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1. Introduction

The ballistic limit test is an important part of characterizing armor performance or establishing
the lethality of projectiles. At a minimum, the analysis of such a test provides a single number
which is an estimate of the ballistic limit itself. By 1950, however, it was already established that
statistically meaningful decision support requires additional methodology that manifests as
confidence intervals and hypothesis tests on the ballistic limit.

Unfortunately, as time passed, this knowledge was ignored. In many important applications, the
methodology reverted to obtaining only that single number as the product of a ballistic limit
analysis. The purpose of this report is to resurrect the original ideas, generalized and cast into a
modern framework, and thus to provide today’s analyst with the tools required for proper decision
support.

It is illuminating to begin by tracing the evolution (or devolution) of ballistic limit analysis
through the literature.

1.1 Background

Golub and Grubbs1 wrote in 1950:

In current tests of armor plate, AP projectiles are fired at various velocities against a given plate until
some mixture of complete penetrations and partial penetrations is obtained. The “Ballistic Limit”* of
the plate is then estimated somewhat arbitrarily by using the average velocity of two projectiles – one
resulting in a complete penetration and the other a partial penetration. It is seen, however, that such a
“rule of thumb” does not lead to a standard error which may be attached to the estimate of ballistic
limit or the standard deviation of the distribution of velocities for the “zone of mixed results”. The
“zone of mixed results” is an interval extending from the velocity for which the probability of
penetration would be zero to a velocity at which the proportion of penetrations would be unity. The
purpose of the present note is therefore to investigate a method for estimating the mean or median
(50%) velocity, the standard deviation of the distribution of velocities for the zone of mixed results and
to approximate standard errors or estimates of precision which one can be attached to the above two
figures. The general problem here involves the analysis of so-called “sensitivity data”.

. . . In the execution of a test for determining the Ballistic Limit of a given armor plate, therefore, the
results of such a test usually yield a set of distinct projectile velocities or testing levels. Assuming that
each projectile has a “critical velocity” at or above which the projectile will penetrate the plate and
below which it will fail to penetrate, and also that these critical velocities follow the Normal
Distribution Law, then the general problem may be to determine for any given velocity the probability
of a penetration. However, it is usually sufficient to determine that velocity for which the probability of

1



penetration is one-half (defined hereafter as the Ballistic Limit velocity). The remainder of this note is
concerned with how the mean or Ballistic Limit velocity and standard deviation of the normally
distributed critical velocities may be estimated from a unique set of velocities, and how the precision
of our estimates may be approximated.

*Ballistic Limit has, in many instances, been defined somewhat loosely as “that velocity as which a
given type of projectile will penetrate a given (thickness and type of) armor plate”. However, it turns
out that for a given series of AP projectiles fired at an appropriate constant velocity part of the
projectiles will completely penetrate the plate and the remainder will not, the proportion penetrating
depending on the level of velocity. Thus, for problems of this type it becomes necessary to regard the
“Ballistic Limit” as a parameter of the probability distribution involving the proportion of successes
for various levels of velocity.

In the next generation, the 1983 Engineering Design Handbook2 and McKaig and Thomas3

present references and FORTRAN implementations of the 1972 DiDonato and Jarnagin4 method
of estimation for the normal response model. The later 1984 US Army Developmental Test
Command (USADTC) Test Operations Procedure (TOP) 2-2-710, Ballistic Tests of Armor
Materials5 cites an even earlier 1970 work with code by Hagan.6

The 1984 TOP states:

5.1.1 V50 Ballistic Limit. . . . If enough rounds are fired, two parameters, the mean and standard
deviation, can be determined for each ballistic test; they are referred to as the V50 ballistic limit and the
standard deviation, both expressed in meters per second. The standard deviation is a measure of the
data spread or the steepness of the curve.

The 1984 TOP details 4 methods for ballistic limit analysis. The TOP presents the Up-and-Down
method for normal distributions in which ballistic limit estimates “commonly” computed as
averages of firing velocities.

5.1.1.1 Up-and-Down Method (for Normal Distributions) . . . The following varieties of the
up-and-down method are commonly used in determining the V50 ballistic limit of armor:

a. One complete penetration and one partial penetration within a velocity spread of 15 m/s . . . These
two striking velocities are then averaged to obtain the ballistic limit.

b. Two complete penetrations and two partial penetrations . . .

c. Three complete penetrations and three partial penetrations . . . These six striking velocities are then
averaged to estimate the ballistic limit.

d. Five complete penetrations and five partial penetrations . . . These 10 striking velocities are then
averaged to estimate the V50 ballistic limit.

2



The second TOP recommendation is the Langlie method, along with a 1970 computer program
for calculation of parameter estimates when the data has a zone of mixed results (zmr).
Otherwise, V50 is estimated as the average of 2 velocities.

5.1.1.2 Langlie Method (for Normal Distributions) . . .

f. If the firing does not produce a zone of mixed results, compute V50 by averaging the lowest
complete and highest partial.

g. If the firing produces a zone of mixed results, compute V50 and standard deviation by using the
cumulative normal and the principle of maximum likelihood. A computer program is available at
Aberdeen Proving Ground (APG) for this purpose (ref. 10e, Appendix J).

The third method estimates penetration probability, not ballistic limit.

5.1.1.3 Sampling-of-Levels Method (Distribution Not Normal) . . . A point estimate of the probability
of penetration is computed at each velocity level by determining the ratio of complete penetrations to
the number of rounds fired.

The TOP explanation of the probit design, the final method, may be interpreted as advocating the
appropriate computation, but this is not explicit.

5.1.1.4 Probit Design (for Normal Distributions) The probit design of test involves a number of trials at
each of several preset levels of severity, and as such is similar to the sampling-of-levels method. The
difference is that the term "probit design" is referred to in the literature as applying only to normal
distributions; the sampling-of-levels method (a test devised at APG) is used for distributions that are
not normal.

Occurrences of the terms “normal model” and “standard deviation” in the TOP indicate
awareness that some technology other than arithmetic average exists, but no effort is made to
explain its necessity or utility.

More recent guidance is in the 1997 MIL-STD-662, Department of Defense Test Method
Standard, V50 Ballistic Test for Armor7:

3.7 Ballistic limit . . . Certain approaches lead to approximation of the V50 Point, that is, the velocity at
which complete penetration and incomplete penetration are equally likely to occur.

3.8 Ballistic limit, protection criteria (V50 BL(P)). The V50 BL(P) may be defined as the average of an
equal number of highest partial penetration velocities and the lowest complete penetration velocities
which occur within a specified velocity spread. The normal up-and-down firing procedure is used.

3



5.4 Calculation of the V50 BL(P) ballistic limit. The V50 BL(P) shall be calculated by taking the
arithmetic mean of an equal number of the highest partial and the lowest complete penetration impact
velocities within the allowable velocity span as defined by the contracting officer (see USATECOM
TOP 2-2-7l0).

5.7 Acceptance and rejection. The selected armor samples shall meet the minimum V50 BL(P) ballistic
requirements specified in the order for the represented lot to be acceptable.

MIL-STD-662 optionally defines ballistic limit as an average of projectile velocities and
unconditionally mandates calculation of the ballistic limit as such.

Various current detail specifications for lightweight high hard8 and ultra high hard9 steel armor
applications specify V50 protection ballistic limit [BL(P)] testing. Both Detail Specifications
(DTLs) ignore the correct computations and state:

A.2.6 V50 protection ballistic limit, BL(P). The protection V50 ballistic limit is defined as the average
of 6 fair impact velocities comprising the three lowest velocities resulting in complete penetration and
the three highest velocities resulting in partial penetration.

Furthermore, both DTLs state:

A.4.1 Ballistic tests. V50 ballistic tests are to be conducted according to USADTC TOP 2-2-710,
Ballistic Tests of Armor Materials or ITOP 2-2-713, Ballistic Testing of Armor to determine
compliance with the requirements of Tables A-I through A-V.

The DTLs provide ballistic limit specifications for various threats, obliquities, armor thicknesses,
and armor classes. The TOP provides some elements of test protocol and data collection such as
sample sizes, required numbers of complete and partial penetrations, admissible velocity ranges,
and determination of fair hits. The TOP references data reduction through computation of
empirical ballistic limits as averages of firing velocities or, optionally, via probit regression
parameters. But the TOP does not document how the tests are to be conducted. Neither do the
DTLs. The actual conduct of the test is implemented as a decision rule for comparing the data to
the specification. In the absence of such guidance, the inexperienced analyst will apply the naive
rule:

accept the sample if the empirical V50 exceeds the specification value. (1)

It will be seen that this incurs a Type I error of α = 0.5, which is equivalent to discarding the data
and flipping a coin to determine the outcome of the test.
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In 1950, Golub and Grubbs1 criticized the “rule of thumb” calculation of V50 as an average of
firing velocities and pointed out that parameter estimates and parameter variance estimates are
required for error bounds (equivalently, for hypothesis testing). They present maximum likelihood
estimation (MLE) computations and solution via paper and pencil, thus providing the asymptotic
technology needed to calculate error bounds and conduct the required statistical hypothesis tests.
The TOP (almost 35 years later) mentions such computations but does not illustrate or mandate
their use. In spite of the 1950 admonition, MIL-STD-662 (almost 50 years later) and the
referenced DTLs (almost 60 years later) all implement the naïve procedure and go so far as to
actually define V50 as an arithmetic average of velocities.

There is a backwards progression in methodology from Golub and Grubbs in 1950 through the
TOP in 1984, the MIL-STD in 1997, and the DTLs in 2008 and 2009 to the pre-1950 situation.
Statistical decision support is not required in the MIL-STD, TOP, and DTLs.

The standards go through great detail describing various experimental designs, which are nothing
more than procedures for selecting firing velocities and sample size. Statistical decision support
(inference) is another matter entirely.

The various 2&2, 3&3, 4&4, etc., V50 estimates obtained without a zmr are not useful for
inference in the asymptotic MLE framework. Any decision based on comparing such a point
estimate to a specification value is devoid of statistical properties and cannot be justified.

Even in the presence of a zmr, the literature is ambiguous (i.e., confused) about the meaning of
“standard deviation”, whether it refers to the variance of the critical velocity distribution or the
variance of the ballistic limit estimate, and completely silent about its utility.

1.2 The Model

One approach to the development of the sensitivity model uses a distribution of tolerances
(critical velocities in the ballistic setting). Assume that the random unknown and unobservable
critical velocity C is distributed with probability law (cumulative distribution function, cdf)

Pr[C ≤ v] = FC(v) . (2)

Upon firing a projectile, one observes its velocity v and penetration y ∈ {0,1}. If C ≤ v, then
velocity exceeds critical velocity, penetration occurs, and y = 1. Otherwise y = 0. Thus,
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penetration is random with probability p where

p = Pr[y = 1 | v] = FC(v) . (3)

The usual parameterization of FC is location-scale, with parameter vector θ = (m,s),

FC(v) = G
(

v−m
s

)
. (4)

Common choices for G include the normal law

G(z) =
1√
2π

∫ z

−∞

e−u2/2 du , (5)

where C has mean value EC = m and variance VarC = s2, and the logistic law

G(z) =
1

1+ e−z , (6)

where C has mean value EC = m and variance VarC = π2s2/3.

For both of these G(0) = FC(m) = Pr[y = 1 | v = m] = 1/2, and so m =V50, the velocity for which
the probability of penetration is 1/2. Note that m has two interpretations:

m = EC

m =V50 . (7)

The interpretation of s is the steepness of the ballistic response function, Eq. 3, proportional to the
standard deviation of the critical velocity distribution, which relates to the size of a zmr. Based on
the form of the normal or logistic probability laws, 0 < p < 1 for any v. So it is pointless to define
the zmr as the velocity interval on which mixed results may be seen since this interval is (−∞,∞),
but the concept can be salvaged.

The inverse cdf or quantile function (qf) denoted Q = G−1 is used to express velocity as a
function of penetration probability. Since Q(p) = (v−m)/s, one obtains V10 or V90 estimates, for
example, by V100p = m+ s Q(p).

So one can interpret the interval [V10,V90] as a sort of “80% zmr” in the sense that 0.1≤ p≤ 0.9
in the interval, p < 0.1 when v <V10, and p > 0.9 when v >V90. The size of the interval is
proportional to s. To complete the analogy, note that the classical zmr would be the open interval
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(V0,V100). For the example distributions, these quantities do not exist since limp→0+ Vp =−∞ and
limp→100−Vp = ∞.

Now s has 2 interpretations:

s ∝
√

VarC

s = ballistic response steepness = zmr size . (8)

The parameter s characterizes the steepness of the response function or the standard deviation of
the critical velocity distribution. It is not the “standard deviation of the ballistic limit”, it is not the
“standard deviation of the V50”, and it is not used to provide confidence intervals or hypothesis
tests on the V50.

1.3 Properties of Maximum Likelihood Estimators

The population parameters m =V50 and s are fixed (but unknown) numbers to be estimated. They
are not random. They do not have expected values, mean values, variances, standard deviations,
or confidence intervals.

It is the estimates that are random. Analysis of this randomness enables quantification of error
bounds associated with decisions based on such estimates. Decisions based on estimates devoid
of error bounds cannot be justified.

Parameters are estimated from data (v1,y1), . . . ,(vn,yn), and the estimate m̂ of m is an estimate of
the V50. MLE provides one approach to point estimation, interval estimation, and inference based
on the asymptotic (bivariate) normal distribution of parameter estimates. With θ = (m,s) this is

√
n(θ̂ −θ)−→ N2(0,nM−1

θ
) as n→ ∞ (9)

where Mθ is the information matrix. Then

θ̂ ∼ N2(θ ,Var θ̂) (10)

where Var θ̂ = M−1
θ

, and the asymptotic parameter variance structure is

Var θ̂ =

[
Var m̂ Cov(m̂, ŝ)

Cov(m̂, ŝ) Var ŝ

]
. (11)
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The asymptotic distribution of θ̂ is normal for any critical velocity distribution: normal, logistic,
or anything else. Confidence intervals and hypothesis tests on m =V50 are constructed with m̂ and
Var m̂, not ŝ.

This construction is possible only when the data has a zmr. Otherwise, none of the V50 estimate
m̂, its variance Var m̂, the response steepness ŝ, the information matrix Mθ , or anything else can be
computed in the MLE framework.

When the data has a zmr, however, a reasonable and simple approach would involve a statistical
hypothesis test on m(=V50) of the form

H0 : m = m0

H1 : m > m0 (12)

with a specified Type I error level α = 1− γ . Rejection of the null hypothesis would lead to the
conclusion that V50 meets or exceeds the specification value m0. The probability that this decision
is erroneous (concluding that V50 > m0 when in fact V50 < m0) would be no greater than α . The
risk of such a procedure is controlled by setting the value of α . For a large enough data set, an
accurate test can be based on the null asymptotic normal distribution of the estimator,
m̂∼ N(m,Var m̂). In this case, the decision rule for the hypothesis test is

reject H0 ⇐⇒ m̂ > mc (13)

where the critical value for the test is mc = m0 +Zγ

√
Var m̂, and Zγ is the appropriate standard

normal quantile, e.g., Z0.9 = 1.282 for α = 0.1, or Z0.95 = 1.645 for α = 0.05.

The naive decision rule of Eq. 1, equivalently,

reject H0 ⇐⇒ m̂ > m0 (14)

arises from Zγ = 0, or γ = α = 0.5, and in this case the probability of an erroneous rejection
(concluding that V50 > m0 when in fact V50 < m0) is 50%.

The Generalized Linear Model (GLM) approach provides the necessary parameter and variance
estimates. The linear representation of the simple logistic regression model is

p =
1

1+ e−a−bx (15)
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where the linear parameter vector is β = (a,b). The usual location-scale parameterization is
θ = (m,s) where a+bx = (x−m)/s, so sa =−m and sb = 1. GLM computation provides the
parameter estimate β̂ = (â, b̂), and thus θ̂ = (m̂, ŝ) as indicated. For this data

x 691 700 701 715 717 718 719 720 729 742

y 0 0 0 1 1 0 0 0 1 1

the parameter estimates are

â =−119.1315227 b̂ = 0.1655234 m̂ = 719.7262014 ŝ = 6.0414421 . (16)

The information matrix

Mβ = X tWX =

[
∑wi ∑wixi

∑wixi ∑wix2
i

]
(17)

is constructed from the design matrix X =
[

1 ... 1
x1 ... xn

]t and the diagonal weight matrix
W = diag(w1, . . . ,wn) where the weights are wi = pi(1− pi). Then the asymptotic distribution of
the linear parameter estimator is β̂ ∼ N2(β ,Var β̂ ) where Var β̂ = M−1

β
. The location-scale

parameter variance is obtained by using T = s [ 1 0
m s ] in the reparameterization transformation

Var θ̂ = T̂ t Var β̂ T , and then the asymptotic distribution of the location-scale parameter estimator
is θ̂ ∼ N2(θ ,Var θ̂). The variances depend on the true (unknown) parameter values, but estimators
are substituted for computational purposes.

1.3.1 Confidence Interval

An estimate M̂β of Mβ is obtained using â and b̂ to get the p̂i, ŵi, and Ŵ . Then V̂ar β̂ = M̂−1
β

, and

the estimated asymptotic distribution of β̂ is β̂ ∼ N2(β , V̂ar β̂ ). The location-scale parameter
variance estimate is obtained by using T̂ = ŝ

[
1 0
m̂ ŝ

]
in the reparameterization transformation

V̂ar θ̂ = T̂ t V̂ar β̂ T̂ . This is enough to estimate

σ̂
2 = V̂ar m̂ = ŝ2[1, m̂] V̂ar β̂ [1, m̂]t = 26.25406 , (18)

which serves to construct a confidence interval (CI) on the unknown true parameter value m.
Assuming m̂∼ N(m, σ̂2), then

Pr
[
m̂ ∈ (−∞,m+ σ̂Zγ ]

]
= Pr[m̂≤ m+ σ̂Zγ ] = γ . (19)
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Inverting this interval gives the equivalent Pr[m ∈ I] = γ where the CI is I = [I0,∞) and
I0 = m̂− σ̂Zγ . With α = 0.1, so γ = 0.9, and Zγ = 1.281552, the lower confidence bound is

I0 = m̂− σ̂Zγ = 713.1597 . (20)

1.3.2 CI-based Hypothesis Test

Consider the hypothesis test Eq. 12 with

m0 = 712 . (21)

The usual approach is to apply the CI to the hypothesis test and reject if m0 lies outside the CI,
which is m0 < I0, or equivalently if m̂ > mc where critical value is

mc = m0 + σ̂Zγ = 718.5665 . (22)

In this case, m0 < I0, or m̂ > mc, provide evidence to reject H0 at α = 0.1 and conclude that
m > m0. The p-value for the test is the α corresponding to mc = m̂, which is

p = Pr[N(m0, σ̂
2)> m̂] = 0.06579217 . (23)

An equivalent decision rule is to reject H0 if p < α , which is satisfied in this case.

1.3.3 Wald Test

With θ = [m
s ], the 2-sided test of

H0 : θ = θ0

H1 : θ 6= θ0 (24)

is based on the Wald statistic
W = (θ̂ −θ)tMθ (θ̂ −θ) . (25)

Since θ̂ ∼ N2(θ0,Vθ0) with Vθ0 = M−1
θ0

under H0, the null distribution of W is chi-squared

W = (θ̂ −θ0)
tMθ0(θ̂ −θ0)∼ χ

2
2 (26)
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and MLE provides the variance estimate Mθ0 = M̂θ . This is the Cramér-Rao (CR) variance bound,
and the nomenclatures Wald and CR are interchangeable. Under H1 with θ = θ1 and
θ̂ ∼ N2(θ1,Vθ1), note that θ̂ −θ0 = θ̂ −θ1 +(θ1−θ0). Then, the distribution of W is noncentral
chi-squared with noncentrality parameter δ = (θ1−θ0)

tMθ1(θ1−θ0), that is to say

W = (θ̂ −θ0)
tMθ1(θ̂ −θ0)∼ χ

2
2,δ . (27)

For any linear transformation K, the test

H0 : K(θ −θ0) = 0

H1 : K(θ −θ0) 6= 0 (28)

is based on the null normal distribution of Kθ̂ ∼ Nk(Kθ0,KVθ0Kt) where rank K = k and the null
chi-squared distribution of W , namely

W = (K(θ̂ −θ0))
t(KVθ0Kt)−1(K(θ̂ −θ0))∼ χ

2
k . (29)

Under H1 with θ = θ1 and θ̂ ∼ N2(θ1,Vθ1), the distribution of W is noncentral chi-squared with
noncentrality parameter δ = (K(θ1−θ0))

t(KVθ1Kt)−1(K(θ1−θ0)), which is

W = (K(θ̂ −θ0))
t(KVθ1Kt)−1(K(θ̂ −θ0))∼ χ

2
k,δ . (30)

To test

H0 : m = m0

H1 : m 6= m0 (31)

take K = [1,0], which implies that k = 1. Then, under H0

W =
(m̂−m0)

2

Var0 m̂
∼ χ

2
1 (32)

with Var0 m̂ = V̂ar m̂. The critical value for the test is the appropriate chi-squared quantile

Wc = Q
χ2

1
(γ) , (33)
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and the p-value for the test is

p = Pr[χ2
1 >W ] = 1−F

χ2
1
(W ) . (34)

Under H1, the distribution of W is noncentral chi-squared with noncentrality parameter
δ (m1) = (m1−m0)

2/Var1 m̂,

W =
(m̂−m0)

2

Var1 m̂
∼ χ

2
1,δ (m1)

. (35)

Type II error β (m1) is the probability of erroneously failing to reject H0. This depends on a
specific alternative parameter value m = m1. The power of the test is π(m1) = 1−β (m1), the
probability of correctly rejecting H0. Then, the power of this test is

π(m1) = Pr[χ2
1,δ (m1)

>Wc] = 1−F
χ2

1,δ (m1)
(Wc) . (36)

The Wald statistic for the example data is

W =
(m̂−m0)

2

V̂ar m̂
=

(719.7262014−712)2

26.25406
= 2.273713 (37)

where V̂ar m̂ estimates Var0 m̂. Since the Wald test is naturally 2-sided, divide by 2 to get its
1-sided p-value, which is

Pr[χ2
1 >W ]

2
= 0.06579217 (38)

as expected. The 2-sided error rate is α2 = 2α = 0.2, and then γ2 = 1−α2 = 0.8, which means
the Wald statistic critical value is

Wc = Q
χ2

1
(γ2) = 1.642374 , (39)

and H0 is rejected with m̂ > m0 when W >Wc or p < α . Since the square of a normal is
chi-squared, the Wald and CI-based tests are equivalent. One-sided Wald tests can be conducted if
the error levels are adjusted and the direction of variation is considered. The CI-based test is just
another way of looking at the Wald test.

A small-sample simulation illustrates aberrant behavior of the Wald/CI logistic regression test
power. See Fig. 1. This is a structural property of the Wald test and is not caused by “bad data” or
“small samples”. The asymptotic power computation (Eq. 36) exhibits this behavior but not to
such an extent as the simulated small-sample power. Sample size is n = 11 and evenly-spaced
values of x on [−10,10] are used throughout. True null parameters are m = 0 and s = 2.
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Two-sided tests (Eq. 31) with m0 = 0 are conducted with α = 0.2. The null and 50 values of m1

evenly spaced on [−10,10] are used and s = 2 throughout, so alternatives are shifts of the true
null. For each parameter value, 10,000 tests are simulated. Power is computed as the relative
frequency of rejections for each m. Power should increase, π → 1, as |m1−m0| increases, but the
power of the Wald test actually decreases for large |m1−m0| and eventually π → α . This type of
behavior was reported as early as 1977 by Hauck & Donner10 for the linear parameterization.
Tests based on the likelihood ratio (LR), to be developed later in this report, behave correctly even
for this small sample size.
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Fig. 1 Small-sample and asymptotic test power

1.3.4 Wald (CR) CIs on Mean Response

The usual construction of CIs on mean response E[y|x] is based on the linear parameterization
P(x) = G(xβ ) where β t = [b0,b1]. We can write x = [1,x] without confusion. The asymptotic
parameter distribution is β̂ ∼ N2(β ,V ) with V =Vβ = (X tWX)−1 as in section 1.3. Since
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xβ̂ ∼ N(xβ ,xV xt) we take the CI to be

G
(

xβ̂ ±
√

xV xt ·Z
)

(40)

for some normal quantile Z. For large enough γ , these CIs increase in size for extreme x as shown
in Fig. 2, where the red curves are CR CIs and the blue curves are LR CIs. We see that CR CIs
always have this undesirable property. The equation for the CI band is

(y− xβ̂ )2

xV xt = Q
χ2

1
(γ) (41)

so we write
(y− xβ̂ )2− xT xt = 0 (42)

where β t = [A,B] and T = Q
χ2

1
(γ) ·V =

[
C D
D E

]
and then recognize the equation of an hyperbola

0 = (y−A−Bx)2−C−2Dx−Ex2

= (B2−E)x2−2Bxy+ y2 +2(AB−D)x−2Ay+(A2−C)

= ax2 +bxy+ cy2 +dx+ ey+ f . (43)

The gradient vanishes at the center (xo,yo), thus (2axo +byo +d,2cyo +bxo + e) = (0,0). So
(xo,yo) = (2cd−be,2ae−bd)/(b2−4ac). Here, b2−4ac = 4B2−4(B2−E) = 4E and
2cd−be = 4(AB−D)−4AB = −4D and 2ae−bd = 4A(E−B2)+4B(AB−D) = 4(AE−BD).
Since V = (X tWX)−1 and W is diagonal, the center is[

xo

yo

]
=

[
−D/E

A−BD/E

]
=

[
Σwx/Σw

A+BΣwx/Σw

]
. (44)

Hyperbola asymptotes pass through the center. Asymptote slopes come from ax2 +bxy+ cy2 = 0,
or y = (−bx±

√
b2x2−4acx2)/(2c) = x(−b±

√
b2−4ac)/(2c), so the slopes are

−b±
√

b2−4ac
2c

= B±
√

E = b1±
√

Q
χ2

1
(γ) ·V2,2 (45)

where V2,2 = Σw/[ΣwΣwx2− (Σwx)2]. We can always choose γ large enough to make an
asymptote slope negative and elicit the undesirable behavior by taking γ > F

χ2
1
(b2

1/V2,2).

The elements of W are w = G(xβ )[1−G(xβ )], so this can be computed from the regression
coefficients. Figure 3 shows the linearized version of Fig. 2.
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16



−1000 0 1000 2000 3000

−30

−20

−10

0

10

20

30

CR P(x)
LR P(x)

gamma=0.80

−1000 0 1000 2000 3000

−30

−20

−10

0

10

20

30

CR P(x)
LR P(x)

gamma=0.84

−1000 0 1000 2000 3000

−30

−20

−10

0

10

20

30
CR P(x)
LR P(x)

gamma=0.88

−1000 0 1000 2000 3000

−30

−20

−10

0

10

20

30 CR P(x)
LR P(x)

gamma=0.92

−1000 0 1000 2000 3000

−40

−20

0

20

40

CR P(x)
LR P(x)

gamma=0.96

−1000 0 1000 2000 3000

−40

−20

0

20

40
CR P(x)
LR P(x)

gamma=0.98

Fig. 3 Linearized CR and LR CIs, various γ

17



1.4 Suggested Approach

The computations needed to do the correct test in the asymptotic MLE framework were provided
by Golub and Grubbs1 in 1950. A detailed modern approach including portable estimation and
generalized inference computation based on the asymptotic MLE methodology is described by
Collins.11

The MLE approach has limitations. Confidence intervals can be distorted, test power is not
consistent, and the method does not apply at all to data with no zmr.

At least 2 authors already provide approaches for analyzing data with no zmr (gap data).

Webb12 uses random noise data augmentation to produce zmr data (and therefore parameter point
estimates) from data with no zmr. He uses simulation to estimate parameter errors. He makes no
claim that these computed quantities actually represent the true population parameters of interest.

In fact, hypothesis testing is based on interval estimates. Point estimation is unnecessary, and
statistically valid acceptance testing can therefore be based conceptually on interval estimation
without recourse to point estimation.

Neyer,13 a self-proclaimed “provider of Efficient Sensitivity Test and Analysis Software”,
produces closed proprietary software that implements LR methodology, thus allowing inference
for data with no zmr. Since this software is closed and the theoretical documentation incomplete,
it is impossible to verify the details of his work.

The LR approach provides the needed technology. The LR approach to quantal response model
inference allows analysis of data with or without a zmr on equal ground. LR test power is
consistent, unlike the Wald test. The asymptotic distribution of the LR test statistic is easy to
compute. It is the aim of this report to present the relevant LR theory and methodology in an open
and complete manner, and thus encourage discussion, criticism, and implementation by the larger
community.
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2. Likelihood Ratio Estimation and Inference

2.1 Likelihood

Consider a random sample of n independent and identically distributed (iid) data z1, . . . ,zn from a
distribution with fixed unknown parameter θ ∈Θ where Θ is the space of possible parameter
values. The likelihood function is the joint probability density function (pdf) of the sample,
considered as a function of the parameter

L(θ) =
n

∏
i=1

f (zi;θ) . (46)

A related quantity is the deviance D, used in theoretical development and software diagnostics,

D =−2logL . (47)

So L can be expressed as
L = e−D/2 , (48)

knowledge of either determines the other, and

D(θ) =−2
n

∑
i=1

log f (zi;θ) . (49)

An MLE θ̂ of θ , if it exists, satisfies

L(θ̂) = sup{L(θ) : θ ∈Θ}= sup
θ∈Θ

L(θ) = sup
Θ

L , (50)

which is the same as

D(θ̂) = inf{D(θ) : θ ∈Θ}= inf
θ∈Θ

D(θ) = inf
Θ

D , (51)

so maximum likelihood is equivalent to minimum deviance.

2.2 Likelihood Ratio Tests

Stuart14 provides details on various tests using the likelihood ratio. Simple hypotheses (null or
alternative) completely specify the distribution.
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For θ0,θ1 ∈Θ, a uniformly most powerful test for the simple hypothesis against the simple
alternative

H0 : θ = θ0

H1 : θ = θ1 (52)

is based on the simple likelihood ratio (SLR)

Λ =
L(θ0)

L(θ1)
. (53)

For Θo ⊆Θ, a test of the possibly composite hypothesis

H0 : θ ∈Θo

H1 : θ 6∈Θo (54)

can be based on the generalized likelihood ratio (GLR)

Λ =
supθ∈Θo

L(θ)
supθ∈Θ L(θ)

. (55)

Consider Θ = {θ0,θ1} and Θo = {θ0}, in which case θ ∈Θo means θ = θ0 and θ 6∈Θo means
θ = θ1. In this case the hypotheses of Eq. 54 are both simple, but the GLR

Λ =
L(θo)

sup{L(θo),L(θ1)}
(56)

does not coincide with the SLR of Eq. 53. However, the GLR test can be formulated in situations
where the SLR test cannot, and the GLR test is good enough to be useful. We use the GLR test
exclusively. GLR, Eq. 55, tests are equivalent to tests based on the deviation

∆ =−2logΛ (57)

so
∆ = inf

θ∈Θo
D(θ)− inf

θ∈Θ
D(θ) . (58)

Note that
Λ = e−∆/2 . (59)
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2.3 Statistic Distribution

The probability distribution of the test statistic Λ is required for hypothesis tests, Type I error,
p-values, and CIs.

2.3.1 Asymptotics

Wilks15 gives the large-sample distribution of ∆

∆∼ χ
2
r (60)

as chi-squared with r = dimΘ−dimΘo degrees of freedom.

2.4 Hypothesis Test Construction

The critical value of Λ for a test of Eq. 54 with Type I error α = 1− γ is

Λ
∗ = QΛ(α) (61)

since small Λ, Eq. 55, indicates significant departure from H0. The decision is based on the
observed (estimated) value Λ̂ of the likelihood ratio

reject H0 if Λ̂ < Λ
∗ . (62)

The p-value p̂ for the test is the probability that Λ is as extreme as the observed value Λ̂, so

p̂ = FΛ(Λ̂) . (63)

An equivalent decision rule is
reject H0 if p̂ < α , (64)

since
Λ̂ < Λ

∗ ⇐⇒ Λ̂ < QΛ(α) ⇐⇒ FΛ(Λ̂)< FΛ(QΛ(α)) ⇐⇒ p̂ < α . (65)

In terms of the deviation ∆ =−2logΛ, large ∆, Eq. 58, is significant. The critical value is

∆
∗ = Q∆(γ) , (66)

the decision is
reject H0 if ∆̂ > ∆

∗ , (67)
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and the p-value is
p̂ = 1−F∆(∆̂) . (68)

Using the large-sample asymptotic approximation, Eq. 60, the critical value of ∆ is

∆
∗ = Qχ2

r
(γ) , (69)

and the p-value is
p̂ = 1−Fχ2

r
(∆̂) . (70)

2.5 Single Point

With Θo = {c}, we can test that the parameter has a fixed value

H0 : θ = c

H1 : θ 6= c . (71)

Suppose the test is constructed with Type I error α = 1− γ . The critical value Λ∗(α) depends on
α but not c or the data. The test statistic Λ̂(c) depends on c and the data but not α , and likewise
for the p-value

p̂(c) = FΛ

(
Λ̂(c)

)
. (72)

2.5.1 Confidence Region

The set C of c for which the test fails to reject

C = {c : Λ̂(c)≥ Λ
∗(α)}= {c : p̂(c)≥ α} (73)

serves as a γ confidence region for θ .

2.5.2 Confidence Interval

If θ is a scalar, then there are 2 values c0 and c1 of c with

c0 < ψ̂ < c1 (74)
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where p̂(c)≥ α for c0 ≤ c≤ c1, and p̂(c)< α for c < c0 or c > c1, so

p̂(c0) = p̂(c1) = α , (75)

and the γ confidence region for θ is an interval

C = [ c0 , c1 ] . (76)

Note that p̂(θ̂) = Λ̂(θ̂) = 1.

3. Application to Quantal Response

3.1 The Quantal Response Model

In the quantal response (QR) model,11 the response is a binary (Bernoulli) random variable

y ∈ {0,1} (77)

with Bernoulli parameter p = P(x) = Pr[y = 1 | x] = E[y | x] dependent on a stimulus x ∈ R

P(x) = G(a+bx) (78)

through a function G called the link and an unknown linear model parameter θ = (a,b). Let Q

denote the inverse of G. Then the stimulus x = X(p) with a given mean response p is the inverse
of P. With p = G(a+bx), then Q(p) = a+bx and

X(p) =
Q(p)−a

b
. (79)

Common choices for the link G include the logistic cdf for the logit model (logistic regression)

G(z) =
1

1+ e−z (80)

with inverse
Q(u) = log

(
u

1−u

)
(81)
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and the normal cdf function for the probit model (probit regression)

G(z) =
1√
2π

∫ z

−∞

e−u2/2 du (82)

with inverse
Q(u) = inf{z : G(z)≥ u} . (83)

Useful parameterizations of the model are

P(x) = G
(
b(x−m)

)
= G

(
x−m

s

)
. (84)

where bs = 1 and a =−bm. Then

X(p) = m+
Q(p)

b
= m+ sQ(p) . (85)

If G(0) = 1/2, as it does for the logit and probit models, then P(m) = 1/2 also, and so m is the
stimulus level at which the probability of response equals 1/2, that is, m = X(1/2).

In ballistic work where x is velocity and y is penetration, m = X(1/2) is the V50, or that velocity
with a 50% chance of penetration. In other words, P(V50) = 1/2.

3.2 Estimation

Suppose we have a data set {(x1,y1), . . . ,(xn,yn)} of size n. Let x0max = max{xi : yi = 0}, the
highest stimulus with no response. Let x1min = min{xi : yi = 1}, the lowest stimulus with a
response. If x1min < x0max, the data set has a zmr Z = [x1min,x0max]. If x0max ≤ x1min, the data set
has a (possibly empty) gap Z = (x0max,x1min) with no data.

3.2.1 With a Zone of Mixed Results

Data with a zmr admit a unique MLE with a smooth S-shaped response curve

P(x) = G(a+bx) = G
(
b(x−m)

)
= G

(x−m
s

)
(86)

and likelihood 0 < L < 1, or deviance D > 0 (Fig. 4).
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Fig. 4 Zmr data

Estimation of θ in the QR model is best implemented using GLM. The computation is detailed in
Collins11 for implementation in any programming language.

For general or development work, it is convenient to use an interactive environment that already
implements the necessary computations, such as R,16 S,17 S-PLUS, Mathematica,18 MATLAB,19

or JMP.20 In R (or S or S-PLUS), the stimulus and response are in a data frame

z <- data.frame(x=x, y=y)

and the estimation for Eqs. 78 and 80

fit <- glm(y~x, family=binomial(link="logit"), data=z)

returns an object containing θ in
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fit$coefficients

and the deviance D as

D <- fit$deviance .

3.2.2 With No Zone of Mixed Results

Note that y = 0 at x = x0max, and y = 0 if x < x0max.

P(x) =

0, x < x0max

1, x > x1min .
(87)

Figure 5 illustrates gap data.

In terms of the specific model with parameterizations of Eqs. 78 and 84, one usually considers a
fixed m ∈ Z and a sequence of bi with bi→ ∞ as i→ ∞. Then the sequences of parameters
(a,b) = (−mbi,bi) for Eq. 78 or (m,s) = (m,1/bi) for Eq. 84 are equivalent, and they have Li→ 1
and Di→ 0 also. The limiting 2-parameter model is the step function (indeterminate at x = m)

P(x) =


0, x < m

?, x = m

1, x > m

(88)

or simply

P(x) =

0, x < m

1, x > m
(89)

with L = 1 and D = 0. Even though the MLE does not exist and the limiting form is not unique,
these values of L and D can be used in computation, estimation, and inference.
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Fig. 5 Gap data

3.3 One-Sample Inference

In this section, all tests are 2-sided GLR tests, so H1 is the negation of H0.

One special case is
H0 : a = ao (90)

in the model P(x) = G(a+bx). Since G(0) = a, this is the same as

H0 : P(0) = ao . (91)

Another special case is
H0 : X(0.5) = mo . (92)

In ballistic terminology, X(0.5) =V50. This even works with no zmr. If the data set has a zmr,
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then the model can be written as P(x) = G((x−m)/s) and this test can be written as

H0 : m = mo . (93)

In any case, this test is the same as
H0 : P(mo) = 0.5 . (94)

In general, the fundamental 1-sample test for the QR model is that the response curve passes
through a certain point (xo, po)

H0 : P(xo) = po (95)

or, equivalently,
H0 : X(po) = xo . (96)

We can construct the corresponding GLR test of Eq. 71, evaluate the deviation ∆ = Do−D,
Eq. 58, and obtain the p-value p̂, Eq. 68.

The denominator term D (from θ ∈Θ) is the deviance of the unrestricted model MLE. The
numerator term Do (from θ ∈Θo) is the deviance of the restricted model MLE.

If the data has no zmr and xo is in the gap, then Lo = L = 1 and Do = D = 0, so Λ = 1 and ∆ = 0
and p̂ = 1. Otherwise, the data has a zmr, or the data has no zmr and xo is not in the gap. To
estimate the restricted numerator model and obtain Do, consider the parameterization

P(x) = G(qo +b(x− xo)) (97)

where
qo = Q(po) (98)

and note that
P(xo) = G(qo +b(xo− xo)) = G(qo +b ·0) = G(qo) = po . (99)

Estimation of the single parameter b in this model, restricting the response to pass through
(xo, po), produces the required Lo and Do.

This yields inference and interval estimation on QR parameters even in the case of no zmr.

If the data set has no zmr, then technically L = 1 and D = 0. This gives confidence intervals which
may appear “too narrow”. Furthermore, the p-value is not a continuous function of the data in the
sense that an infinitesimal shift in one xi can change the data set between zmr and gap and
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produce a (non-infinitesimal) jump in p-value. Neyer13 suggests the following correction that
makes the p-value continuous and gives larger (more conservative) confidence intervals.

3.3.1 Continuity Correction

Consider that the maximum value of the likelihood function is in fact L = 1/4 when the data has a
zmr, and so the minimum deviance is D = log16. To see this, the simplest example is a sample of
size n = 2 with x1 < x2 and y1 = 1 and y2 = 0. With respect to an increasing response
G(x1)≤ G(x2), this data has a zmr. Let zi = G(xi). The likelihood function is

L =
n

∏
i=1

G(xi)
yi(1−G(xi))

1−yi = z1(1− z2) = z1− z1z2 (100)

and we find its maximum value subject to the constraints 0≤ z1 ≤ z2 ≤ 1. The Kuhn-Tucker
necessary conditions for the solution of maxL subject to g j ≤ 0 are ∇(L−∑m jg j) = 0 and
m j ≥ 0 and m jg j ≥ 0. In this case, g1 =−z1 and g2 = z1− z2 and g3 = z2−1. Since L(0, ·) =
L(·,1) = 0 and L(1/2,1/2)=1/4, which is in fact the solution, we eliminate z1 = 0 and z2 = 1 and
must take m1 = m3 = 0. Now m2 = 0 implies ∇L = (1− z2,−z1) = (0,0) which is impossible, so
m2 = m > 0 and z1 = z2 = z. Then (1− z,−z)−m(1,−1) = (0,0), so z = m and 1−2z = 0 and
z = 1/2 as required. Any data set with a zmr contains 2 such points, and any larger data set only
introduces additional factors in L which reduce its maximum value, since 0≤ G≤ 1.

Using these values L = 1/4 and D = log16 instead of L = 1 and D = 0 for the denominator with
no zmr and xo not in the gap makes the p-value of Eqs. 95 or 96 a continuous function of the data.

The resulting CIs are more conservative (larger, wider), as a more extreme numerator likelihood is
necessary to obtain the required ratio. This correction is only applied to gap data (never to data
with a zmr).

3.3.2 Implementation

To implement the computation in R, first transform (shift) the data

x̃ = x− xo (101)

so x̃o = 0. Then the restricted model

P(x̃) = G(qo +bx̃) = G(qo +b(x− xo)) (102)

has a fixed intercept a = qo and a single parameter b to estimate (the slope).
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To implement the computation in R and obtain the deviance Do,

zo <- data.frame(x=x-xo, y=y)

fito <- glm(y~x -1 +offset(qo), family=binomial(link="logit"), data=zo)

Do <- fito$deviance .

The new data frame zo holds the transformed stimulus. The -1 term in the formula removes the
intercept calculation, forcing the regression through (0,0). The offset term imposes an offset,
ultimately forcing the regression through (0,qo). Then the deviation ∆ is

Delta <- Do - D.

This may be inefficient and numerically unstable particularly when exhaustive calculation is
required. Explicit solution is straightforward. See section 5.3.

To apply the large-sample χ2
r approximation for the distribution of ∆, necessary only when the

data set has a zmr or the data set has no zmr and xo is not in the gap, one needs the degrees of
freedom r. In the full (denominator) model,

Θ = {(a,b) : a ∈ R,b ∈ R} (103)

and dimΘ = 2, whether or not the data set has a zmr. In the restricted (numerator) model, since

a+bx = qo +b(x− xo) = (qo +bxo)+bx (104)

we have
Θo = {(qo +bxo,b) : b ∈ R} (105)

and dimΘo = 1. There is one free parameter b, and the value of b determines the value of a. For
the shifted model

Θ̃o = {(qo,b) : b ∈ R} , (106)

and dimΘ̃o = 1 also. Note that shifting does not affect the deviance

D̃o = Do . (107)

Thus, the degrees of freedom for the asymptotic distribution of the deviation is r = 1, and the
Wilks p-value is

p̂ = 1−Fχ2
r
(∆) , (108)
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implemented in R as

p <- 1 - pchisq(Delta, 1).

Figures 6 and 7 illustrate examples of the zmr test and gap test, respectively.

Kinsler and Collins21 provide examples of 1-sample tests.
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Fig. 6 Example of P(xo) = po with zmr data
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Fig. 7 Example of P(xo) = po with gap data

3.3.3 Likelihood Ratio Confidence Intervals

In the QR model
P(x) = G(a+bx) , (109)

2-sided LR confidence bands for fixed xo or po are obtained from the hypothesis test that the
response curve passes through a certain point (xo, po)

H0 : P(xo) = po

H1 : P(xo) 6= po (110)
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or, equivalently,

H0 : X(po) = xo

H1 : X(po) 6= xo . (111)

The restricted model uses the parameterization

P(x) = G(qo +b(x− xo)) (112)

where
qo = Q(po) (113)

since
P(xo) = G(qo +b(xo− xo)) = G(qo +b ·0) = G(qo) = po . (114)

Estimation of the single parameter b in this model, restricting the response to pass through
(xo, po), produces the likelihood Lo. The full model (usual estimation with 2 unrestricted
parameters) yields likelihood L. The 2-sided p-value p for the test comes from the asymptotic
distribution of the likelihood ratio Λ = Lo/L

−2logΛ∼ χ
2
1 . (115)

The 1-sided p-value is p/2.

In the ballistic application with po = 1/2, this is a test that V50 = xo.

CIs are obtained by fixing po or xo and adjusting the other to obtain the desired p-value.
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3.3.4 Confidence Interval Examples

The following examples of LR and CR CIs on P(x) and X(p) for zmr and gap data illustrate the
preceding discussion.

• Application of Eq. 76 to Eq. 95 yields confidence intervals on the probability of response p

for given stimulus x. Figure 8 shows the multiple 1-sample tests used in the construction of
CIs. Figures 9 and 10 show LR CIs (γ = 0.9) on P for zmr and gap data, respectively.

• Application of Eq. 76 to Eq. 96 yields LR CIs on the stimulus x for given probability of
response p. Figures 11 and 12 show LR CIs (γ = 0.9) on X for zmr and gap data,
respectively.

• Equivalence of LR CIs (γ = 0.9) on P and X is illustrated in Figs. 13 and 14 for zmr and
gap data, respectively.

• LR CIs for multiple γ , (0.8,0.9,0.95,0.99) are illustrated in Figs. 15–18. Figure 15 shows
CIs for zmr data. Figures 16 and 17 show CIs for gap data without and with the continuity
correction, respectively. Figure 18 shows CIs for gap data both with and without the
continuity correction to illustrate its effect.

• Comparisons of LR to CR CIs (γ = 0.9) on P and X for zmr data are illustrated in
Figs. 19–22. Figures 19 and 20 show CR CIs on P and X, respectively. Figure 21 shows CR
CIs on both P and X, while Fig. 22 shows CR and LR CIs on P and X.

• CR CIs show the effect explained in section 1.3.4. Figures 23–25 use data provided by
David W Webb, Mathematical Statistician, US Army Research Laboratory, Weapons and
Materials Research Directorate, Advanced Weapons Concepts Branch, with γ = 0.95.
Figures 23 and 24 show LR and CR CIs, respectively. Figure 25 shows LR and CR CIs
together. LR CIs can exhibit similar behavior. See Fig. 26 for examples with γ = 0.99 and
random samples of size 16. In general, the effect is less likely and less extreme for LR CIs.
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Fig. 8 Multiple P(xo) = po with zmr
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Fig. 9 LR CIs on P(x) for zmr data
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Fig. 10 LR CIs on P(x) for gap data
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Fig. 11 LR CIs on X(p) for zmr data
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Fig. 12 LR CIs on X(p) for gap data
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Fig. 13 LR CIs on P(x) and X(p) for zmr data
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Fig. 14 LR CIs on P(x) and X(p) for gap data
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Fig. 15 LR CIs bands for zmr data
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Fig. 16 LR CI bands for gap data

43



0 2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0

x

p

0.975
0.95
0.9
0.8

Fig. 17 LR CI bands for gap data, continuity correction
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Fig. 18 LR CI bands for gap data, continuity correction (CC) effect
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Fig. 19 CR CIs on P(x) for zmr data
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Fig. 20 CR CIs on X(p) for zmr data
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Fig. 21 CR CIs on P(x) and X(p) for zmr data
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Fig. 22 LR and CR CIs for zmr data
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Fig. 23 LR CIs for Webb data
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Fig. 24 CR CIs for Webb data
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Fig. 25 LR and CR CIs for Webb data
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Fig. 26 CR and LR CIs, γ = 0.99, n = 16
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3.4 Two-Sample Inference

3.4.1 G Test: the Basic Test

The basic 2-sample G test for the QR model is that both data sets have the same response

H0 : P1(x) = P2(x)

H1 : P1(x) 6= P2(x) . (116)

We can construct the corresponding GLR test, Eq. 71, evaluate the deviation ∆ = Do−D, Eq. 58,
and obtain the p-value. The numerator results from common estimation (pooled data) with
deviance D. The denominator corresponds to independent estimation for both sets with deviances
D1 and D2. The deviation is

∆ = D− (D1 +D2) . (117)

This works even if either data set (or the pooled data set) has a zmr or not.

Since dimΘ0 = 2 and dimΘ = 4, with

Θ0 = {
(
(a,b),(a,b)

)
}

Θ = {
(
(a1,b1),(a2,b2)

)
} , (118)

the degrees of freedom is r = 2 for the large-sample approximation.

3.4.2 M Test: the Test of X(0.5)

One may wish to test

H0 : X1(0.5) = X2(0.5)

H1 : X1(0.5) 6= X2(0.5) . (119)

For the ballistic application, this is a test of V50 equality, as X(0.5) =V50.

If both data sets have a zmr, one may write the models as

Pi(x) = G
(
bi(x−mi)

)
= G

(
x−mi

si

)
(120)
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for i ∈ {1,2}, and the M test is

H0 : m1 = m2

H1 : m1 6= m2 . (121)

The optimal deviation infm ∆(m), where

∆(m) = (D1(m)+D2(m))− (D1 +D2) , (122)

gives the required optimal common value of m = X(0.5). The denominator term D1 +D2

corresponds to independent (unrestricted) estimation for both sets with deviances D1 and D2, and
the numerator model has common m = m1 = m2 and separate b1 and b2.

If both data sets have no zmr, then D1 = D2 = 0.

If both data sets have no zmr and the gap intersection Z1∩Z2 6= /0, then choosing any m ∈ Z1∩Z2

yields D1(m) = D2(m) = 0, so ∆ = 0 and p̂ = 1.

If both data sets have no zmr and Z1∩Z2 = /0, then for any choice of m, at least one of D1(m) or
D2(m) is infinite. Therefore ∆ = ∞ and p̂ = 0 in this case.

Otherwise, at least 1 data set has a zmr. In this case, for any m one can evaluate D1(m)+D2(m)

by applying Eq. 97 to each data set separately with xo = m and qo = 0, so po = 0.5, to obtain
D1(m) and D2(m). The optimal m minimizes the sum D1(m)+D2(m) and thus gives the
numerator term of Eq. 122. The parameter spaces have dimΘ0 = 3 and dimΘ = 4,

Θ0 = {
(
(m,b1),(m,b2)

)
}

Θ = {
(
(m1,b1),(m2,b2)

)
, (123)

so r = 1 for the large-sample approximation.

Kinsler and Collins22 present examples of 2-sample tests.

Figures 27–32 illustrate the application of the G and M tests to pairs of data sets. Figures 27 and
28 show tests with 2 zmr data sets. Figures 29, 30, and 31 show tests with 1 gap and 1 zmr data
set. Figure 32 shows tests with 2 gap data sets.

For the G test, the top graph always shows separate response functions (red and green) and the
common combined-data response (dashed gray).

55



For the M test, the bottom left graph shows separate response functions (red and green) and
constrained responses (dashed gray) with optimal common m = X(0.5) and separate b. The
bottom right graph shows the optimization for m of the p-value p̂(m) = 1− Fχ2

r
(∆(m)), which

achieves its global maximum at the optimal m. Some care is required in the optimization, as the
graph of p̂ may have a local maximum corresponding to the influence of each data set.
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Fig. 27 Two-sample tests, 2 zmr data sets, example 1
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Fig. 28 Two-sample tests, 2 zmr data sets, example 2
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Fig. 29 Two-sample tests, 1 zmr and 1 gap data set, example 1
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Fig. 30 Two-sample tests, 1 zmr and 1 gap data set, example 2
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Fig. 31 Two-sample tests, 1 zmr and 1 gap data set, example 3
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Fig. 32 Two-sample tests, 2 gap data sets
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4. One-Sided Tests

Silvapulle23–25 notes that p1 = p2/2 if the statistic T is in the correct region.

This is easy if T ∈ R1, when T 6= 0 means T < 0 or T > 0 and there are 2 alternatives.

If T = (T1, . . . ,Tk) ∈ Rk, then T = 0 means Ti = 0 for all i, and T 6= 0 means at least one
component is nonzero. Up to k−1 components may be 0, the others are positive or negative. So,
summing on the number of 0-valued components, the number of alternatives is

k−1

∑
j=0

(
k
j

)
2k− j = 3k−1 . (124)

On the other hand, taking T 6= 0 to mean Ti 6= 0 for all i, there are 2k alternatives.

The distinction is irrelevant in the continuous case.

5. Computation

Suppose we have a data set {(x1,y1), . . . ,(xn,yn)} of size n. Let n0 be the number of points with
y = 0 and n1 be the number of points with y = 1.

The link is G(z) and its derivative is

g(z) =
d
dz

G(z) . (125)

The upper-tail link is H(z) = 1−G(z) and its derivative is

h(z) =
d
dz

H(z) =−g(z) . (126)

The likelihood is
L =

n

∏
i=1

G(zi)
yiH(zi)

1−yi (127)

and its logarithm is `= logL

`=
n

∑
i=1

(
yi logG(zi)+(1− yi) logH(zi)

)
= ∑

yi=1
logG(zi)+ ∑

yi=0
logH(zi) (128)
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and its derivative
d

du
`= ∑

yi=1

dzi

du
· g(zi(u))

G(zi(u))
+ ∑

yi=0

dzi

du
· h(zi(u))

H(zi(u))
. (129)

5.1 Full Model

Collins11 describes the full model z = a+bx,

P(x) = G(a+bx) . (130)

5.2 Null Model: b = 0

The null model in R (and S) nomenclature is the null model for the particular test

H0 : b = 0

H1 : b 6= 0 (131)

(slope b = 0) in the model P(x) = G(a+bx). In other words,

P(x) = G(a) (132)

so z = a, and with
d

da
`= n1

g(a)
G(a)

−n0
g(a)

1−G(a)
= 0 (133)

it follows that n1(1−G(a)) = n0G(a), so G(a) = n1/(n0 +n1) and

a = Q
(n1

n

)
. (134)

5.3 Restricted Model: G(xo) = po

To estimate b in the restricted model

P(x) = G
(
qo +b(x− xo)

)
(135)

without loss of generality (using x− xo for x and 0 for xo and a for qo), one may work with

P(x) = G
(
a+bx

)
. (136)
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So let z = a+bx, and maximize the likelihood by setting

d
db

`(b) = 0 . (137)

For convenience write Gi = G(zi) and Hi = H(zi), so that

`(b) = ∑
yi=1

logGi + ∑
yi=0

logHi . (138)

Then

d
db

`(b) = ∑
yi=1

xi ·
gi

Gi
+ ∑

yi=0
xi ·

hi

Hi

= ∑
yi=1

xi ·
g(a+bxi)

G(a+bxi)
+ ∑

yi=0
xi ·

h(a+bxi)

H(a+bxi)
. (139)

Numerical solution of d`/db = 0 is easy, and the root maximizes `.

6. Conclusions

Ballistic limit testing and acceptance criteria should be expressed in terms of statistical tests that
account for quantification of risk and uncertainty. The LR methodology developed in this report
satisfies the requirement for statistical decision support of ballistic limit analyses and applies
equally to experiments with or without a zmr. The level of computational detail required is easily
achievable in modern computing environments. Any interested reader may contact the author for
assistance. Discussion and commentary are also welcome.
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List of Symbols, Abbreviations, and Acronyms

BL(P) Ballistic limit, protection criteria

cdf cumulative distribution function

CI confidence interval

CR Cramér-Rao

DTL Detail Specification

GLM Generalized Linear Model

GLR generalized likelihood ratio

LR likelihood ratio

MLE maximum likelihood estimation

QR quantal response

SLR simple likelihood ratio

TOP Test Operations Procedure

USADTC US Army Developmental Test Command

zmr zone of mixed results
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