Receptivity of a Cryogenic Coaxial Liquid Jet to Acoustic Disturbances

Air Force Research Laboratory (AFMC)
AFRL/RQRC
10 E. Saturn Blvd.
Edwards AFB CA 93524-7680

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory (AFMC)
AFRL/RQR
5 Pollux Drive
Edwards AFB CA 93524-7048

10. SPONSOR/MONITOR’S ACRONYM(S)
AFRL-RQ-ED-TP-2014-055

11. SPONSOR/MONITOR’S REPORT NUMBER(S)
AFRL-RQ-ED-TP-2014-055

12. DISTRIBUTION / AVAILABILITY STATEMENT
Distribution A: Approved for Public Release; Distribution Unlimited

13. SUPPLEMENTARY NOTES
PA#14132

14. ABSTRACT
The receptivity of cryogenic coaxial gas-liquid jet flows to transverse acoustic disturbances has been explored experimentally. Liquid nitrogen in the inner jet and cooled helium in the outer annular jet were used to simulate an oxygen/hydrogen liquid rocket engine injector. The flow is submerged in a chamber that experiences a transverse acoustic resonance. The shear coaxial jet is exposed to a variety of acoustic conditions including different frequencies, amplitudes, and locations within the resonant mode shape. High-speed back-lit images were captured to record the behavior of the natural (unforced) and forced coaxial jets. Proper orthogonal decomposition and spectral analysis were used to extract natural and forced modes. Convective modes are extracted, and a new Strouhal number is used to characterize the strongest natural convective mode that is analogous to the preferred mode in free jets. The threshold of receptivity was found for a number of different injector flows and acoustic forcing conditions. The results indicate that the dimensionless frequency plays an important role, and there exists finite forcing amplitude at which the threshold of receptivity occurs. The receptivity threshold provides useful insight on the suitability of a given injector design for specific rocket combustion chamber conditions.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
 a. REPORT Unclassified
 b. ABSTRACT Unclassified
 c. THIS PAGE Unclassified

17. LIMITATION OF ABSTRACT
 SAR

18. NUMBER OF PAGES
 13

19. NAME OF RESPONSIBLE PERSON
 D. Talley

19b. TELEPHONE NO (include area code)
 5-6174
Receptivity of a Cryogenic Coaxial Liquid Jet to Acoustic Disturbances

J. L. Wegener
Department of Mechanical Engineering
University of California at Los Angeles
Los Angeles, CA 90095 USA

D. J. Forliti*
Sierra Lobo, Inc.
Edwards AFB, CA 93524 USA

I.A. Leyva
AFRL/RQRE
Edwards AFB, CA 93524 USA

and
D.G. Talley
AFRL/RQRC
Edwards AFB, CA 93524 USA

Abstract
The receptivity of cryogenic coaxial gas-liquid jet flows to transverse acoustic disturbances has been explored experimentally. Liquid nitrogen in the inner jet and cooled helium in the outer annular jet were used to simulate an oxygen/hydrogen liquid rocket engine injector. The flow is submerged in a chamber that experiences a transverse acoustic resonance. The shear coaxial jet is exposed to a variety of acoustic conditions including different frequencies, amplitudes, and locations within the resonant mode shape. High-speed back-lit images were captured to record the behavior of the natural (unforced) and forced coaxial jets. Proper orthogonal decomposition and spectral analysis were used to extract natural and forced modes. Convective modes are extracted, and a new Strouhal number is used to characterize the strongest natural convective mode that is analogous to the preferred mode in free jets. The threshold of receptivity was found for a number of different injector flows and acoustic forcing conditions. The results indicate that the dimensionless frequency plays an important role, and there exists finite forcing amplitude at which the threshold of receptivity occurs. The receptivity threshold provides useful insight on the suitability of a given injector design for specific rocket combustion chamber conditions.

*Corresponding author: david.forliti.ctr@us.af.mil

Approved for public release; distribution unlimited
Introduction

Combustion instability remains one of the key challenges in the development of robust and high-performance propulsion and energy systems. In liquid rocket engines (LREs), combustion instability can lead to degraded performance, severe wear, and catastrophic damage to the propulsion system. Unfortunately, combustion instability phenomena are not sufficiently understood to allow solution at the design stage. Thus full-scale testing and potentially multiple design cycle iterations may be required to satisfy the stability requirements. The development of high-fidelity design tools offers much promise in this regard, although data under a variety of relevant conditions are still needed to validate emerging computational tools.

The Air Force Research Laboratory (AFRL) at Edwards AFB has investigated the mixing properties of cryogenic single and coaxial jets under both sub- and supercritical thermodynamic pressure operating conditions.[1-3] These flows have also been exposed to a range of transverse acoustic forcing conditions.[4-6] A new experimental facility for reacting coaxial jet flows has been developed and is described in detail by Wegener et al.[7] The present paper describes nonreacting data that was collected with this new facility. Although a large quantity of data has been collected in the past for nonreacting conditions, the current effort considers a new framework for characterizing the forcing response of coaxial jets. Past studies have generally placed emphasis on investigating different injector conditions, including injector geometry, momentum flux ratio, and chamber pressure. The current study focuses on a single injector geometry in a two-phase (i.e. subcritical) regime, and focuses on the role of forcing frequency and amplitude.

Background

Single and coaxial jets at high Reynolds number are known to be spectrally broadband. Near the nozzle exit, shear layer instabilities and turbulent initial conditions will in general develop high-frequency oscillations. As the shear layers grow with increasing downstream distance, the spectra shifts to lower frequency.[8] Further downstream, the shear layers have grown to a point where a merger occurs, and typically the most intense fluctuations are encountered in this region. In single free jets, the fluctuations at the shear layer merging location, also referred to as the end of the potential core, are of global relevance and these fluctuations are referred to as the jet preferred mode.[8-11] Crow and Champagne conducted a classic study on forced free jets, and observed that the flow response was highly sensitive to the forcing frequency relative to the preferred mode frequency. More recently, Birbaud et al.[12] conducted a flow control study of a single free jet and considered the dependency of the forcing frequency relative to two characteristic frequencies; the initial high frequency associated with the initial shear layer and the low frequency preferred mode associated with the fluctuations at the end of the potential core. Having one (or more) characteristic frequency provides a useful reference in which to examine the effects of forcing, as different relative frequencies will influence the jet/shear layer structure through different mechanisms.

The coaxial jet contains more spatial and spectral complexity than the single jet, due to the presence of additional length and velocity scales. Figure 1(a) shows the spatial development of the coaxial jet as described by Ko and Kwan.[13] There are a number of fluctuation sources including multiple shear layers and potential core zones. A schematic of the near-field region is shown in Fig. 1(b). The injector geometry is characterized by a set of diameters that can be non-dimensionalized to form two parameters, the area ratio AR and dimensionless post thickness t/D_1. Several near-field instabilities may be present, including an inner and outer shear layer, and a potential wake instability associated with the flow downstream of the inner post. The inner shear layer and wake modes overlap...
and thus these instabilities compete with one another. The acoustic disturbances are likely to couple with the flow field in the near-field region where the flow is most unstable and sensitive to perturbations.

The coaxial jet flow is dependent on a large number of dimensionless groups. As mentioned above, the geometry can be characterized by the outer-to-inner area ratio AR, and the normalized post thickness t/D_1. There are two Reynolds numbers, one for the inner and outer flow. The momentum flux ratio J, defined outer to inner, is generally considered the primary independent parameter of the coaxial jet. Each of the two flows have characteristic velocities and densities, allowing the ability to define the velocity and density ratio across each shear layer. The shear flow is also very sensitive to the injector exit conditions, including profiles of mean and fluctuating velocity, and spectral characteristics of turbulence or other background disturbances. If the two streams differ in phase, then the Weber number is also a parameter of importance.

The behavior of the acoustically-excited coaxial jet will depend on all of the parameters mentioned above, in addition to the characteristic scales of the forcing conditions. The forcing can be characterized by the forcing frequency and amplitude; the amplitude may be measured by the magnitude of the pressure and/or velocity fluctuations. The interaction mechanisms differ when the coaxial jet is placed in a fluctuating pressure environment versus a fluctuating velocity environment. Thus the response of a given coaxial jet flow to acoustic perturbations will depend on the relative frequency, relative amplitude, and location within the acoustic resonance mode shape.

The purpose of the current study was to explore the receptivity of cryogenic two-phase coaxial jets to acoustic disturbances in the form of a transverse resonance; a flow is considered to be receptive to perturbations if detectable changes occur in the flow field. This study considered new parameters, the normalized frequency and amplitude. The conditions at which forcing dominates the natural coaxial jet behavior was documented.

Experimental Facility

The experiments were conducted in the Combustion Stability Lab at the Air Force Research Laboratory (AFRL) at Edwards Air Force base. A new facility, capable of high-pressure reacting flows, was used in the current study. Figure 2 shows both a schematic and three-dimensional rendering of the test chamber. Two acoustic sources, piezo sirens from Piezo Systems, Inc., are located symmetrically offset from the injector region. Waveguides shown in Fig. 2(a) are used to excite transverse resonances within the chamber. The acoustic frequency and amplitude are controlled via a signal generator/amplifier combination that drive the sirens.

The sirens operate either in phase or with 180° shift to generate the pressure antinode (PAN) and pressure node (PN), respectively; the pressure node case is associated with an acoustic velocity antinode, but will be referred to as pressure node.

![Figure 2.](image)

The chamber is divided into inner and outer chambers that are not sealed relative to one another. A high flow of nitrogen in the outer chamber is used to cool the combustion products under combustion conditions, and the combined flow is choked through an exit orifice. The nitrogen flow is used to set the chamber pressure. The facility is equipped with heat exchangers to allow cooling of the inner and outer injector flows. Further details on the experimental facility can be found in Wegener et al.[7]

A single coaxial jet injector was used for the experiments. The dimensions of the injector are summarized in Table 1. The outer-to-inner area ratio AR is 1.68 and the dimensionless post thickness t/D_1 is 0.27; both parameters are within the lower range of previous studies at AFRL.[5, 6] The injector flow passages are sufficiently long to ensure fully-developed turbulent flow.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D_1</td>
<td>1.40</td>
</tr>
<tr>
<td>D_2</td>
<td>2.16</td>
</tr>
<tr>
<td>D_3</td>
<td>2.82</td>
</tr>
<tr>
<td>D_4</td>
<td>1.68</td>
</tr>
</tbody>
</table>

Table 1. Geometry of the injector.
flow at the exit of the injector. Similar to previous work, the inner jet is liquid nitrogen. The outer jet in the current study is cooled helium. The use of helium allows for a closer match to the density ratio as would occur for oxygen/hydrogen operation in a cryogenic rocket engine. The chamber pressure was 2.8 MPa (400 psi) for all experiments. Further details on the experimental conditions are given in Table 2.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>T of inner jet (N₂)</td>
<td>~ 120 K</td>
</tr>
<tr>
<td>T of outer jet (He)</td>
<td>~ 275 K</td>
</tr>
<tr>
<td>J</td>
<td>2, 6</td>
</tr>
<tr>
<td>Re₁</td>
<td>~ 1.5x10⁴</td>
</tr>
<tr>
<td>Re₂</td>
<td>~ 1.0x10⁴</td>
</tr>
<tr>
<td>We</td>
<td>>100</td>
</tr>
</tbody>
</table>

Table 2. Injector operating parameters.

As shown in the table, two momentum flux ratios were considered. Due to the unique combination of fluids and conditions, surface tension values are not available to the authors’ knowledge. Based on the visualizations shown later and the results of Farago and Chigier[14], the current experiments appear to be in the fiber-type regime and the Weber number is expected to be approximately 100 or higher.

The primary diagnostic of the coaxial jet involves high-speed backlight imaging. A Phantom v7.10 camera was used to capture images at 10 kHz. The acoustic resonance is characterized through several high-speed Kulite pressure sensors flush mounted in the test section area including the waveguides. A pressure sensor located in the center of the test section and coincident with the axis of the coaxial jet is used to measure the peak pressure fluctuation for the PAN cases. For the PN operation, the peak pressure fluctuation is estimated from measurements at off-node locations using an assumed mode shape, and the maximum acoustic velocity magnitude is estimated from the linear acoustics equation,

\[u' = \frac{p'}{\rho_c c} \]

(1)

where \(u' \) is the magnitude of the velocity fluctuation in the velocity antinode region, \(p' \) is the magnitude of the pressure fluctuation in the pressure antinode region, \(\rho_c \) is the density of the ambient gas in the chamber, which is nominal room temperature nitrogen, and \(c \) is the speed of sound. The injector flow species and temperatures will definitely alter the properties of the acoustic resonance, thus Eq. 1 is an approximation. The acoustic sirens were used to drive a transverse acoustic resonance ranging from the 3rd to 7th mode. See Wegener et al. for more details on the acoustic characteristics.[7]

Results

The first phase of the research was focused on understanding the properties of the unforced coaxial jets.

Figure 3 shows instantaneous and mean images of the coaxial jet for momentum flux ratio J of a) two and b) six.

As mentioned earlier, there is a need to identify the preferred mode of the coaxial jet. A frequency scaling variable, the Strouhal number, may be developed for use in a preferred mode scaling law. There are a number of choices available in defining the length and ve-
locity scale for the Strouhal number. The length scale is a relatively straightforward choice of jet diameter as used for the single jet. In the case of a coaxial jet with finite (or large) post thickness \(t/D_1 \), previous studies show, at least for moderate to high \(J \), that the shear layer will more or less be centered near the middle of the post.[6] Thus the average of \(D_1 \) and \(D_2 \) are used as the length scale. Further data would need to be considered for different geometries to find the length scale that provides the best collapse across different injector designs.

The velocity scale is more subjective. For the free jet, the convention is to use the mean jet exit velocity. Guidance for an alternative choice is provided through studies of shear layers. Huere and Monkewitz conducted a linear stability study of variable velocity ratio shear layers.[16] They found that the most unstable frequencies nominally collapse on a single value when the frequency is normalized by the mean velocity of the two streams. For variable density shear layers, the frequency of the most unstable mode will more likely scale with the convection velocity. Thus the convection velocity is proposed as an appropriate velocity scale.

The convection velocity of the coherent structures in a shear layer may be estimated in a variety of ways. Linear stability analysis may be used, for instance. Dimotakis developed a model for the spreading rate of planar shear layers, and included in the model development is an estimate of the convection velocity based on freestream conditions [17]. The model uses the assumption that in the reference frame of the shear layer structure, the dynamic pressure of the two freestreams is equal. This leads to a form of the convection velocity of

\[
U_{c,Dimitakis} = \frac{\rho_1^{1/2} U_1^{1/2} + \rho_2^{1/2} U_2^{1/2}}{\rho_1^{1/2} + \rho_2^{1/2}},
\]

where \(\rho \) and \(U \) are the density and velocity of the freestreams. It should be mentioned that this expression was defined for single-phase shear layers.

In order to evaluate the validity of the Dimotakis model, the convection velocity is directly measured from the time-resolved images. Figure 4(a) shows the mean image for the \(J = 6 \) case. A line along the middle of the inner shear layer is defined through user input, and the intensities of these pixels are plotted as a function of time as shown in Fig. 4(b). As inner fluid structures convect along this trajectory, they trace diagonal lines in the \(s/D_1 \) versus time domain. This technique has been used in the past to visualize organized motion in jets.[18] The slope of the diagonal line represents the mean convection velocity; \(s \) is the distance along the shear layer ray. Ten samples are extracted and the mean convection velocity determined. The change in slope near \(s/D_1 \) of unity is coincident with the end of the triangular recirculation zone associated with the post wall thickness. As expected, the convection velocity increases downstream of the recirculation zone due to the presence of the high-speed coflow of the outer jet fluid; the outer-to-inner velocity ratio for this case is 25. This convection velocity analysis was conducted for several sets of data for the two momentum flux ratios and for two flow rates.

Figure 5 shows predicted versus measured convection velocities for the two momentum flux ratios. Data was collected for nominal and a higher flow rate for both momentum flux ratios. The conditions for the two momentum flux ratios were selected to keep the convection velocity predicted using Eq. 2 fixed, hence the overlap of points for both momentum flux ratios. The agreement is quite good, indicating that the Dimotakis model may be employed for the current flow conditions. A deviation is observed at higher flow rates (high convection velocities) and is likely due to heat
transfer within the injector. Measurement of temperature upstream of the injector is used to evaluate density, thus errors in temperature will result in errors in density. The velocity is estimated using the calculated density and the measured flow rate, thus creating further error due to temperature uncertainty. The subsequent measurements were all done at the lower flow rate associated with a convection velocity near 6 m/s.

In order to calculate the Strouhal number, the natural frequency of the jet must be extracted from the data. As would be expected for a spreading shear flow, the spectra depend on axial position. The global frequency of the jet is evaluated using the proper orthogonal decomposition (POD) of the image data. This approach places more emphasis on the larger-scale organized motions which make higher contributions to the total variance of the data. The POD is calculated for an image that spans an axial distance of approximately 12D1. The POD is calculated using singular value decomposition (SVD), the details of which can be found in Wegener.[15] The POD is applied to sets of 2000 images.

The application of POD to 2000 images yield the same number of variance-contributing modes, thus the POD spectrum is inherently broadband, especially for highly-turbulent flows of the type in the present study. Thus criteria must be defined for extracting important dynamics from the POD results. Arienti and Soteriou provide a criteria for identifying convective modes from POD data.[19] First the POD spectrum, meaning the eigenvalues as a function of mode number, is constructed and pairs of modes with similar eigenvalues are sought. Once a candidate mode pair is identified, the cross-power spectral density (CPSD) and phase difference is calculated between the temporal coefficients of the mode pair. Once this has been done, the mode pair can be determined to be representing a convecting mode if:

1. the peak in the CPSD is coincident with a region of ± 90° phase shift;
2. the spatial distribution of the POD eigenfunctions are similar with features that are shifted nominally half a wavelength in the convection direction.

If a mode pair satisfied these conditions, a convective dynamic mode has been identified and the frequency of the particular convective mode is associated with the peak in the CPSD. In this study, the preferred mode is associated with the convective mode having the most energetic POD mode pair (i.e. has the highest eigenvalues). The singular values from the SVD process are used to evaluate the variance, as the singular values are equal to the square root of the eigenvalues. It is likely that multiple convective modes are present in the unforced cases of the present study. Other convective modes with lower singular values are not considered as representing preferred modes.

Figure 6(a) shows an example of a POD spectrum...
(in terms of singular values) as a function of mode number. The most energetic mode pair with similar singular values is associated with modes three and four. Figure 6(b) shows the proper orthogonal modes (POMs), or eigenfunctions, associated with the mode pair. This figure shows that the spatial distribution is similar, while mode four appears to have features that are slightly shifted downstream relative to mode three. Reconstructing these two modes with the temporal coefficients will represent a convective process. It may be seen that modes seven through nine also have similar singular values, thus a second convective mode may be present. This mode was not evaluated due to the lower variance contribution.

Figure 7 shows the CPSD and phase difference for modes three and four shown in Fig. 6. There is a broad peak on the low-frequency side of the spectrum. The peak is defined within the broad CPSD peak but also requires the phase to be near ±90°. The frequency is near 1 kHz.

The process described above to identify the preferred mode frequency of the coaxial jet was applied to a number of data sets for both momentum flux ratios and nominal and high flow rates. The Strouhal number defined as

$$St = \frac{f_{nat}(D_1 + D_2)/2}{U_{c,meas}}$$

where f_{nat} is the preferred mode frequency, was calculated for all data sets. The Strouhal number as a function of momentum flux ratio is shown in Fig. 8. The measured convection velocity provides a slightly reduced level of scatter compared results using Eq. 2. The trend represents a nominally constant value for St of 0.3. Spectra near the potential core end for the free jet data of Ko and Davies[20] and coaxial jet data of Ko and Kwan[13], when recast in the form of Eq. 3, fall within the scatter around 0.3. Both nominal and higher flow conditions (i.e. higher convection velocities) fall nominally near 0.3.

The scaling law in Fig. 8 was used to define baseline flow conditions for a predetermined frequency. Since the geometry is fixed, the preferred mode is determined by the convection velocity. For the present study, the unforced flow conditions were defined to result in a preferred mode frequency of approximately 1 kHz. One of the primary forcing parameters is the frequency ratio F, defined as

$$F = \frac{f_{forcing}}{f_{nat}}.$$ \hspace{1cm} (4)

where $f_{forcing}$ is the forcing frequency and f_{nat} is the natural preferred mode of the coaxial jet. The current study considered frequency ratios near 1.7, 2.0, and 2.6. The amplitude normalization will be discussed for both the PAN and PN forcing conditions.

Figure 9 shows instantaneous images of the $J = 2$ case for baseline and max PAN/PN forcing. The outer flow and inner shear layer are clearly perturbed under forcing conditions. In particular, the PN forcing results...
in highly antisymmetric structure in the outer annular flow with antisymmetric structures on the inner jet boundary. The instantaneous image for the PAN case shows large-scale structures on the inner jet surface, while it is not apparent whether the structure is symmetric or antisymmetric.

Figure 9. Instantaneous images for the baseline and maximum forced cases for PAN and PN, J = 2.

One of the primary goals of the research was to identify the conditions of forcing receptivity as a function of dimensionless forcing frequency and amplitude. The POD technique is used to detect the receptivity and relative importance of the forced and natural modes. Figure 10 shows the first eight POMs for the baseline, and two forcing amplitudes of 1.15 and 1.88 psi for the PAN case for J = 2.0 and F = 2.6. The dashed blue box represents the natural preferred mode, which is present for all cases. The $p' = 1.15$ psi case shows the emergence of a new high frequency convective mode pair for modes 7 and 8. This force mode is highlighted by the red dashed box. When the amplitude was increased to 1.88 psi, the forced mode contributes more to the image variance as indicated by the order within the POD array. For the forced dominated case in Fig. 10(c), the natural mode persists but is somewhat contaminated with small scale instabilities from the forcing.

For PAN forcing, the injector is essentially exposed to an unsteady back pressure. Thus the coupling is likely to be related to unsteady flow rates caused by a fluctuating pressure drop across the injector. Due to the high density of the inner jet, the impact of the unsteady pressure drop is reduced because of the inertia of the mass within the injector passage. The outer jet is much more responsive to the unsteady back pressure due to the lower mass in the outer jet passage. Thus fluctuating back pressure drives a fluctuating flow rate in the outer jet. The accompanying velocity pulsations will disturb both the inner and outer shear layer. This description is consistent with the explanation given by Baillot et al.[21]

The above mechanism provides for some guidance for normalization of the forcing amplitudes for PAN conditions. The unsteadiness generated in the outer flow will depend on the ratio of the unsteady back pressure to the dynamic pressure of the flow. The magnitude of the induced velocity fluctuation will also depend on the frequency (see Wegener[15] for analysis). For a fixed pressure drop across the injector passage, high-frequency fluctuations have shorter periods in which the fluid can accelerate. Thus it is expected that higher-frequency fluctuations are less likely to couple for PAN forcing, although the hydrodynamic stability considerations also play a factor in how velocity fluctuations of a particular frequency lead to wrinkling of the inner jet column.

Figure 11 shows the inception and dominance boundaries of the PAN forcing conditions for both momentum flux ratios at the three frequency ratios. The empty symbols represent the conditions in which a new forced POM mode pair was observed, but was lower in variance contribution than the natural mode. The filled symbol represents the condition in which the forced mode is dominant over the natural mode. The grey shaded area has not been sampled, although the transition between natural and forced dominance occurs in this region.

It is interesting to note that the inception of receptivity occurs at a nominal dimensionless amplitude of unity. This is consistent with the arguments of Baillot et al.[21] It is unclear why the J = 2 case appears to be less receptive to high-frequency fluctuations.

Figure 12 shows the receptivity behavior for the PN forcing conditions. Here the amplitude of the forcing is given in units of m/s. The perturbation velocity is estimated using Eq. 1. The general trend of increasing receptivity with amplitude is once again demonstrated. The mechanism for the response is less evident. The
velocity perturbation magnitude is much lower than the outer jet velocity (~ 40 m/s). It is thus unlikely that the perturbations are directly disturbing the inner jet surface as these low-level disturbances would be insignificant relative to the inflow turbulence.

Further insight may be gained through analysis of the images in the first few diameters of the coaxial jet. In this region, the flow is very unstable due to the high velocity gradients, thus this is the most likely region where the acoustic perturbations can disturb the flow. Figure 13 shows the near field of the coaxial jet for the baseline unforced case as well as highly-forced PAN and PN cases. These images are also representative for the results at J = 6. The near field of the dominant convective mode is also shown on the right of the figure. The PAN mode, as supported by the POM, is symmetric (although the thickness and intensity is not symmetric). This would be supportive of the pulsed outer flow mechanism, although this is not nearly as clear in the instantaneous images. The PN case shows very dramatic effects in the near field. In particular, the outer jet appears to be experiencing intense transverse motions that are out of phase. The antisymmetric nature is also supported by the POM. Recall from Fig. 12 that the estimated acoustic velocity is much smaller than the outer jet velocity. The flapping nature of the jet, and the involvement of the jet as a whole, suggests the possibility of excitation of a helical jet column mode. The transverse velocity disturbance is not of sufficient magnitude to cause a drag force leading to such dramatic motion. Future analysis will be required to gain further insight into the coupling mechanism for PN conditions.
Conclusions

An experimental study has investigated the receptivity of two-phase coaxial jet flows to transverse acoustic perturbations. It was found, over the range of conditions considered, that the shear flow structures along the inner jet convect at a speed well predicted by the model developed by Dimotakis.[17] A new Strouhal number definition is proposed that appears to provide reasonable collapse of the frequency of convective modes as extracted from POD analysis of the potential core region of the coaxial jet. Coaxial jets at two different momentum flux ratios were subsequently forced through exposure to variable frequency and amplitude acoustic environments, including PN and PAN conditions.

The PAN forcing appears to generate a pulsation in the outer jet flow rate that subsequently excites instabilities in the flow. The receptivity of the flow field to PAN forcing occurs near the condition where \[p' \approx \frac{1}{2} \rho U^2 \], independent of momentum flux ratio. This mechanism will also be sensitive to the inertance properties of the injector design, and therefore sensitive to frequency.

The PN forcing results in a strong coupling even at very low acoustic velocities. The relative magnitudes of the acoustic velocity to the characteristic velocities of the coaxial jet make it unlikely that the acoustics directly generate disturbances in the shear flow. A potential mechanism involves the coherent transverse velocity fluctuations in the acoustic field exciting a helical mode in the outer jet. Further research will be required to further explore the coupling mechanism for PN forcing.

Nomenclature

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AR</td>
<td>outer-to-inner area ratio</td>
</tr>
<tr>
<td>c</td>
<td>speed of sound</td>
</tr>
<tr>
<td>D</td>
<td>diameter</td>
</tr>
<tr>
<td>f</td>
<td>frequency</td>
</tr>
<tr>
<td>F</td>
<td>normalized frequency</td>
</tr>
<tr>
<td>J</td>
<td>outer-to-inner momentum flux ratio</td>
</tr>
<tr>
<td>m</td>
<td>mass</td>
</tr>
<tr>
<td>p</td>
<td>pressure</td>
</tr>
<tr>
<td>p'</td>
<td>pressure fluctuation amplitude</td>
</tr>
<tr>
<td>St</td>
<td>Strouhal number</td>
</tr>
<tr>
<td>t</td>
<td>inner jet post thickness</td>
</tr>
<tr>
<td>U</td>
<td>mean velocity</td>
</tr>
<tr>
<td>u'</td>
<td>velocity fluctuation amplitude</td>
</tr>
<tr>
<td>(\rho)</td>
<td>density</td>
</tr>
</tbody>
</table>

Subscripts

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>convection</td>
</tr>
<tr>
<td>l</td>
<td>inner jet fluid</td>
</tr>
<tr>
<td>2</td>
<td>outer jet fluid</td>
</tr>
</tbody>
</table>

References

