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2011-2014 Final Progress Report 
 
This report presents the specific aims and accomplishments of our prostate cancer research 
project during the entire period of funding sponsored by the DoD Prostate Cancer Research 
Program. It covers our activities from April 1, 2011 to March 30, 2014. 
 

1. Introduction 
The goal of this study is to form the hypothesis that a transrectal photo-acoustic imaging (TR-
PAI) device can be developed and will significantly enhance detection of aggressive cancerous 
areas in the human prostate. 

 
The project has two specific aims: 
Aim 1: design and implement a laboratory-based TR-PAI system and perform laboratory 
experiments using tissue-blood phantoms;  

Aim 2: Based on the laboratory phantom experiments, characterize the quality of reconstructed 
PAI, including image resolutions, position errors of the given simulated tumors, and 
quantification accuracy of the physiological parameters of simulated tumor tissues. 

 
2. Body of the Report 

 

2.1 Development and investigation for Aim 1 
Aim 1: design and implement a laboratory-based TR-PAI system and perform laboratory 
experiments using tissue-blood phantoms. 
 

Photoacoustic (PA) imaging technologies have been investigated recently and are 
considered as a valuable and potentially powerful tool for both preclinical and clinical cancer 
imaging [1]. Currently, most PA imaging systems adopt a nanosecond pulsed laser with high 
pulse energy because a short light pulse can efficiently avoid energy loss due to thermal energy 
diffusion before the generation of PA signals, which is the so-called thermal confinement [2]. 
While the mainstream of PA research community is attempting to continuously improve the 
performance of PA technologies and explore various applications, another direction is 
significantly underdeveloped, which is how to develop a simple, compact and cost-efficient PA 
system for the use of widespread global health, including prostate cancer detection [3]. A 
nanosecond pulsed laser with high pulse energy is usually extremely expensive (from tens to 
hundreds of thousand dollars) and bulky (usually seats on a large optical table). This may not be 
a problem for a large research laboratory to conduct research projects. However, in many 
clinical cases due to costs and spaces, it is almost impossible to conduct PA imaging when 
using an expensive and bulky system. In contrast, a low cost and compact PA technique may 
be more useful and practical for research laboratories with limited resources, office-based 
clinics, and global healthcare in low- or middle-income countries. To significantly reduce the 
cost and size of a PA imaging system, in the first 1-1.5 years of funding, we developed a 
frequency-domain PA (FD-PA) system by using an inexpensive laser diode with a lock-in 
amplifier. This FD-PA technique is simple, compact and cost efficient but maintains decent 
performance compared with the expensive and bulky time-domain PA techniques. This FD-PA 
system is highly suitable for global health use, including prostate cancer detection.  

 
In the following, we briefly report a simple frequency domain PA system and demonstrate its 

imaging capability. The corresponding theoretical derivations can be found in ref. [4] and/or 
Appendix A. 
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2.1.1 Measurement system 
Figure 1 shows the experimental setup that was developed during the study. A function 
generator (FG, Agilent 33120A, Agilent Tech, CA) generates a sinusoidal voltage signal and a 
synchronized TTL signal with the same frequency ( ) and fixed phase shift. The sinusoidal 
signal is input into a homemade circuit to drive the laser diode (see figure 2 for details about the 
circuit). Thus, the laser intensity is modulated at the frequency of  . The laser diode has a 
central wavelength of 780 nm and a power of ~100 mW when operating in DC mode 
(L785P100, Thorlabs). A lens is used to collimate the laser beam and a mechanical shutter is 
adapted for manually blocking the laser illumination to measure the background signal. At the 
same time, the synchronized TTL signal from the FG is input to a lock-in amplifier (LIA, SR844, 
Stanford Research Systems, CA) and used as a reference signal. The sample and the 
ultrasound transducer (UST, Olympus NDT, one inch in focal length) are submerged into a 
transparent tank that is filled with either water or Intralipid solution (an optical scattering 
medium). The sample is indocyanine green (ICG) aqueous solution which is injected into an 
optical and acoustic transparent tube (MRE-095, Braintree Scientific). The UST is focused on 
the sample. Both the lateral and axial sizes, (such as full width at half maximum—FWHM) of the 
focal zone depend on the central frequency of the UST. When the modulated laser reaches the 
optically absorbing sample, a PA wave is generated. The PA wave is picked up and converted 
into a voltage signal by the UST and further amplified (ZFL-1000LN, Mini Circuits) and filtered 
(SLP-5+, Mini Circuits). A total 
gain of 40 dB is applied by using 
two identical amplifiers in series 
that are driven by a DC power 
supply (BK Precision 1506). The 
processed PA signal is delivered 
to the LIA. The amplitude of the 

PA signal (   ) and the phase 
difference between the PA signal 

and the reference signal (  ) are 
displayed on the screen of the LIA.  
 

Figure 2 shows the principle of the modulation circuit. The principle is straightforward. The 
FG serves as a DC and AC power source, which means output of the FG is an AC signal with 
certain DC offset. A resistor (R1) and a potentiometer are used to limit and control the current 
flowing into the laser diode, respectively. The laser diode has a typical threshold current of 35 
mA. The DC offset of the FG is VDC = 2 v and the AC peak-to-peak is VAC = 4 v. The total 
resistance of R1 and the 
potentiometer is ~11 ohms.  A 
photodiode (EOT, ET-2030A) is 
used to verify the modulation of 
the laser intensity via an 
oscilloscope (2530B Digital 
Storage Oscilloscope, BK 
Precision)).  
 
2.1.2 Data processing 
Theoretically, the amplitude of the PA signal (   ) alone can be used to extract or represent the 
optical absorption coefficient (  ), if other parameters in equations (3)-(5) given in Appendix A 
are known or can be estimated via other ways. However, in practice, it is common that the LIA 
shows a background signal even when the laser is turned off or blocked. This background signal 
is mainly caused by electronic interference from driving signal generated by the FG. Certainly, 

Figure 1: Experimental setup. The tank is filled with a liquid 
medium (either water or Intralipid solution). 
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Figure 2: Principle of modulation circuit. 
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carefully shielding the system and selecting specially designed cables may be helpful to reduce 
this interference. However, this will require more efforts and may significantly increase the 
system cost. Fortunately, this background interference is independent of the location of the UST 
or the sample. Therefore, a simple way to eliminate its effect is mathematically subtract it from 
the measured PA signal. Readers can obtain more details from Appendix A for this step.  
 
2.1.3 Experiment results 
 

Laser modulation results 
Figure 3(a) shows the variation of the average power of the laser diode, modulated at 1 MHz, as 
a function of time. Note that the laser is attenuated to avoid possible damage of the power 
meter (PM100D, Thorlabs), which is used to detect the laser intensity. It can be seen that there 
is only a 0.2% drop in intensity over 80 minutes, thus the intensity is mostly steady. Similar 
results were found when changing the modulation frequency from 1 MHz to 2.25 MHz or 
changing the modulation from a sinusoidal wave to a square wave.  Figure 3(b) shows the 
modulation strength (peak-to-peak voltage of the AC signal, see Fig.2 for the measurement 
method) as a function of the modulation frequency. The frequency was varied from 1 kHz to 15 
MHz. The modulation intensity decreases slightly from 50 kHz to 15 MHz. Therefore, modulating 

the laser diode at the UST frequencies of 1 MHz and 2.25 MHz is relatively stable.  
 
Measurement of UST focal zone 
To quantify the focal size of the UST, a similar technique as in Ref. [5] was adopted. Briefly, a 
pulser-and-receiver (5073PR Pulser/receiver, Olympus) is used to 
excite the UST and receive the reflected ultrasound signal. A metal 
wire with a small diameter (0.25 mm) is used as a sound reflector. By 
scanning the wire laterally and axially, the amplitude of the reflected 
ultrasound signal is recorded and displayed at each location. Figure 4 
shows a typical result that represents a 2D ultrasound intensity 
distribution in the focal zone of a UST (2.25 MHz, NA=0.37). The color 
is proportional to the acoustic intensity. The lateral and axial FWHMs 
are ~0.72 mm and ~6.8 mm, respectively. Other transducers with 
different central frequencies have similar distribution patterns, but with 
different lateral and axial FWHMs. According to the principle of 
reciprocity, ultrasound transmission and detection of the same acoustic 
lens are reciprocal [6]. Therefore, the sensitivity area of detecting PA 
signal is considered the same as shown in figure 4.  

 
Photoacoustic measurements and imaging  

Figure 4 
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Figure 3(a) Measured average power of the laser diode as a function of the time. The power is 
stable over 80 minutes; 3(b) Laser diode signal strength as a function of the modulation frequency. 
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To simulate biological tissue, the tank was filled with 1% intralipid solution (absorption and 
scattering coefficients of 0.04 cm-1 and 8.4 cm-1, respectively, measured with an ISS Oximeter). 
An optically and acoustically transparent tube was filled with indocyanine green (ICG) aqueous 
solution, at a concentration of 0.5 grams/liter, to simulate an absorbing target for generating 
photoacoustic signals. The tube, which has an inner and outer diameter of 1.7 mm and 2.4 mm, 
respectively, was positioned along the y direction.  

Figure 5 shows the measured photoacoustic signal (   ) as a function of the horizontal or 
lateral position of the tube (along the x direction). One ultrasound transducer has a central 
frequency of 1 MHz and the FWHM of its lateral focal zone is about 1.3 mm. The narrow and 
wide rectangles represent the inner and outer diameter of the tube (1.7 mm and 2.4 mm), 
respectively. Clearly, the PA signals rise when the UST and laser beam gradually move into the 
tube region and fall when the UST and laser 
beam move away from the tube region. This 
result indicates that the highly absorbing ICG 
tube generates significant PA signals 
compared to the surrounding intralipid solution 
that has much lower absorption coefficient. 
This is because the absorption coefficient (µa) 
is proportional to PA signal strength. The 
FWHM of the PA data using the 1 MHz UST in 
Fig. 5 is about 2.3 mm. It is larger than the 
tube inner diameter (1.7 mm) and the UST 
lateral size (1.3 mm), which can be understood 
that the FWHM is mainly determined by the 
convolution between the profile of the tube 
cross section and the profile of the UST lateral 
focal zone. 
 

When increasing the frequency of the UST from 1 to 2.25 MHz, the FWHM of the UST’s 
lateral focal zone reduces from ~1.3 to ~0.72 mm. Therefore, the PA spatial resolution can be 
improved when using a higher frequency UST. Figure 5 illustrates this point by showing that the 
FWHM of the PA signal measured from the 2.25 MHz UST is 0.96 mm which is smaller than 
that of the PA signal measured by the 1 MHz UST (2.3 mm). However, it is also smaller than the 
tube size and the reason is unknown.  

 

Figure 6 (a) Maximum PA signal strength as a function of depth. (b) Effect of ICG 
concentration on PA signal. 

 
When increasing the tube depth (from the tank wall to the surface of the tube), the PA signal 

strength also decreases with increasing depth as shown in Fig. 6(a). This is due to the light 

Figure 5: Normalized PA signal strength as a 
function of the sample horizontal location 
acquired from a 1 and 2.25 MHz UST. The tube 
is indicated by the vertical lines. 

0 1 2 3 4 5 6
0

5

10

15

20

Depth (mm)

M
a
x
 P

A
 S

ig
n
a
l 
S

tr
e
n
g
th

 (


V
) UST 2.25 MHz

Beam diameter: 1 mm

Media: IP 1%

ICG: 0.5 g/l

Container: tube

(a) (b) 



 

 

8 

intensity I0 which significantly reduces when depth increases because of the light scattering. 
Furthermore, increasing ICG concentration leads to an increase in absorption coefficient of the 

tube (  ), which further raises the PA signal strength. Figure 6(b) shows the peak strength of 
the PA signal as a function of the ICG concentration. Clearly, the PA signal increases almost 
linearly when the concentration is low. However, the increase of the PA signal seems saturated 
at high concentration. This may be due to the fact that the light cannot penetrate into the high 
concentration ICG solution due to the large absorption coefficient of the high concentration ICG 
solution (that means that light absorption is limited at the superficial layer of the ICG solution). 
 

Figures 7(a) and 7(b) show 2-dimensional (2D) images of the tube on x-y plane (C-mode, 
see the coordinates in Fig.1). They were acquired from a co-registered ultrasound and PA 
imaging system, respectively. Briefly, the PA system is same as the one described in Fig. 1. The 
pure ultrasound system has the same UST as the PA system. The UST was connected with a 
pulse-generator-receiver (5073PR Pulser/receiver, Olympus). The reflected ultrasound data was 
acquired by an oscilloscope (2530B Digital Storage Oscilloscope, BK Precision).  Figure 7(c) 
shows the ultrasound image of the cross-section of the tube (B-mode, x-z plane). The two bright 
areas show the two boundaries of the tube. Note that the inner boundaries of the tube cannot be 
resolved from this image due to the limit resolution of the used UST (2.25 MHz). The dotted 
horizontal line indicates the depth of the C-mode image shown in Fig.7(a). Clearly, the 
ultrasound image shows the boundaries between the tube and the surrounding medium. The 
FWHM is about 1.5 mm in Fig. 7(a), which is comparable with the size of the tube. Figure 7(b) 
shows the corresponding PA image in the x-y plane. The image clearly shows the tube with 
optical (absorption) contrast.  

 
 
 
 

2.1.4 Summary of research conducted for Aim 1 
We have designed, implemented, and tested a frequency-domain photoacoustic imaging 
system using tissue-like phantoms. The imaging principle and data processing method have 
been presented and verified. The measured PA signal strength depends on the absorption 
coefficient, depth of the target, and the modulated light intensity of the laser diode. We have 
learned that appropriately processing the measured PA data and background interference is an 
important key to correctly display the PA images. The lateral spatial resolution of PA images is 
dependent on ultrasound frequencies and focal size of the ultrasound transducers. Although the 
current system has a low axial resolution (due to the adopted ultrasound transducer), the axial 
resolution can be significantly improved by using a high numerical aperture ultrasound 
transducer or by adopting a frequency-swept technique [7]. The FD-PA imaging system is cost 
efficient as compared with a time-domain imaging system.  

Figure 7 (a) A C-mode ultrasound image of the ICG filled tube. (b) A C-mode PA image 
of the same ICG filled tube. (c) An ultrasound B-mode image showing the cross 
section of the same ICG filled tube. 
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In the meantime, however, we also learned that the frequency-domain photoacoustic 
imaging method developed by our approach has a severe limitation in sensing tissue signals 
deeper than 5 mm. Then, we tried to alter or modify our original idea by developing an 
integrated approach between ultrasound and optical tomography, namely, transrectal 
ultrasound-guided diffuse optical tomography (TRUS-DOT) for improved prostate cancer 
imaging. During the no-cost extension period, we have made great progress and obtained 
promising results using tissue-phantom experiments. In the following section, we provide details 
on this modified/updated approach with computer simulations and experimental results. 
 

2.2 Development and investigation for modified Aim 2 
 

2.2.1 Hierarchical clustering to improve TRUS-DOT for prostate cancer imaging 

Diffuse optical tomography (DOT) is a non-invasive imaging modality, which utilizes near 
infrared (NIR) light and provides blood-based absorption maps within the detected tissue 
volume interrogated by the optical optodes. When using multiple wavelengths, DOT is also 
capable of measuring chromosphere concentrations, such as oxy-hemoglobin, deoxy-
hemoglobin, and water. Usage of DOT for breast cancer detection has been extensively 
studied. DOT instrumentation can be divided into three categories based on the principle of 
operation: (1) time resolved systems, (2) frequency domain systems and (3) continuous wave 
(CW) systems. Measurements in DOT can be made in the form of transmission, reflectance, or 
both. Time resolved systems rely on photon counting or gated imaging, which measures time of 
flight of photons through the tissue. However, these systems are very costly and bulky in 
comparison with CW systems. The frequency domain systems modulate the light source (e.g., 
laser diode) typically in the radio frequency range (e.g., 100 MHz) and measure the amplitude 
and phase shift of the detected signals. CW systems are the simplest, cost effective, and fastest 
in data collection; they can be made to image tissues at a video-rate. However, since CW 
systems measure only intensities of the reflected or transmitted light, they cannot separate the 
absorption and scattering effects of the tissue. 

  
Despite of the instrumentation utilized, DOT has poor spatial resolution. Measurements in 

reflectance geometry are even worse in spatial resolution than in the transmission geometry. 
The cause that limits the spatial resolution of DOT is light scattering and diffusion in tissues, 
making DOT have to solve an underdetermined and ill-posed inverse problem. One way to 
improve the spatial resolution is to couple DOT techniques with other imaging techniques, such 
as MRI, ultrasound (US), and others. This process is usually done by combining a priori 
information in the inversion procedure. In particular, a combined usage of TRUS with DOT could 
improve the accuracy in identifying prostate cancer 1-2 centimeters below the prostate surface, 
as studied previously [8].  However, this reported approach treated each anatomical region, 
such as the rectum wall, prostate gland, and prostate cancer lesion, to be homogenous and 
thus to be reconstructed with uniform optical properties within each region. However, the 
reconstructed images by the reported method [8] could be erroneous because of the fact that 
TRUS does not provide a clear or clean signature for prostate cancer. On the other hand, it has 
been demonstrated that the spatial resolution of reconstructed DOT images depends upon the 
number and locations of optical sources and detectors utilized.  Given the limited space 
available in TRUS, the idea to incorporate more sources and detectors for a combined TRUS-
DOT approach seems not to be very practical. 

 
To solve the problems given above, we made new development in two aspects: (1) 

development of hierarchical clustering method (HCM) for improved contrast recovery and spatial 
resolution in DOT for prostate cancer imaging; (2) development of Trans-rectal compatible 
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optical probe and instrumentation for prostate cancer imaging. First, in Section 2.2.2, we will 
explain the HCM procedure and demonstrate the capability of HCM using computer simulations. 
Then, in Section 2.2.3, we will explain the instrumentation utilized for trans-rectal compatible 
DOT and demonstrate the capability of HCM using laboratory phantoms.  
  
2.2.2 Introduction, implementation, and Investigation of hierarchical clustering 
 
Principle and algorithm of HCM 

In standard practice, the equation used to iteratively update DOT image reconstruction is given 
by [9,10] 

                                          
))(())(2( a

T
a

T FyJIJJ  
                                                 (1)

 

where J is the Jacobin matrix (or called sensitivity matrix), I is the identity matrix, y is the 
measured data in a matrix form, F is the operator that generates the forward model for light 
propagation in tissues, µa  is the vector of optical properties, and λ is the regularization 
parameter. Note that changes only in µa are considered in eq. (1), because our DOT 
measurement utilizes CW NIR light with an assumption that variation in light scattering across 
the medium is minimal. 
 

In our HCM method, we divide the region of interest (ROI) (i.e., the prostate region) into 
several geometric clusters. We assume that each of the geometric clusters/units is 
homogeneous and has the same optical property. In this way, the computational domain could 
be partially heterogeneous since the domain may contain several geometric units. Specifically, 
the nodes in the mesh are tagged and separated into subsets (GS1, GS2…GSi) with respect to 

each unit. The Jacobian matrix in eq. (1) is then modified to J* and is given by JSJ * , where 

S matrix had a size of NN×NS, where NN is the number of nodes within the specific unit/cluster 
and NS is the number of geometric clusters. The elements of S matrix are given by [10]: 
 

                                                        

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),(                                                             (2) 

 
At the end of each iteration, the 

solution vector is mapped back to each 
node using the following equation   
                                                                

                                                                    
  
µa

* is a vector with optical properties of 
geometric clusters.  When reconstructing 
two ROIs or clusters, such as background 
and anomaly, the background mesh was 
geometrically segmented in a 
heterogeneous fashion. For multiple 
clusters, we hierarchically implemented 
the proposed method by segmenting the 
region which is more prone to cancer, 
utilizing available prior spatial information. 
Specifically, we applied the proposed 
method in four steps, as shown in Fig. 8. 
 

  (3)                                                                                     ) ( 
* 
a a S    

Figure 8: Flow chart indicating steps involved in HCM. 
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In step 1, the reconstruction is done based on TRUS images and the assumption of a 
homogeneous prostate. With such prior spatial information, the reconstructed µa values in both 
background and prostate region should be reasonably accurate with respect to the actual 
values. Then, the reconstructed µa values in available ROIs would serve as the initial guess in 
step 2 and step 3. 

 
Step 2 of our method is dedicated to finding the probable locations of anomalies (i.e., 

prostate tumors). To achieve this, we geometrically divide the prostate region into several 
clusters, so the prostate tissue becomes a heterogeneous medium. However, without prior 
knowledge of suspicious locations, dividing the prostate into several clusters may result in 
mixing of suspicious tissue with normal prostate tissue and vice versa. In order to prevent this 
situation, we segment the prostate volume with different unit volume sizes iteratively. 
Specifically, we chose a unit volume as an initial segment size which is 1x1x1 cm3 in each of the 
x, y and z dimensions. Then, we vary the volume size by increasing the linear length of the 
volume unit in each dimension iteratively.  For example, an increase in length of 0.5 cm in only x 
direction gave rise to a unit volume of 1.5 x 1 x 1 cm3, followed by the same length increase in 
only y or only z direction. In this way, we can generate 8 different unit volumes in three x, y, z 
directions, by increasing the linear length in only one dimension (x, y, z), or in two dimensions ( 
xy, yz, xz), or in three dimensions (xyz) and the initial size. 

 
The procedure is given as follows (see Fig. 8): (1) reconstruct an initial µa image with a 

starting base unit size (i.e., 1x1x1 cm3), (2) save the reconstructed image, and go back and 
change the unit volume size (e.g., 1.5x1x1 cm3 or 1.5x1.5x1 cm3 or 1.5x1.5x1.5 cm3) and 
reconstruct the image again (Step 2 in Fig. 8). To be more comprehensive, we next increase our 
base unit volume from 1x1x1 cm3 to 1.5x1.5x1.5 cm3 and then to 2x2x2 cm3, with the same 
length interval of 0.5 cm applied to increase the base unit (e.g., 2x1.5x1.5 cm3, 2x2x1.5 cm3, or 
2x2x2 cm3). In this way, we are able to generate another set of 8 reconstructed images with 
varied base unit volumes, resulting in an overall 16 (i=16) images by the end of step two. (3) We 
average all of the reconstructed µa images to obtain the final image. (4) Next, we search for 
suspicious clusters using full width half maximum (FWHM) of the updated µa values within the 
prostate region. If no suspicious segment is identified, we conclude that the prostate has a low 
probability of having cancer.  
 

In step 3, if some suspicious clusters in step 2 are seen, we then group all the non-
suspicious clusters as one new single segment and subdivide the suspicious clusters into 
further smaller clusters. Now, the initial unit volume size used within the suspicious regions in 
step 3 is set to 0.5 x 0.5 x 0.5 cm3. The procedure explained in step 2 is repeated here with a 
length variation of 0.25 cm in any one of three dimensions. Similar to step 2, the final 
reconstructed image of step 3 will be an average of the 8 images (j=8) obtained by varying the 
unit volume in 8 different fashions.  FWHM of the µa values is still used to localize suspicious 
regions for further inspection with an improved spatial resolution. 

 
Finally in step (4), the hard prior method was used to improve the optical properties of the 

suspicious regions identified in step 3. The initial guess here is the uniform initial guess as in 
step 1. 

 
Computer simulations 
To validate HCM, we performed computer simulations by considering a mesh, which was 
anatomically similar to a TRUS prostate image, consisting of four different ROIs, such as 
prostate, peri-prostate tissue, rectum wall and prostate tumors. Two spherical shaped inclusions 
were placed with a horizontal separation of 20 mm and a vertical depth of 20 mm from the 
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surface of the rectal wall (Fig. 9). 
The rectum wall had a thickness 
of 5 mm and a curvature radius of 
50 mm.  
 

In step 1, as the prior location 
of prostate cancer is often not 
visible in TRUS images, we 
assumed homogeneous optical 
properties for all ROIs. A 
simulated TRUS-DOT probe was 
used, having 16 bifurcated 
optodes that could serve as both 
sources and detectors (Fig. 9a). 
The CW mode was utilized in the simulations; 1% random noise was added to the data to mimic 
the instrument noise. Simulated NIR data was computed along the rectum boundary using a 
FEM-based diffusion forward model with NIRFAST [11]. The first-step reconstruction was done 
using the initial guess of µa=0.01 mm-1 to recover the optical property of the prostate (Fig. 10a).  
Then, the reconstructed data from the first step served as the initial guess for the second and 
third steps.  All reconstructions would stop when the change in projection errors is less than 2% 
of the previous iteration. Next, the prostate tissue was divided into several clusters. As noted 
earlier, the final image obtained after step 2 was the average over 16 independently 
reconstructed images, as demonstrated in Fig. 10b.  In this simulation, we found an estimated 
suspicious region, as marked by the dotted rectangle in Fig. 10b, using FWHM. In step 3, the 
suspicious region identified in step 2 was further divided into smaller clusters. The final image of 
step 3 shown in Fig. 10c was the average over 8 reconstructed images.  FWHM was used and 
resulted in two suspicious regions, which were treated as two individual regions and entered in 
the hard prior method for finer reconstruction in step 4. 

 

Figure 10: reconstructed µa values in mm
-1

 using different reconstruction steps. The dotted 
circles indicate the real locations of the anomaly. Reconstructed image (a) after step 1 
using HCM, (b) after step 2 using HCM; dotted rectangle indicates the suspicious location 
selected using FWHM, (c) after step 3 using HCM, (d) after step 4 using HCM. (e) 
Reconstructed image without any inclusions, but reconstructed using HCM. (f) 
Reconstructed image for the same case using a known hard prior for the inclusions. 

 
2.2.3 Measurement system and data processing 

Figure 9: (a) Probe geometry used in the simulation; each optode 
is bifurcated to serve as a source and detector. (b) Two 
anomalies separated by 20 mm at a depth of 20 mm. (c) Mesh 
has been sliced isometric view to show the simulation geometry. 
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Instrumentation 
For demonstrating HCM experimentally, 
we utilized the setup depicted in Fig. 11. 
A broadband pulsed laser source (SC-
450, Fianium Inc., Eugene, Oregon) with 
a max output power of 40 mW (measured 
at the tip of an optical fiber) was utilized 
as the illumination source. Although the 
pulsed laser has a repetition rate of 20 
MHz, due to the limited frequency 
response of the photodiodes, we still 
considered our system as a CW system. 
The laser output was collimated and fed 
through a filter wheel where a desired 
wavelength of 780nm was selected. In order to calibrate the fluctuations from the laser source, a 
beam sampler (BS) was utilized, and a sample beam was fed into another photodiode (PD) for 
further calibration. The light was again coupled into another optical fiber and fed into a 
multiplexor. The multiplexor, as controlled by a computer, illuminated 8 locations on an optode 
probe sequentially. We employed silica optical fibers (core diameter of 600 um) for light delivery. 

For the detection electronics (Fig. 12), 
we utilized photodiodes (OPT101, Burr-
Brown Corp., Tucson, Arizona) to collect the 
diffused light.  An analog low pass filter (LPF) 
was employed to filter out unwanted higher 
frequencies. Next, the electrical signal was 
amplified using an operational amplifier in the 
inverting mode. The operational amplifier’s gain was controlled by changing the resistance of 
feedback resistor. For digital control of gain, a digital potentiometer was utilized such that the 
gain was controlled from the computer.  Next, the electrical signal was further fed into a buffer 
amplifier which itself was an operational amplifier in non-inverting mode with unity gain. Finally, 
we utilized a National Instruments DAQ card with 16-bit resolution to convert analog signals into 
digital format and stored in the computer. The proposed instrument setup, including scanning 
mechanism, electrical gain, and data acquisition, was controlled using Labview software.  

 
Experimental setup 
Although in the computer simulations, we demonstrated our HCM using a multilayered model, 
we utilized a single layer phantom for experimental demonstration. We preferred a single 
layered phantom because of the complexity involved in the preparation of a multilayered 
phantom. Using a single layered phantom with an absorber 
inside, we skipped Step 1 in our reconstruction technique and 
directly started the reconstruction from step 2.  The reason for 
skipping Step 1was that it involved inducing the prior 
information; for this particular case, we did not use any prior 
information. The phantom setup is depicted in Fig. 13. A 
homogeneous liquid tissue-mimicking phantom was prepared 
by filling a container of dimensions of 15x10x10 cm3 with 1% 
Intralipid solution. This solution served as the homogeneous 
background medium with an absorption coefficient (μa) of 0.1 
cm−1 and reduced scattering coefficient (μ’s) of 10 cm−1. A 

BS-beam sampler 

PD-Photodiode 

Collimator Fiber-

coupler 

 

 
Filter 
(780 nm) 

Figure 11: Instrumentation and probe setup utilized for 
laboratory phantom experiment. 

Figure 12: Flow chart depicting various stages of 
detection electronics utilized in proposed 
instrumentation. 

Figure 13: Experimental 
setup used in the laboratory 
phantom measurement. 
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spherical absorbers (μa = 0.3 cm−1) of 1-cm diameter were placed at 1.5-cm distance around the 
center of an optode array which was placed from one side surface of the container (Fig. 13).  
 
Experimental results 
Panels in Fig. 14 provide overall comparisons among the reconstructed images that were 
obtained using the experimental setup given in Figs. 11-13. Figure 14(a) demonstrates the 
result obtained from the regular iterative DOT reconstruction technique. While this figure shows 
relatively good reconstruction in 
both location and size for the 
embedded absorber, we see very 
poor recovery in absorption 
contrast for the reconstructed 
object: the reconstructed value of 
μa was 0.012 cm-1 while the 
expected value was 0.03 cm-1. As 
seen in Fig. 14(b), step 2 in our 
HCM is able to determine the 
probable location of the absorber; 
Figs. 14(c) and 14(d) show the 
gradual improvement in the 
contrast recovery. By the end, both 
location and absorption contrast of 
the embedded absorber were 
reconstructed much better to meet 
the expected values. 
 
2.3 Optical properties of human prostate specimens quantified by ex vivo measurements 
Since our developed methodology depends highly on distinct differences in optical properties 
between benign/normal prostate tissues and prostate cancer tissues, we made some efforts to 
quantify and determine whether the cancer tissues do have significant differences in light 
absorption and scattering coefficients from those in normal prostate tissues. For this task, we 
shared existing resources and effort sponsored by an NIH grant to obtain insightful conclusions. 
Specifically, we conducted light reflectance spectroscopy (LRS) measurements between 500-
840 nm from ex vivo fresh human prostate specimens right after prostatectomy on both normal 
and cancerous lesions, followed by data analysis using a quantitative model to determine 
hemoglobin concentrations and light scattering. For LRS, we took n=724 distinct locations from 
both prostate capsular (nc=185) and parenchymal (np=539) tissues, including prostate cancer 
(PCa) tissue, benign peripheral zone tissue and benign prostatic hyperplasia (BPH), of fresh ex 
vivo radical prostatectomy specimens from 37 patients with high volume, intermediate-to-high-

grade PCa (Gleason score, GS 7). LRS parameters from parenchymal tissues were analyzed 
for statistical testing and classification. A feature selection algorithm based on multinomial 
logistic regression was implemented to identify critical parameters in order to classify high-grade 
PCa tissue. The regression model was in turn used to classify PCa tissue at the individual 
aggressive level of GS=7,8,9. Receiver operating characteristic curves were generated to 
determine classification accuracy for each tissue type. Please see Appendix B for details. 
 

The conclusion for this part of study is that prostate cancer does have distinct and significant 
difference in light scattering from that of normal prostate tissue, which provides us with 
biomarkers and/or image contracts for ultrasound-coupled diffuse optical imaging.  

 
 

Figure 14: reconstructed µa values and maps in mm
-1

 (a) using 
regular iterative DOT reconstruction technique and HCM after 
(b) step 2, (c) step 3, and (d) step 4. 
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3. Key Research Accomplishments and Reportable Outcomes  
 

Key research accomplishments: 
(1) We have shown the feasibility of TRUS-DOT through computer simulations and 

laboratory phantom experiments.  
(2) We have designed a TRUS-compatible, DOT-based image system (780nm), in which 

the photo diodes were placed on the trans-rectal probe. Optical signals were recorded 
and used for estimating the absorption coefficient.  

(3) We validated the system using laboratory phantoms. For improved image reconstruction, 
we have also developed a hierarchical clustering method (HCM) to improve the accuracy 
of image reconstruction with limited prior information. 

(4) We have quantified and confirmed that prostate cancer does have distinct and significant 
difference in light scattering from that of normal prostate tissue, which provides us with 
biomarkers and/or image contracts for ultrasound-coupled diffuse optical imaging. 
 

Reportable outcomes: 
(1) Peter LeBoulluec, Hanli Liu, and Baohong Yuan, “A cost-efficient frequency-domain 

photoacoustic imaging system,” Am. J. Phys. Vol. 81, 712 (2013); doi: 
10.1119/1.4816242 

(2) Venkaiah C. Kavuri and Hanli Liu, “Development of multispectral transrectal ultrasound 
compatible near infrared imaging system for early detection of prostate cancer,” SPIE, 
Photonics West, BiOS Biomedical Optics Symposium, paper 8578-57, Feb. 2-7, 2013, 
San Francisco, California. 

(3) Vikrant Sharma, Ephrem O. Olweny, Payal Kapur, Jeffrey A. Cadeddu, Claus G. 
Roehrborn, and Hanli Liu, “Prostate cancer detection using combined auto-fluorescence 
and light reflectance spectroscopy:  ex vivo study of human prostates,” Biomedical 
Optics Express, Vol. 5(5), 1512-1529 (2014). 

 
4. Conclusions 
 

As mentioned by the end of Section 2.1, we have modified our original goals or ideas by 
developing transrectal ultrasound-guided diffuse optical tomography (TRUS-DOT) for improved 
prostate cancer imaging. In Sections 2.2, we have shown the feasibility of TRUS-DOT through 
computer simulations and laboratory phantom experiments. Specifically, we have designed a 
TRUS-compatible, DOT-based image system (780nm), in which the photo diodes were placed 
on the trans-rectal probe. Optical signals were recorded and used for estimating the absorption 
coefficient. We validated the system using laboratory phantoms. For improved image 
reconstruction, we have also developed a hierarchical clustering method (HCM) to improve the 
accuracy of image reconstruction with limited prior information.  Then, in Section 2.3, we 
summarized our recent findings that prostate cancer does have distinct and significant 
difference in light scattering from that of normal prostate tissue, which provides us with 
biomarkers and/or image contracts for ultrasound-coupled diffuse optical imaging.   
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Photoacoustic (PA) imaging techniques have recently attracted much attention and can be used for

noninvasive imaging of biological tissues. Most PA imaging systems in research laboratories use

the time domain method with expensive nanosecond pulsed lasers that are not affordable for most

educational laboratories. Using an intensity modulated light source to excite PA signals is an

alternative technique, known as the frequency domain method, with a much lower cost. In this

paper, we describe a simple frequency domain PA system and demonstrate its imaging capability.

The system provides opportunities not only to observe PA signals in tissue phantoms but also to

acquire hands-on skills in PA signal detection. It also provides opportunities to explore the

underlying mechanisms of the PA effect. VC 2013 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4816242]

I. INTRODUCTION

Optical imaging of cancer has been intensively studied in
recent years due to its unique and high sensitivity to endoge-
nous and exogenous tumor contrast.1,2 These optical techni-
ques are usually limited either in penetration depth, e.g., a
few hundred of microns for optical microscopy, or in spatial
resolution, e.g., a few millimeters for optical diffuse optical
tomography (DOT).1–3 Obviously, a tradeoff exists between
the imaging depth and spatial resolution.4 To overcome this
limitation, ultrasound techniques have been combined with
optical approaches, yielding various diagnostic techniques
such as photoacoustic (PA) imaging.4 Using PA techniques,
the ratio of imaging depth to spatial resolution can reach val-
ues up to about 100, which is �10 times higher than what
can be achieved with conventional DOT. PA techniques can
potentially be used for imaging cancers in human breast,
prostate, skin, thyroid, neck, head, and others areas.4 PA
techniques provide optical contrast, which is usually much
more sensitive to functional and molecular information of
the tissue than ultrasound techniques, making it possible to
measure the concentrations of total hemoglobin, oxy- and
deoxy-hemoglobin, and specific molecules regulating tumor
growth and metastasis.4,5 Compared with pure optical imag-
ing methods, such as DOT, PA techniques have much higher
spatial resolution and similar imaging depth.4,5 The basic

mechanism of the PA effect can be briefly explained as fol-
lows: (1) tissue absorbs the energy of light illumination; (2)
the absorbed energy leads to a local temperature rise in the
tissue; and (3) a pressure or sound wave, called the PA sig-
nal, is generated due to the thermoelastic effect.4

Most PA imaging systems in large research laboratories
use a nanosecond pulsed laser with high pulse energy. A short
light pulse avoids energy loss due to thermal energy diffusion
before the generation of PA signals, which is known as ther-
mal confinement.6 A nanosecond pulsed laser with high pulse
energy typically costs tens of thousands of dollars and is usu-
ally positioned on a large optical table. Low cost and compact
PA imaging techniques that do not rely on nanosecond pulsed
laser systems are useful for educational and research labora-
tories with limited resources and for global healthcare.7–11 In
this study, we have developed a frequency-domain PA (FD-
PA) imaging system by using an inexpensive laser diode, a
conventional single element ultrasound transducer, and a
lock-in amplifier to improve the signal-to-noise ratio.12–16

The theory and the experimental implementation of FD-PA
have been extensively described in the literature.8,10,11,17 A
simple, compact, and cost efficient FD-PA imaging system is
an excellent teaching and research tool for educators and
researchers. It allows students and the general public to
understand the underlying mechanisms of the PA effect and
its applications, such as cancer imaging.
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II. FUNDAMENTAL THEORY OF FREQUENCY-

DOMAIN PHOTOACOUSTICS

The wave equation used to quantify photoacoustic pres-
sure is usually expressed as follows:

r2 � 1

v2

@2

@t2

� �
P ¼ �b

CP

@H

@t
; (1)

where P represents the photoacoustic signal, H is the laser
heating function, v is the speed of sound, b is the thermal
expansion coefficient, and CP is the heat capacity per unit
mass at constant pressure of the irradiated medium. In the

frequency domain, the laser intensity is usually modulated as
a sinusoidal function with frequency f . Assuming the ampli-
tude of the modulated intensity is I0, the heating function can
be expressed as:

H ¼ laI0 expð�ixtÞ; (2)

where x ¼ 2pf and la is the absorption coefficient of the
medium, which is usually proportional to the absorber con-
centration in the sample. When considering an infinitely
long and optically thin planar or cylindrical absorber, the
generated PA waves in the frequency-domain can be repre-
sented by

P ¼ ilabI0vl

2CP

sincðq̂Þ
sinðq̂Þ þ iq̂v̂ cosðq̂Þ

� �
expð�iq̂t̂Þ; ðplanar absorberÞ (3)

P ¼ ilabI0va

CP

J1ðq̂ÞHð1Þ0 ðv̂r̂ q̂Þ=q̂

J1ðq̂ÞHð1Þ0 ðv̂q̂Þ � q̂v̂J0ðq̂ÞHð1Þ1 ðv̂q̂Þ

" #
expð�iq̂t̂Þ; ðcylindrical absorberÞ (4)

where l is the thickness of the slab, a is the radius of the cyl-
inder, and r̂ is the radial coordinate. J0 and J1 are the zeroth-
and first-order Bessel functions, respectively. H

ð1Þ
0 and H

ð1Þ
1

represent the zeroth- and first-order Hankel functions, respec-
tively. q̂ is the dimensionless frequency and t̂ is the dimen-
sionless time. For a slab, q̂ ¼ xl=2v and t̂ ¼ 2vðt� z�1=2

v Þ.
For a cylinder, q̂ ¼ xa=v and t̂ ¼ vt=a. q̂ ¼ qin=qout and v̂
¼ vin=vout are the dimensionless density and speed-of-sound
parameters, respectively. The subscripts “in” refers to inside
the absorber and “out” refers to outside the absorber. For a
small spherical absorber with radius a, the PA wave can be
expressed as

P¼ ilabI0va

CPðr=aÞ
½sinðq̂Þ � q̂ cosðq̂Þ�=q̂2

ð1� q̂Þðsinðq̂Þ=q̂Þ � cosðq̂Þ þ iq̂v̂ sinðq̂Þ

" #

� expð�iq̂t̂Þ; (5)

where q̂ ¼ xa=v and t̂ ¼ v
a

� �
t� r�a

v

� �
.

Using Eqs. (3)–(5), the following can be concluded about
the strength of the FD-PA signal: (1) it is a sinusoidal func-
tion of time with the same frequency x as that of the modu-
lated light; (2) it is proportional to the optical absorption
coefficient la of the medium; (3) it is proportional to the am-
plitude of the modulated intensity I0; and (4) it depends on
the modulation frequency x via q̂.18,19 In this study, the sam-
ple setup can be assumed to be a cylindrical absorber,
described by Eq. (4).

III. MEASUREMENT SYSTEM AND DATA

PROCESSING

A. Measurement system

Figure 1 shows the experimental setup. A function genera-
tor (FG, Agilent 33120A, Agilent Tech) generates a sinusoi-
dal voltage signal of frequency f and a synchronized TTL
(Transistor-Transistor Logic) signal with the same frequency

Fig. 1. The experimental setup used for PA imaging. The tank with the ICG sample is filled with either water or an intralipid solution. The function generator

provides a sinusoidal voltage signal to the driver of the laser diode. A synchronized TTL signal is sent to the lock-in amplifier and serves as the reference sig-

nal. The laser diode emits a modulated light beam that is focused on the sample. A shutter is used to block the laser in order to measure the background noise.

The modulated light is absorbed by the sample, causing the emission of PA waves, which are detected by the ultrasound transducer. The output voltage signal

from the transducer is amplified, filtered, and sent to the lock-in amplifier.
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and a fixed phase shift. The sinusoidal signal is sent to a
homemade circuit, shown in Fig. 2, to drive the laser diode
(L785P100, Thorlabs). Thus, the laser intensity is modulated
with the frequency f . The laser diode has a central wave-
length of 785 nm and a power of �100 mW when operating
in DC mode. A lens is used to collimate the laser beam and a
mechanical shutter is used to manually block the laser illu-
mination to measure the background signal. The synchron-
ized TTL signal from the FG is sent to a lock-in amplifier
(LIA, SR844, Stanford Research Systems) and used as a ref-
erence signal. The sample and ultrasound transducer (UST,
Olympus NDT, 1 in. inch focal length) are submerged into a
transparent 10-gal tank (20 cm wide, 40 cm long, and 24 cm
high), filled with either water or an intralipid solution. The
sample used is an indocyanine green (ICG) aqueous solution,
which is injected into a partially optically and acoustically
transparent tube (MRE-095, Braintree Scientific) that is ver-
tically positioned in the tank. The outer and inner diameters
of the tube are 2.5 and 1.7 mm, respectively. The UST is
focused on the sample. Both the lateral and axial sizes of the
focal zone, normally measured in terms of the full width at
half maximum (FWHM), depend on the central frequency of
the UST. When the intensity-modulated laser reaches the
optically absorbing sample, a PA wave is generated. The PA
wave is detected and converted into a voltage signal by the
UST and further amplified (ZFL-1000LN, Mini Circuits) and
filtered (SLP-5þ, Mini Circuits). A total gain of 40 dB is
applied by using two identical amplifiers in series, driven by
a DC power supply (BK Precision 1506). The low pass filter
(SLP-5þ, Mini Circuits) is not required because the LIA has
a very narrow bandwidth. The processed PA signal is deliv-
ered to the LIA and the amplitude of the PA signal and the
phase difference between the PA signal and the reference
signal are displayed on the screen of the LIA.

Figure 2 shows the principle of the modulation circuit. By
generating an AC signal with a DC offset, the FG can serve
as a DC and AC power source. A resistor (R1) and a potenti-
ometer are used to limit and control the current flowing into
the laser diode, respectively. The laser diode has a typical
threshold current of 35 mA. The DC offset of the FG is
VDC ¼ 2 V and the AC peak-to-peak is VAC ¼ 4 V. The total
resistance of R1 and the potentiometer is about 11 X. A pho-
todiode (EOT, ET-2030 A) is used to verify the modulation
of the laser intensity via an oscilloscope (2530B Digital
Storage Oscilloscope, BK Precision).

B. Data processing

It is common that the LIA shows a background signal even
when the laser is turned off or blocked. This background signal
is mainly caused by electronic interference from the driving

signal generated by the FG. Fortunately, this background sig-
nal is independent of the location of the UST or the sample. A
simple way to eliminate the effect of this background signal is
to mathematically subtract it from the measured PA signal.
Figure 3 schematically shows the relationship between the
three signals, based on the amplitude and the phase measured
with the LIA: (1) the measured signal, (2) the background sig-
nal, and (3) the PA signal. The angle between the vector repre-
senting each signal and the horizontal axis is the phase. The
PA signal, vector (3) in Fig. 3, is the difference between the
measured signal and the background signal. The magnitude of
the PA signal is correlated with the optical absorption coeffi-
cient of the sample. All the calculations, image processing, and
plotting were carried out using MATLAB (Mathworks), which is
commonly used in engineering laboratories. Other software
packages, such as MATHCAD, can be used as alternatives.

IV. RESULTS AND DISCUSSIONS

Before the PA measurements, the laser beam was posi-
tioned to be coaxial with the UST. The tank was filled with a
1% intralipid solution to simulate biological tissues. The
absorption and scattering coefficients of the intralipid solution
are 0.04 cm�1 and 8.4 cm�1, respectively, as measured with an
ISS Oximeter. The tube was filled with an ICG aqueous solu-
tion, with a concentration of 0.5 g/l, to simulate an absorbing
target. ICG is a relatively weak fluorophore in the near infra-
red range with a quantum yield of <�1% in aqueous media20

and has been used as an optical absorber for PA imaging.21

The laser diode and the UST were mounted on the same trans-
lation stage and their relative position was thus fixed. By mov-
ing the translation stage, the PA signal distributions along the
x axis and in the x-y plane were acquired. Although the co-
axial setup between the laser beam and the UST is not
required, it improves the signal-to-noise ratio.

Fig. 2. Schematic of the modulation circuit used in our setup. The function generator provides DC and AC power to the circuit. The resistor and the potentiometer

are chosen to provide a modulated current within the current range of the laser diode. The photodiode detector and oscilloscope are used to verify the modulation.

Fig. 3. The relation between the measured signal (vector 1), the background

(vector 2), and PA (vector 3) signals.
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Figure 4 shows the strength of measured PA signal as a
function of the horizontal position of the tube relative to the
axis of the laser beam and the UST. The dashed and solid
vertical lines represent the inner and outer diameter of the
tube, respectively. Clearly, the strength of the PA signals rise
when the laser beam gradually moves into the tube region
and fall when the laser beam moves away from the tube
region. These results indicate that the highly absorbing ICG
tube generates significant PA signals compared to the sur-
rounding intralipid solution that has a much lower absorption
coefficient. The FWHM of the PA data using the 1 MHz
UST, shown in Fig. 4, is about 2.2 mm. It is larger than the
inner diameter of the tube (1.7 mm) and the UST lateral size
(1.3 mm) since the FWHM is mainly determined by the con-
volution of the profiles of the cross section of the tube and
the lateral focal zone of the UST.

When the frequency of the UST is increased from 1 to
2.25 MHz, the FWHM of the UST’s lateral focal zone is
reduced from �1.3 to �0.72 mm. The PA spatial resolution
can be thus improved by using a higher frequency UST.
Figure 4 shows that the FWHM of the PA signal measured
with the 2.25 MHz UST is 0.98 mm which is smaller than the
2.2 mm width measured with the 1 MHz UST. However, the

width is smaller than the tube size and the reason is unclear.
One possible reason may be that the PA signal generated
from regions close to the edge of the tube is too weak to be
detected. Higher frequencies provide smaller focal sizes and
higher spatial resolution. A UST with a central frequency
between 1 and 10 MHz achieves an acceptable spatial resolu-
tion. At frequencies below 1 MHz, the resolution will be
degraded. Frequencies above 10 MHz will also work but
increases the cost and the complexity of the system.

When the distance between the left-side of the tank wall
and the left outer surface of the tube, defined as the depth of
the tube, increases, the strength of the PA signal decreases.
This is a consequence of the reduction in the light intensity
reaching the sample due to the scattering in the medium. The
dependence of the strength of the PA signal on the thickness
or depth of the medium is shown in Fig. 5.

Increasing the ICG concentration increases the absorption
coefficient of the tube, which raises the PA signal strength.
Figure 6 shows the peak strength of the PA signal as a func-
tion of the ICG concentration. The PA signal strength
increases when the concentration is increased but appears to
saturate at high ICG concentrations. This may indicate that
the light cannot penetrate into a highly concentrated ICG

Fig. 4. The normalized PA signal strength as a function of the horizontal position of the sample relative to the co-axis of the laser beam and the UST. The data

were obtained with a 1 MHz (dashed curve) and a 2.25 MHz (solid curve) UST. The dashed vertical lines show the inner diameters and the solid vertical lines

show the outer diameters of the phantom tube that is filled with 0.5 g/l ICG solution at a depth of 1.9 mm in a 1% intralipid solution. The diameter of the colli-

mated laser beam is �1.0 mm. The error bars represent the standard deviation of 4 measurements.

Fig. 5. The maximum PA signal strength as a function of the tube depth

acquired with a 2.25 MHz UST in a 1% intralipid solution. The diameter of

the laser beam is �1.0 mm and the ICG concentration is 0.5 g/l. The error

bars represent the standard deviation of 4 measurements.

Fig. 6. The maximum PA signal strength as a function of the ICG concentra-

tion acquired with a 2.25 MHz UST in a 1% intralipid solution at a depth of

1.9 mm. The diameter of the collimated laser beam is �1.0 mm. The error

bars represent the standard deviation of 5 measurements.
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solution due to the large absorption coefficient, suggesting
that the light absorption is confined to a limited region of the
ICG solution.

Figures 7(a) and 7(b) show two-dimensional (2D) ultra-
sound and PA images of the tube in the x-y plane (C-mode,
see Fig. 7(d) for the coordinates and the imaging plane). The
ultrasound image was obtained with the same UST using the
conventional pulse-echo method. The UST was connected to
a pulse-generator-receiver (5073PR pulser/receiver, Olympus)
and the reflected ultrasound data was acquired with the oscil-
loscope. The UST was raster scanned in the x-y plane. The
laser was turned off because it is not used in ultrasound imag-
ing. The reflected ultrasound echo signal at each location, also
called the A-line, included the acoustic information along the
z direction. After scanning the x-y plane, all A-lines can be
used to construct a 3D image of the tube. Figures 7(a) shows a
2D image in the x-y plane, the so-called a C-mode ultrasound
image, at a depth indicated by the white line in Fig. 7(c).
Figure 7(c) shows a 2D image in the x-z plane, the so-called a
B-mode ultrasound image, representing the cross section of
the tube. The PA image shown in Fig. 7(b) was obtained with
the system described in Fig. 1. This system does not have the
capability to resolve the PA signal along z direction because
the laser diode is continuously modulated. This is one disad-
vantage of the PA technique compared with the time-domain
method. Therefore, only a 2D image in the x-y plane is shown
in Fig. 7(b).

The data points shown in Figs. 7(a) and 7(b) were obtained
by raster scanning the UST/laser system in the x-y plane.
The step sizes in the lateral (x) direction and in the vertical
(z) direction were 0.5 mm and 1.25 mm, respectively. Each
rectangle represents the intensity of a single measurement.
The two solid and dashed white vertical lines represent the
outer and inner diameter of the tube, respectively. The aver-
age FWHM of the ultrasound image shown in Fig. 7(a) is
about 0.98 mm, which is smaller than the inner diameter of
the tube. Figure 7(b) shows the corresponding PA image in
the x-y plane. The image clearly shows the tube with optical
(absorption) contrast. The average FWHM is about 0.88 mm,
which is also smaller than the inner diameter of the tube for
reasons that are not clear.

Figure 7(c) shows the ultrasound image of the cross-
section of the tube. To be consistent with conventional ultra-
sound imaging rules, zero depth in Fig. 7(c) is defined as the
surface of the UST because that is the location where the
ultrasound pulses are generated; note that this is different
from the definition of the tube depth. The two bright areas
show the two boundaries of the tube. Note that the inner
boundaries of the tube cannot be resolved from this image
due to the limited resolution of the UST (2.25 MHz). The
dotted horizontal line in Fig. 7(c) indicates the depth of the
ultrasound C-mode image shown in Fig. 7(a). Clearly, the
ultrasound image shows the boundaries between the tube and
the surrounding medium.

Fig. 7. (a) A C-mode ultrasound image and (b) a C-mode PA image of the ICG filled tube. The UST frequency is 2.25 MHz, the ICG concentration is 2 g/l,

and the intralipid concentration is 1%. (c). An ultrasound B-mode image showing the cross section of the same ICG filled tube. The white dotted line indicates

the depth of the C-mode images in (a) and (b). Note that the depth of zero in this figure is the surface of the UST, which is different from the definition of the

tube depth). (d) A diagram to show the B-mode and C-mode imaging planes. The B-mode image is parallel to the x-z plane and the C-mode is parallel to the

x-y plane (close to the right-side edge of the tube).
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V. COST AND COMPACTNESS ANALYSES

Table I shows the general costs, features, and possible
substitutes of the major components of the current PA sys-
tem. The cost of the system is dominated by the cost of the
LIA and the FG although lower cost LIAs and FGs could be
adopted. Clearly, the cost of a FD-PA imaging system is
much less expensive than that of a time-domain imaging sys-
tem. The cost of the MATLAB software is not included in
Table I. A student version of MATLAB is relatively cheap but
other free or relatively inexpensive software packages can be
used as alternatives. All components of the FD-PA system
are compact. Although we have not attempted to reduce the
overall size of our setup in the current study, it is possible to
integrate the entire system into a small and portable box by
replacing the FG and LIA with a small, customized circuit
board. It will be extremely difficult for a time-domain PA
system to achieve the same compactness.

VI. CONCLUSIONS

A FD-PA imaging system was designed and its imaging
capability was demonstrated with tissue-like phantoms.
The imaging principle and data processing method were
discussed. The measured PA signal strength depends on
the absorption coefficient, the depth of the target, and the
modulated light intensity of the laser diode. Appropriate
processing of the measured PA data and background inter-
ference is an important key to correctly display the PA
images. The lateral spatial resolution of PA images is de-
pendent on the ultrasound frequencies and focal sizes of
the ultrasound transducers. Although the current system
has a low axial resolution due to the adopted ultrasound
transducer, it can be significantly improved by using a
high numerical aperture ultrasound transducer or by adopt-
ing a frequency-swept technique.9 The FD-PA imaging
system is cost effective compared to a time-domain imag-
ing system.
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Abstract: This study was conducted to evaluate the capability of detecting 
prostate cancer (PCa) using auto-fluorescence lifetime spectroscopy 
(AFLS) and light reflectance spectroscopy (LRS). AFLS used excitation at 
447 nm with four emission wavelengths (532, 562, 632, and 684 nm), 
where their lifetimes and weights were analyzed using a double exponent 
model. LRS was measured between 500 and 840 nm and analyzed by a 
quantitative model to determine hemoglobin concentrations and light 
scattering. Both AFLS and LRS were taken on n = 724 distinct locations 
from both prostate capsular (nc = 185) and parenchymal (np = 539) tissues, 
including PCa tissue, benign peripheral zone tissue and benign prostatic 
hyperplasia (BPH), of fresh ex vivo radical prostatectomy specimens from 
37 patients with high volume, intermediate-to-high-grade PCa (Gleason 
score, GS ≥7). AFLS and LRS parameters from parenchymal tissues were 
analyzed for statistical testing and classification. A feature selection 
algorithm based on multinomial logistic regression was implemented to 
identify critical parameters in order to classify high-grade PCa tissue. The 
regression model was in turn used to classify PCa tissue at the individual 
aggressive level of GS = 7,8,9. Receiver operating characteristic curves 
were generated and used to determine classification accuracy for each tissue 
type. We show that our dual-modal technique resulted in accuracies of 
87.9%, 90.1%, and 85.1% for PCa classification at GS = 7, 8, 9 within 
parenchymal tissues, and up to 91.1%, 91.9%, and 94.3% if capsular tissues 
were included for detection. Possible biochemical and physiological 
mechanisms causing signal differences in AFLS and LRS between PCa and 
benign tissues were also discussed. 

©2014 Optical Society of America 

OCIS codes: (170.1610) Clinical applications; (170.3650) Lifetime-based sensing; (170.6935) 
Tissue characterization; (170.4580) Optical diagnostics for medicine; (170.6510) Spectroscopy, 
tissue diagnostics. 
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1. Introduction 

Improved capabilities for prostate cancer (PCa) detection during diagnosis and treatment 
would be highly beneficial to both urologists and patients, with potential applications in 
surgical margin assessment during radical prostatectomy and cancer monitoring during active 
surveillance. The former is particularly important considering that in a recent comprehensive 
review, positive surgical margins (PSM) during radical prostatectomy (RP) were noted to be 
present in up to 38% of cases [1]. While the clinical significance of PSM is variable, largely 
depending on margin extent and location, PSM is generally considered an adverse factor for 
disease-free survival [2,3]. Thus, minimizing PSM during RP will lead to a lower risk of 
biochemical recurrence and reduction of further therapeutic treatments. While much effort has 
been made in the field of pathological analysis [4–7] to improve the detection accuracy of 
PSM and extraprostatic extension, there have been very few technical reports [8] on 
development of optical techniques to detect PSM in vivo during RP or ex vivo right after 
retrieval of the excised prostate specimens. Very recently, Lue et al. have reported a portable 
optical fiber probe-based spectroscopic scanner for rapid cancer diagnosis [9]. While it is 
possible that such a scanner has the potential to become a clinical platform for intraoperative 
margin assessment, it is unknown whether optical signatures of PCa tissue are distinct enough 
to be differentiated from adjacent non-cancer tissues. 

The second major issue in prostate cancer management is detection of early-stage 
biologically aggressive disease. Prostate specific antigen (PSA) screening has led to a 
significant rise in diagnosing the incidence of prostate cancer, which is currently diagnosed 
by transrectal ultrasound (TRUS)-guided prostate biopsy. Novel methods, such as 
multiparametric MRI, have demonstrated the potential for improved detection of high grade 
cancer and risk stratification in newly detected prostate cancers, but confirmatory biopsies are 
still required [10]. In addition, it is less likely or feasible to utilize MRI as a screening tool for 
detection of aggressive prostate cancer due to its complexity, availability, and cost, in 
comparison with a TRUS-guided, office-based, portable imaging device. 

Several recent studies, including our own, have investigated the use of optical techniques 
for minimally invasive or non-invasive detection of PCa. As a simple, compact, and hand-
held tool, optical reflectance spectroscopy was examined for optical signatures and feasible 
detection of PCa using ex vivo prostate specimens [11,12]. Salomon et al. [13] reported a 
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triple spectroscopy method in ex vivo prostate tissue with a sensitivity and specificity of 75% 
and 87.3%, respectively, for PCa detection. Dangle et al. explored the possibility of 
evaluating PCa tissue by high-resolution optical coherence tomography (OCT) [14], while 
Gao utilized a coherent anti-Stokes Raman scattering (CARS) microscope to image PCa 
tissue and cavernous nerves with cellular resolution [15]. From the non-invasive aspect, Jiang 
et al. demonstrated the feasibility to optically image PCa tissue and its surrounding 
vasculature using diffuse optical tomography (DOT) based on laboratory phantom 
measurements [16] and animal studies [17,18]. Recently, Kavuri and Liu reported the 
feasibility of imaging human PCa tissue by DOT without prior information on PCa locations 
using an optode geometry integrated with a transrectal ultrasound probe [19]. Furthermore, 
electrical impedance was also a possible bio-character to identify PCa. Halter et. al. [20] 
reported the use of electrical properties to differentiate PCa tissue from benign tissue, 
showing an area under curve (AUC) of 0.9 when discriminating between benign and 
malignant prostate tissue, 0.75 when discriminating between low and high grade cancer 
tissue. 

In the present study, we developed and then evaluated a dual-modal optical device 
(dMOD), which incorporates dual measurements from auto-fluorescence lifetime 
spectroscopy (AFLS) and light reflectance spectroscopy (LRS) in a single fiber-optic probe of 
1-mm diameter. LRS is sensitive to both tissue morphology and biochemical composition, 
while AFLS, on the other hand, captures the dynamic characteristics of endogenous 
fluorophores in the nanosecond range and is highly sensitive to the biochemical environment 
of the tissue. Each of these techniques has been successfully applied for identification of 
cancer tissue [21,22], but neither of them has been applied to human PCa diagnosis [23] nor 
studied as a combined technique for cancer detection. In principle, the vasculature, 
morphology and biochemical composition of PCa-bearing tissue are expected to differ from 
those of benign tissues; the differences are presumably more pronounced in higher grade and 
more advanced PCa tissue than slow-growing, less aggressive ones. Thus, we hypothesized in 
this study that LRS and AFLS, alone or in combination, could be able to detect and identify 
PCa at high grades. 

Specifically, we performed dual-modal optical spectroscopic measurements from 37 ex 
vivo human prostate specimens right after radical prostatectomy. Measurements from twenty 
nine (np = 29) out of the 37 glands were obtained from prostate parenchyma (i.e. tissue within 
the prostate capsules) and were used for characterization and classification of high grade PCa 
with Gleason score (GS) ≥7. Measurements from the rest of the prostate specimens (nc = 8) 
were taken from capsular and extra capsular tissues. By the end of this study, we 
demonstrated that the dMOD is able to (1) discriminate high-grade PCa tissue (PCa) from 
benign peripheral zone prostate tissue (nPZ) and benign prostatic hyperplasia (BPH) in 
parenchymal tissues, and (2) result in excellent accuracy of above 90% in discriminating PCa 
from benign extra capsular tissues (ECT). In addition, several possible biochemical and 
physiological mechanisms were revealed and speculated to explain or interpret signal 
differences of AFLS/LRS induced by PCa. Overall, our results reported an excellent 
performance of this technique in its efficiency of detecting PCa at the individual Gleason 
grade from ex vivo human PCa-containing specimens. 

2. Methods 

2.1 Optical measurement setup and procedures 

As reported earlier [24], the dMOD optical imaging system consisted of two modalities [Fig. 
1(a)], namely AFLS and LRS, which were coupled through a custom-made fiber optic probe 
with 1-mm outer diameter (FiberTech Optica Inc., QC, Canada) [Fig. 1(b)], containing four 
fibers with different diameters [Fig. 1(c)]. The AFLS system consisted of a custom-made, 
single-channel, time correlated single photon counting system (ISS Inc., Champaign, IL) 
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machine and a pulsed supercontinuum laser source (5 ps, 20 MHz) (SC-450, Fianium Inc., 
Eugene, Oregon). This broadband laser light was filtered through a band pass filter at 447 nm 
with a bandwidth of 60 nm, as noted by 447 nm (60), and directed to the tissue sample for 
excitation. The auto-fluorescence signals and its corresponding lifetimes were measured using 
a photomultiplier tube (PMT) at four wavebands, namely, 532(10) nm, 562(40) nm, 632(24) 
nm, and 684(22) nm, each of which was selected sequentially through the emission filter 
wheel. Moreover, the LRS system consisted of a tungsten halogen light source (HL2000HP, 
Ocean Optics, FL), and a charged coupled device (CCD) array spectrometer (USB2000 + , 
Ocean Optics) that includes a spectral range of 500-840 nm, with a spectral sampling interval 
of 0.3 nm and a spectral resolution of 3 nm. More details on instrumentation is given in [24]. 

 

Fig. 1. Instrumentation: (a) Dual-modal optical system assembled on a portable cart for mobile 
capability to meet clinical needs; (b) close view of the optical probe positioned near the 
prostate specimen before actual optical readings; (c) front view of the probe showing 
arrangement of source and detector fibers for both AFLS and LRS. 

2.2 Patients and surgical procedures 

The study was conducted as per guidelines of the Institutional Review Board at the UT 
Southwestern Medical Center, Dallas, TX; each patient’s informed consent was obtained 
before the surgery. Patients were selected with (a) an intermediate-to-high grade of disease 
(GS ≥ 7) and (b) a moderate-to-high volume of prostate cancer (at least two contiguous 
biopsy cores, each of which had 20% or more cancer involvement and/or bulky disease by 
endorectal MRI), so as to optimize spectral yield in this initial study. Each patient underwent 
robotic-assisted radical prostatectomy by one of two surgeons (JAC and CGR); then, the 
prostate glands were extracted after being disconnected from their blood supply for at least 30 
minutes. 

2.3 Experimental procedures 

Resected prostate glands were immediately immersed in saline, and submitted for the dual-
modal spectroscopy measurement [Fig. 2(a)]. For parenchymal tissue measurements, each of 
29 glands (np = 29) was first inked on the capsule first, as per standard protocol at UTSW for 
histological evaluation (blue for the left lobe; orange for the right lobe) [Fig. 2(b)]. Dyes were 
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fixed using acetic acid washes so that the ink on the capsule would not be transferred into the 
parenchymal tissues. Then, the specimens were cut in a coronal plane through the location of 
possible tumor nodules as determined by pre-surgery biopsy mapping, pre-surgery MRI 
and/or palpation, such that tumor nodules were highly likely to be visible at the cut cross 
sections [Fig. 2(c)]. When the cancer tissue was not clearly identified by visual inspection, a 
Diff quick-stained touch-prep slide was made of suspected cancer-bearing tissue, confirming 
the location of PCa cells cytologically. The locations of nPZ and BPH regions on the cut 
surfaces of the specimens were also identified. 

The dual-modal optical system [Fig. 1(a)] was then introduced to start the measurements. 
The dMOD probe [Figs. 1(b) and 1(c)] was placed just in contact with the cut surface of the 
prostate gland, without pressing the gland, and LRS and AFLS spectra were recorded from 
each of the pre-specified regions (PCa, nPZ, and BPH) [Fig. 2(d)]. Given the wavelength 
range used, we expect that AFLM would sense the tissue depth within 1 mm. For LRS, the 
fiber diameter and the source-detector separation employed would give rise to a best 
sensitivity at 1-2 mm depth. Thus, both of them interrogated ~1 mm tissue in depth. Also, 
since our AFLM/LRS measurement was point-based, eight repeated measurements from 
adjacent spots were obtained in each region (3-5 mm in diameter) for each type of tissues 
(i.e., prostate cancer, normal, and BPH) from each specimen to account for tissue 
heterogeneity. 

After all the optical measurements were complete, each measured region was then marked 
with black ink, and a thin (~1 mm thick) section of each measured region was separately 
removed and submitted for histological evaluation [Fig. 2(e)]. Hematoxylin and eosin stained 
sections from these sets of submitted tissue were evaluated by a urologic pathologist to 
confirm the presence and extent of PCa and to determine the corresponding Gleason grade. 
Measured spectra were further categorized into different grade groups according to the 
histologically confirmed results. 

 

Fig. 2. Measurement Protocol: a freshly removed prostate specimen (a) was inked (b); then bi-
valved in a coronal plane (c). After identifying benign peripheral zone tissue (nPZ), benign 
prostatic hyperplasia (BPH), and suspicious lesions for PCa, optical measurements were 
performed on the selected regions (d). Then, the measured regions were black-inked, removed, 
and sent for pathology confirmation (e), where black markings represent the removed tissue 
pieces that were optically measured and then sent for pathology analysis. 

For capsular and/or extra-prostatic tissue measurements (nc = 8) on the gland capsules, 
freshly resected samples were randomly selected for measurement. The measurement 
protocol was the same as the one used for parenchymal tissue measurements, except that the 
prostate glands were measured before inking. Three types of extra capsular tissues (ECT) 
were measured, namely, tissues at the prostate base near the bladder, urethra at the prostate 
apex, and prostate capsular tissues. For each prostate gland, 2-3 regions of each type were 
identified, and five dual-modal optical readings were taken on each region. Given eight 
prostate specimens, each of which had 3-5 regions measured at five times, we had a total of 
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185 locations measured. Then, each of the measured regions was submitted to pathology for 
analysis; all capsular tissues were confirmed to be benign after histopathology examination. 

2.4 LRS and AFLS data processing for both PCa and benign tissues 

A spectral width of 500-840 nm was chosen for data analysis; the corresponding data were 
fitted to a mathematical model [Eq. (1)], details of which have been described in [25]. 

 
'

1 2

( )
( ) .

( )
s

a

R
k k

μ λλ
μ λ

=
+

 (1) 

Briefly, R(λ) is the measured spectral reflectance, which is associated with optical absorption 
and scattering coefficients (μa and μs’) of the tissue by Eq. (1); k1 and k2 are instrument 
calibration constants. In principle, values of μa result mainly from a variety of chromophores 
in tissue such as oxygenated hemoglobin (HbO), deoxygenated hemoglobin (Hb), total 
hemoglobin (HbT), and β-carotene within the measured tissues. Also, values of μs’ are closely 
related with cell size and density [25] and can be obtained at specific wavelengths. Thus, 
fitting Eq. (1) to the measured LRS data allowed us to obtain overall six LRS-based 
parameters including five fitted parameters (i.e., HbO, Hb, melanin, β-carotene, and light 
scattering coefficient at 750 nm) and one derived parameter (HbT = Hb + HbO) per measured 
spot. For parenchymal tissue analysis, the absorption spectra of the surface inking dyes were 
also incorporated in the model to account for any contamination from the dyes during the 
slicing of the prostate tissue. Furthermore, when we utilized only LRS parameters for 
statistical testing and tissue classification, statistical differences in fitted parameters for PCa, 
nPZ and BPH were analyzed using a linear mixed model regression analysis implemented in 
SAS (SAS Institute Inc., Cary, NC, USA). 

For AFLS, four auto-fluorescence decay curves corresponding to four emission 
wavelengths (see Section 2.1) were obtained at each measured spot/location. These curves 
were first normalized and then used to fit a two-exponent model, as described by Eqs. (2a) 
and (2b). 

 ( ) ( / ) ( / )I t a exp t a exp t cτ τ= − + − +      1 1 2 2  (2a) 

 2 2
1 1 2 2 1 1 2 2( ) / ( ),m a a a aτ τ τ τ τ= + +  (2b) 

where τ1 and τ2 represent the lifetime of two auto-fluorescence decay components, a1 and a2 
are their respective weights, and c is a baseline offset. The integral-intensity-weighted mean 
lifetime (τm) was also calculated for each curve [24]. Thus, we obtained five fitted features for 
each of the four emission wavelengths, giving us overall 20 parameters per measured 
location. As in case of LRS, each of these features was analyzed for statistical differences 
between PCa vs. nPZ, and PCa vs. BPH, using a linear mixed model regression analysis. 

2.5 Classification and receiver operating characteristic (ROC) for parenchymal tissues 

To examine the ability to discriminate PCa from benign tissue, two classification approaches 
were implemented. First, we tested the ability to differentiate prostate cancer (PCa, all grades 
combined) from benign nPZ and BPH using a 3-tissue-type classification model. Next, we 
evaluated the ability to differentiate individual grades of PCa with GS = 7, 8, 9 from benign 
nPZ and BPH using a 5-tissue-type classification model. These two classification approaches 
were evaluated for all three techniques, namely, LRS, AFLS, and dMOD (LRS + AFLS 
combined). 

Specifically, we implemented a two-phase process for either 3-tissue-type or 5-tissue-type 
classification in order to effectively assess the classification accuracy for each technique. 
Phase one was to implement a feature selection algorithm so as to select a best feature set for 
cancer classification. In Section 2.4, we mentioned that fitting Eqs. (1), (2a) and (2b) to LRS 
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and AFLS data, respectively, would allow us to quantify multiple characteristic parameters or 
features (5 for LRS, 20 for AFLS, and thus 25 for dMOD), which could be utilized for PCa 
discrimination. However, all these features may not contribute equally and constructively to 
the classification model. An optimal feature set may allow better classification by reducing 
such problems as multicollinearity, redundancy, and overfitting of data. Thus, similar to our 
previous work [24], we employed sequential feature selection using a multinomial logistic 
regression model in this study. The actual determination of optimal features will be given in 
Section 3.1. 

In phase two, for either 3-tissue-type or 5-tissue-type classification, we developed a 
multinomial logistic regression (MLR) model [24] along with 10-fold cross-validation [see 
Appendix] to classify respective types of prostate tissues and to obtain corresponding 
classification parameters for each tissue type. The procedures for this MLR-based 
classification are outlined in a flow-chart in Fig. 3, including (1) splitting data into 10 sub-
groups; (2) using 90% of the data (Tr) for model training and 10% of the data (Te) for model 
testing; (3) generating an MLR-based classification model based on Tr; (4) generating ROC 
curves for each class of prostate tissues; (5) calculating the classification thresholds for PCa 
tissues; (6) testing the classification model derived from Tr with the independent data set, Te, 
by determining sensitivity (Sn), specificity (Sp), and accuracy (Acc); (7) performing ROC 
analysis based on MLR model and obtaining the area under curve (AUC) for each class of 
tissues; (8) repeating steps (2)-(7) 10 times using different sub-groups of Tr and Te for 10-
fold cross validation and obtaining averaged Sn, Sp, Acc, and AUC; (9) repeating steps (1) - 
(8) 10 times after randomizing or regrouping the 10 sub-groups for Tr and Te, and thus 
achieving grand average values for means and standard deviation of Sn, Sp, Acc, and AUC. 
Note that the entire classification and ROC analysis were performed separately and 
independently for both 3-tissue-type and 5-tissue-type classification approaches. 

 

Fig. 3. A flow chart describing calculation of sensitivity, specificity, accuracy and generation 
of ROC curves through cross-validated classification process. 
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2.6 Data analysis for extracapsular tissues on the gland capsules 

The data analysis procedures given in Sections 2.5 were used to analyze parenchymal tissues 
first; then they were repeated to investigate capsular and extra-capsular tissues. The same 
multinomial classification model with 10-fold cross validation was performed to evaluate the 
accuracy of dMOD to discriminate PCa from ECTs and nPZ. We again utilized 3-tissue-type 
and 5-tissue-type classification approaches to classify ECTs: the three tissue types included 
PCa, nPZ, and ECT; the five tissue types included PCa (GS 9), PCa (GS 8), PCa (GS 7), nPZ 
and ECT. Therefore, the 3-tissue-type classification method tested the accuracy in identifying 
any level of high grade PCa in presence of benign ECTs and nPZ tissue, whereas the 5-tissue-
type classification tested the accuracy of differentiating specific high grade PCa at GS=7, 8, 
and 9 in the presence of benign ECTs and nPZ tissues. 

3. Results 

3.1 Results from prostate parenchymal tissues 

A total of 29 patients were enrolled for this part of study (i.e., measurements from prostate 
parenchymal tissues); 6 out of 29 were excluded from the final analysis since their PCa 
tissues were made up only 25% or less over the entire tissue sampling evaluation, according 
to the final histology results. Mean (standard deviation) patient age was 60.7 (6.0) years. 
Several patients had multiple foci of PCa, resulting in 27 PCa regions, which were measured 
from 23 different prostate glands. As previously mentioned, 8 (or 9 from a few PCa regions) 
distinct spectral measurements were obtained from each region yielding a total of 221 PCa, 
176 nPZ and 142 BPH measurements (see Table 1). Note that the numbers of measurements 
from nPZ and BPH reflect measurements from benign regions of the PCa-containing glands 
with the given GS. 

Table 1. Number of measurements classified by tissue type* 

 GS-7 GS-8 GS-9 Total 

NSubjects 13 4 6 23 

NRegions 15 5 7 27 

Nmeas (PCa) 125 40 56 221 

Nmeas (nPZ) 104 32 40 176 
Nmeas (BPH) 88 24 30 142

* For each Gleason column, the number of measurements for PCa is approximately equal to NRegions × 8, with a few 
cases having nine repeated measures in the selected regions. 

Analysis of means for AFLS data revealed that integral-intensity-weighted mean lifetimes 
(τm) for PCa were significantly (p < 0.05) different from all other benign tissue types at all 
four wavelengths. While the lifetime of nPZ was shorter, BPH had a longer lifetime than PCa, 
consistently at all four wavelengths [Fig. 4(a)]. For LRS, analysis of means also showed 
statistical differences between PCa versus nPZ and PCa versus BPH for multiple fitted 
parameters [Fig. 4(b)]. Specifically, hemoglobin levels and β-carotene concentration were 
significantly smaller in PCa tissue than nPZ; BPH on the other hand showed significantly 
reduced deoxy-hemoglobin and β-carotene concentrations as compared to PCa tissue. One 
important observation is that light scattering was found significantly increased in PCa 
compared to all of the benign parenchymal tissues within prostate capsules. 
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Fig. 4. (a) Comparison of four AFLS-derived mean-lifetimes, τm, at all four emission 
wavelengths across three tissue types (PCa, nPZ, and BPH). (b) Comparison of five LRS-
derived features across the three tissue types. μs' was calculated at 750 nm, and β-car is scaled 
down by a factor of 10 for display purposes. For both (a) and (b), the symbol of ‘*’ above bars 
indicates a statistically significant difference (p < 0.05) when compared to PCa. Error bars are 
based on standard error of mean. 

In executing phase-one of data classification process (see Section 2.5) for AFLS only, the 
feature selection algorithm selected 15 out of 20 (i.e., 15/20) fitted AFLS parameters as an 
optimal feature set for 3-tissue-type classification, whereas 16/20 fitted AFLS parameters 
were selected for 5-tissue-type classification. For LRS only, all five parameters were selected 
by the feature selection algorithm for ‘LRS only’ classification and for both 3-tissue-type and 
5-tissue-type classification. In case of dMOD, the selected feature number of parameters were 
20/25 and 18/25 for 3-level and 5-level classification, respectively. 

Table 2. Classification metrics of PCa for parenchymal tissues, evaluated by LRS only, 
AFLS only, and dMOD (unit: %) 

Classification 
method 

PCa 
Type 

Mode Sensitivity Specificity Accuracy AUC*100 

3-tissue-type 
classification* 

All high 
grade 

(GS≥7) 

AFLS 64.2 ± 2.5 69.2 ± 1.8 67.1 ± 0.7 72.9 ± 0.5 

LRS 63.0 ± 1.5 82.9 ± 1.6 74.7 ± 1.0 80.4 ± 0.2 

dMOD 79.0 ± 1.7 85.2 ± 1.1 82.7 ± 0.7 90.8 ± 0.4 

5-tissue-type 
classification** 

GS 9 

LRS 84.4 ± 2.3 56.5 ± 0.7 59.4 ± 0.6 72.9 ± 0.5 

AFLS 76.5 ± 3.2 75.9 ± 1.0 76.0 ± 0.9 85.4 ± 0.6 

dMOD 82.3 ± 2.4 85.4 ± 0.7 85.1 ± 0.6 91.5 ± 0.7 

GS 8 

LRS 71.8 ± 2.6 72.6 ± 1.8 72.5 ± 1.6 77.1 ± 0.7 

AFLS 76.3 ± 4.9 86.7 ± 0.8 86.0 ± 0.6 90.0 ± 0.6 

dMOD 81.5 ± 3.4 90.8 ± 0.9 90.1 ± 0.8 93.6 ± 0.7 

GS 7 

LRS 71.9 ± 2.2 82.7 ± 1.3 80.2 ± 0.7 87.9 ± 0.2 

AFLS 70.9 ± 2.0 72.4 ± 0.9 72.1 ± 0.7 78.6 ± 0.7 

dMOD 86.0 ± 2.4 88.5 ± 0.7 87.9 ± 0.6 94.7 ± 0.4 

* The values listed in this category implicate the classification for all high-grade PCa tissue group against non-cancer 
tissue types (nPZ and BPH). ** The values listed in this category implicate the classification for each PCa tissue 
group (e.g., GS 9) against remaining tissue groups. All are high grade (GS≥7). 
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Fig. 5. ROC curves obtained using the dMOD and the MLR classification for identifying 
parenchymal PCa tissues at individual PCa grades (GS 9, GS 8, GS 7) using 5-tissue-type 
classification and with all grades combined (All PCa) using 3-tissue-type classification. 

After generating the MLR classification models using selected features and completing 
phase-two data process for 3-tissue-type classification, we were able to evaluate classification 
accuracy by quantifying Sn, Sp, Acc, and AUC for all high-grade PCa (i.e., all GS≥7 
combined) with classification based on AFLS and LRS, individually or combined, as listed in 
Table 2. It is clear that dMOD gives rise to the best sensitivity (79.0%), specificity (85.2%), 
accuracy (82.7%), and AUC (90.8%) for PCa classification compared to either of the two 
techniques (AFLS and LRS). Furthermore, we repeated phase-two data process for 5-tissue-
type classification, and the analysis outcome was also excellent as shown in Table 2. The 
authors’ two-phase classification method allows identification of PCa tissue at the individual 
Gleason grade, namely, GS = 7, 8, and 9, and to return the best classification performance by 
its sensitivity, specificity, accuracy and AUC for all three PCa grades. It is clear that dMOD is 
the optimal approach to be able to accurately classify not only PCa tissue but also its specific 
Gleason grade. Three corresponding ROC curves obtained by dMOD for respective Gleason 
scores are illustrated in Fig. 5. One extra ROC curve for all PCa grades combined, as 
determined by 3-tissue-type classification from dMOD, is also plotted in Fig. 5 for 
comparison. This figure reveals that the overall performance from 5-tissue-type classification 
is superior, particularly for PCa tissue with Gleason grades of GS=7 and GS=8 compared to 
3-tissue-type classification. 

3.2 Results from extra-capsular tissues on the gland capsules 

For extra prostatic or extra capsular tissues (ECT), the measured AFLS/LRS data sets were 
taken from 185 small sites on or adjacent to the prostate capsules of additional eight patients. 
Analysis of means for AFLS data revealed that ECT lifetimes were closer to those of BPH 
and significantly longer than those from PCa. Also, in LRS, oxy- and total hemoglobin 
concentrations were significantly lower, whereas deoxy-hemoglobon concentration was 
significantly higher in PCa tissues than in benign ECT. In particular, light scattering of PCa at 
750 nm was still significantly larger than that in benign ECT, which is very consistent with 
the case of parenchymal benign tissues (see Fig. 4). 
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Table 3. Classification metrics to discriminate PCa from benign tissues (including ECT), 
evaluated by LRS only, AFLS only, and dMOD (unit: %) 

Classification 
method 

PCa 
Type 

Mode Sensitivity Specificity Accuracy AUC*100 

3-tissue-type 
classification* All high 

grade 
(GS>7) 

AFLS 86.6  ±  1.7 79.4  ±  1.2 82.1  ±  0.8 92  ±  0 

LRS 76.7  ±  0.5 92.6  ±  0.7 86.6  ±  0.4 93  ±  0 

dMOD 92.1 ± 1.0 92.4 ± 0.8 92.3 ± 0.5 98 ± 0 

5-tissue-type 
classification** GS 9 

LRS 80.2 ± 2.0 78.2  ±  0.5 78.4 ± 0.3 85  ±  1 

AFLS 88.1 ± 2.7 91.7 ± 0.2 91.4 ± 0.4 95 ± 1 

dMOD 82.8 ± 1.8 95.5 ± 0.5 94.3 ± 0.5 96 ± 1 

GS 8 
LRS 70.3  ±  5.3 79.7 ± 0.8 79.1 ± 0.8 81 ± 0 

AFLS 76.8  ±  2.1 92.3 ± 0.3 91.3 ± 0.3 93 ± 1 
dMOD 83.5 ± 3.2 92.5 ± 0.3 91.9 ± 0.3 95 ± 1 

GS 7 

LRS 87.1 ± 2.3 80.4 ± 1.0 81.8 ± 0.8 92 ± 0 

AFLS 83.3 ± 1.2 76.0 ± 0.9 77.5 ± 0.7 88 ± 0 

dMOD 91.4 ± 1.4 91.0 ± 0.3 91.1 ± 0.3 97 ± 0 

We utilized the same multinomial classification with 10-fold cross validation to evaluate 
the accuracy of dMOD to discriminate PCa tissues from ECTs and nPZ. The feature sets for 
3-tissue-type classification included 11 features out of 20 from AFLS, all 5 features from 
LRS, and 23 parameters from the dual-modal method. Also, the feature sets for 5-tissue-type 
classification included 16, 5, and 16 fitted parameters from AFLS, LRS, and dMOD, 
respectively, after executing the feature selection algorithm. The final outcome of phase two 
classification analysis for both 3-tissue-type and 5-tissue-type classification is listed in Table 
3. The former classification gave rise to 92.3% accuracy when identifying any level of high 
grade PCa (GS>7) in the presence of benign ECTs and nPZ tissue; the latter classification 
resulted in a range of accuracy between 91.1% to 94.3% when identifying high grade PCa by 
Gleason scores in the presence of these benign tissues. In comparison, dMOD offered overall 
excellent performance and better classification accuracy than each modality alone (i.e., either 
LRS or AFLS), as clearly demonstrated in the Table. 

It is also noted that when being stratified by Gleason grade, AFLS data provided high 
accuracy of ~91% for both GS 9 and GS 8, which is comparable to the accuracy obtained by 
dMOD. However, the accuracy for identifying PCa with GS 7 is much better by dMOD (91%) 
than by either AFLS (77.5%) or LRS (81.8%). The analysis results given in Table 3 confirm 
that dMOD can provide excellent accuracy in discriminating high grade PCa (with or without 
identifying Gleason scores) from benign parenchymal and extra capsular tissues. The 
corresponding ROC curves determined by both 3-tissue-type and 5-tissue-type classification 
methods with dMOD data are shown in Fig. 6. Being consistent with Table 3, this figure 
reveals that the overall performances of these two classification methods are comparable, 
giving rise to high accuracy, as long as dMOD is utilized for data analysis and classification. 
Both Table 3 and Fig. 6 support that dMOD has great potential to be developed as an 
excellent tool for positive margin assessment during or right after radical prostatectomy, thus 
improving the management and treatment outcomes of PCa. 
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Fig. 6. ROC curves obtained using the dMOD and MLR classification for identifying PCa and 
ECTs at individual Gleason grades (GS 9, GS 8, GS 7) using 5-tissue-type classification and 
with all grades combined (All PCa) using 3-tissue-type classification. 

4. Discussion and conclusions 

Optical imaging and measurement techniques are increasingly being developed, evaluated, 
and/or utilized for a broad range of medical applications. Of particular interest is their 
potential to differentiate benign from malignant tissue with high sensitivity and specificity. In 
particular, successful application of optical imaging techniques may have the potential to 
significantly impact current treatment paradigms for prostate cancer among others, improving 
diagnostic yield of prostate biopsies, monitoring of PCa foci within the prostate during active 
surveillance, and assessing surgical margins during radical prostatectomy. For these specific 
reasons, we hypothesized in the present study that a dual-modality optical method using 
AFLS and LRS has the ability to detect and differentiate high grade PCa tissues from benign, 
low-risk ones. To prove this hypothesis, we integrated a dMOD system, measured ex vivo 
human prostate glands, implemented feature selection and classification algorithms, and 
investigated the capabilities of discriminating high grade PCa from benign prostate tissues 
based on fitted parameters from AFLS and LRS, individually and in combination. In this 
section, we will discuss data classification algorithms, compare dMOD system performance, 
and compare our approaches with published methods. We will also discuss biochemical 
and/or physiological mechanisms resulting in signal differences of AFLS/LRS induced by 
PCa. Finally, we will discuss limitations of our proposed classification method. 

4.1 MLR classification models 

Although several parameters in both LRS and AFLS exhibit significant differences between 
PCa and benign tissues, none of these parameters can be singly used to discriminate PCa from 
benign tissues. While these parameters are associated with anatomical or physiological or 
biochemical behaviors of the tissues, standard deviations of these parameters are quite high, 
which can be attributed to the heterogeneity of the tissues and insufficient intrinsic contrasts 
as well. The MLR algorithm was thus employed: first to identify critical features (using 
sequential feature selection [24]), followed by combining the selected features to create a 
decision model for identifying different tissue types (see Section 2.5). 

Two different models were realized in this study: (1) 3-tissue-type classification for 
discriminating high grade PCa (GS≥7) from benign tissues, and (2) 5-tissue-type 
classification for discriminating PCa stratified by Gleason scores. While the ability to identify 
high grade PCa is important, the ability to detect PCa at GS = 7 is particularly more 
significant and clinically meaningful. This is because GS = 7 is the critical landmark of 
aggressive PCa and marks the action timeline from active surveillance to aggressive treatment 
in order to have early treatment with effective outcomes. Therefore, our 5-tissue-type 
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classification method for identifying PCa stratified by Gleason scores is potentially more 
useful for future clinical applications. 

4.2 Performance of dMOD approach and comparison to published works 

We hypothesized in the beginning of this study that LRS and AFLS, separately or in 
combination, could enable detection and identification of PCa tissue at high grades from 
either parenchymal tissues within prostate capsules or extra-prostatic tissues on or adjacent to 
the capsules. Our results proved that the dMOD approach, which combined LRS and AFLM 
for tissue classification analysis, gave rise to the highest accuracy for PCa tissue 
discrimination, in comparison to either technique alone for both intra-capsular as well as 
extra-capsular tissues. 

When 3-tissue-type classification was performed on intra-prostatic tissues, our two-phase 
classification algorithm and ROC analysis showed that AFLS and LRS individually had 
discriminative accuracy of 67.1% and 74.7%, respectively. AFLS and LRS also had a similar 
sensitivity, but LRS had a higher specificity for detection of PCa without identifying cancer 
grade. When parameters from the two modalities were combined (dMOD), discriminative 
accuracy, sensitivity and specificity for PCa (all grades combined) were significantly 
improved (Table 2). Consistently, dMOD improved accuracy over those by the individual 
modalities for discriminating individual grades of PCa (GS = 7,8,9) with respect to the benign 
tissue (Table 2), when 5-tissue-type classification approach was performed. Similar 
conclusions were clearly held on extra-capsular data (Table 3), except that the classification 
accuracies from each of the two techniques were much higher than those in the intra-prostatic 
case. In fact, for GS of 8 and 9, AFLS results were almost comparable (though not as high) to 
dMOD, but Gleason 7 was significantly less accurate for AFLS alone. 

Overall, it is clear from Tables 2 and 3 that classifying PCa stratified by Gleason scores 
considerably improved the classification accuracy in comparison with the all-grade-combined 
approach. This observation implies that PCa at different Gleason scores (i.e., at different 
aggressive levels) exhibits unique fluorescence and reflectance properties, which are closely 
associated with their respective biochemical and/or physiological mechanisms, which will be 
discussed in the next sub-section. This also makes the 5-tissue-type classification model be 
the method of choice for accurately identifying PCa. 

While prior published reports on methods designed towards discriminating PCa tissues in 
vivo are limited, several optical studies using ex vivo prostate specimens have been found 
[13–15,20]. The study by Salomon et. al. [13] used a triple spectroscopy approach on frozen-
then- thawed ex vivo prostate tissue (16 malignant and 75 benign samples) to discriminate 
malignant from benign tissue. Their technique involved spectral measurement and assessment 
from laser-induced auto-fluorescence, white-light remission, and high-frequency impedance 
spectroscopy. They reported a cross-validated sensitivity and specificity of 75% and 87.3%, 
respectively, which are comparable to our results. Halter et al. [20] measured electrical 
properties of 71 malignant and 465 benign ex vivo samples and reported a maximal accuracy 
of 81.8% for PCa tissues with GS≥ 7. In comparison, with dMOD, we obtained an accuracy 
of 82.7% for differentiation of PCa with GS≥ 7 (Table 2) in parenchymal tissues, showing 
equal or better accuracies of PCa detection compared to the two methods aforementioned. 
Furthermore, two other optical technologies with high or cellular spatial resolution, OCT [14] 
and CARS [15], were explored recently as a potential imaging tool to identify positive PCa 
margins and/or cavernous nerves for guiding radical prostatectomy. While OCT provided a 
high image resolution in depth up to 1 mm, it seemed to lack physiology-based specificity, 
resulting in a fairly good sensitivity (70%) and specificity (84), excellent negative predictive 
value (96%), but a poor positive predictive value (33%) [14]. Since CARS is a microscope-
based facility, it is able to image PCa and cavernous nerves at a cellular resolution. The 
results shown in [15] confirmed that CARS has the potential to become a clinical tool for 
surgical-margins assessment for PCa, while no classification of PCa at any GS was reported. 

#207541 - $15.00 USD Received 4 Mar 2014; revised 1 Apr 2014; accepted 7 Apr 2014; published 14 Apr 2014
(C) 2014 OSA 1 May 2014 | Vol. 5,  No. 5 | DOI:10.1364/BOE.5.001512 | BIOMEDICAL OPTICS EXPRESS  1525



4.3 Origin and significance of measured parameters 

4.3.1 Fluorescence signals 

It is well known that optical fluorescence is closely associated with biochemical 
components/compounds or metabolic status within tissues, so it has been utilized in the field 
of biomedical research for decades, with either intensity or lifetime measurements. Numerous 
reviews on this topic can be found in literature, and two examples are given in [26,27]. As we 
mentioned in our previous study [24], measurement of fluorescence lifetime provides much 
information on the mechanisms that lead to chemical or biochemical processes. Furthermore, 
each pair of excitation/emission (ex/em) light either matches or corresponds to a set of 
electron energy levels for a specific molecular structure or biochemical bond. It has been a 
common practice over the past few decades to select 350 nm/450 nm as the ex/em pair since 
this pair is directly linked to the oxidized form of nicotinamide adenine dinucleotide, which is 
a major electron acceptor. In its reduced form, it is called NADH. The reduced nicotinamide 
ring is ñuorescent, which enables investigators to gain insight into the redox state of tissue 
and cellular metabolism [26]. Many studies have shown that the fluorescence signals from 
NADH are often reduced in tumor tissues due to a decrease in relative amount of NADH in 
malignant tissues [26]. 

In this study, however, we did not utilize NADH as an endogenous tissue fluorophore to 
probe PCa. We selected λex = 447 nm for several reasons: (1) to push the spectral window 
towards longer wavelengths than ultraviolet light in order to have a deeper light penetration 
depth, (2) to explore other biochemical components or processes that may be linked to PCa, 
and (3) to find other possible biomarkers (besides NADH) for high grade PCa detection. 
Throughout the study, our findings show that all fluorescence signals at λem = 532, 562, 632, 
and 684 nm have exhibited shorter lifetimes [see Fig. 4(a)] by PCa at all high grade levels 
(GS≥7) than by the benign peripheral zone (nPZ) tissues. The next question is: What 
biochemical molecules are probed at these four wavelengths, and how are they affected by or 
associated with PCa? 

Based on existing literature on in vivo fluorescence spectroscopy [28] and fluorescence 
lifetime, we expect that our selected excitation at 447 nm targets such endogenous 
fluorophores as lipopigments, flavins, and porphyrins within the prostate tissues. According 
to [28], porphyrin emission becomes dominant only after 600 nm, flavins have an emission 
peak between 500 and 600 nm, and lipopigments have a strong and broad emission band 
around ~450-700 nm (centered at ~560 nm). This implies that our detected fluorescence 
signals result from a combination of more than one fluorophore: specifically, both flavins and 
lipopigments contribute the fluorescence signals at 532 nm and 562 nm, while both 
lipopigments and porphyrins influence the signals at 632 nm. Indeed, the lifetimes observed 
at the respective four wavelengths in this study match well with those of key biochemical 
compounds [27] within lipopigments, flavins, and porphyrins. The key point in the following 
is to discuss and understand why high grade PCa alternate fluorescence signals and lifetimes 
of lipopigments, flavins, and porphyrins. 

First, one major chromophore within lipopigments is lipofuscin, which consists of yellow-
brown-colored granules and is marked as one of the aging or “wear-and-tear” pigments. 
Lipofuscin can be considered as a later phase of the cellular digestion chain associated with 
lysosomes, which are cellular, enzyme-containing organelles and serve as the stomach of the 
cell to process waste materials and cellular fragments [29]. Many diseases, such as macular 
degeneration, Alzheimer's disease, and Parkinson's disease, have been reported to have 
abnormal accumulations of lipofuscin. Thus, we speculate that high grade PCa tissue is likely 
to have ill-behaving lysosomes, which are not able to perform well cellular disposal function 
and thus lead to unhealthy accumulation of lipofuscin within the prostate tissue. Next, it is 
well known that flavin adenine dinucleotide (FAD) is a redox cofactor, playing a key role in 
cellular metabolism. FAD often exists in two different redox states: the oxidized form, FAD, 
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and reduced form, FADH2 [29]. The former is fluorescent, while the latter one is not. It is 
often seen that the fluorescence signals from FAD are largely reduced in tumor tissue because 
of the decrease in the oxidized form of flavins. Last, since porphyrins are a group of organic 
compounds, one of which is heme, the pigment in red blood cells and a cofactor of the protein 
hemoglobin, we expect to see alternations in porphyrins fluorescence signatures due to 
diseased vasculature of PCa tissues. Given all the biochemical relations between the 
measured fluorescence signals and PCa, we conclude that our AFLS signals enable us to 
probe PCa status due to damaged or defective functions in cellular disposal and metabolic 
processes as well as ruined blood vasculature. Table 4 summarizes the relations between the 
measured fluorescence signals and biochemical compounds that are altered in their functions 
by PCa. This table implies that it might be possible to identify specific changes in lifetime 
from each of the three biochemical compounds/fluorophores, so as to reveal cellular or 
metabolic alternations due to PCa, by decomposition of lifetime decay signals. However, it is 
beyond the scope of this paper and will be explored in our future studies. 

Table 4. Summary of relations among fluorophores, cellular or metabolic functions, and 
expected versus measured fluorescence signals and lifetimes at emission wavelengths 

Biochemical 
fluorophores in 
prostate tissue 

Relations to 
cellular/metabolic 
functions of tissue 

Fluorescence expected 
(spectral band; peaks) 

in nm [28] 

Fluorescence measured 
[see Fig. 4(a)] 

(τ: lifetime in ns) 
Peak τ; cancer τ; benign 

Porphyrins Tissue vasculature > 600; 630, 680 632 nm 
684 nm 

2.59 ± 
0.49 

2.17 ± 
0.40 

2.22 ± 
0.45 

1.85 ± 
0.32 

Flavins cellular metabolism 500-600; 550 532 nm 
562 nm 

3.12 ± 
0.44 

3.03 ± 
0.48 

2.72 ± 
0.37 

2.63 ± 
0.38 

Lipopigments cellular disposal 
process 

450-670; 560 532 nm 
562 nm 
632 nm 

3.12 ± 
0.44 

3.03 ± 
0.48 

2.59 ± 
0.49 

2.72 ± 
0.37 

2.63 ± 
0.38 

2.22 ± 
0.45 

While NADH is an endogenous tissue fluorophore to probe metabolic states of tissue 
and/or cancer, we investigated three other biochemical and molecular signatures of prostate 
cancer using AFLM with excitation at 447 nm and emission at 532, 562, 632, and 684 nm. 
Given the results in our previous study on breast cancer [24], we expect that the AFLM 
methodology demonstrated here is highly likely to work for cancer detection and 
classification in other types of cancer. Note that since the excitation-emission spectral bands 
of lipopigments, flavins, and porphyrins are rather broad, appropriate wavelengths for both 
excitation and emission can be possibly chosen in efficient spectral ranges depending on 
available optical hardware and choices of researchers. 

4.3.2 Reflectance signals 

Origin of LRS signals has been well understood and described in the biomedical optics 
literature. Basically, both chromophore concentrations, such as HbO and Hb, and light 
scattering, which reflects cell sizes and densities, can be estimated quantitatively from direct 
LRS measurements [25]. Several reported studies have utilized LRS with small fiber 
geometry to investigate various tissue types and cancer [30,31]. The physiological 
significance of LRS-derived HbO, Hb, and other chromophoes is self-evident as they provide 
absolute values of respective chromophore concentrations. Also, quantification of light 
scattering is directly associated with cell size and density: the larger and denser the particles 
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(such as cellular nuclei and intra-cellular organelles) are, the larger the light scattering 
coefficients are. 

Our results in Fig. 4(b) clearly show that HbO, Hb, and HbT are all more prevalent in 
tissues within the benign peripheral zone, indicating overall better or fuller blood perfusions 
in the benign parenchymal tissues than in the PCa regions. Lower HbT values for PCa are 
also consistent with our previous work, taken from a different data set [11]. Furthermore, Fig. 
4(b) also demonstrates that oxygen saturation (SO2 = [HbO]/[HbT]*100) was lowest in PCa 
(39.7%), as compared to nPZ (55.3%) and BPH (47.9%), indicating relative hypoxia in the 
PCa region, also consistent with our previous study [11]. β-carotene was also found to be a 
contrast parameter for intra-prostatic tissues. 

Moreover, as evident from Fig. 4(b), the light scattering coefficient (at 750 nm) of PCa 
was much higher than that of all benign tissue types consistently, resulting from 
morphological alternation in cellular size and density of PCa tissue. Indeed, it is suggested 
that as the PCa grade of tissue increases from low to high, glandular epithelial cells will 
progress toward prostatic intraepithelial neoplasia (PIN) and then become adenocarcinoma 
[32] with increased hyperplastic epithelium or/and cellular tufts filling the glandular space 
[33]. In the meantime, it was recently hypothesized that progression of PIN triggers reactive 
stroma formation, which is likely cancer-promoting, coevolves with foci of adjacent 
carcinoma, and thus changes cellular architecture and composition in both glandular and 
stroma space [33]. All of these morphological changes are the physiological origin to cause 
increases in light scattering. 

4.4 Limitations and future work 

Despite the promising results shown above, a few limitations of our study warrant discussion. 
First, both AFLS and LRS readings were recorded from ex vivo tissues approximately one 
hour after the prostates were disconnected from any blood supply. Re-evaluation of our 
methodology under in vivo setting may yield different spectral outputs, particularly for the 
spectral signatures of HbO, Hb, and HbT, given in vivo hemodynamic perfusion conditions 
and complex biochemical microenvironments. 

Second, our prostate specimen sample size was relatively small and limited to patients 
with high grade PCa at GS≥7. Since identification of PCa at GS = 7 is highly critical in order 
to decide whether any treatment is needed, it is of necessity that the developed methodology 
needs to have high sensitivity and specificity. As such, further parameterization to 
characterize lower grades of PCa (i.e., GS≤6) should be mandatory prior to future clinical 
applications. 

Third, the number of features used for dMOD tissue classification seems to be large and 
thus may lead to an overfitting concern. Because of non-perfusion conditions in our ex vivo 
prostate specimens, currently collected readings of HbO, Hb, and HbT may have large 
deviations due to a variety of physiological insults or defects. We expect that further in vivo 
studies may provide us with improved physiological conditions for the prostate glands during 
data collections, which in turn will reduce the deviations of fitted parameters and thus lead to 
a smaller number of features needed for accurate PCa classification. 

Finally, our spectral signatures of PCa were all obtained within the prostate capsules (i.e., 
parenchyma tissues). Prior to in vivo applications, AFLS and LRS characteristic spectra of 
positive margins on prostate capsules will need to be identified and included for updated 
classification analysis. 

Overall, this study was to investigate whether there exists any optical signature to 
discriminate PCa from non-cancerous prostate tissue and what kinds of optical signatures of 
PCa at different stages have. Much further development is needed before extending this 
technique to in vivo human environment. But, this study demonstrates that the dMOD 
methodology can be developed for ex vivo detection of positive margins in the operating room 
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during or right after radical prostatectomy, thus improving the management and treatment 
outcomes of PCa. 

4.5 Conclusions 

This study has demonstrated that the dMOD approach, which combines auto-fluorescence and 
light reflectance spectroscopy, is able to discriminate PCa at Gleason grade 7 or higher from 
benign parenchymal tissue as well as from capsular or extra-prostatic tissue types of ex vivo 
prostate specimens with excellent classification sensitivity, specificity and accuracy. With 
further development and validation, the dMOD approach has the potential to be developed as 
an intraoperative aid for positive margin assessment during radical prostatectomy, a 
minimally invasive aid for active surveillance strategies, and a complementary/integrated tool 
for other clinical applications. 

Appendix: Cross-validation [34] 

Cross-validation is commonly used to validate a new classification model by assessing how 
accurate the classification results are when the model is tested with an independent data set 
[34]. In general, a classification model is developed using a given dataset of known data as 
the training dataset to serve as “ground truth”. Then, another independent dataset of unknown 
data is utilized as the testing dataset in order to test the model. In reality, the number of actual 
datasets is sometimes limited, so the testing results are not statistically conclusive. To solve 
this problem, k-fold cross validation is often employed by randomly partitioning the original 
datasets into k equal size subsamples. Next, a single subsample is kept as a testing dataset, 
while the remaining k − 1 subsamples serve as training data. To be statistically meaningful, 
this cross-validation process is performed k times, with each of the k subsamples rotated once 
as the validation or testing data. In a special case, where the measurement sample size, n, is 
relatively small, leave-one-out cross-validation is commonly used. Then, the independent, 
testing dataset is just one measurement; cross-validation will become an n-fold operation 
where n is the number of measurements. Specifically, we used 10-fold cross-validation in this 
study [see Fig. 3], with multiple data points in each training and testing datasets. Another 
example is given in ref [35], where leave-one-participant-out cross-validation was used to test 
their predication algorithm. 
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