AD_________________

Award Number: W81XWH-12-1-0271

TITLE: The Influence of Primary Microenvironment on Prostate Cancer Osteoblastic Bone Lesion Development

PRINCIPAL INVESTIGATOR: Xiaohong Li, Ph.D.

CONTRACTING ORGANIZATION: Van Andel Research Institute
Grand Rapids, MI 49503-25181

REPORT DATE: September 2014

TYPE OF REPORT: Annual

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release; Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
The loss of stromal TGF-β signaling has been shown to initiate prostate cancer (PCa) and promote PCa progression. A further effect on osteoblastic bone lesion development was hypothesized and tested in this proposal. Using the Col2α/Tgfbr2 KO mice, we are able to knock out TGF-β signaling specifically in the prostate fibroblasts and in bone osteoblasts. We found that PC3 cell osteolytic bone lesions were significantly increased in the KO mice tibiae compared to the flox mice tibia. bFGF was the only cytokine up-regulated (among many others down-regulated) in KO/PC3 tibiae relative to Flox/PC3 tibiae. However, osteoblastic bone lesions induced by LUCaP cells were inhibited in KO mice tibiae relative to Flox mouse tibia in our preliminary study. Our findings suggest that osteoblastic TGF-β signaling inhibits PCa osteolytic bone lesions but may promote PCa osteoblastic bone lesions.
Table of Contents

1. Introduction..........................3
2. Keywords..................................3
3. Overall Project Summary......................3
4. Key Research Accomplishments...............5
5. Conclusion................................5
7. Inventions, Patents, and Licenses..............
8. Reportable Outcomes........................6
9. Other Achievements.........................6
10. References................................6
11. Appendices................................6
Introduction: The hypothesis of this proposal is that cytokines/chemokines regulated by stromal TGF-β signaling from the primary tumor microenvironment dictate prostate cancer (PCa) osteoblastic bone metastasis. We proposed to determine the contribution of prostate mesenchymal TGF-β in PCa-induced osteoblastic bone lesion development and to determine the chemokines that induced by loss of TGF-β signaling mediate PCa blastic bone metastasis. This grant was transferred on Oct. 9, 2013 from Vanderbilt University to Van Andel Research Institute, where I took a faculty position as an Assistant Professor. The proposed work started by generating TGF-β type II receptor (TβRII) knock-out mice (Tgfbr2 KO) and TGF-β type I constitutively active transgenic mice. All these mice have been successfully rederived in the VARI facility for breeding. After we started our in vivo mouse experiments, which require three survival surgeries, we found that the majority of the mice died following the third surgery. We are now trying alternative approaches for the in vivo studies, and the results are expected in the next two months.

Meanwhile, we have broadened our research scope using the same animal models, investigating the role of mesenchymal TGF-β in the bone microenvironment on PCa-induced bone lesion development. We have found that TGF-β signaling in osteoblasts inhibited osteolytic bone lesion development by PC3 prostate cancer cells, and several cytokines, such as basic fibroblast growth factor (bFGF), have been identified as potential mediators. Preliminary experiments have found that TGF-β signaling in osteoblasts promoted osteoblastic bone lesion development by the LUCaP PCa cells.

Keywords: TGF-β signaling, osteoblasts, fibroblasts, osteolytic, osteoblastic, bone lesions, cytokines/chemokines, bFGF

Overall Project Summary:

Task 1 (months 1-16) was “to investigate the effect of prostate mesenchymal TGF-β responsiveness in PCa osteoblastic bone lesion development.” We have successfully accomplished Task 1a, “breeding of ColcreERT/Tgfbr1T204D (Tgfb-On) and ColpreERT/Tgfbr2floxE2/floxE2 (Tgfb-Off) mice and their respective control mice for initial experiments”. These mice were crossed with mT/mG reporter mouse from Jackson Laboratory. The specific Cre expression can be visualized directly using green fluorescent protein (GFP) in mouse prostate and cultured prostate fibroblasts (Figure 1) or through immunohistochemistry (IHC) using anti-GFP antibody in decalcified mouse bone tissues (Figure 2). The specific ColCre expression in fibroblasts of the prostate and osteoblasts of the bone was confirmed. We also performed Tasks 1b and 1c, according to our initial experiment plan (Figure 3). However, because so many mice died after three survival surgeries, we are now modifying our procedure to the alternative one, shown in Figure 4. In about two months, we will be able to perform Task 1c, “to establish bone lesion development model using the orthotopic grown tumor cells” and Task 1d, “IHC of harvest tissues and data analysis”.

![Figure 1](image1.png)
Figure 1. Fibroblast specific Cre expression in ColCreERT mouse prostate (A), and in the cultured prostate fibroblasts (B). The Cre positive cells are green.
The scope of this proposal was expanded logically due to our findings of the loss of stromal TβRII in the PCa bone metastatic tissues (Li, 2012). We thus investigated the stromal TGF-β effect on PCa bone lesion development. We found that PC3 PCa-induced osteolytic bone lesion development was promoted in the Col^cre/Tgfb2 KO mice relative to control Tgfb2 flox mice (Figure 5). Further, the differences in expression of chemokines between the PC3-induced bones from KO and flox mice were compared using cytokine array analysis (Figure 6). Basic fibroblast growth factor (bFGF) was the only factor to have increased expression at both mRNA level and protein level in the PC3/KO tibiae relative to the PC3/flox tibiae (Figure 7). We are now investigating the function of bFGF in the osteoblastic TGF-β signaling effect on PCa bone lesion development. In contrast to PCa osteolytic lesions, our initial experiment using LUCaP prostate tumor cells revealed that PCa-induced osteoblastic bone lesion development was inhibited in the Col^cre/Tgfb2 KO mice relative to the control Tgfb2 flox mice (Figure 8).
The osteoblastic TGF-β effect on PCA bone lesion development was also investigated in the Col\textsuperscript{preERT/Tgfbr1T204D} mice using the same strategy. No significant difference was found in the Tgfbr2 On mice relative to controls. Considering this is a transgenic, but not a knock-in, mouse model, we will focus on the Tgfbr2 Off knock-out mouse line in future experiments.

Key Research Accomplishments:
1. We bred and characterized the tamoxifen-inducible fibroblasts and osteoblasts in Tgfbr2 On and Tgfbr2 Off mice.
2. We discovered that TGF-β signaling in the osteoblasts inhibited PC3 PCA-induced osteolytic bone lesion development.
3. We identified increased bFGF expression as a potential downstream mediator of the effect of osteoblastic TGF-β signaling on PCA-induced osteolytic bone lesion development.
4. We have preliminary findings that TGF-β signaling in the osteoblasts may promote LUCaP cell osteoblastic bone lesions.

Conclusions:
1. This sponsored research is ongoing as proposed with minor modifications.
2. Cytokines such as bFGF, mediated by TGF-β signaling in the osteoblasts, inhibit PCA-induced osteolytic bone lesion development.

Abstracts and Presentations:

2014 AACR abstract, #4839

TGF-β signaling in osteoclasts promotes, but in osteoblasts inhibits, prostate cancer-induced bone lesions

Xiangqi Meng, Priscilla Lee, Xiaohong Li*

Center for Skeletal Disease and Tumor Metastasis, Van Andel Institute, 333 Bostwick Avenue, N.E., Grand Rapids, Michigan, USA

*Corresponding Author: Xiaohong Li, E-mail address: Xiaohong.Li@vai.org, Tel: 616-234-5267

[Q: I did not edit the abstract except for a few typo corrections.]

Bone is the only clinically detected metastatic site in advanced prostate cancer (PCA) patients. Bone metastases were found in 70% of patients who died of PCA. The mechanism of PCA bone metastasis is largely unknown, partially due to different types of bone lesions existing in the
Influence of primary microenvironment on prostate cancer osteoblastic bone lesion development. Xiaohong Li
Annual report for Award number W81XWH-12-1-0271.

same patients. Transforming growth factor beta (TGF-β) is known to be abundant in the bone microenvironment and a key factor driving cancer cell colonization and proliferation in the bone, and inducing the bone lesion development. Previous studies have shown that blocking the pathway systemically or in cancer cells reduces the breast cancer and melanoma bone metastases in animal models, presenting an exciting target for cancer therapy. However, TGF-β is also directly affecting the proliferation and differentiation of all the cells in the bone microenvironment. Blocking TGF-β in bone metastases patients will only be possible until the cell specific contribution of TGF-β signaling in the bone microenvironment to cancer cells were further delineated. We hypothesized that cell specific TGF-β signaling in the bone microenvironment has a distinct role in PCa bone metastasis.

Genetically engineered mouse (GEM) models were used to delineate the role of mesenchymal cell- or myeloid cell-specific TGF-β signaling on PCa-induced osteolytic bone lesion development. Lysozyme M promoter-driven Cre was used to induce the ablation of the TGF-β type II receptor (Tgfbr2) in mature macrophages, granulocytes and osteoclasts, thus to knockout TGF-β signaling in these cells [LysMcre/\textit{Tgfbr2}floxE2/floxE2/Rosa26/Rag2−/− (Tgfb_off_OC)]. The collagen promoter-driven Cre was used to knock out TGF-β signaling in fibroblasts, chondrocytes and osteoblasts [ColcreERT/\textit{Tgfbr2}floxE2/floxE2/Rosa26/Rag2−/− (Tgfb_off_OB)]. PC3 PCa cells were injected into the tibiae of the GEMs and their respective Cre-controlled mice. The host mice tibiae were imaged using Faxitron x-ray every week from 2 to 4 weeks post tumor injection; the bone lesion areas were measured and analyzed by Metamorph.

We found that the osteolytic bone lesion development was significantly reduced in the Tgfb_off_OC mice compared to the control mice at 4 weeks post tumor inoculation (p<0.05). In contrast, PC3 cells in the Tgfb_off_OB mice compared to the control mice significantly promoted osteolytic bone lesion development started from 2 weeks and up to 4 weeks post tumor injections (p<0.05). All statistics were applied by Student’s t tests. These results suggest that TGF-β signaling activation is anti-osteolytic in osteoblasts, but pro-osteolytic in osteoclasts in this PC3 induced bone lysis models.

2014 AACR poster presentation, poster attached.

Reportable outcomes:
1. 2014 AACR abstract and poster presentation, #4839.
2. 2014 AACR-Prostate Cancer Foundation Scholar-in-Training Award.

References:

Appendices
AACR poster
TGF-β signaling in osteoclasts promotes, but in osteoblasts inhibits prostate cancer induced bone lesions

Xiangqi Meng1, Priscilla Lee1, Neil A. Bhowmick2, Xiaohong Li1*

1Center for Skeletal Disease and Tumor Metastasis, Van Andel Institute, Grand Rapids, MI 2Samuel Oschin Comprehensive Cancer Institute and Department of Medicine, Cedars Sinai Medical Center, Los Angeles, CA

Background

Prostate cancer (PCa) bone metastases are found in 70% of patients who died of PCa.

Transforming growth factor beta (TGF-β) is known to be the most abundant growth factor in the bone microenvironment, which is a key factor driving cancer cell colonization and proliferation in the bone.

Although studies have shown that blocking the pathway systemically or in cancer cells reduces the breast cancer and melanoma bone metastasis in animal models, presenting an exciting target for cancer therapy. However, the benefit of blocking TGF-β signaling in clinical trials is not conclusive.

Transforming growth factor beta (TGF-β) is known to be the most abundant growth factor in the bone microenvironment, which drives cancer cell colonization and proliferation in the bone.

Gap in knowledge

The cell specific role of TGF-β signaling in the bone microenvironment on PCa bone metastasis has not been fully understood.

Hypothesis

Cell specific TGF-β signaling in the bone microenvironment has distinct effects on PCa bone metastasis.

Approaches

Genetically engineered mouse (GEM) models

Results

Blocking TGF-β signaling in osteoclasts inhibited osteolytic bone lesion development

Blocking TGF-β signaling in osteoblasts promoted osteolytic bone lesion development

Blocking TGF-β signaling in osteoblasts changed the cytokines expression profiles in the contact of PC3 prostate cancer cells

Figure 1. Loss of TGF-β signaling in osteoclasts inhibits PCa induced bone lesions. A: Osteolytic bone lesion area induced by PCa cells were significantly decreased in the COL-2-KO mice compared to control mice at 6 weeks post PC3 injection. B: Representative X-ray images of the tibia bone lesions of each group. The circled regions showed the lytic bone lesions that were measured for analysis. C: Representative H&E histology of the tibia of 6 week post PC3 injection, which confirmed our X-ray data and PCa growth in the bone marrow.

Figure 2. Loss of TGF-β signaling in osteoblasts promotes PCa induced osteolytic bone lesion development. A: Osteolytic bone lesion area induced by PCa cells were significantly increased in the COL-2-KO mice compared to control mice at 6 weeks post PC3 injection. B: Representative X-ray images of the tibia bone lesions of each group. The circled regions showed the lytic bone lesions that were measured for analysis. C: Representative H&E histology of the tibia of 6 week post PC3 injection, which confirmed our X-ray data and PCa growth in the bone marrow.

Table 1. List of dysregulated cytokines in the COL-2 KO mice compared to the COL-2 Control mice.

<table>
<thead>
<tr>
<th>SO/Cotylytes</th>
<th>Up</th>
<th>Down</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-4, IL-5, DP-1a, Lympoactin, MCP1, TAC, 3A5, MCAF-5, IL-8, Fox ligand, Erratin-2, IFN-α, IFN-β, Receptor, SDF-1, IL-1, IL-6, SCAM-1, MFG-8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Summary and Conclusion

Targeted blocking of TGF-β signaling in specific cell types in the bone microenvironment should be applied for PCa bone metastasis therapy.

Acknowledgement

AAAC-Prostate Cancer Foundation Scholar-in-Training Award (X. Meng)

DOD W81XWH-12-1-0275 (X. U.), VA Start-up Fund 53010B (X. U.)