved the initial data management
concept, utilizing a Web-based application would be recommended for the next
development stage(s). A Web-based application would have GUI capabilities (reducing the
command line interface limitations) and the potential for reaching more MSA users.

Data Management is a nontrivial, critical pillar of a MSA. With software technologies advancing
daily, the possibilities for improved user-friendly, efficient, and informative tools are almost
open ended. With this documentation, a foundation for creating a successful MSA Data
Management Tool has been initiated.

xii

INTENTIONALLY LEFT BLANK.

1

1. Background

Environmentally dependent Army decisions rely on accurate atmospheric models. “Army-scale”
atmospheric models include high-resolution (<1-km) models. To validate these models, high-
resolution meteorological observations are needed. As explained in Meteorological Sensor Array
(MSA)–Phase I, Volume 1,1 locating atmospheric measurements at scales of 1 km or less, is very
difficult. This fact was recognized by the National Research Council (NRC), after they reviewed
the US Weather Research, and Researcher-to-Operations progress and priorities in 2009.2 The
US Army Research Laboratory (ARL) has responded to this critical, national and military
technological gap by proposing to build an observational data resource specifically designed to
address the “Army-scale”, high-resolution atmospheric model validation and verification issues.
The resource is called the Meteorological Sensor Array (MSA).

1.1 MSA Vision

The MSA vision is to provide reliable and persistent atmospheric data resources, which allow
atmospheric modelers and sensor developers to validate and compare model and sensor
performance with observations at and near the surface and in close proximity to terrain of
varying complexity. The multiphased MSA program was initiated in 2014, with a MSA–Phase I
“Proof of Concept”. The field portion of Phase I consisted of:

• Five equally-spaced meteorological towers located around a large Solar Photovoltaic (PV)
Farm in southern New Mexico

• Measurements of pressure, temperature, relative humidity, insolation and winds

• Solar-powered instrumentation

• Wireless data download, monitoring, and time synchronization.

The subsequent phases were envisioned as having 36 meteorological towers placed in a gridded
pattern at multiple desert locations in the southwestern USA. Supplemental volume
measurements, such as triple LIDARS, were included in the evolving middle 2 phases. Later
MSA Phases were visualized as being a mobile measurement capability, which will be designed
for integration into other remote site field campaigns. For this document, however, the focus is
on MSA–Phase I.

1.2 MSA–Phase I (“Proof of Concept”) Field Campaign

The MSA–Phase I (“Proof of Concept”) field measurements were sampled from portable
lightweight aluminum towers, with sensors mounted at the 2- and 10-m above ground level
(AGL). The data acquisition systems (DASs) were divided into 2 categories: Thermodynamic
and Dynamic DAS. A Campbell Scientific CR23X micrologger assimilated the Thermodynamic

2

1-min averaged data. The variables consisted of pressure, temperature (2- and 10-m AGL),
relative humidity (2-m AGL), and insolation (2-m AGL). The Dynamic data originated from
2 RM Young 81000 Ultrasonic anemometers (2- and 10-m AGL) sampling at 20 Hz. The
variables acquired were wind speed, wind direction, u-component, v-component, w-component,
speed of sound and sonic-temperature. The raw dynamic data were preserved in files on a laptop
computer then reduced to 1-min averages. These 1-min averages were then merged with the
thermodynamic 1-min data. A multiport adapter bridged the 2 data resources. A system clock on
each tower was synchronized using the Network Time Protocol (NTP). For a more detailed
MSA–Phase I description, see MSA–Phase I, Volume 1.1

2. MSA Data Management Tool, Design, and Process

The MSA–Phase I Data Management task was divided into 2 parts: Data Processing and Data
Distribution. The Data Processing was defined as the data flow from measurements sampled by a
sensor in the field, through the initial data averaging, data merging, and time-series visualization
plots used to execute the initial data quality control (QC), at the MSA Headquarters. This Data
Processing portion produced time-series plots that were critical to the Phase I Field Campaign’s
daily data reviews. A detailed data processing description is in ARL-TR-7058.1

The Data Distribution subtask started after the field data were quality controlled. The subtask’s
underlying objective was to reconfigure the field data files for the MSA end users. A preview
sample of this reconfiguration was included in Volume 1,1 where the “data processing”
description included the task of reformatting the data to accommodate a user’s statistical
application. In that case, testing the feasibility of model validation and verification (V&V) with
MSA observational data had been selected as the MSA data application. A subset of the MSA–
Phase I data was selected and reformatted into Model Evaluation Tool (MET) American
Standard Code for Information Interchange (ASCII) input, for validating the Weather Running
Estimate-Nowcast (WRE-N) model.3 The success of the feasibility test laid the groundwork for
developing a full Data Management–Data Distribution Tool, which is the focus of the remaining
technical report.

Note: While updated fiscal year (FY) 2015 requirements continue to evolve the Data Distribution
Tool, this report documents the significant FY14, MSA–Phase I “Proof of Concept” Data
Distribution milestones.

2.1 Data Distribution Tool Overview

The MSA–Phase I Data Distribution Tool consists of 4 functions: Data Storage, Data Extraction,
Data Visualizations, and Data Documentation. The data storage will be explained in Section 2.2.

3

The subsequent functions were initiated by the MSA Operator, using desktop icons. To help
visualize these 3 functions, a description of their usage from an operator’s perspective is
provided:

When a user submitted a data request, the MSA Operator began processing this request
by clicking on the Data Management Extract function. The function initiated PuTTY
software, a terminal emulator providing access to the UNIX environment required by
“My Structured Query Language” (MySQL) database. The function then executed the
extraction program MSA Extract. The Operator then entered their initials, followed by the
user’s initials. The requested data’s local date and time were entered, followed by the
tower and variable selections. There was an option for choosing “all” variables, after
which one could reduce the selection through a toggle interface. The data requested were
instantaneously extracted from the MySQL database, and a sample of the results was
shown on the screen. A Data Management File Transfer Protocol (FTP) icon facilitated a
UNIX-to-Windows data file transfer. The extracted numerical file was converted into
color-coded time-series plots, using the Data Management Graphics Layout Engine
(GLE) Plot icon. Clicking on the final icon—Data Management Excel Log and using
local key strokes, allowed the operator to tabulate the data request into an historical
record of all MSA data requests received and processed, to date.

An elaboration of the Data Distribution Tool’s 4 functions will be given in the next 4 sections,
starting with the data storage.

2.2 Data Storage

The Phase I-Data Storage was designed to use a MySQL database. Due to delays in the software
acquisition, the initial data storage tool utilized the available Microsoft Access4 database.
Database tables and their relationships were defined, using the Access relationship editor and
tools. A decision was made to store all the merged data in 1 table. This choice eliminated the
overhead of “join” statements, which would be needed if a multiple-table design was used to
house the merged data. A second table was created to store the header information of each data
file. This table had a “one-to-many” relationship with the merged data table. That is, for each
row in the header table, there existed many rows in the merged data table. A third table was
created for the towers and their attributes. This table was also configured in a “one-to-many”
relationship from the tower table to the merged data table; there existed many rows in the merged
data table for each row in the Tower table. Figure 1 shows the MSA–Phase I table design and
relationships.

4

Fig. 1 MSA–Phase I database design including tables and relationships

A Visual Basic Application script was used in Access to read all the MSA Merged Data files
from the given start and end dates (see Appendix A). This script loaded the data into the Access
tables, and queries were run to test the efficiency of the database design. If a problem occurred
with a table or relationship, the delay or abnormality would be reflected in the query’s efficiency
report.

Once the initial software acquisition hurdles were passed, the “Proof of Concept” data storage
was reinstalled in a UNIX-based MySQL environment. The reinstallation was an intermediate
step toward creating the intended Windows MySQL database. A Visual Basic Application script
was written that read all the MSA Merged Data files from the given start and end dates, and then
wrote all these data into a formatted text file for each database table (Appendix B). An FTP was
used to transfer these text files to the UNIX workstation. The MySQL LOAD command was then
used to load the tables with these data in text files. Throughout the development process of the
Data Management Tool Application, there were some changes that needed to be made to the
database tables. The process included recreating the tables and reloading the data into the tables
from the text files. To improve efficiency, this process was automated.

Looking to the future, the “Proof of Concept” data storage specifications were used to assess
current and future database size requirements. For example, based on the Phase I data volume, in
1 yr, for a single tower, the maximum amount of disk storage needed for a merged data table
would be approximately 128 megabytes (MB). This estimate was based on storing 1-min

5

averaged data. As shown in the Table, storing 1-min averages meant that the data rows per year
equaled the minutes per year. A single tower data sample used 30 fields. Each field required
8-bytes per field. Thus, over a 1-yr period, 128 MB would be required.

Table Calculating a MSA database table size, for a single tower, over a 1-yr period

60 min/h * 24 h/day * 365 days/yr = 525,600 min/yr (data rows per year)

For 1 Tower: 30 fields * 8 Bytes/field = 240 Bytes per row

240 Bytes/row * 525,600 rows/yr equals ~128 MB/yr, for 1 tower

For 36 towers, the merged data table size would be approximately 5-GB per year. For 72 towers,
approximately 10-GB per year would be required.

2.3 Data Extraction

The Database extraction process was implemented using a UNIX shell script language. This
application featured a command line interface that prompted the user for input specifications
(See Fig. 2).

User input included the:

1) MSA operator initials

2) Data Requestor initials

3) Data Start and End Dates (in Mountain Standard Time [MST])

4) Data Start and End Times (in MST)

5) Towers selected

6) Variables selected (i.e., Pressure, Wind Speed, U-component, V-component, W-
Components, etc.)

6

Fig. 2 An example of the Data Management Tool Application user inputs in the database extraction process

Based on the user’s input data, the program assembled a MySQL database select statement or
query, and executed the command in the database. The returned data were captured in a text file
on disk—1 text file for each tower requested. The text file had a descriptive name that included
all the input data information (i.e., Start and End Date/Time, Tower[s], Parameter[s]).

The program also displayed the data on the screen in column format (Fig. 3a) and then displayed
the query select statement that generated the data extraction below the data display (Fig. 3b).
Following the query display, a message was shown instructing the user to FTP and plot the data
(Fig. 3c).

7

a)

b)

c)

Fig. 3 A Data Management Tool example screen display, after the user validated the input. This output
included a) extracted data in tabular format, b) a MySQL Select statement created from the input data
and sent to the database to generate the data, and c) the remaining procedures to perform for producing
the final data products.

8

Extracted data (Fig. 4) and Log files were generated and transferred from the UNIX workstation
to the MSA–Phase I Windows workstation. A GLE script was used to plot the data (see Fig. 5)
and view the log in Excel (see Fig. 6).

Fig. 4 An example of a data file extracted from the Data Management Tool database

Fig. 5 A GLE script created time-series plots of extracted data

9

Fig. 6 An example of the Log file, listing previous data requests, viewed in Excel

2.4 Data Visualization

GLE Data Visualization Plots were created from the text data files. A Visual Basic Script
MSA_Plots_MST.vbs (Appendix C) was invoked that prompted the user for the data filename.
The Script then extracted the parameter information from the descriptive data filename and wrote
the parameter string to the first line of the text data file for GLE to parse. The Visual Basic Script
called GLE script “MSA_Plots_MST.GLE” (Appendix D) that decoded the parameter string
from the text data file, to define what data and plots to display. The plots and the text data files
were the 2 products delivered to the end user.

2.5 Data Documentation

A HELP file and README file were accessible from the application and on disk. The
README file gave a detailed explanation of the descriptive file name of the output data file
(Appendix E). The HELP file gave a detailed explanation of how to use the Data Management
Tool application, and the different options available (Appendix F). Regarding the application
usage, a description and format for each of the input parameters were given, along with a
description on how to recover from a user input error. Regarding Data Management Tool
options, these included functions such as the “Freeze” and “Log” options. For the user that
needed to run the data extraction a number of times, a “Freeze” option allowed the user to set or
freeze one or more of the input values that would not change for subsequent runs. The “Log”

10

option is a formatted screen view of previous queries made by the requestor. As the Data
Management Tool evolves, additional options will be added to the HELP file.

3. Lessons Learned and Recommendations

Lessons learned were gleaned throughout the MSA–Phase I Data Management “Proof of
Concept” exercise. In this section, we flag 4 lessons that may prove constructive toward the
future MSA Phases:

1) Acquiring and installing the Software Application Tools needed to develop the Data
Management Tool was challenging. The intricacies of the Software Request Procedure
generated several delays.

2) Requesting multiple towers with 1 query for 1 output data file was a very complex task.
The task was resolved by implementing multiple towers as a separate query and creating
output data files for each tower requested. This solution lent itself to the latest GLE user
plots, whose parameters are represented on one page, for each tower.

3) A Rapid Application Development Methodology was used, based on the time constraints
and the availability of the fundamental algorithms needed to build the Database queries.
The application, however, was limited by the command line interface. For example, in a
command line interface, once the user validated the input values (i.e., Date/Time, Tower
Reference, Parameters), the user could not change this value without quitting the program
and starting again. One solution is to use a graphical user interface (GUI). In a GUI, these
limitations do not usually exist. The user can change any input value, any number of times,
and only 1 validation is required before the query is assembled and executed.

4) The Data Management Tool was intended as a “Proof of Concept”. For the next
development effort, we recommend and have begun investigating, a Web-based
application. A Web-based application has GUI capabilities (reducing command line
interface limitations) and the potential for reaching more MSA users.

The current Data Management Tool has successfully extracted user-requested data from database
storage, graphically displayed the variables in times series, and logged the data distribution. One
of the next steps is to create detailed measurement site and data format descriptions to
accompany the extracted data. Creating these descriptive documents will be addressed in future
reports.

11

4. Summary

The MSA–Phase I (“Proof of Concept”) purpose, vision and field execution were summarized in
Section 1. In short, the goal for the multiphased MSA program is to provide reliable and
persistent atmospheric data resources, which allow atmospheric modelers and sensor developers
to validate and compare model and sensor performance with observations at and near the surface
and in close proximity to terrain of varying complexity. The MSA–Phase I field campaign was
executed in 2014. As part of this field event, a “Proof of Concept” data management tool was
designed, created, and initial tests conducted.

Data Management is a robust, nontrivial pillar in the MSA program. To reduce the Data
Management task into a more manageable assignment, the “Proof of Concept” version was
divided into 2 parts: Data Processing and Data Distribution. The Data Processing was defined as
the data flow from measurements sampled by a sensor in the field, through the initial data
averaging, data merging and time-series visualization plots used to execute the initial data QC, at
the MSA Headquarters. The Data Distribution task began after the MSA field data were quality
controlled and included the process of reconfiguring the field data files for the MSA end users.
MSA–Phase I, Volume 1 described the Data Processing, in detail.1 This report focuses on the
subsequent Data Distribution Tool, developed in FY14.

The MSA–Phase I Data Distribution Tool consists of 4 functions: Data Storage, Data Extraction,
Data Visualizations, and Data Documentation.

The Phase I-Data Storage was designed as a Windows MySQL database. The development of
this Phase I-Data Storage function was broken into 3 steps. Due to delays in the software
acquisition and installation processes, the initial data storage tool utilized the available Microsoft
Access4 database. A Visual Basic Application script was used in Access to read and manage all
the MSA Merged Data files.

As the intermediate step, the “Proof of Concept” data storage was reinstalled in a UNIX-based
MySQL environment. To load the data, a Visual Basic Application script was created to read all
the MSA Merged Data files and write them into a formatted text file for each database table. The
text files were transferred to the UNIX workstation, using the FTP. A MySQL LOAD command
was then used to populate the tables. To improve efficiency, this process was automated.

The final step converted UNIX MySQL to Windows-based MySQL. At the time of this writing,
the UNIX to Windows database conversion was completed; and, the tool to manage the data was
in development.

Using the Phase I “Proof of Concept” data storage specifications, the current and future database
size requirements were calculated. In 1 yr, for a single tower, the maximum amount of disk

12

storage needed for a merged data table would be approximately 128 MB. For 36 towers, the
merged data table size would be approximately 5-GB per year. For 72 towers, approximately
10-GB per year would be required.

The subsequent 3 Data Distribution Tool functions were designed for execution by an MSA
Operator, using desktop icons. To help visualize these 3 functions, an example of their usage
from an operator’s perspective follows:

When a user submits a data request, the MSA Operator processes this request by clicking
on the Data Management Extract function. The function initiates PuTTY software, a
terminal emulator providing access to the UNIX environment required by MySQL
database. The function then executes the extraction program MSA Extract. The Operator
enters the requested specifications, which then extracts the MSA–Phase I data stored in a
MySQL database. An option for choosing “all” variables is available, after which one
could reduce the selection through a toggle interface. The data requested are
instantaneously processed, and a sample of the results is shown on the screen. A Data
Management FTP icon facilitates a UNIX-to-Windows data file transfer. The extracted
numerical file is converted into color-coded time-series plots, using the Data
Management GLE Plot icon. Clicking on the final icon, Data Management Excel Log and
using local key strokes, the Operator tabulates the data request into an historical record of
all MSA data requests received and processed, to date.

Lessons learned were gleaned throughout the MSA–Phase I Data Management “Proof of
Concept” exercise. Four of these lessons included:

1) A significant amount of time was required to process Software Application Tool
acquisition / installation requests.

2) Within the Data Management Tool, requesting multiple towers with 1 query for 1 output
data file was very complex. This task was simplified by having separate queries and output
files generated for each tower.

3) The Rapid Application Development Methodology was selected, based on the time
constraints and the availability of fundamental algorithms needed to build the database
queries. This application used a command line interface, which does not easily
accommodate user entry errors. Using a GUI would make the interactions more user-
friendly.

4) While the current Data Management Tool successfully proved the initial data management
concept, utilizing a Web-based application would support GUI technology (reducing
command line interface limitations) and add a greater potential for reaching more MSA
users.

13

Looking forward, one of the next tasks to be coupled with this management tool is the
attachment of detailed measurement site and sensor data format descriptions. These descriptive
resources will be addressed in future reports.

As previously stated, data management is a nontrivial, critical pillar of a MSA. With software
technologies advancing daily, the possibilities for improved user-friendly, efficient, and
informative tools are almost open ended. With this report, a foundation for creating a successful
MSA Data Management Tool has been initiated.

14

5. References and Notes

1. Vaucher GT, Swanson J, Raby J, Foley T. Harrison S, Brice R. D’Arcy S, Creegan E.
Meteorological sensor array (MSA)–phase I, volume 1 (“proof of concept” overview). White
Sands Missile Range (NM): Army Research Laboratory (US); September 2014. Report No.:
ARL-TR-7058. Also available at
http://www.arl.army.mil/www/default.cfm?technical_report=7179.

2. National Research Council (NRC) (US). When weather matters, science and service to meet
critical societal needs. Washington DC: National Academies Press (US); 2010.

3 National Center for Atmospheric Research (NCAR) (US): Developmental Testbed Center
(US). Model evaluation tools user’s guide. Ver. 4.1 (METv4.1). Boulder (CO); 2013.

4. Microsoft Access is a registered trademark of Microsoft Corporation in the United States
and/or other countries.

15

Appendix A. Program to Load Meteorological Sensor Array (MSA) Tables

 This appendix appears in its original form, without editorial change.

16

Description: Program BtnLoadMSATables reads the Merged Data into the Microsoft Access
tables.

Private Sub BtnLoadMSATables_Click()

'SUBROUTINE NAME: BtnLoadMSATables
' AUTHOR: Sandra Harrison
' LAST REVISION: July 15, 2014
' DESCRIPTION: This routine reads MSA merged data files from Drive L and stores
' the data from 3-17-14 to 5-12-14 in Access database tables
' MSA_DATA_2014 and MSA_DATA_HEADER.

 Dim Path, FileName, FileNameTbl, Folder, strSQL As String
 Dim FSO, TextFile

 Const ForReading = 1, ForWriting = 2, ForAppending = 8

 rootPath = "L:\MSA_PoC_Exercise\"
 dataPath = "MSA_Data\"

 FileID = 0

 yearString = "14"
 monString = "03"
 dayString = "17"
 numTowers = 5
 TowerString = Array("0101", "0102", "0202", "0302", "0103")
 utcString = "00"
 yearStringFirst = yearString
 monStringFirst = monString
 dayStringFirst = dayString

 Dim dbs As DAO.Database
 Dim rs As DAO.Recordset
 Dim rs1 As DAO.Recordset

 Set dbs = CurrentDb

 SQLstr = "SELECT * FROM MSA_Data;"
 Set rs = dbs.OpenRecordset(SQLstr)

 SQLstr = "SELECT * FROM MSA_Data_Header;"
 Set rs1 = dbs.OpenRecordset(SQLstr)

 Set FSO = CreateObject("Scripting.FileSystemObject")

 If FSO.FileExists(Path) Then
 Set TextFile = FSO.OpenTextFile(Path, 1, True) '***Open hourly file for reading***

17

 End If

 currentLineNumber = 0
 UTCCol = 1
 MSTCol = 2
 PressureCol = 3
 RHCol = 4
 InsolCol = 5
 Temp2mCol = 6
 WS2mCol = 7
 WD2mCol = 8
 U2mCol = 9
 V2mCol = 10
 W2mCol = 11
 TS2mCol = 12
 SoS2mCol = 13
 Err2mCol = 14
 Temp10mCol = 15
 WS10mCol = 16
 WD10mCol = 17
 U10mCol = 18
 V10mCol = 19
 W10mCol = 20
 TS10mCol = 21
 SoS10mCol = 22
 Err10mCol = 23
 BVoltCol = 24
 PTempCol = 25

 YMD = yearString & monString & dayString
 YMDFirst = YMD

 TextDataFileOpen = 0
 TextHeaderFileOpen = 0

 For k = 0 To 56 '*** data from 3-17 to 5-12 in MSA PoC Exercise dir ***

 For i = 0 To numTowers - 1

 utcString = "00"
 dayString = dayStringFirst
 monString = monStringFirst
 yearString = yearStringFirst
 YMD = YMDFirst
 TowerDataFiles = False

18

 For j = 0 To 23

 '*** Open hourly sensor merged data files ***
 Continue = True
 sourceFileString = rootPath & dataPath & YMD & "merged\20" & yearString &
monString & dayString & "_" & utcString & "00" & "_" & TowerString(i) & "_merged.txt"
 FileName = "20" & yearString & monString & dayString & "_" & utcString & "00" &
"_" & TowerString(i) & "_merged.txt"
 If FSO.FileExists(sourceFileString) Then
 Set sourceFile = FSO.OpenTextFile(sourceFileString, ForReading, True)
 'MsgBox("Data File: " & sourceFileString)
 TowerDataFiles = True
 Else
 'MsgBox("WARNING: File Not Found" & sourceFileString)
 'WScript.Quit
 Continue = False
 End If

 '*** Merge all hourly files into one ***
 If Continue = True Then

 currentLineNumber = 0

 Do While Not (sourceFile.AtEndofStream)
 CurCol = 0
 LogicalCol = 0
 currentLineNumber = currentLineNumber + 1

 currentLine = sourceFile.ReadLine
 currentLineArray = Split(currentLine, " ")

 If currentLineNumber = 1 Then
 FileDate = currentLineArray(0)
 JulianDay = currentLineArray(1)
 StartTimeUTC = currentLineArray(2)
 ConversionMST = currentLineArray(3)
 TowerReference = currentLineArray(4)
 Latitude = currentLineArray(5)
 Longitude = currentLineArray(6)
 Elevation = currentLineArray(7)

 rs1.AddNew '***Add Header Record***
 rs1("File_Name") = FileName
 rs1("File_Date") = FileDate
 rs1("Julian_Day") = JulianDay
 rs1("Start_Time_UTC") = StartTimeUTC

19

 rs1("Conversion_To_MST") = ConversionMST
 rs1("Tower_Reference") = TowerReference
 rs1("Latitude") = Latitude
 rs1("Longitude") = Longitude
 rs1("Elevation") = Elevation
 rs1.Update
 Else
 For n = 0 To 24 '***Read each line of file accounting for extra spaces***
 Do While currentLineArray(CurCol) = "" Or currentLineArray(CurCol) =
Space(1)
 CurCol = CurCol + 1
 Loop

 LogicalCol = LogicalCol + 1

 If UTCCol = LogicalCol Then
 UTC_DecHrs = currentLineArray(CurCol)
 Min_Sec = UTC_DecHrs
 Hr = Left(StartTimeUTC, 2)
 Min_Sec = (CDec(Min_Sec) - CInt(Hr)) * 60
 If Min_Sec = 0 Then
 Min = "00"
 Sec = "00"
 Else
 Min = Int(Min_Sec)
 Sec = Min_Sec - Min
 Sec_Msec = Sec * 60
 Sec = Int(Sec_Msec)
 Msec = (Sec_Msec - Sec) * 10
 If Msec >= 5 Then
 Sec = Sec + 1
 End If
 If Sec >= 5 Then
 Min = Min + 1
 End If
 Sec = 0
 End If
 UTCyearString = Left(FileDate, 4)
 UTCmonString = Mid(FileDate, 5, 2)
 UTCdayString = Mid(FileDate, 7, 2)
 UTC_TimeStamp = UTCmonString & "/" & UTCdayString & "/" &
UTCyearString & " " & Hr & ":" & Min & ":" & Sec

 ElseIf MSTCol = LogicalCol Then
 MST_DecHrs = currentLineArray(CurCol)
 Min_Sec = MST_DecHrs

20

 Hr = Int(Min_Sec)
 Min_Sec = (CDec(Min_Sec) - Hr) * 60
 If Min_Sec = 0 Then
 Min = "00"
 Sec = "00"
 Else
 Min = Int(Min_Sec)
 Sec = Min_Sec - Min
 Sec_Msec = Sec * 60
 Sec = Int(Sec_Msec)
 Msec = (Sec_Msec - Sec) * 10
 If Msec >= 5 Then
 Sec = Sec + 1
 End If
 If Sec >= 5 Then
 Min = Min + 1
 End If
 Sec = 0
 End If

 MSTyearString = Left(FileDate, 4)
 MSTmonString = Mid(FileDate, 5, 2)
 MSTdayString = Mid(FileDate, 7, 2)

 If Hr > CInt(Left(StartTimeUTC, 2)) Then
 Result = YMDFromJulian(MSTyearString, MSTmonString, MSTdayString,
CInt(JulianDay) - 1)
 End If

 MST_TimeStamp = MSTmonString & "/" & MSTdayString & "/" &
MSTyearString & " " & Hr & ":" & Min & ":" & Sec

 ElseIf PressureCol = LogicalCol Then
 Press2m = currentLineArray(CurCol)

 ElseIf RHCol = LogicalCol Then
 RelHum2m = currentLineArray(CurCol)

 ElseIf InsolCol = LogicalCol Then
 Insolation2m = currentLineArray(CurCol)

 ElseIf Temp2mCol = LogicalCol Then
 Temp2m = currentLineArray(CurCol)

 ElseIf WS2mCol = LogicalCol Then

21

 WindSpeed2m = currentLineArray(CurCol)

 ElseIf WD2mCol = LogicalCol Then
 WindDir2m = currentLineArray(CurCol)

 ElseIf U2mCol = LogicalCol Then
 UComp2m = currentLineArray(CurCol)

 ElseIf V2mCol = LogicalCol Then
 VComp2m = currentLineArray(CurCol)

 ElseIf W2mCol = LogicalCol Then
 WComp2m = currentLineArray(CurCol)

 ElseIf TS2mCol = LogicalCol Then
 TempSonic2m = currentLineArray(CurCol)

 ElseIf SoS2mCol = LogicalCol Then
 SoS2m = currentLineArray(CurCol)

 ElseIf Err2mCol = LogicalCol Then
 Errors2m = currentLineArray(CurCol)

 ElseIf Temp10mCol = LogicalCol Then
 Temp10m = currentLineArray(CurCol)

 ElseIf WS10mCol = LogicalCol Then
 WindSpeed10m = currentLineArray(CurCol)

 ElseIf WD10mCol = LogicalCol Then
 WindDir10m = currentLineArray(CurCol)

 ElseIf U10mCol = LogicalCol Then
 UComp10m = currentLineArray(CurCol)

 ElseIf V10mCol = LogicalCol Then
 VComp10m = currentLineArray(CurCol)

 ElseIf W10mCol = LogicalCol Then
 WComp10m = currentLineArray(CurCol)

 ElseIf TS10mCol = LogicalCol Then
 TempSonic10m = currentLineArray(CurCol)

 ElseIf SoS10mCol = LogicalCol Then
 SoS10m = currentLineArray(CurCol)

22

 ElseIf Err10mCol = LogicalCol Then
 Errors10m = currentLineArray(CurCol)

 ElseIf BVoltCol = LogicalCol Then
 BatteryVolt = currentLineArray(CurCol)

 ElseIf PTempCol = LogicalCol Then
 PanelTemp = currentLineArray(CurCol)

 End If

 CurCol = CurCol + 1
 Next '*** For parsing 25 parameters per line ***

 FileID = FileID + 1
 rs.AddNew '***Add Parameter Record***
 rs("File_ID") = FileID
 rs("File_Name") = FileName
 rs("Tower_Reference") = TowerReference
 rs("Universal_TimeStamp") = UTC_TimeStamp
 rs("Universal_DecHrs") = UTC_DecHrs
 rs("Mtn_Std_TimeStamp") = MST_TimeStamp
 rs("Mtn_Std_DecHrs") = MST_DecHrs
 rs("Pressure_2m") = Press2m
 rs("Relative_Humidity_2m") = RelHum2m
 rs("Insolation_2m") = Insolation2m
 rs("Temperature_2m") = Temp2m
 rs("Wind_Speed_2m") = WindSpeed2m
 rs("Wind_Direction_2m") = WindDir2m
 rs("U_Component_2m") = UComp2m
 rs("V_Component_2m") = VComp2m
 rs("W_Component_2m") = WComp2m
 rs("Temperature_Sonic_2m") = TempSonic2m
 rs("Speed_Of_Sound_2m") = SoS2m
 rs("Errors_In_Avg_2m") = Errors2m
 rs("Temperature_10m") = Temp10m
 rs("Wind_Speed_10m") = WindSpeed10m
 rs("Wind_Direction_10m") = WindDir10m
 rs("U_Component_10m") = UComp10m
 rs("V_Component_10m") = VComp10m
 rs("W_Component_10m") = WComp10m
 rs("Temperature_Sonic_10m") = TempSonic10m
 rs("Speed_Of_Sound_10m") = SoS10m
 rs("Errors_In_Avg_10m") = Errors10m
 rs("Battery_Voltage") = BatteryVolt

23

 rs("Panel_Temp") = PanelTemp
 rs.Update

 End If
 Loop '*** Do While Not AtEndOfStream ***

 sourceFile.Close

 End If '*** Continue ***

'*** Set variables so we have the correct file name and directory of next hourly file to read ***
 utcString = CStr(CInt(utcString) + 1)
 utcString = String(2 - Len(utcString), "0") & utcString
 If utcString = "24" Then
 utcString = "00"

 If TowerDataFiles = True Then '*** If no data files to read julian day from, then use
julian day from previous tower file which has already been incremented to next day ***
 JulianDay = JulianDay + 1
 End If

 Result = YMDFromJulian(yearString, monString, dayString, JulianDay)
 YMD = yearString & monString & dayString
 'MsgBox("Next day: " & yearString & monString & dayString)
 End If

 Next '***For Loop Hour (j) ***

 Next '***For Loop Tower (i) ***

 YMDFirst = YMD
 dayStringFirst = dayString
 monStringFirst = monString
 yearStringFirst = yearString

 Next '*** For Loop YMD (k) ***

 rs.Close
 rs1.Close
 dbs.Close

End Sub

24

INTENTIONALLY LEFT BLANK.

25

Appendix B. Program to Load Text Files

 This appendix appears in its original form, without editorial change.

26

Description: Program BtnLoadTextFiles reads the Merged Data into Text files to load the
MySQL tables.

Private Sub BtnLoadTextFiles_Click()

'SUBROUTINE NAME: BtnLoadTextFiles
' AUTHOR: Sandra Harrison
' LAST REVISION: July 23, 2014
' DESCRIPTION: This routine reads MSA merged data files from the L Drive and
' stores all the data from 3-17-14 to 5-12-14 in two text files.
' One text file contains the header info and the other the data.

 Dim Path, FileName, strSQL As String

 Const ForReading = 1, ForWriting = 2, ForAppending = 8

 rootPath = "L:\MSA_PoC_Exercise\"
 dataPath = "MSA_Data\"

 FileID = 0
 yearString = "14"
 monString = "03"
 dayString = "17"
 numTowers = 5
 TowerString = Array("0101", "0102", "0202", "0302", "0103")
 utcString = "00"
 yearStringFirst = yearString
 monStringFirst = monString
 dayStringFirst = dayString

 currentLineNumber = 0
 UTCCol = 1
 MSTCol = 2
 PressureCol = 3
 RHCol = 4
 InsolCol = 5
 Temp2mCol = 6
 WS2mCol = 7
 WD2mCol = 8
 U2mCol = 9
 V2mCol = 10
 W2mCol = 11
 TS2mCol = 12
 SoS2mCol = 13

27

 Err2mCol = 14
 Temp10mCol = 15
 WS10mCol = 16
 WD10mCol = 17
 U10mCol = 18
 V10mCol = 19
 W10mCol = 20
 TS10mCol = 21
 SoS10mCol = 22
 Err10mCol = 23
 BVoltCol = 24
 PTempCol = 25

 YMD = yearString & monString & dayString
 YMDFirst = YMD

 TextDataFileOpen = 0
 TextHeaderFileOpen = 0

 Set FSO = CreateObject("Scripting.FileSystemObject")

 For k = 0 To 56 '*** data from 3-17 to 5-12 in MSA PoC Exercise dir ***

 For i = 0 To numTowers - 1

 utcString = "00"
 dayString = dayStringFirst
 monString = monStringFirst
 yearString = yearStringFirst
 YMD = YMDFirst
 TowerDataFiles = False

 For j = 0 To 23

 '*** Open hourly sensor merged data files ***
 Continue = True
 sourceFileString = rootPath & dataPath & YMD & "merged\20" & yearString &
monString & dayString & "_" & utcString & "00" & "_" & TowerString(i) & "_merged.txt"
 FileName = "20" & yearString & monString & dayString & "_" & utcString & "00" &
"_" & TowerString(i) & "_merged.txt"
 TextDataFileString = "C:\LRx_W\DB\Text Data Files\MSA_Data_140317_140512.txt"
 TextHeaderFileString = "C:\LRx_W\DB\Text Data
Files\MSA_Data_Header_140317_140512.txt"
 If FSO.FileExists(sourceFileString) Then
 Set sourceFile = FSO.OpenTextFile(sourceFileString, ForReading, True)
 'MsgBox("Data File: " & sourceFileString)

28

 TowerDataFiles = True
 Else
 'MsgBox("WARNING: File Not Found" & sourceFileString)
 'WScript.Quit
 Continue = False
 End If

 '*** Merge all hourly files into one ***
 If Continue = True Then
 If TextDataFileOpen = 0 Then
 Set TextDataFile = FSO.OpenTextFile(TextDataFileString, ForWriting, True)
 TextDataFileOpen = 1
 Else
 TextDataFile.Close
 Set TextDataFile = FSO.OpenTextFile(TextDataFileString, ForAppending, True)
 TextDataFileOpen = 1
 End If

 If TextHeaderFileOpen = 0 Then
 Set TextHeaderFile = FSO.OpenTextFile(TextHeaderFileString, ForWriting, True)
 TextHeaderFileOpen = 1
 Else
 TextHeaderFile.Close
 Set TextHeaderFile = FSO.OpenTextFile(TextHeaderFileString, ForAppending,
True)
 TextHeaderFileOpen = 1
 End If

 currentLineNumber = 0

 Do While Not (sourceFile.AtEndofStream)
 CurCol = 0
 LogicalCol = 0
 currentLineNumber = currentLineNumber + 1

 currentLine = sourceFile.ReadLine
 currentLineArray = Split(currentLine, " ")

 If currentLineNumber = 1 Then '***Write CSV header text file***
 FileDate = currentLineArray(0)
 JulianDay = currentLineArray(1)
 StartTimeUTC = currentLineArray(2)
 ConversionMST = currentLineArray(3)
 TowerReference = currentLineArray(4)
 Latitude = currentLineArray(5)

29

 Longitude = currentLineArray(6)
 Elevation = currentLineArray(7)

 TextHeaderFile.Write (FileName & ",")
 For a = 0 To 7
 If a = 7 Then
 TextHeaderFile.WriteLine (currentLineArray(a))
 Else
 TextHeaderFile.Write (currentLineArray(a) & ",")
 End If
 Next

 Else
 For n = 0 To 24 '***Read each line of file accounting for extra spaces***
 Do While currentLineArray(CurCol) = "" Or currentLineArray(CurCol) =
Space(1)
 CurCol = CurCol + 1
 Loop

 LogicalCol = LogicalCol + 1

 If UTCCol = LogicalCol Then
 UTC_DecHrs = currentLineArray(CurCol)
 Min_Sec = UTC_DecHrs
 Hr = Left(StartTimeUTC, 2)
 Min_Sec = (CDec(Min_Sec) - CInt(Hr)) * 60
 If Min_Sec = 0 Then
 Min = "00"
 Sec = "00"
 Else
 Min = Int(Min_Sec)
 Sec = Min_Sec - Min
 Sec_Msec = Sec * 60
 Sec = Int(Sec_Msec)
 Msec = (Sec_Msec - Sec) * 10
 If Msec >= 5 Then
 Sec = Sec + 1
 End If
 If Sec >= 5 Then
 Min = Min + 1
 End If
 Sec = 0
 End If
 UTCyearString = Left(FileDate, 4) '***Write CSV data text file***
 UTCmonString = Mid(FileDate, 5, 2)
 UTCdayString = Mid(FileDate, 7, 2)

30

 UTC_Time = UTCyearString & "-" & UTCmonString & "-" & UTCdayString
& " " & Hr & ":" & Min & ":" & Sec

 ElseIf MSTCol = LogicalCol Then
 MST_DecHrs = currentLineArray(CurCol)
 Min_Sec = MST_DecHrs
 Hr = Int(Min_Sec)
 Min_Sec = (CDec(Min_Sec) - Hr) * 60
 If Min_Sec = 0 Then
 Min = "00"
 Sec = "00"
 Else
 Min = Int(Min_Sec)
 Sec = Min_Sec - Min
 Sec_Msec = Sec * 60
 Sec = Int(Sec_Msec)
 Msec = (Sec_Msec - Sec) * 10
 If Msec >= 5 Then
 Sec = Sec + 1
 End If
 If Sec >= 5 Then
 Min = Min + 1
 End If
 Sec = 0
 End If

 MSTyearString = Left(FileDate, 4)
 MSTmonString = Mid(FileDate, 5, 2)
 MSTdayString = Mid(FileDate, 7, 2)

 If Hr > CInt(Left(StartTimeUTC, 2)) Then
 Result = YMDFromJulian(MSTyearString, MSTmonString, MSTdayString,
CInt(JulianDay) - 1)
 End If

 Mtn_Std_Time = MSTyearString & "-" & MSTmonString & "-" &
MSTdayString & " " & Hr & ":" & Min & ":" & Sec

 ElseIf PressureCol = LogicalCol Then
 Press2m = currentLineArray(CurCol)

 ElseIf Temp2mCol = LogicalCol Then
 Temp2m = currentLineArray(CurCol)

 ElseIf RHCol = LogicalCol Then
 RelHum2m = currentLineArray(CurCol)

31

 ElseIf InsolCol = LogicalCol Then
 Insolation2m = currentLineArray(CurCol)

 ElseIf WS2mCol = LogicalCol Then
 WindSpeed2m = currentLineArray(CurCol)

 ElseIf WD2mCol = LogicalCol Then
 WindDir2m = currentLineArray(CurCol)

 ElseIf U2mCol = LogicalCol Then
 UComp2m = currentLineArray(CurCol)

 ElseIf V2mCol = LogicalCol Then
 VComp2m = currentLineArray(CurCol)

 ElseIf W2mCol = LogicalCol Then
 WComp2m = currentLineArray(CurCol)

 ElseIf Err2mCol = LogicalCol Then
 Errors2m = currentLineArray(CurCol)

 ElseIf TS2mCol = LogicalCol Then
 TempSonic2m = currentLineArray(CurCol)

 ElseIf SoS2mCol = LogicalCol Then
 SoS2m = currentLineArray(CurCol)

 ElseIf Temp10mCol = LogicalCol Then
 Temp10m = currentLineArray(CurCol)

 ElseIf WS10mCol = LogicalCol Then
 WindSpeed10m = currentLineArray(CurCol)

 ElseIf WD10mCol = LogicalCol Then
 WindDir10m = currentLineArray(CurCol)

 ElseIf U10mCol = LogicalCol Then
 UComp10m = currentLineArray(CurCol)

 ElseIf V10mCol = LogicalCol Then
 VComp10m = currentLineArray(CurCol)

 ElseIf W10mCol = LogicalCol Then
 WComp10m = currentLineArray(CurCol)

32

 ElseIf Err10mCol = LogicalCol Then
 Errors10m = currentLineArray(CurCol)

 ElseIf TS10mCol = LogicalCol Then
 TempSonic10m = currentLineArray(CurCol)

 ElseIf SoS10mCol = LogicalCol Then
 SoS10m = currentLineArray(CurCol)

 ElseIf BVoltCol = LogicalCol Then
 BatteryVolt = currentLineArray(CurCol)

 ElseIf PTempCol = LogicalCol Then
 PanelTemp = currentLineArray(CurCol)

 End If

 CurCol = CurCol + 1
 Next '*** For parsing 25 parameters per line ***

 FileID = FileID + 1
 TextDataFile.Write (FileID & "," & FileName & "," & TowerReference & "," &
UTC_Time & "," & UTC_DecHrs & "," & Mtn_Std_Time & "," & MST_DecHrs & ",")
 TextDataFile.Write (Press2m & "," & Temp2m & "," & RelHum2m & "," &
Insolation2m & "," & WindSpeed2m & "," & WindDir2m & "," & UComp2m & "," &
VComp2m & "," & WComp2m & "," & Errors2m & "," & TempSonic2m & "," & SoS2m & ",")
 TextDataFile.Write (Temp10m & "," & WindSpeed10m & "," & WindDir10m &
"," & UComp10m & "," & VComp10m & "," & WComp10m & "," & Errors10m & "," &
TempSonic10m & "," & SoS10m & "," & BatteryVolt & ",")
 TextDataFile.WriteLine (PanelTemp)

 End If
 Loop '*** Do While Not AtEndOfStream ***

 sourceFile.Close

 End If '*** Continue ***

'*** Set variables so we have the correct file name and directory of next hourly file to read ***
 utcString = CStr(CInt(utcString) + 1)
 utcString = String(2 - Len(utcString), "0") & utcString
 If utcString = "24" Then
 utcString = "00"

 If TowerDataFiles = True Then '*** If no data files to read julian day from, then use
julian day from previous tower file which has already been incremented to next day ***

33

 JulianDay = JulianDay + 1
 End If

 Result = YMDFromJulian(yearString, monString, dayString, JulianDay)
 YMD = yearString & monString & dayString
 'MsgBox("Next day: " & yearString & monString & dayString)
 End If

 Next '***For Loop Hour (j) ***

 Next '***For Loop Tower (i) ***

 YMDFirst = YMD
 dayStringFirst = dayString
 monStringFirst = monString
 yearStringFirst = yearString

 Next '*** For Loop YMD (k) ***

 TextHeaderFile.Close
 TextDataFile.Close

End Sub

34

INTENTIONALLY LEFT BLANK.

35

Appendix C. MSA_Plots_MST.vbs

 This appendix appears in its original form, without editorial change.

36

Description: Program MSA_Plots_MST.vbs prompts the user for the data filename, then extracts
the parameter information from the descriptive data filename and writes it to the first line of the
text data file for the MSA_Plots_MST.GLE program to parse.

'SUBROUTINE NAME: MSA_Plots_MST.vbs
'AUTHOR: Sandra Harrison
'LAST REVISION: Aug 6, 2014
'DESCRIPTION: This routine prompts the user for the data filename. The Script then
' extracts the parameter information from the descriptive data filename,
' and writes it to the first line of the text data file, for
' MSA_Plots_MST.GLE to parse.

 Set wShell=CreateObject("WScript.Shell")
 Set oExec=wShell.Exec("mshta.exe ""about:<input type=file
id=FILE><script>FILE.click();new
ActiveXObject('Scripting.FileSystemObject').GetStandardStream(1).WriteLine(FILE.value);clos
e();resizeTo(0,0);</script>""")
 Path = oExec.StdOut.ReadLine
 'wscript.echo Path

 set FSO = CreateObject("Scripting.FileSystemObject")
 Set WshShell = CreateObject("WScript.Shell")

 rootPath = "C:\LRx_W\DB"
 applicationsPath = "Text_Data_Files"

 Const ForReading = 1, ForWriting = 2, ForAppending = 8

 FileName = StrReverse(Left(StrReverse(Path), InStr(1, StrReverse(Path), "\") - 1))
 Folder = Left(Path, InStrRev(Path, "\"))

 Start_Param_Index = InStr(1, FileName, "_")
 For i = 0 To 2
 Start_Param_Index = InStr(Start_Param_Index + 1, FileName, "_")
 Next

 If Start_Param_Index+1 <> 28 Then
 MsgBox ("Error in File Name Format Date/Time:
M_SYMMDDhhmm_EYMMDDhhmm_##_")
 End If

 Params_ext = Right(FileName, Len(FileName) - Start_Param_Index)
 Params = Left(Params_ext, InStrRev(Params_ext, ".") - 1)

37

 '***Use x for TempSonic instead of t for GLE since GLE gets confused with T and t in
string***
 Params = Replace (Params, "t", "x", 1, 2)

 Start2m = InStr(Params, "2")
 If Start2m <> 0 Then
 Params2m = Right(Params, Len(Params) - 1)
 Start10m = InStr(Params2m, "1")
 If Start10m <> 0 Then
 Params10m = Right(Params2m, Len(Params2m) - Start10m - 1)
 Params2m = Left(Params2m, Start10m - 2)
 StartMisc = InStrRev(Params10m, "_")
 If StartMisc <> 0 Then
 ParamsMisc = Right(Params10m, Len(Params10m) - StartMisc)
 Params10m = Left(Params10m, StartMisc - 1)
 Else
 ParamsMisc = "Misc"
 End If
 Else
 Params10m = "10"
 StartMisc = InStrRev(Params2m, "_")
 If StartMisc <> 0 Then
 ParamsMisc = Right(Params2m, Len(Params2m) - StartMisc)
 Params2m = Left(Params2m, StartMisc - 1)
 Else
 ParamsMisc = "Misc"
 End If
 End If
 Else
 Params2m = "2"
 Start10m = InStr(Params, "1")
 If Start10m <> 0 Then
 Params10m = Right(Params, Len(Params) - Start10m - 1)
 StartMisc = InStrRev(Params10m, "_")
 If StartMisc <> 0 Then
 ParamsMisc = Right(Params10m, Len(Params10m) - StartMisc)
 Params10m = Left(Params10m, StartMisc - 1)
 Else
 ParamsMisc = "Misc"
 End If
 Else
 Params10m = "10"
 ParamsMisc = Params
 End If
 End If

38

 set sourceFile = FSO.OpenTextFile(Path, ForReading, True)
 dataFileOpen = 0

 Do While Not(sourceFile.AtEndofStream)
 If dataFileOpen = 0 Then
 set dataFile = FSO.OpenTextFile("MSA_Plots_MST.dat", ForWriting, True)
 dataFile.WriteLine("!" & Params2m & "_" & Params10m & "," & ParamsMisc)
 dataFile.close
 set dataFile = FSO.OpenTextFile("MSA_Plots_MST.dat", ForAppending, True)
 dataFileOpen = 1
 Else
 dataFile.close
 set dataFile = FSO.OpenTextFile("MSA_Plots_MST.dat", ForAppending, True)
 dataFileOpen = 1
 End If
 currentLine = sourceFile.ReadLine
 dataFile.WriteLine(currentLine)
 Loop
 sourceFile.close
 dataFile.close

 GLE_MSTScript = "MSA_Plots_MST.gle "
 GLE_ProgramPath = "C:\Program Files (x86)\Gle4\bin\qgle "
 'MsgBox(Params2m & "_" & Params10m & "," & ParamsMisc)

 GLEScriptRunStringMST = GLE_ProgramPath & GLE_MSTScript
 Set GLE_Exec_MST = WshShell.Exec(GLEScriptRunStringMST)

39

Appendix D. MSA_Plots_MST.GLE

 This appendix appears in its original form, without editorial change.

40

Description: Program MSA_Plots_MST.GLE is called from MSA_Plots_MST.vbs. This program
creates a 24- h midnight-to-midnight Mountain Standard Time (MST) data display of various
Meteorological Sensor Array (MSA) data plots.

! PROGRAM NAME: MSA_Plots_MST.GLE
! AUTHOR: Sandra Harrison
! LAST REV: 09-09-2014, sh
! REQUIRED PROGRAM: This program is called from MSA_Plots_MST.vbs
! PURPOSE: This program creates a 24 hour midnight to midnight MST data
! display of various plots for MSA Data. A string in the first line of
! the data file is decoded to know what data and plots to display.

size 63 60
set font ssb
set hei 0.7
set alabelscale 1.0
set atitlescale 1.0
set titlescale 1.0

!Find YYYYMMDD and XX:YY from file and then set up
! file date string and tower position for title info

dataFile$ = "MSA_Plots_MST.dat"

fopen dataFile$ f1 read

!*** get first line of parameter values ***
fgetline f1 line$

!*** parse the line into 2m, 10m, and Misc params ***
Params$ = seg$(line$, 2, len(line$))
for i = 1 to len(Params$)
 Value$ = seg$(Params$, i, i)
 if Value$ = "_" then
 Params2m$ = seg$(Params$, 1, i-1)
 Start10m = i + 1
 else if Value$ = "," then
 Params10m$ = seg$(Params$, Start10m, i-1)
 ParamsMisc$ = seg$(Params$, i+1, len(Params$))
 end if
next i

fgetline f1 line$
fgetline f1 line$
fclose f1

41

year$ = seg$(line$, 1, 4)
mon$ = seg$(line$, 5, 6)
day$ = seg$(line$, 7, 8)
position$ = seg$(line$, 19, 23)

monValue = val(mon$)
xcomp$ = seg$(position$, 2, 2)
ycomp$ = seg$(position$, 5, 5)
xcompValue = val(xcomp$)
ycompValue = val(ycomp$)

if (xcompValue = 1) then
 if (ycompValue = 1) then
 tower$ = "1 "
 else if (ycompValue = 2) then
 tower$ = "2 "
 else
 tower$ = "5 "
 end if
else if (xcompValue = 2) then
 tower$ = "3 "
else
 tower$ = "4 "
end if

if (monValue = 1) then
 mon$ = "Jan "
else if (monValue = 2) then
 mon$ = "Feb "
else if (monValue = 3) then
 mon$ = "Mar "
else if (monValue = 4) then
 mon$ = "Apr "
else if (monValue = 5) then
 mon$ = "May "
else if (monValue = 6) then
 mon$ = "Jun "
else if (monValue = 7) then
 mon$ = "Jul "
else if (monValue = 8) then
 mon$ = "Aug "
else if (monValue = 9) then
 mon$ = "Sep "
else if (monValue = 10) then
 mon$ = "Oct "

42

else if (monValue = 11) then
 mon$ = "Nov "
else if (monValue = 12) then
 mon$ = "Dec "
end if

!Output file date and tower position header
set hei 1.0
set color blue
amove 8 57.5
write "Data Date: " mon$ day$ ", " year$ " MST"
amove 42 57.5
write "Tower " tower$ "(" position$ ")"
set color black
set hei 0.7

if Params2m$ <> "2" then
 for i = 1 to len(Params2m$)
 Value$ = seg$(Params2m$,i,i)

 if Value$ = "P" then
 Press2m = 1
 P2Col = i + 4

 else if Value$ = "T" then
 Temp2m = 1
 T2Col = i + 4

 else if Value$ = "R" then
 RH = 1
 R2Col = i + 4

 else if Value$ = "I" then
 Insol = 1
 I2Col = i + 4

 else if Value$ = "S" then
 WS2m = 1
 S2Col = i + 4

 else if Value$ = "D" then
 WD2m = 1
 D2Col = i + 4

43

 else if Value$ = "u" then
 U2m = 1
 u2Col = i + 4

 else if Value$ = "v" then
 V2m = 1
 v2Col = i + 4

 else if Value$ = "w" then
 W2m = 1
 w2Col = i + 4

 else if Value$ = "e" then
 Errs2m = 1
 e2Col = i + 4

 else if Value$ = "x" then
 tSonic2m = i
 t2Col = i + 4

 else if Value$ = "c" then
 CC2m = 1
 c2Col = i + 4

 end if

 next i
end if

if Params10m$ <> "10" then
 for i = 1 to len(Params10m$)
 Value$ = seg$(Params10m$,i,i)

 if Value$ = "T" then
 Temp10m = 1
 T10Col = i + 4 + len(Params2m$)

 else if Value$ = "S" then
 WS10m = 1
 S10Col = i + 4 + len(Params2m$)

 else if Value$ = "D" then
 WD10m = 1
 D10Col = i + 4 + len(Params2m$)

44

 else if Value$ = "u" then
 U10m = 1
 u10Col = i + 4 + len(Params2m$)

 else if Value$ = "v" then
 V10m = 1
 v10Col = i + 4 + len(Params2m$)

 else if Value$ = "w" then
 W10m = 1
 w10Col = i + 4 + len(Params2m$)

 else if Value$ = "e" then
 Errs10m = 1
 e10Col = i + 4 + len(Params2m$)

 else if Value$ = "x" then
 tSonic10m = 1
 t10Col = i + 4 + len(Params2m$)

 else if Value$ = "c" then
 CC10m = 1
 c10Col = i + 4 + len(Params2m$)
 end if

 next i
end if

if ParamsMisc$ <> "Misc" then
 for i = 1 to len(ParamsMisc$)
 Value$ = seg$(ParamsMisc$,i,i)

 if Value$ = "B" then
 BV = 1
 BVCol = i + 4 + len(Params2m$) + len(Params10m$)

 else if Value$ = "P" then
 PT = 1
 PTCol = i + 4 + len(Params2m$) + len(Params10m$)
 end if

 next i
end if

45

!Relative humidity and station Air Pressure plot at top of page

if Press2m = 1 and RH = 1 then

amove 43 44
XAxisMax = 24
XAxisMin = 0
XAxisMajorTick = 6.0
XAxisSubTick = 1.0
YAxisMax = 100
YAxisMin = 0
YAxisMajorTick = 10
YAxisSubTick = 5.0

begin graph
 size 20 12
 nobox
 yaxis grid
 xaxis min XAxisMin max XAxisMax dticks XAxisMajorTick dsubticks XAxisSubTick
 xticks length .3
 yticks length .5
 y2ticks length .5
 yaxis min YAxisMin max YAxisMax dticks YAxisMajorTick dsubticks YAxisSubTick
 ytitle "Relative Humidity (percent)"
 xtitle "MST (decimal hours)" dist 0.5
 y2axis min 850 max 880 dticks 10 dsubticks 0
 y2title "Station Air Pressure (mb)"
 y2labels on
 data dataFile$ d1=c3,c[eval("R2Col")] d2=c3,c[eval("P2Col")]
 let d2 = (d2-850)*3.3333
 d1 lstyle 1 lwidth .04 color brown
 d2 lstyle 1 lwidth .04 color blue
end graph

begin key
 hei 0.5
 position bc
 offset 0.0 -2.3
 text "Humidity" lstyle 1 lwidth .04 color brown
 separator
 text "Pressure" lstyle 1 lwidth .04 color blue
end key
set hei 0.7

!Output graph title for pressure and relative humidity
amove 45 54.8

46

set color green
write "RH (%) \; Pressure (mb) \; Tower " tower$ "(" position$ ")"
set color black

end if

!Wind speed plot at top of page

if WS2m = 1 and WS10m = 1 then

amove 1 30
XAxisMax = 24
XAxisMin = 0
XAxisMajorTick = 6
XAxisSubTick = 1
YAxisMax = 20
YAxisMax30 = 30
YAxisMin = 0
YAxisMajorTick = 5
YAxisSubTick = 1

begin graph
 size 20 12
 nobox
 !title "Wind Speed (1 - Minute Average)"
 yaxis grid
 xaxis min XAxisMin max XAxisMax dticks XAxisMajorTick dsubticks XAxisSubTick
 xticks length .3
 yticks length .3
 ysubticks length 0.3
 y2ticks length 0.3
 y2subticks length 0.3
 yaxis min YAxisMin max YAxisMax dticks YAxisMajorTick dsubticks YAxisSubTick
 !yaxis min YAxisMin dticks YAxisMajorTick dsubticks YAxisSubTick
 y2axis min YAxisMin dticks YAxisMajorTick dsubticks YAxisSubTick on
 ylabels on
 y2labels off
 ytitle "Wind Speed (m/s)"
 xtitle "MST (decimal hours)" dist 0.5
 data dataFile$ d1=c3,c[eval("S2Col")] d2=c3,c[eval("S10Col")]
 d1 lstyle 1 color brown
 d2 lstyle 1 color blue
end graph

begin key

47

 hei 0.5
 position bc
 offset 0.0 -2.3
 text "2m" lstyle 1 lwidth .04 color brown
 separator
 text "10m" lstyle 1 lwidth .04 color blue
end key
set hei 0.7

!Output Graph Title wind speed
amove 5 40.8
set color green
write "Wind Speed (m/s) \; Tower " tower$ "(" position$ ")"
set color black

end if

!Wind direction plot at top of page

if WD2m = 1 and WD10m = 1 then

amove 1 44
XAxisMax = 24
XAxisMin = 0
XAxisMajorTick = 6
XAxisSubTick = 1
YAxisMax = 360
YAxisMin = 0
YAxisMajorTick = 90
YAxisSubTick = 30

begin graph
 size 20 12
 nobox
 !title "Wind Direction (1 - Minute Average)"
 xaxis min XAxisMin max XAxisMax dticks XAxisMajorTick dsubticks XAxisSubTick
 xticks length .2
 yticks length .2
 ysubticks length 0.3
 ylabels on
 y2labels off
 yaxis min YAxisMin max YAxisMax dticks YAxisMajorTick grid dsubticks YAxisSubTick
 ytitle "Wind Direction (degrees)"
 xtitle "MST (decimal hours)" dist 0.5
 data dataFile$ d1=c3,c[eval("D2Col")] d2=c3,c[eval("D10Col")]

48

 d1 marker circle msize 0.3 color brown
 d2 marker circle msize 0.3 color blue
end graph

begin key
 hei 0.5
 position bc
 offset 0.0 -2.3
 text "2m" lstyle 1 lwidth .04 color brown
 separator
 text "10m" lstyle 1 lwidth .04 color blue
end key
set hei 0.7

!Output Graph Title wind direction
amove 3.5 54.8
set color green
write "Wind Direction: (degrees) \; Tower " tower$ "(" position$ ")"
set color black

end if

!U plot at bottom of page

if U2m = 1 and U10m = 1 then

amove 1 16
XAxisMax = 24
XAxisMin = 0
XAxisMajorTick = 6
XAxisSubTick = 1
YAxisMax = 20
YAxisMax30 = 30
YAxisMin = -5
YAxisMajorTick = 5
YAxisSubTick = 1

begin graph
 size 20 12
 nobox
 !title "2m U Plot"
 yaxis grid
 xaxis min XAxisMin max XAxisMax dticks XAxisMajorTick dsubticks XAxisSubTick
 xticks length .3
 yticks length .3

49

 ysubticks length 0.3
 y2ticks length 0.3
 y2subticks length 0.3
 yaxis min YAxisMin max YAxisMax dticks YAxisMajorTick dsubticks YAxisSubTick
 !yaxis min YAxisMin dticks YAxisMajorTick dsubticks YAxisSubTick
 y2axis min YAxisMin dticks YAxisMajorTick dsubticks YAxisSubTick on
 ylabels on
 y2labels off
 ytitle "U (m/s)"
 xtitle "MST (decimal hours)" dist 0.5
 data dataFile$ d1=c3,c[eval("u2Col")] d2=c3,c[eval("u10Col")]
 let d3 = d1*0.0
 d1 lstyle 1 color brown
 d2 lstyle 1 color blue
 d3 lstyle 1 lwidth .1 color deeppink
end graph

begin key
 hei 0.5
 position bc
 offset 0.0 -2.3
 text "2m" lstyle 1 lwidth .04 color brown
 separator
 text "10m" lstyle 1 lwidth .04 color blue
end key
set hei 0.7

!Output Graph Title of U Component
amove 5 26.8
set color green
write "U Component (m/s) \; Tower " tower$ "(" position$ ")"
set color black

amove 20 26.8
write u2col u10Col

end if

!V plot at bottom of page

if V2m = 1 and V10m = 1 then

amove 22 16
XAxisMax = 24
XAxisMin = 0

50

XAxisMajorTick = 6.0
XAxisSubTick = 1.0
YAxisMax = 10
YAxisMax30 = 30
YAxisMin = -10
YAxisMajorTick = 5
YAxisSubTick = 1

begin graph
 size 20 12
 nobox
 !title "2m V Plot"
 yaxis grid
 xaxis min XAxisMin max XAxisMax dticks XAxisMajorTick dsubticks XAxisSubTick
 xticks length .3
 yticks length .3
 ysubticks length 0.3
 y2ticks length 0.3
 y2subticks length 0.3
 yaxis min YAxisMin max YAxisMax dticks YAxisMajorTick dsubticks YAxisSubTick
 !yaxis min YAxisMin dticks YAxisMajorTick dsubticks YAxisSubTick
 y2axis min YAxisMin dticks YAxisMajorTick dsubticks YAxisSubTick on
 ylabels on
 y2labels off
 ytitle "V (m/s)"
 xtitle "MST (decimal hours)" dist 0.5
 data dataFile$ d1=c3,c[eval("v2Col")] d2=c3,c[eval("v10Col")]
 let d3 = d1*0.0
 d1 lstyle 1 color brown
 d2 lstyle 1 color blue
 d3 lstyle 1 lwidth .1 color deeppink
end graph

begin key
 hei 0.5
 position bc
 offset 0.0 -2.3
 text "2m" lstyle 1 lwidth .04 color brown
 separator
 text "10m" lstyle 1 lwidth .04 color blue
end key
set hei 0.7

!Output Graph Title for V Component
amove 25.5 26.8
set color green

51

write "V Component (m/s) \; Tower " tower$ "(" position$ ")"
set color black

end if

!W plot at bottom of page

if W2m = 1 and W10m = 1 then

amove 43 16
XAxisMax = 24
XAxisMin = 0
XAxisMajorTick = 6.0
XAxisSubTick = 1.0
YAxisMax = 1
YAxisMax30 = 30
YAxisMin = -1
YAxisMajorTick = .5
YAxisSubTick = .1

begin graph
 size 20 12
 nobox
 !title "2m W Plot"
 yaxis grid
 xaxis min XAxisMin max XAxisMax dticks XAxisMajorTick dsubticks XAxisSubTick
 xticks length .3
 yticks length .3
 ysubticks length 0.3
 y2ticks length 0.3
 y2subticks length 0.3
 yaxis min YAxisMin max YAxisMax dticks YAxisMajorTick dsubticks YAxisSubTick
 !yaxis min YAxisMin dticks YAxisMajorTick dsubticks YAxisSubTick
 y2axis min YAxisMin dticks YAxisMajorTick dsubticks YAxisSubTick on
 ylabels on
 y2labels off
 ytitle "W (m/s)"
 xtitle "MST (decimal hours)" dist 0.5
 data dataFile$ d1=c3,c[eval("w2Col")] d2=c3,c[eval("w10Col")]
 let d3 = d1*0.0
 d1 lstyle 1 color brown
 d2 lstyle 1 color blue
 d3 lstyle 1 lwidth .1 color deeppink
end graph

52

begin key
 hei 0.5
 position bc
 offset 0.0 -2.3
 text "2m" lstyle 1 lwidth .04 color brown
 separator
 text "10m" lstyle 1 lwidth .04 color blue
end key
set hei 0.7

!Output Graph Title for W Component
amove 46.5 26.8
set color green
write "W Component (m/s) \; Tower " tower$ "(" position$ ")"
set color black

end if

!Errors plot at bottom of page

if Errs2m = 1 and Errs10m = 1 then

amove 1 2
XAxisMax = 24
XAxisMin = 0
XAxisMajorTick = 6.0
XAxisSubTick = 1.0
YAxisMax = 1200
YAxisMax30 = 30
YAxisMin = 0
YAxisMajorTick = 300
YAxisSubTick = 100

begin graph
 size 20 12
 nobox
 !title "Errors"
 yaxis grid
 xaxis min XAxisMin max XAxisMax dticks XAxisMajorTick dsubticks XAxisSubTick
 xticks length .3
 yticks length .3
 ysubticks length 0.3
 yaxis min YAxisMin max YAxisMax dticks YAxisMajorTick dsubticks YAxisSubTick
 !yaxis min YAxisMin dticks YAxisMajorTick dsubticks YAxisSubTick
 ylabels on

53

 ytitle "# of Errors"
 xtitle "MST (decimal hours)" dist 0.5
 data dataFile$ d1=c3,c[eval("e2Col")] d2=c3,c[eval("e10Col")]
 d1 lstyle 1 lwidth .05 color brown
 d2 lstyle 1 lwidth .05 color blue
end graph

begin key
 hei 0.5
 position bc
 offset 0.0 -2.3
 text "2m" lstyle 1 lwidth .04 color brown
 separator
 text "10m" lstyle 1 lwidth .04 color blue
end key
set hei 0.7

!Output Graph Title
amove 4 12.8
set color green
write "Number of Sonic Errors \; Tower " tower$ "(" position$ ")"
set color black

end if

!Battery Voltage and Temp-Sonic10m plot at bottom of page

if BV = 1 and tSonic10m = 1 then

amove 43 2
XAxisMax = 24
XAxisMin = 0
XAxisMajorTick = 6.0
XAxisSubTick = 1.0
YAxisMax = 15
YAxisMax30 = 30
YAxisMin = 10
YAxisMajorTick = 1
YAxisSubTick = 0

begin graph
 size 20 12
 nobox
 !title "Plot"
 yaxis grid

54

 xaxis min XAxisMin max XAxisMax dticks XAxisMajorTick dsubticks XAxisSubTick
 xticks length .3
 yticks length .3
 !ysubticks length 0.3
 y2ticks length 0.5
 y2subticks length 0.5
 !yplaces 10 11 12 13 14 15 16
 !ynames "10" "11" "12" "13" "14" "15" "16"
 yaxis min YAxisMin max YAxisMax dticks YAxisMajorTick dsubticks YAxisSubTick
 !yaxis min YAxisMin dticks YAxisMajorTick dsubticks YAxisSubTick
 y2axis min 0 max 60 dticks 12 dsubticks 6
 ylabels on
 y2labels on
 ytitle "Battery Voltage (V)"
 xtitle "MST (decimal hours)" dist 0.5
 y2title "T-Sonic10m (^{o}C)"
 data dataFile$ d1=c3,c[eval("BVCol")] d2=c3,c[eval("t10Col")]
 let d2 = (d2/12)+10
 d1 lstyle 1 lwidth .05 color brown
 d2 lstyle 1 lwidth .05 color blue
end graph

begin key
 hei 0.5
 position bc
 offset 0.0 -2.3
 text "Battery" lstyle 1 lwidth .04 color brown
 separator
 text "T-Sonic10m" lstyle 1 lwidth .04 color blue
end key
set hei 0.7

!Output Graph Title
amove 45 12.8
set color green
write "Battery(V) \; T-Sonic10m(^{o}C) \; Tower " tower$ "(" position$ ")"
set color black

end if

!Temperature gradient plot at top of page

if Temp2m = 1 and Temp10m = 1 then

amove 22 30

55

XAxisMax = 24
XAxisMin = 0
XAxisMajorTick = 6.0
XAxisSubTick = 1.0
YAxisMax = 1.0
YAxisMin = -0.5
YAxisMajorTick = 0.1
YAxisSubTick = 0.0

begin graph
 size 20 12
 nobox
 yaxis grid
 xaxis min XAxisMin max XAxisMax dticks XAxisMajorTick dsubticks XAxisSubTick
 xticks length .3
 yticks length .3
 ysubticks length 0.2
 !yaxis min YAxisMin max YAxisMax dticks YAxisMajorTick dsubticks YAxisSubTick
 yaxis min YAxisMin dticks YAxisMajorTick dsubticks YAxisSubTick
 ylabels on
 y2labels off
 ytitle "Temperature Gradient (^{o}C/m)"
 xtitle "MST (decimal hours)" dist 0.5
 data dataFile$ d1=c3,c[eval("T2Col")] d2=c3,c[eval("T10Col")]
 let d3 = (d2-d1)/8
 let d4 = d1*0.0
 d3 lstyle 1 color purple
 d4 lstyle 1 lwidth .1 color deeppink
end graph

!Output graph title for temperature gradient
amove 25 40.8
set color green
write "Temp Gradient (^{o}C/m) \; Tower " tower$ "(" position$ ")"
set color black

end if

!Temperature plot at top of page

if Temp2m = 1 and Temp10m = 1 then

amove 22 44
XAxisMax = 24
XAxisMin = 0

56

XAxisMajorTick = 6.0
XAxisSubTick = 1.0
YAxisMax = 35
YAxisMin = 0
YAxisMajorTick = 5
YAxisSubTick = 0

begin graph
 size 20 12
 nobox
 xaxis min XAxisMin max XAxisMax dticks XAxisMajorTick dsubticks XAxisSubTick
 xticks length .3
 yticks length .3
 ysubticks length .2
 yaxis min YAxisMin max YAxisMax dticks YAxisMajorTick grid dsubticks YAxisSubTick
 !yaxis dticks YAxisMajorTick grid dsubticks YAxisSubTick
 ylabels on
 y2labels off
 ytitle "Temperature (^{o}C)"
 xtitle "MST (decimal hours)" dist 0.5
 data dataFile$ d1=c3,c[eval("T2Col")] d2=c3,c[eval("T10Col")]
 d1 lstyle 1 color brown
 d2 lstyle 1 color blue
end graph

begin key
 hei 0.5
 position bc
 offset 0.0 -2.3
 text "2 m" lstyle 1 lwidth .04 color brown
 separator
 text "10 m" lstyle 1 lwidth .04 color blue
 end key
set hei 0.7

!Output Graph Title for Temperature
amove 26 54.8
set color green
write "Temperature (^{o}C) \; Tower " tower$ "(" position$ ")"
set color black

end if

!Solar irradiance plot at top of page

57

if Insol = 1 then

amove 43 30
XAxisMax = 24
XAxisMin = 0
XAxisMajorTick = 6.0
XAxisSubTick = 1.0
YAxisMax = 1400
YAxisMin = 0
YAxisMajorTick = 200
YAxisSubTick = 100

begin graph
 size 20 12
 nobox
 yaxis grid
 xaxis min XAxisMin max XAxisMax dticks XAxisMajorTick dsubticks XAxisSubTick
 xticks length .2
 yticks length .2
 ysubticks length 0.3
 ylabels on
 y2labels off
 yaxis min YAxisMin max YAxisMax dticks YAxisMajorTick dsubticks YAxisSubTick
 ytitle "Solar Irradiance (W/m^2)"
 xtitle "MST (decimal hours)" dist 0.5
 !data dataFile$ d1=c3,c7
 data dataFile$ d1=c3,c[eval("I2Col")]
 d1 lstyle 1 lwidth .04 color brown
end graph

!Output graph title for solar irradiance
amove 46 40.8
set color green
write "Solar Irradiance (W/m^2) \; Tower " tower$ "(" position$ ")"
set color black

end if

!Dew Point plot at bottom of page

if RH = 1 and Temp2m = 1 then

amove 22 2
XAxisMax = 24
XAxisMin = 0

58

XAxisMajorTick = 6.0
XAxisSubTick = 1.0
YAxisMax = 0
YAxisMin = -15
!YAxisMajorTick = 10
YAxisMajorTick = 5
YAxisSubTick = 1

begin graph
 size 20 12
 nobox
 xaxis min XAxisMin max XAxisMax dticks XAxisMajorTick dsubticks XAxisSubTick
 xticks length .3
 yticks length .3
 ysubticks length .2
 !yaxis min YAxisMin max YAxisMax dticks YAxisMajorTick grid dsubticks YAxisSubTick
 yaxis dticks YAxisMajorTick grid dsubticks YAxisSubTick
 ylabels on
 y2labels off
 ytitle "Temperature (^{o}C)"
 xtitle "MST (decimal hours)" dist 0.5
 data dataFile$ d1=c3,c[eval("T2Col")] d2=c3,c[eval("R2Col")]
 let d4 = (d2*0.06112*EXP((17.67*d1)/(d1+243.5)))
 let d5 = ((243.5*LOG(d4/6.112))/(17.67-LOG(d4/6.112)))
 let d6 = d1*0.0
 d5 lstyle 1 lwidth .04 color green
 d6 lstyle 1 lwidth .1 color deeppink
end graph

!Output Graph Title for DewPoint
amove 27 12.8
set color green
write "DewPoint (^{o}C) \; Tower " tower$ "(" position$ ")"
set color black

end if

59

Appendix E. README File

 This appendix appears in its original form, without editorial change.

60

Description: README file explains the extracted Meteorological Sensor Array (MSA) data
file’s name.

==
Filenames and the user logs build from the following Parameter
codes in the chart below, to represent selections as follows:

 Collapsed form

Start/End Date and Time: 2014-04-13 00:00:00 1404130000
 2014-04-13 23:59:59 1404132359

 Tower: 13

 Parameter Number: 000000000111 111111122 22
 123456789012 345678901 23
 Selected Parameter Codes: _2PTRISDuvwetc_10TSDuvwetc_BP

Filename w/ Collapsed Codes:
M_1404130000_1404132359_13_2PTRISDuvwetc_10TSDuvwetc_BP[V##].dat
|rdm

Log List Representation of the same:
PP02,TT02,RH02,SR02,WS02,WD02,UU02,VV02,WW02,ER02,TS02,CC02,TT10
,WS10,WD02,UU10,VV10,WW10,ER10,TS10,CC10,BaVo,PaTe

=========================Parameter Chart========================
01. Pressure_2m P PP02 13. Temperature_10m T TT10
02. Temperature_2m T TT02 14. Wind_Speed_10m S WS10
03. Relative_Humidity_2m R RH02 15. Wind_Direction_10m D WD02
04. Insolation_2m I SR02 16. u_Component_10m u UU10
05. Wind_Speed_2m S WS02 17. v_Component_10m v VV10
06. Wind_Direction_2m D WD02 18. w_Component_10m w WW10
07. u_Component_2m u UU02 19. errors_in_avg_10m e ER10
08. v_Component_2m v VV02 20. temperature_sonic_10m t TS10
09. w_Component_2m w WW02 21. speed_of_sound_10m c CC10
10. errors_in_avg_2m e ER02 22. Battery_Voltage B BaVo
11. temperature_sonic_2m t TS02 23. Panel_Temp P PaTe
12. speed_of_sound_2m c CC02
===

61

Appendix F. HELP File

 This appendix appears in its original form, without editorial change.

62

Description: The HELP file gives a detailed explanation of how to use the Data Management
Tool application, and the different options available.

This program extracts weather data from the MSA database based
on the selections below, and saves it in the Reports directory
(currently in the same directory as this program) under the
requestor initials.

Three files are saved. Their names look something like the
following:
M_1404130000_1404132359_13__2PTRIWDuvwec_10TWDuvwec_BP.dat
M_1404130000_1404132359_13__2PTRIWDuvwec_10TWDuvwec_BP.rdm
M_1404130000_1404132359_13__2PTRIWDuvwec_10TWDuvwec_BP.sql

The *.dat file holds the extracted data
The *.rdm file holds the translation of the long descriptive
filename
The *.sql file holds the SQL query used to generate the "*.dat"
file

 Registration:
 MSA Tech: INITIALS
 Requested by: INITIALS
 Backspace to remove char to left.

 Date/Time selection:
 Start Date: MM/DD/YY Time: hh:mm:ss
 End Date: MM/DD/YY Time: hh:mm:ss

 Enter digits for dates and times
 Backspace or Left arrow to remove char to left.
 Moving backward from Time to Date is not
 possible (yet). Pressing "q" exit this program.

 ======MSA Towers======
 1. 01:01
 2. 01:02
 3. 02:02
 4. 03:02
 5. 01:03
 ======================
 Select:
 5_____________________

Tower Selection:
Delimit multiple tower selections with commas, spaces, decimals

63

or dashes. A dash between tower numbers generates an inclusive
range of towers to query. "a" for all selections anywhere on the
line indicates all towers will be queried.

Editing: Backspace to remove char to the left (left arrow will
not work here).

Extraneous chars will be removed; repeats will be removes and
selected towers will be recorded from least to greatest

Examples: 3 1-3, 4.10 translates to 1,2,3,4

Parameter Selection:
==
 01. Pressure_2m..........<-- 13. Temperature_10m
 02. Temperature_2m 14. Wind_Speed_10m
 03. Relative_Humidity_2m.<-- 15. Wind_Direction_10m
 04. Insolation_2m........<-- 16. u_Component_10m
 05. Wind_Speed_2m........<-- 17. v_Component_10m
 06. Wind_Direction_2m 18. w_Component_10m
 07. u_Component_2m 19. errors_in_avg_10m
 08. v_Component_2m 20. temperature_sonic_10m
 09. w_Component_2m 21. speed_of_sound_10m
 10. errors_in_avg_2m 22. Battery_Voltage
 11. temperature_sonic_2m 23. Panel_Temp
 12. speed_of_sound_2m
==
Select (<Enter> when done): _05_

Entering two digits will select a parameter and selected
parameters will be indicated with a "...<--" tag. Selecting a
parameter unselects it. Pressing "q" here also exit this
program.

When a lot of parameters need selecting, entering aa or al, for
all, will select all parameter and entering two digit for each
undesired parameter will un-select them.

Arriving here in static mode (see <F>reeze selection below),
means that "8." was selected in "<F>reeze selection" and instead
of only showing the query as is default in static mode, the
database will be queried, and result files will be generated.

End Menu:
--
<E>nd, <C>ontinue, <F>reeze selection/repeat, <L>ogs, <H>elp
--

64

<E>nd: exits the program
<C>ontinues: program after return from <F>reeze, <L>ogs, or
<H>elp
<F>reeze selection:

STATE: S

 1. Show selections
 2. Make current selections default
 3. Continue using current selections (ON)
 4. Registration changes ALLOWED (OFF)
 5. Date/Time changes ALLOWED (OFF)
 6. Towers changes ALLOWED (OFF)
 7. Parameters changes ALLOWED (OFF)
 8. Queries changes ALLOWED (OFF)
 Select (<Enter> when done): ___

By selecting "3." the current selection becomes static (frozen)
and repeat runs, via the <C>ontinues, reproduce the same result.
Until "3." is turned ON,"4 through 8." will not be visible.

Selecting "4 through 8." allow selections to be turned ON for
user input or OFF for static use of the former selections.
Pressing the <Enter> key returns the user to the "End Menu",
above, so the "<C>ontinue" option can be selected to do another
run. "q" entered here will quit the program.

Suppose the user needs 10 runs for a requestor. It becomes
tedious to repeatedly re-enter the MSA and user info. The
"<F>reeze selection" option allows selection of "5., 6., 7. 8"
here so only those selections need entering. Or perhaps, only
different sets of towers are desired with the same Date/Time,
Parameter and query selection. This can be accomplished by
selecting "6." here to allow changes on the selection screen
while Registration, Date/Time, Parameters and Queries remain
"frozen".

Perhaps the user wishes to save the current selection until
another time. "2." accomplishes this by rewriting the default
variables into this program and restarting it.

This program reads the MSA database headers for SQL query
generation.

Should those headers be changed in the database, they need to be
re-saved into this program by:

65

 1. Take this program out of static mode "3."
 2. Run a query
 3. Select <F>reeze selection again
 4. "1." can be selected to see what defaults will be saved
 and further runs with differing "frozen" states can
 correct runtime selections as desired.
 5. Selecting "2." to write the variables into the program
 and restarts it.

<L>ogs: Presents a formatted view of previous queries by the
requestor
<H>elp: View this help screen

66

INTENTIONALLY LEFT BLANK.

67

List of Symbols, Abbreviations, and Acronyms

AGL above ground level

ARL US Army Research Laboratory

ASCII American Standard Code for Information Interchange

DAS data acquisition system

FTP File Transfer Protocol

FY fiscal year

GLE Graphics Layout Engine

GUI graphical user interface

MB megabyte

MET Model Evaluation Tool

MSA Meteorological Sensor Array

MST Mountain Standard Time

MySQL My Structured Query Language (MySQL = My[name of a developer’s daughter]
SQL)

NRC National Research Council

NTP Network Time Protocol

PV Photovoltaic

QC quality control

SSI STS Systems Integration

STS SpecPro Technical Services

V&V validation and verification

WRE-N Weather Running Estimate-Nowcast

68

 1 DEFENSE TECHNICAL
 (PDF) INFORMATION CTR
 DTIC OCA

 2 DIRECTOR
(PDF) US ARMY RSRCH LAB

 RDRL CIO LL
 IMAL HRA MAIL & RECORDS

MGMT

 1 GOVT PRINTG OFC
 (PDF) A MALHOTRA

 2 US ARMY RSRCH LAB
 (CD) ATTN RDRL CIE M
 BLDG 1622
 WSMR NM 88002
 D KNAPP
 J SMITH

 4 US ARMY RSRCH LAB
 (CD) ATTN RDRL CIE D
 BLDG 1622
 WSMR NM 88002

 S HARRISON
 R HORNBAKER
 S OBRIEN
 R RANDALL

 10 US ARMY RSRCH LAB
 (5 CD, G VAUCHER
 5 HC) ATTN RDRL CIE D
 BLDG 1622
 WSMR NM 88002

 1 US ARMY RSRCH LAB
 (CD) P CLARK
 ATTN RDRL CIE
 2800 POWDER MILL RD
 ADELPHI MD 20783-1138

 1 DR J MCLAY
 (CD) NAVAL RESEARCH LABORATORY
 7 GRACE HOPPER AVE STOP 2
 MONTEREY CA 93943

 1 R CRAIG DAF CIVILIAN
 (CD) HQ AFWA 2WXG 16WS/WXN
 101 NELSON DRIVE
 OFFUTT AFB NE 68113-1023

 1 ARMY JOINT SUPPORT TEAM
 (CD) SFAE IEW&S DCGS A
 ATTN G BARNES
 238 HARSTON ST BLDG 90060
 HURLBURT FIELD FL 32544

 1 J STALEY
 (CD) ARMY WEATHER PROPONENT
 OFFICE
 INTEGRATION
 SYNCHRONIZATION AND
 ANALYSIS (CDID)
 US ARMY INTELLIGENCE
 CENTER OF EXCELLENCE
 550 CIBEQUE ST BLDG 61730
 FT HUACHUCA AZ 85613

	List of Figures
	List of Tables
	Acknowledgments
	Executive Summary
	1. Background
	1.1 MSA Vision
	1.2 MSA–Phase I (“Proof of Concept”) Field Campaign

	2. MSA Data Management Tool, Design, and Process
	2.1 Data Distribution Tool Overview
	2.2 Data Storage
	2.3 Data Extraction
	2.4 Data Visualization
	2.5 Data Documentation

	3. Lessons Learned and Recommendations
	4. Summary
	5. References and Notes
	Appendix A. Program to Load Meteorological Sensor Array (MSA) Tables3F(
	Appendix B. Program to Load Text Files4F(1
	Appendix C. MSA_Plots_MST.vbs5F(
	Appendix D. MSA_Plots_MST.GLE6F(
	Appendix E. README File7F(
	Appendix F. HELP File8F(
	List of Symbols, Abbreviations, and Acronyms

