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LONG-TERM GOALS 
 
1. Application of multidimensional Fourier analysis for the extremely fast numerical integration of 
the partial differential equations of surface water waves is the long-term goal of this work. The 
approach is a generalization of linear Fourier analysis and therefore is a hyperfast extension of the 
fast Fourier transform (FFT) to the nonlinear Euler water wave equations. 
 
2. The present report discusses progress made in both the shallow and deep-water environments, 
anticipating the marriage of the two in the coming year for a complete, higher order, hyperfast 
integration to Euler. An important application of the approach is possibility of the on-board 
computation of wave properties as derived from shipboard direct wave and/or radar measurements 
of the sea surface, leading to prediction of sea state conditions, including the presence of rogue 
waves in real time. 
 
OBJECTIVES 
 
1. The objective of the present research program is the development of fast numerical 
multidimensional Fourier techniques applied to a wide range of wave modeling and analysis 
problems. 
 
2. Important progress made in the past year has been the development of three new algorithms for 
multidimensional Fourier analysis. These algorithms are the key to future hyperfast applications of 
the method.  
 
APPROACH 
 
We first consider the shallow water equation known as the Korteweg-deVries (KdV) equation): 
 

ηt + coηx +αηηx + βηxxx = 0       (1) 
 

where co = gh , α = 3co / 2h and . The KdV equation has the generalized Fourier 
solution (for periodic and/or quasi-periodic boundary conditions) that is found by the inverse 
scattering transform (see [Osborne, 2002] and cited references): 

β = coh
2 / 6
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η(x,t) = 2
∂2

∂x2 lnθ(x,t | ˜ B ,k,ω,φ)
      (2) 

 
The generalized Fourier series, θ(x, t | ˜ B ,k,ω,φ) , is given by the expression 
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where Xn = knx −ωnt + φn . The function  is also called a Riemann theta function or 
multidimensional Fourier series. Here B is the Riemann matrix (the “spectrum” of the solution), the 
vector k constitutes the usual wave numbers, the vector 

θ(x,t | %B,φ)

ω  contains the frequencies and the vector φ  
forms the phases. The inverse problem associated with (2), (3) allows one to determine the Riemann 
matrix, wave numbers, frequencies and phases appropriate for solving the Cauchy problem for KdV: 
Given the spatial variation of the solutions at t = 0, η(x,0), compute the solution for all time, η(x,t). 
This is a necessary step for the numerical simulations presented heein. The solitons, Stokes waves and 
sine waves lie on the diagonal of the Riemann matrix; the off-diagonal terms contain the nonlinear 
interactions. 
 
Why is the above approach useful for hyperfast numerical simulations? Because the Riemann theta 
function can be programmed as a fast theta function transform (FTFT), just as the Fourier transform 
can be programmed as a fast Fourier transform (FFT). Therefore the numerical integration of KdV 
(1) can be evaluated at specific time points, necessary only for graphical purposes or for extracting 
useful properties of the sea surface. This contrasts to the FFT that must be evaluated at very small time 
steps for the accurate integration of a nonlinear partial differential equation. 
 
We now consider the case for directional spreading. This occurs in the shallow water equation known 
as the Kadomtsev-Petviashvili (KP) equation): 
 

(ηt + coηx +αηηx + βηxxx )x +γηyy = 0       (4) 
 
where γ = co / 2 . The KdV equation has the generalized Fourier solution (for periodic boundary 
conditions) that is found by the inverse scattering transform (see [Osborne, 2002] and cited 
references): 
 

 
η(x, y,t) = 2 ∂2

∂x2 lnθ(x, y,t | %B,k,ω,φ)
      (5) 

 
The generalized Fourier series, θ(x, t | ˜ B ,k,ω,φ) , is given by (3) above, where now 
Xn = knx + lny −ωnt +φn . Once again the function  is also called a Riemann theta function 
or multidimensional Fourier series; B is the Riemann matrix, the vector k constitutes the wave 
numbers in the x direction and the wave number vector l constitutes the y-direction wave numbers, the 
vector  contains the frequencies and the vector 

θ(x,t | %B,φ)

ω φ  contains the phases. The Cauchy problem for KP 
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is defined by: Given the spatial variation of the solutions at t = 0, η(x, y,0) , compute the solution for 
all time, η(x, y,t) . The solitons, Stokes waves and sine waves lie on the diagonal of the Riemann 
matrix and are spread in direction according to the wave numbers (k, l). As before the off-diagonal 
terms contain the nonlinear interactions. The sea surface elevation corresponds to cnoidal wave basis 
functions distributed over a directional spectrum, plus nonlinear interactions among the cnoidal waves.  
 
The unidirectional, deep-water case is that for the nonlinear Schroedinger equation: 
 

i(ψt +Cgψx )+μψxx +ν ψ 2 ψ = 0        (6) 
 
where the coefficients are computed in the usual way in terms of the carrier wave number and 
frequency. The spectral solution to this equation is given by 
 

ψ(x,t) = aθ(x,t | B,δ− )
θ(x,t | B,δ+ )

e2ia2 t

        (7) 
 
Thus the solution is the ratio of two multi-dimensional Fourier series with different phases, δ± . 
 
For directionally spread waves in deep-water the nonlinear Schroedinger equation has the form: 
 

i(ψt +Cgψx )+μψxx − 2μψyy +ν ψ 2 ψ = 0       (8) 
 
The spectral solution to this equation, for small directional spreading, is approximated by 
 

ψ(x, y,t) ≅ aθ(x, y,t | B,δ− )
θ(x, y,t | B,δ+ )

e2ia2 t

       (9) 
 
A more complex form is necessary to include large directionally spread waves. 
 
An important result, fundamental in the present research program, is that the above four relatively 
simple cases form building blocks for the solution to more complex equations such as the Boussinesq 
equations and the full Euler equations. Another important aspect, to be addressed in the coming year, 
is that wind and dissipation forces can be easily added to the above equations and to the Euler 
equations.  
 
WORK COMPLETED 
 
The work completed during the past year includes the coding of three new multidimensional Fourier 
transform algorithms which are being tested and used to develop hyperfast higher order algorithms. 
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RESULTS 
 
Here are the codes that have been developed during the past year.  
 

(1) A generalized code for the discrete Riemann theta function (a multi-dimensional Fourier 
series) that is designed to work for 1, 2 or 3 dimensions. The discrete nature of the algorithm 
means that it automatically satisfies periodic boundary conditions (although other types of 
boundary conditions will be addressed in the future). This code solves nonlinear wave 
dynamics, just as the FFT solves linear wave motion. 
 
(2) A new code has been developed which allows for the direct computation of the multi-
dimensional Fourier spectrum (Riemann matrix and phases) without algebraic geometry, 
which is essential for specification of the initial conditions in numerical modeling efforts. This 
is viewed as a big step for future development as it does not require complex mathematics and 
serves as a necessary preprocessor for numerical simulations. 

 
(3) Codes for the shallow water Korteweg-deVries, Kadomtsev-Petviashvili and nonlinear 
Schroedinger equations and higher order corrections have been developed as prerequisites to 
coding the Boussinesq and Euler equations. 

 
The mathematical formulation and numerical approaches discussed herein are phase resolving 
because they contain the phase of the spectral components. This is also true of the more traditional 
numerical approaches that use the FFT, such as the leap-frog method and the higher order methods. 
There are essentially three reasons why our methods are faster, by 3 or 4 orders of magnitude, than 
traditional methods: (1) a fast multidimensional Fourier transform algorithm, (2) a recursion 
operator formulation and (3) computation of the nonlinear Fourier coefficients, in the solution of 
the KdV equation for relatively large values of time interval, Δt .  
 
In Figs. 1 and 2 we show the results of a shallow water simulation using the KP equation in the form 
of the multi-dimensional Fourier series. This is a case for a fully directional sea state with 50 
directionally spread components, corresponding to a 50 by 50 Riemann matrix. The algorithm 
computes a 100 by 100 grid in the x, y domain. A full simulation, corresponding to about 1 hour using 
a standard FFT leap-frog code, takes about 2 sec using the present algorithm with multidimensional 
Fourier series. 
 
Another example, for deep water, is shown in Figs. 3, 4. In this example a simple directional spectrum, 
corresponding to two unstable rogue wave modes, is shown. The full simulation is about 800 times 
faster than the standard FFT spectral code. 
 
IMPACT/APPLICATION 
 
The impact of this research will occur in general for the nonlinear Fourier analysis of shallow and 
deep-water wave trains. Specific results will provide for a deeper understanding of nonlinear wave 
dynamics. 
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TRANSITIONS 
 
Transitions expected are related to the use of the codes as guidance to ships and unmanned, 
unteathered vehicles as the kind of environment in which one resides and for the real time sampling of 
the environment, including the acoustic environment. 
 

 
 

Fig. 1 Image of the sea surface as seen from above for the simulation of a shallow 
water simple directional spectrum. These results are constructed using the spectral 

formulation of the Kadomtsev-Petviashvili equation, a standard 
 equation for nonlinear, shallow water wave dynamics that is 

 a cousin of the Boussinesq equation. 
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Fig. 2 The surface elevation field of the simulation discussed 
 in Fig. 1 and in the text. 

 
 
RELATED PROJECTS 
 
An intimate relationship between our results and other projects exists because the sea surface provides 
a major forcing input to many kinds of offshore activities, including the dynamics of floating and 
drilling vessels, barges, risers and tethered vehicles. The present work leads to a nonlinear 
representation of the sea surface forcing and vessel response for shallow water waves. 
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Fig. 3 Initial wave train for deep water using multi-dimensional Fourier series. The 
wave train is assumed to be a simple sine wave (the “carrier”) which is modulated 

both in the direction of propagation (dominant direction) and in the direction 
normal to the propagation. 
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Fig. 4 The wave train in Fig. 3 has grown into a substantial rogue wave that is 3.5 
times higher than the amplitude of the initial carrier wave. 
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