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AFIT-ENG-14-M-91 

Abstract 

Radio frequency (RF) tomography is an imaging technique based upon a set of 

distributed transmitters and receivers surrounding the area under observation. This 

method requires prior knowledge of the transmitters’ and receivers’ locations. In some 

circumstances the transmitters may be uncooperative, while in other cases extrinsic 

emitters may be used as source of opportunity. In these scenarios, RF tomography should 

operate in a passive modality. A previous work postulated the principles and feasibility of 

passive RF tomography. This research further develops the underlying theory through 

concise and ad-hoc signal processing. Experimental verification and validation 

corroborate the effectiveness of passive RF tomography for object detection and imaging. 
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PASSIVE RF TOMOGRAPHY: SIGNAL PROCESSING  

AND EXPERIMENTAL VALIDATION 

I.  Introduction 

The purpose of this research is to investigate the theory and provide experimental 

validation of the concept of passive RF tomography by examining the previous work on 

the same subject and expanding upon the obtained results. A mathematical model is 

developed as the backbone of the theory, followed by a hardware implementation and 

signal processing algorithm as a proof of concept. This research was funded by the Air 

Force Research Laboratory (AFRL).  

1.1 Background 

RF tomography is an image reconstruction method used to detect objects within 

an area of investigation by means of distributed transmitters and receivers. These devices 

are scattered around the area of interest. Their locations are known, and this information 

is crucial to the reconstruction methodology. Recent literature has shown increasing 

interest in the concept of RF tomography. Many applications such as ground penetrating 

radar, underground imaging, and tunnel detection have been proposed [1] [2] [3]. 

This research provides an extension to the groundwork of the subject by 

developing the theory of passive RF tomography. In its original form, RF tomography 

relies on the knowledge of the distributed transmitters and receivers in terms of their 

locations and timing. In practice, it is not always possible to deploy multiple transmitters 

and receivers around a region of investigation for imaging or detection purposes due to 

constraints in size, cost, or observability requirements of the project. Such difficulties call 
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for a passive approach, in which distributed receivers utilize pre-existing signals, or 

signals of opportunity. This unique mode of operation is named passive RF tomography. 

Passive RF tomography is useful in many civilian as well as military applications 

due to the reduced size (both physical and electrical) and weight of the system. For 

example, emergency responders could detect and locate survivors in dangerous 

circumstances such as earthquakes or fires without putting lives at risk [4]. Another 

example is air traffic control systems for small regional airports or undeveloped countries 

where budgets are extremely limited. Because imaging of objects is not required, this 

system can rely on television and FM radio signals, which have very small bandwidth, for 

detection. Military applications that require covertness also could benefit from passive 

RF tomography because no signals are transmitted. The distributed sensors are only 

listening for signals of opportunity present in the area under surveillance.  

1.2 Assumptions and Limitations 

Passive RF tomography presents new challenges due to the lack of knowledge of 

transmitters and their radiated signals. In general, the locations, movements, directions, 

and bandwidths of the transmitters are not obvious to the receivers. Additionally, the 

received waveforms are not under the observer’s control and may overlap, causing 

problems in recognizing and processing direct-path signals for matched filtering; 

furthermore, those incoming waves are not synchronized with the receivers, making it 

difficult to discern between the direct-path from transmitters and scattered signals from 

objects Direct path interference may also obscure the echoes from objects of interest [5]. 

These problems require advanced methodologies and solutions; however, some 
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simplifying assumptions have to be made in order to solve these problems. These 

assumptions are explained as follows: 

Initially, the spectrum of the environment must be scanned to detect and identify 

signals suitable for subsequent processing. To improve resolution and simplify hardware 

implementation, the system should select only incoming signals with acceptable 

correlation properties and large duty cycles. Specifically, these waveforms are assumed 

to be linear frequency modulation (LFM), or chirps, and not communications waveforms. 

This requirement is not stringent, because virtually any terrain is illuminated with 

multiple radars serving various purposes such as remote sensing radars, synthetic aperture 

radars, early warning systems, collision avoidance systems, and weather radars [6]. 

Secondly, intercepted waveforms are assumed to be properly identified and 

separated both in time and frequency. Appropriate algorithms are used to estimate 

relevant parameters of each waveform such as bandwidth, chirp rate, pulse repetition 

frequency (PRF), duty cycle, and pulse width. Electronic intelligence (ELINT) 

techniques can be utilized for this task [7]. 

Thirdly, the incoming waveforms are assumed to be plane waves. In other words, 

the transmitters’ locations are in the far field with respect to the receivers and objects in 

the scene of interest. This geometry allows the paraxial approximation to be applied to 

the forward signal model. This crucial theory is explained in Section 2.3 and its 

application to the methodology is discussed in Section 3.3.1. 

Finally, it is assumed that the direct-path signal can be compressed and the echoes 

from objects are distinguishable. This means that in the total received signal from each 
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transmitter, the direct path and scattered field are not overlapped in time. This assumption 

is further discussed in Section 3.5.2. 

1.3 Research Objectives and Scope 

The research presented in this thesis focuses on two goals. First, the theory of 

passive RF tomography is developed and expanded based upon previous work [8]. An 

algorithm for the software implementation is derived from the theory. This algorithm is 

used to detect and localize objects within a discretized area of interest.  

Finally, a proof of concept for passive RF tomography is demonstrated using 

experimental data based on the previously developed algorithm and methodology. As a 

result, a hardware prototype was built and delivered to University of Dayton Research 

Institute (UDRI) and AFRL. This system consists of four transmit and four receive 

channels, operating in the X-band with a starting frequency of 8 GHz and a bandwidth of 

500 MHz. The main design goals for this test bed are: low power, light weight, mobility, 

and high resolution.  

The scope of this research does not include Doppler processing of moving 

objects. Only detection and imaging of stationary objects are investigated; moreover, the 

hardware prototype design is not final and can be modified for future experimentation. 

1.4 Methodology 

The signal model presented in this thesis is built upon the foundation described in 

[8] with some modifications and additions to the assumptions and signal processing steps. 

The entire process of data acquisition, processing, and image formulation is composed of 

five main steps: 
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1. Identification of Signals of Opportunity – The spectrum of the surrounding 

environment of the observation scene is scanned, recorded, and analyzed 

for radar signals suitable for detection and imaging. These signals have to 

meet the assumptions laid out in Section 1.2. Some parts of these signals 

will be used as references for subsequent examination. This step is 

assumed to be already taken and data recorded for subsequent processing.  

2. Differentiation between Incident and Scattered Signals – The focus of this 

research begins at this stage. Recorded signals from each receiver are 

separated into two distinct portions: incident and scattered fields. Incident, 

or direct-path signals come directly from the transmitters. Scattered 

signals, or echoes, are reflections from objects illuminated by the same 

wavefronts that made up the direct-path portion. 

3. Estimation of the Time Differences of Arrivals (TDOA) – Once the 

signals of opportunity are identified and individualized, the TDOA for 

each transmitter and receiver pair and each waveform is calculated. These 

results are saved into a data matrix for image reconstruction. 

4. Source Localization – TDOA information from the previous step is used 

to estimate the direction of incoming wavefronts. Because transmitters’ 

exact locations are unknown, they have to be approximated through the 

bearing angles of the sources of opportunity. 

5. RF Tomography in Time Domain – After the locations of the transmitters 

are estimated, a modified version of RF tomography is applied to the 

matched filtered scattered returns. The two most significant characteristics 
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of this step are: a) processing occurs in the time domain and b) the 

algorithm requires only the bearing angle information of the transmitted 

waveforms rather than an accurate localization of the sources. 

1.5 Equipment and Facility 

This research was funded by AFRL, under the supervision and leadership of 

AFRL/RYMD (Sensors Directorate RF Technology Branch) at Wright-Patterson Air 

Force Base (WPAFB). All equipment and materials for the research were provided by 

UDRI and AFRL. All experimentation was performed at the Outdoor Radar Range 

(ORR) facility at WPAFB. Data collection was accomplished by a high-performance 

workstation. System data sampling rate of 1.2 GS/s was achieved by an internal analog-

to-digital converter (ADC) module. A full description of the test system is given in 

Section 4.1. 

1.6 Overview 

The thesis is arranged as follows: Chapter 2 explains background theories leading 

to the concept of passive RF tomography. Chapter 3 presents the methodologies and 

techniques employed in passive RF tomography. Chapter 4 demonstrates the theories in 

practice by applying the algorithm presented in Chapter 3 to the data acquired from the 

experiment. An analysis of the results is given. Chapter 5 summarizes findings, discusses 

successes and shortcomings as well as future work recommendations, and concludes the 

thesis. 

Chapter 2 opens with a comparison between medical tomography using x-ray as 

source of radiation and radar imaging, leading to RF tomography and its passive mode of 
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operation. The comparison is followed by an overview of the scattering theory for bistatic 

radar due to the similarities between RF tomography and multistatic or bistatic radar. An 

important measure of performance of any bistatic radar system is the range resolution. 

This concept is studied along with the isorange ellipsoids and range cells. Because the 

transmitters are assumed to be infinitely far from the objects and receivers, the paraxial 

approximation is explained. Received data requires an important technique called 

matched filtering to increase the signal-to-noise ratio (SNR). This method of filtering is 

described next. Finally, this chapter concludes with an overview of recent research 

relevant to passive RF tomography. 

Chapter 3 presents the theory expansion built upon the basic foundations 

described in Chapter 2 and provides a thorough understanding of passive RF tomography. 

The chapter defines all parameters and variables applicable to a typical layout of a real 

world scenario. The methodology and its five signal processing steps are discussed next. 

This methodology is the basis for developing the algorithm to be used in the physical 

experiment. 

Chapter 4 describes the steps taken in the hardware experiment as well as the 

specifications of the system. An overview of the hardware components and schematics 

used in the physical experimentation is given. The chapter then compares the results of 

simulation and experiment conducted at the ORR facility.  

The thesis is concluded with Chapter 5, which discusses the results as well as 

shortcomings of the results obtained in Chapter 4. Unexplored domains leading to future 

work are briefly recommended along with a conclusion statement. 
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II.  Literature Review 

The purpose of this chapter is to present the underlying mathematic, physics, and 

radar theories upon which this thesis is based. First, RF tomography is discussed in 

comparison to medical imaging, leading to the passive mode of operation. Because 

passive RF tomography is similar to multistatic radar in geometry, scattering theory for 

bistatic radar is explained. The Born approximation that applies to the total 

electromagnetic field also is explained. Consequently, a model of the scattered electric 

field is built upon this knowledge. In addition, the concepts of paraxial approximation 

and matched filtering applied in the methodology section also are discussed. Finally the 

range resolution relationship with the transmitted pulse is examined.  

2.1 RF Tomography Background 

Radar imaging and medical tomography are two inherently similar techniques [9]. 

They both rely on multiple perspective observations of a scene of interest to reconstruct a 

high resolution image of the scene. In x-ray computed tomography (CT), a three-

dimensional image of an object is produced by a set of multiple two-dimensional 

radiographic images, or slices. Each of these slices is formed by measuring the 

attenuation information of x-rays around an axis of rotation of the object [10]. This 

collection of measurements provides the different views necessary to reconstruct a slice. 

Similarly, in a synthetic aperture radar (SAR) system, a two-dimensional image of 

a terrain is obtained by illuminating the object region and observing the reflections from 

different perspectives, or viewing angles. This image can be created by a radar taking 

multiple snapshots of the area of imaging in the following manner: A radar pulse is 
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emitted by the radar transmitter. The backscattered electromagnetic field produced by the 

reflectivity of the scene is captured and recorded at the radar receiver. These radars are 

typically monostatic; therefore, the receiver and transmitter are at the same location. The 

multiple aspects are produced by varying the radar location following either a circular 

trajectory (spotlight SAR) or a straight line flyby (strip map SAR). Each radar snapshot 

of the scene is analogous to one measurement of attenuation in x-ray CT. The two key 

differences between x-ray CT and RF tomography are as follows: First, medical x-ray 

uses x-ray, which has frequencies above 30 petahertz, as source of radiation, whereas 

radar relies on RF sources at much lower frequencies, typically from 500 MHz up to L 

band at 60 GHz. Second, x-ray CT ignores phase information, which is crucial in radar 

image formation. Radar imaging relies on wide-band signals and small angle sub-

apertures due to hardware limitations [11]. These practical constraints give rise to the 

concept of RF tomography in which inexpensive distributed narrowband transmitters and 

receivers replace the need for a monostatic radar counterpart. These scattered elements, in 

conjunction with their multistatic operation, provide the viewing angle diversity needed 

for tomographic imaging.  

Passive RF tomography takes this concept one step further by eliminating the 

transmitters in the hardware, making the system even easier to deploy. This mode of 

operation relies entirely on signals of opportunity already existing in the environment; 

therefore, the signal processing is more challenging and requires advanced algorithms, as 

discussed in Section 1.2, in order to address these difficulties. 
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2.2 Scattering Theory for Bistatic Radar 

To understand how radar pulses are reflected by objects, it is useful to build a 

model of the scattering wave fields. The derivation of the scattering theory in this section 

follows that of [12] with some modifications to fit the notations and parameter definitions 

in this thesis. 

Throughout this thesis, the notation of parameters follows standard rules. Bold 

letters denote three-dimensional vectors. The carets (^ ) on vectors signify that they are 

unit vectors. Bold and capital letters designate matrices. 

Consider a bistatic scenario in which an isotropic source located at a
nr  radiates a 

vector electromagnetic field in all directions into free space. This electromagnetic field is 

defined as the incident field, denoted by inE , with respect to the object. The region of 

interest of which an image is to be constructed is discretized into P pixels. If there is an 

object located at pr , the field scatters in a manner similar to how it was transmitted from 

the source. The scattered field, scE , is recorded by a receiver at b
mr . Assume that the 

objects do not have any depolarization effects on the incident field; therefore, inE  and 

scE  have the same polarization. Moreover, individual objects are assumed to be 

isotropic. These two common assumptions make it possible to simplify the vector wave 

equation into a scalar equation without changing its meaning. 

The scalar scattered field scE  and incident field inE  together satisfy the 

decomposition of the total field totE  as follows: 

 tot in scE E E= +   (2.1) 
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In terms of the transmitter-object distance, the incident field can be defined as 
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where )( pv r  is the reflectivity corresponding to the pth pixel of the discretized scene of 

interest [12]. 

The scattered field cannot be solved from Equation (2.3) because scE  is included 

in totE , as explained in Equation (2.1). Furthermore, )( pv r  is the unknown of the 

imaging problem, and is multiplied by the another unknown, scE , contained within totE . 

The Born approximation can be applied to the total electric field on the right hand side of 

Equation (2.3), replacing it with the known incident field, inE  [12]. This approximation 

makes it linear and allows the scattered field to be solvable by  
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Substituting Equation (2.2) into (2.4) gives the following: 
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Next, the Fourier transform is applied to Equation (2.5), converting this 

expression to the time domain. The incident field inE  becomes the time signal from a 

transmitter, [ ]ns t , delayed by the time it takes for the signal to travel from the transmitter 

to the object, then from the object to the receiver. The process is explained as follows: 
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For a discretized scene of interest, where the area of investigation is divided into 

P pixels, this scattered field is rewritten as follows: 
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Equation (2.7) is equivalent to the model of the scattered signal recorded by the 

receiver located at b
mr  due to incoming waves from the transmitter at a

nr . This signal is 

the superposition of echoes from all P pixels within the scene of investigation; therefore, 

it is summed to P. Equation (2.7) is the foundation of the forward model of passive RF 

tomography and is further studied in Chapter 3. 

2.3  Paraxial Approximation 

In Gaussian optics, the paraxial approximation is applied when a ray of light 

makes a small angle to the path of propagation [13]. This happens when the paraxial ray 
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lies close to the optical axis or when the source is considered infinitely far from the 

optical system. 

In radar terms, a ray is any line from an isolated source generated in any direction. 

In other words, a ray defines the direction of wave propagation, and it is normal to the 

surface of constant phase of a wavefront [14]. For most radars, objects are in the far field 

with respect to the transmitter and are physically small enough for the illuminating 

spherical waves to be approximated as planewaves. This approximation yields an 

important result: Because the wavefronts are planar, their defining rays from the source 

are parallel and are perpendicular to the wavefronts. Figure 1 illustrates the paraxial 

approximation where the source-object range R is much larger than the object size L. The 

spherical wavefront (solid) is approximated by the planewave front (dashed). The two 

defining rays, 1 and 2, are parallel to each other. 

 

Figure 1: Paraxial approximation of a spherical wavefront when the source is sufficiently 

far from the object 
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2.4 Matched Filtering 

In radar signal processing, matched filtering refers to an important technique to 

maximize the SNR in received signals. Usually, useful information such as echoes from 

radar objects is buried within noise and other interference. Detection of these objects 

requires a comparison of the total received waveforms with the known transmitted signal. 

Thus, a filter has to be designed for such a task [15]. 

The matched filter in its original form is a linear filter. It is obtained by 

correlating a received unknown signal with a template to produce an output sequence 

which maximizes at locations where the template is detected in the received signal [16]. 

The brief derivation of this type of filter is based on [17], as follows: Suppose ( )x t  is the 

unknown received signal which contains a useful and known radar signal ( )s t  in addition 

to white noise ( )n t , i.e., 

 ( ) ( ) ( )y t s t n t= +  (2.8) 

A filter with impulse response ( )h t  is to be designed in order to maximize the 

SNR in y(t). By definition of matched filters, the impulse response of such filter is the 

replica of the transmitted waveform that has been reversed in time and conjugated [17], 

i.e., 

 ( ) ( )h t s T t= −  (2.9) 

where T is the length of the reference signal ( )s t . 

 The output of the matched filter, )(fy τ , is defined as follows: 

 ( ) ( ) ( ) ( ) (T )f y h dy y s dτ τ τ τ τ τ τ= = −∫ ∫   (2.10) 



 15   

 To visualize this filter and its output when applied to the received signal, consider 

the following example. Let ( )s t  be an LFM chirp of length of 1 second. The received 

signal is 8 seconds long and contains both the chirp and a white noise with power four 

times greater than the signal power, i.e., the SNR of the total received signal is −6 dB. 

The chirp starts at 4t =  seconds in the received signal as illustrated in Figure 2 (a) and 

(b). In the matched-filtered signal, a strong peak appears at 4τ = , corresponding to the 

location of ( )s t  inside ( )y t . 
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(a) 

 
(b) 

 
(c) 

Figure 2: Matched filtering: (a) Original chirp s(t) and the impulse response of the match 

filter h(t); (b) Total received signal with SNR = −6 dB; (c) Matched filtered signal 

with peak at 4τ =  seconds  
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2.5 Bistatic Range Resolution 

 An important characteristic as well as performance measurement of any radar 

system is the range resolution. This quantity can be derived from the isorange ellipsoids 

and range cells. The following is applicable to both bistatic and passive RF tomography. 

2.5.1 Isorange Ellipsoids 

Consider a simple bistatic radar case with one transmitter, one receiver, and one 

object. The plane in which they all lie is called the bistatic plane. Let , ,T RL R R  denote 

the ranges between transmitter-receiver, transmitter-object, and receiver-object, 

respectively; β  is the bistatic angle, measured between the transmitter and receiver from 

the perspective of the object. 

The transmitter-object-receiver range is measured by the sum 2T RR R a+ = , 

where 2a is the major axis of the ellipsoid.. This sum represents the set of all possible 

locations of the object with respect to the transmitter and receiver. When plotted, it is the 

surface of an ellipsoid whose foci coincide with the transmitter’s and receiver’s locations. 

This ellipsoid is completely defined by the baseline L and major axis 2a . It is 

conventionally regarded as the isorange ellipsoid of constant range sum 2a . Figure 3 

illustrates an intersection of the isorange ellipsoid with a bistatic plane which contains the 

transmitter, receiver, and object. This intersection is commonly referred to as the isorange 

contour. In the monostatic case, the analogous isorange ellipsoid is a sphere with radius 

a  (when L = 0). Consequently, the monostatic isorange contour is a circle whose center 

coincides with the transmitter and receiver. In addition, the object’s SNR and range 

resolution vary as a function of its position on a constant range sum contour. This 
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variation is caused by the dependence of SNR and range resolution of the object on the 

bistatic angle β , which varies according to the object’s position [18]. This causes 

significant differences in the operation of bistatic radars compared to monostatic radars.  

 

Figure 3: Ellipse of constant range sum, or isorange contour. 

 

2.5.2 Range Cells 

For the monostatic case, a range cell is defined as the minimum separation in distance 

between two isotropic objects that is discernible at the receiver [18]. In terms of the 

radar’s compressed pulsewidth, τ , this quantity is defined as 

 
2 2M
c cr

B
τ
==  (2.11) 

where c is the speed of light and B is the bandwidth of the transmitted pulse. 
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 In other words, a monostatic range cell is the distance between two concentric 

isorange contour circles. Similarly, a bistatic range cell, Br , is defined to be the gap 

between two confocal isorange contour ellipses, i.e., 2T RR R a′ ′+ = ′  and 2T RR R a+ =  

where a a′ >  and Ba a r′ − =  This length, unlike its monostatic counterpart, is not 

constant. Instead, it varies and is measured along the bisector of the bistatic angle β  of 

the inner ellipse. The geometry for this bistatic range cell is illustrated in Figure 4. 

 

Figure 4: Bistatic range cell ( )Br  

 

When the object location changes on the isorange contour, the bistatic range cell 

reaches maximum when β  is also at its maximum, which is when T RR R=  and the 

bisector of the bistatic angle is perpendicular to the baseline. Similarly, when β  is 
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minimum, i.e., 0°, the bistatic range cell is at its minimum, as illustrated in Figure 4. This 

value is the pseudomonostatic range cell and is defined as 

 
2M
ca ar τ

= ′ − =  (2.12) 

The bistatic range cell Br  can be approximated in terms of β  and τ  with 

negligible error as follows [18]: 

 
)cos( 2

)2c s( 2o

M
B

rr

c

β

τ
β

=

=
 (2.13) 

This important result is used to calculate the range resolution for any bistatic 

radar.  

2.5.3 Range Resolution 

For any two objects to be distinguishable at the bistatic receiver, their spatial 

separation has to be at least 2
cτ  [19]. This condition is satisfied if the two objects lie on 

two adjacent bistatic isorange contours with a separation of approximately 

( )2cos 2B
cr τ
β

= , as described in Equation (2.13). Clearly, as long as the two objects are 

at least Br  apart from each other, they are distinguishable at the receiver. 

This estimation is no longer valid when 90
2
β
= °  or 180β = ° , which is when the 

transmitter, object, and receiver are positioned on a straight line in that order. This special 

case can be ignored because when β  approaches 180°, the object is in the blind region of 
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the receiver, and its echoes are indistinguishable from the direct-path signal. This area is 

further studied in Section 3.5.2. 

2.6 Relevant Research 

Recent developments have shown preliminary results in RF tomography 

applications. Using distributed sensors and transmitters, researchers at AFRL and UDRI 

were able to simulate the detection of anomalies embedded in an underground region [20] 

[21]. Experimental results also were achieved in the applications of underground radar 

and tunnel detection [22] [23]. These methodologies and results are the basis and 

motivation for this research.  

In parallel, researchers at the Warsaw University of Technology published a series 

of papers on passive radar theories and experiments. They used various analog as well as 

digital signals as sources of opportunities. These include FM radio, digital television, 

cellular phones, and wireless signals (WiFi and WiMax) [24]. After multiple trials, they 

were able to produce results for tracking military objects during a 2011 exercise in 

Poland [25]. In a related research, they used the same hardware setup and were capable of 

detecting commercial airplanes at long ranges (around 285 km) by utilizing high-powered 

FM transmitters [26]. In a different passive SAR imaging experiment using a satellite 

pulsed radar as the source of opportunity, researchers successfully produced an image of 

several man-made objects [27]. This result shows that it is possible to form a SAR image 

using a stationary receiver and a non-cooperative source mounted on a moving platform.  



 22   

2.7 Summary 

The background theories presented in this chapter are the basis of the 

methodology and resulting algorithm for image reconstruction. In the next chapter, the 

signal processing steps are derived. The methodology is developed for a typical scenario 

of a pixelated, or discretized, scene of interest in which objects may be present. This 

region is surrounded by scattered receivers which provide the different perspective views 

necessary to form a passive RF tomography image. 
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III.  Methodology 

This chapter explains the technique as well as a detailed procedure in the 

processing of experimental data. All variables and parameters are defined for a typical 

layout of a real world scenario. Then, the signal processing is explained step by step in 

detail. This methodology provides the blueprint for a hardware experiment setup and 

image reconstruction algorithm discussed in Chapter IV.  

3.1 Definition of Parameters 

Consider a scenario in which a region of interest is illuminated by N  transmitters 

and surrounded by M  receivers. Each transmitter is located at position 

ˆ ˆ ˆa a a a
n n n nx y z= + +r x y z  and each receiver at ˆ ˆ ˆb b b b

m m m mx y z= + +r x y z . Every transmitter 

radiates a unique waveform [ ]ns t . As stated in Chapter 1, it is assumed that all sensors 

share a common reference signal for timing, such as the global positioning system (GPS), 

and that their positions are known with negligible errors. 

The region of interest is discretized into P pixels, where each one is centered at 

the vector ˆ ˆ ˆp p p px y z= + +r x y z  where 1, 2, ,p P= … . If an object is present at the pth 

pixel, an isotropic scattered wave is generated with reflectivity pv . Conversely, if no 

object is present at pixel p, 0pv = . The imaging problem is equivalent to an estimation of 

all pv , given measured data from distributed sensors.  

3.2 Differentiation between Direct-Path and Scattered Signals 

First, a model has to be established for the signal received at the mth receiver. This 

signal consists of two components: a direct-path and scatter from objects. The first 
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component comes directly from each transmitter, hence the name direct-path signal. It is 

the original signal [ ]ns t  generated by the nth transmitter and delayed by a b
n m c−r r  

seconds, which is the time it takes for the transmitted signal to reach the mth receiver. 

Additionally, due to an unknown nT  seconds delay in transmission of each transmitter, 

the total direct-path signal recorded at the mth receiver due to the wavefront from the nth 

transmitter becomes 

 [ ]d a b
nm nm n n m nE t A s t c T = − − − r r  (3.1) 

where 1
4mn a b

n m

A
π

=
−r r

 is the amplitude of signal received at the mth receiver due to the 

wavefront from the nth transmitter. 

Each transmitted signal also produces scattered signals, or echoes, from different 

isotropic objects in the investigation region. These signals compose the second 

component of the total received signal at the mth receiver. Similar to the behavior of the 

direct-path signal, the echoes are also a delayed version of [ ]ns t . This temporal delay is 

equal the time it takes for the original signal to travel from the nth transmitter to the pth 

object, then from the pth object to the mth receiver. This delay in terms of positional 

vectors is a b
n p p mc c− + −r r r r . Because there are P objects, these echoes are summed 

to P to form the total echoes received at the mth receiver as follows: 

 { }
1

[ ]
P

e a b
nm pm p n n p p m n

p
E t A v s t c c T

=

 = − − − − − ∑ r r r r   (3.2) 

where pm pA v  is the amplitude of the echo from an isotropic object present at the pth pixel 

captured at the mth receiver due to the wavefront from the nth transmitter. 
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Finally, because there are N transmitters, the total received signal at any receiver 

is a sum of all direct-path signals from N transmitters and the associated echoes produced 

by them. Thus, the total received signal at the mth receiver due to N transmitters and P 

objects is 

 

{ }

{
1

1

1

[ ][ ] [ ]
N

d e
m nm nm

n
N

a b
nm n n m n

n

P
a b

pm p n n p p m n
p

E t

A s t c T

A v s t c

t

c

t

T

ρ ρ
=

=

=

=

 = − − − 

  + − − − − −  

+

 

∑

∑

∑

r r

r r r r

  (3.3) 

where c =  speed of light. 

0, 1, ...,m M=  - number of receivers 

0, 1, ...,n N=  - number of transmitters 

nT =  time delay of each transmitter due to different time of transmission 

Note that nmA  is much greater than pm pA v  because only a small portion of the 

transmitted signal is scattered by the object; furthermore, the scattered signal is presumed 

to be isolated in time. Figure 5 illustrates the geometry and range delays in the received 

signal model at one receiver due to illuminating waves from one transmitter. 
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Figure 5: Explanation of the received signal model at the mth receiver due to waves from 

the nth transmitter 

 

An accurate tomographic reconstruction requires the exact locations of both 

transmitters and receivers. Because the transmitters are assumed to be much farther away 

than the distributed receivers, it is difficult to estimate their positions in the presence of 

noise. To make the problem solvable, only the directions of the transmitters need to be 

estimated; as a result, the transmitter locations in the forward model for RF tomography 

are eliminated and substituted with only the information of the directions of their radiated 

waveforms. To achieve this, Equation (3.3) is expressed in terms of the receivers’ 

positions, the pixels under observation, and the directions of propagation of the 

transmitted waves. Two steps are required for this estimation: 1) Apply the paraxial 

approximation and 2) Substitute the result in Equation (3.3). 
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3.3 Estimation of the Time Difference of Arrival 

To eliminate all unknown quantities later in the matched filtered signal, the 

transmitter-object distance from Equation (3.3), a
n p−r r  , is replaced by an estimation 

based on the transmitter-receiver separation, a b
n m−r r , and the direction of incoming 

waves from the transmitter. This estimation is based on the paraxial approximation due to 

the assumption that transmitters are infinitely far from the receivers and objects. 

3.3.1 Paraxial Approximation 

Consider the scene of interest as shown in Figure 6. Let unit vector ˆ a
nn  denote the 

normal direction of the wave generated by the nth transmitter. In other words, ˆ a
nn  is the 

direction of the incoming waveforms. 

 

Figure 6: Geometry of the scene of interest 
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Because the transmitters are assumed to be much farther away than the 

transmitters and objects, vectors a
nr , a b

n m−r r , and a
n p−r r  are approximately parallel, as 

shown in Figure 7. 

 

Figure 7: Paraxial approximation 

 

From this parallel approximation, it is easy to see that 

 ˆ ˆa a b b a a
n p n m m n p n− = − − ⋅ + ⋅r r r r r nrn   (3.4) 

or 

 ( ) ˆa a b b a
n p n m p m n− = − + − ⋅r r r r r nr  (3.5) 
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This result is only true if and only if a
nr   b

mr . The approximation obtained 

from Equation (3.5) is then substituted back into Equation (3.3) to yield the following: 

 
{

( ) }
1

1

[ ]

ˆ

N
a b

m nm n n m n
n

P
a b b a b

pm p n n m p m n p m n
p

E t A s t c T

A v s t cc T

=

=

 − + − ⋅

 = − − − 

 + − − −   − 

∑

∑ r r r n r rr

r r
 (3.6) 

Although this equation appears to be more complicated than Equation (3.3), it is 

actually more suitable for the purpose of eliminating the unknown quantity, i.e., the 

location of the n-transmitter after matched filtering with the direct-path signal. 

3.3.2 Matched Filtering of the Received Signal 

To localize the sources, the TDOA of the transmitters have to be determined by 

means of matched filtering. Because no transmitters’ signals are used as reference for 

matched filtering, the direct-path signal has to be isolated and used for that purpose. 

Recall from Chapter 1 that all transmitted signals are assumed to be separable in time and 

frequency. This assumption means the transmitters’ signals do not overlap with each 

other and makes it possible to distinguish the signal from each transmitter at the receivers 

by means of filtering; consequently, the signal recorded at each receiver can be divided 

into multiple portions, each coming from a different transmitter, i.e., 

 
( ) }

1

[ ]

ˆ

a b
nm nm n n m n

P
a b b a b

pm p n n m p m n p m n
p

E t A s t c T

A v s t cc T
=

 −

 = − − − 

 − − −+ − ⋅  − ∑

r r

r r n r rr r
  (3.7) 

Evidently, this expression does not contain the sum from 1n =  to N  when 

compared to that of Equation (3.6). To simplify notation, let 

 a b
n m nX c T−= +r r  
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and 

 
ˆb b a

p m p m nY
c

 − ⋅ −
=

+r r r r n
 

Equation (3.7) becomes: 

 [ ] [ ]
1

[ ]
P

nm nm n pm p n
p

t A s A v s t X YE t X
=

− + −−= ∑  (3.8) 

Because the direct-path signal is assumed to be separated from the backscatters, 

[ ]ns t X−  is separable from [ ]nmE t  by means of gating. The total signal, [ ]nmE t , is then  

matched filtered with [ ]ns t X−  from the nth transmitter to produce a column vector nmt . 

This process can be broken down into two smaller steps due to linearity. Let   

denote the cross-correlation operation. By cross-correlation definition, the following is 

true: 

 [ ]{ } [ ]
1

2

1

[ [ ] [ ]

[ ] [ ]

]nm n nm

P

n nm n n pm p n
p

C
C

s t X E t

s t X t X s t XA s A v s t X Y

τ

=

=

 
= + − − 


− − −



−

∑

t









    (3.9) 

Consider 1C  

 
[ ]{ }1 [

]

]

[
nm n n

nm s

C s t sA X

A r

t X

τ=

= − −
  (3.10) 

where ][sr τ  is the auto correlation sequence of ][tns  and the domain of ][sr τ  is from sT−  

to sT . 
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By linearity, 2C  becomes the following: 

 
[ ]{ }2

1

1

[ ]

[ ]

P

pm p n n
p

P

pm p s
p

A v s t X Y

A v r

C X

Y

s t

τ

=

=

= −− −

= −

∑

∑



  (3.11) 

and therefore, 

 ( )
1

1

] ] ]

ˆ
]

[ [ [

[

P

nm nm s pm p s
p

b ab
p m np

P
m

mn s pm p s
p

A A

A r X A v r Y

r r
c c

v

τ τ τ

τ τ

=

=

− + −

⋅
=

=

+
 −−
 
 

−

−

∑

∑

t

r r nr r
  (3.12) 

Equation (3.12) is the received signal after matched filtering. This important 

outcome will be used for the forward model of the time domain RF tomography. 

Equation (3.12) is subsequently used to determine pv ; however, it still contains 

an unknown quantity: ˆ a
nn . This vector can be estimated in a process called source 

localization which, as the name implies, approximates the transmitter’s location based on 

the assumption that it is infinitely far from the scene of imaging. The process is explained 

in the next section. 

3.4 Source Localization 

Let ijd  denote the range difference between sensors, as seen by the approaching 

transmitted waves. From Figure 8, this distance is equal to the difference between a b
n i−r r  

and a b
n j−r r  projected onto the wavefront traveling direction ˆ a

nn , i.e., 

 a b a b
ij n i n jd = − − −r r r r   (3.13) 
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Figure 8: Sensor range difference from the perspective of the transmitted waves 

 

To simplify this expression, the receivers’ constellation is shifted so that one 

sensor is located at zero. In this case, let b
j =r 0 . Equation (3.13) becomes 

 a b a
ij n i nd = − −r r r   (3.14) 

or 

 a a b
ij n n id + = −r r r   (3.15) 

Squaring Equation (3.15) yields the following: 

 
( ) ( ) ( )

2 2 2 2

2 2

( ) 2 ( ) 2 ( )

( ) 2 2 0

a a b b a a
n ij n ij i i n n

b a b a
ij i n ij i n

d d

d d

+ + = − ⋅ +

− + + ⋅ =

r r r r r r

r r r r
  (3.16) 
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This equation is valid for all i and j; therefore, it can be generalized with a matrix 

equation representation as 

 0a a
m n m m n+ + =a r b C r  (3.17) 

where  
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Equation (3.17) is linear when either a
nr  or a

nr  is unknown with the other being 

given. Although in real world scenarios both a
nr  and a

nr  are unknown, by using paraxial 

approximation, a
nr  can be assumed arbitrarily large. This equation can be solved by 

linear least squares. Recall the least squares best estimate solution to the matrix equation 

Ax b=  is 1ˆ )( T TAx A A b−=  [28]. Apply this formula to Equation (3.17) as follows: 

 ( ) ( )1T T
m m m

a a
n m nm

−
= − +r C C C a r b   (3.18) 

Therefore, the normal direction unit vector of the transmitting wave can then be 

obtained as the following: 

 ( ) ( )1
ˆ a a a T a

n
T

n n n m m m m m

−
= − = − +n r r C C C a r b   (3.19) 
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With the results obtained from paraxial approximation, i.e., a
n ≈ ∞r 1 0a

n⇒ ≈r , 

the estimated bearing vector is the following: 

 ( ) 1
ˆ lim

a
a T Tn
n m m m ma

n
a
n

−

→∞

 
 ≈ − =
 
 r

rn C C C b
r

  (3.20) 

Equation (3.20) is applied for real world scenarios where transmitters’ locations 

are unknown but their distances to the region of investigation are far enough to be 

estimated as infinitely large. In other words, when a
nr 

b
mr , Equation (3.20) is used to 

estimate the direction of the incoming waves; however, due to spatial constraints in the 

experiment setup discussed in Chapter 4, a
nr  is not large enough for paraxial 

approximation to be valid. In this case, Equation (3.19) is used instead to calculate the 

exact direction of the transmitters. 

3.5 RF Tomography in Time Domain 

3.5.1 Forward Model 

Results from Equation (3.12) are used to obtain the estimated time delay for an 

object located at pr . This time delay is 

 
{ }

( ){ }1

ˆ( , , ) ˆa b b b a
nmp n p m p m p m n

b b T T
p m p m m m m m

c

c

τ

−

 − ⋅ 

  = − ⋅    

= − +

− +

n r r r r r r n
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Despite being lengthy, Equation (3.21) is significant because it only contains 

known quantities. All dependencies on the transmitters’ locations have been substituted 

by receivers’ related terms.  
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Let ][nmp pm s nmprAτ τ τ =  −l , Equation (3.12) becomes 

 1
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τ τ
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+

+

=

=
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 (3.22) 

where 
1

] ][ [
P

nm nmp p
p

vτ τ
=

=∑s l , the sum of all matched filtered scattered signals due to P 

objects. 

Equation (3.22) is the matched filtered total signal received at the mth receiver due 

to a wave transmitted by the nth receiver and contains P objects in the scene of 

investigation. Figure 9 illustrates this equation by a visual example with a scene of 

interest subdivided into six pixels. Only three objects are present at pixels 2, 3, and 5. 
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(a) 

 

(b) 

 

(c) 

Figure 9: (a) Scene of interest with 6 pixels, three of which contain objects with different 

reflectivity values. (b) Individualized received signal at the mth receiver due to echoes 

from three objects in a 6-pixel discretized scene of interest and the direct-path signal from 

the nth transmitter. (c) Actual received signal, or superposition of all individual received 

waveforms. 
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3.5.2 Receiver’s Blind Region 

For the direct-path signals and echoes to be distinguishable at the receiver’s end, 

the object has to be outside of a certain area with respect to the receiver. In bistatic radar, 

the object’s echoes are obscured by the transmitter’s waveform when the bistatic angle 

180β = ° , as described in Section 2.5.3; therefore, the blind region of a bistatic radar is a 

section of the straight line connecting between the transmitter and the receiver. In the 

case of passive RF tomography, the receiver’s blind region is not just a straight line. It is 

derived as follows: 

Let rd  denote the range extension of any transmitter. This quantity is defined as

rd c c
B

τ= = , where B is the bandwidth of the transmitted waveform and τ  is its 

pulsewidth, as discussed in Chapter 2. For visualization purposes, rd  is the physical 

length of the transmitted chirp, or the spatial pulse width, measured in meters. Figure 10 

illustrates this quantity. 

 

Figure 10: Transmitter’s spatial pulse width, 𝑐𝜏 
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Suppose this pulse is transmitted and scattered by an object from the scene of 

interest. At the receiver, two waveforms are recorded: The direct path and the scattered 

signals. There is a time difference between the arrivals of these two waveforms and it is 

based on the object’s location with respect to the receiver and the transmitter. If this time 

is less than the pulse width, part or all of the scattered signal is obscured by the direct 

path. 

As explained in Chapter 1, recall that the scattered signal nms  is assumed to be 

separable from the total received signal nmt . For this assumption to be true, all objects are 

located so that the wavefront from the nth transmitter and the scattered signal from the pth 

objects do not overlap at the mth receiver. In other words, the range delay difference 

between the direct path and scattered signal should be greater than rd . In terms of 

positional vectors, this means 

 a b a b
n p p m n m rd− + − − − >r r r r r r   (3.23) 

Using the paraxial approximation, Inequality (3.23) can be rewritten as 

 ( ) ˆa b b a b a b
n m p m n p m n m rd− + − ⋅ + − − − >r r r r r r r rn   (3.24) 

or simply 

 ( ) ˆb a b
p m n p m rd− ⋅ + − >r r r rn  (3.25) 

This inequality is visually demonstrated by Figure 11. 
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Figure 11: Condition for an object to be out of a receiver’s blind region; the range delay 

difference has to be greater than 𝑑𝑟 

Object locations that satisfy the inequality in Equation (3.25) have echoes that are 

distinguishable from the direct-path signals. To visualize this condition, let b
m =r 0 , which 

translates the coordinate system’s origin to the mth receiver. Equation (3.25) becomes the 

following: 

 ˆ a
p n p rd⋅ + >r rn   (3.26) 

Furthermore, to visualize the condition in Equation (3.26), let ˆ ˆa
n =n x  and

ˆp px = ⋅r x . It is easy to see that 
2 2 2

p p px y= +r . This inequality can be rewritten in the 

new coordinate system as 
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or 

 
2

2 2
pr

p
r

ydx
d

> −  (3.27) 

The plot of Equation (3.27), as shown in Figure 12, is a parabola, the focus of 

which is at the mth receiver, and the axis of symmetry is along vector ˆ a
nn . The blind 

region of the receiver is the dotted portion enclosed by the parabola. Echoes from objects 

that are inside this region are not discernable from the direct-path signal originated from 

the same transmitter.  

 

Figure 12: Visualization of the blind spot of each receiver in terms of range resolution of 

the received signal from a particular transmitter 
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3.5.3 Image Reconstruction 

Because the transmitted signals are separable in frequency, their matched filtered 

echoes recorded at each receiver due to different objects, nmpl , are also separable. This 

signal is defined as 

 [ ]
0,

,

0,

nmp s

nmp pm nmp nmp s nmp s
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s

p s

K T

A T T
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r
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τ τ
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τ τ

− ≤ < −
  = − − ≤ ≤ +  
 + < ≤ +

l   (3.28) 

where nmpτ  is the range delay intrinsic to each transmitter, receiver, and object as defined 

in Equation (3.21).  

The vector ][mnp τl  is a shifted, or delayed, and scaled version of the correlation 

sequence ][sr τ  . The shift is equal to nmpτ ; thus the support for ][mnp τl  is also shifted by 

nmpτ ; furthermore, because the scattered signal from each object due to each transmitter is 

separable, ][mnp τl  is zero everywhere outside of its domain. Figure 13 graphically 

illustrates one instance of vector ][mnp τl . The amplitude of the signal is color coded with 

solid black being highest and solid white weakest. 

 

Figure 13: Graphical representation of the matched filtered scattered signal of the pth 

object due to radiated signal from the nth transmitter at the mth receiver 
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From Equation (3.22), it is easy to see that 

 1 1 2 1nm nm nm nmP P

nm

v v v= + +
=

+
⋅

s l l l
L v



  (3.29) 

where  [ ]1 2nm mn mn mnP=L l l l   and  [ ]1 2
T

Pv v v=v  . 

The generalized expression that relates collected data is therefore 
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  (3.30) 

or simply 

 = ⋅s L v   (3.31) 

To visualize Equation (3.31), consider an example scene layout in Figure 14 with 

six isotropic objects located in six adjacent pixels. Each object has a reflectivity of iv  

where i = 1, 2, …, 6. 
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Figure 14: Example layout of a scene of interest with six objects 

 

Figure 15 illustrates the tomographic model defined by Equation (3.31) of this 

scene. Each object has a different range delay with respect to the mth receiver. 
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Figure 15: Visualization of the forward tomographic model. Bolder squares denote 

stronger magnitudes.  
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Vector [ ]1 2
T

Pv v v=v   represents the unknowns of the imaging 

problem. It can be obtained from Equation (3.31) by means of matrix inversion. Matrix 

L, however, may not be invertible; therefore, another method to obtain v is proposed as 

follows: 

Consider a simple case where one object is present in the area of interest. In other 

words, let 1 1v =  and 0nv =  with 1n∀ ≠ . Equation (3.30) becomes the following: 

 1 1 2 1 1 1

0
nm nm nmP P nmv v v v= + + + =s l l l l



  (3.32) 

It is easier to derive a filter that maximizes the signal to noise ratio (SNR) when 

applied to vector s than to directly solve for 1v . This filter is similar to a matched filter 

which uses 1nml as the reference to detect if there is an object present at pixel 1p = . If 

there is no object, the total recorded signal, s, does not contain the reference pattern of

1nml , and, therefore, the output of the filter is zero. The derivation is as follows: 

Let the unknown filter be a row vector Hw . The imaging problem becomes a 

maximization of the value 1
Hy = ⋅w s , which will be used for image reconstruction 

instead of 1v . Because s may contain noise, it can be rewritten as 1 1nm nm= +s l m  where 

1nmm  is the white Gaussian noise portion of signal s corresponding to 1nml . This noise has 

zero mean and a variance of 2σ I  where I is an identity matrix. 

The SNR of s after applying the filter Hw  is 
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w l
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where [ ]( )E x t  denotes the expected value of a sequence x(t). 

Expanding Equation (3.33) gives the following: 

 1 1

1 1

E

E

H H
nm nm

H H
nm nm

SNR
  =
  

w l l w

w m m w
  (3.34) 

Only the denominator of the SNR  contains a random sequence 1nmm . Other terms 

are deterministic; therefore, 

 1 1

1 1E

H H
nm nm

H H
nm nm
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  

w l l w
w m m w

 (3.35) 

Note that [ ] [ ]( )22 2
1 1 1 1 1Var E E E H

nm nm nm nm nm σ   = − = =   m m m m m I . The SNR 

becomes 
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  (3.36) 

Because w is a column vector, Hw w  is a constant. Equation (3.36) can be 

rewritten as 

 
2

1
H

nmSNR k= w l   (3.37) 

where 2

1
Hk

σ
=

w w
. To determine w to maximize the SNR , the Cauchy-Schwarz 

Inequality can be applied as follows: 

 
2 2 2

1 1
H H

nm nm≤ ⋅w l w l   (3.38) 
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It is easy to see that 
2 2H =w w ; therefore, the inequality in Equation (3.38) 

becomes 

 
2 2 2

1 1
H

nm nm≤ ⋅w l w l   (3.39) 

The SNR is maximized when 1nm=w l , according to Cauchy-Schwarz. The value 

of 1y  is thus estimated by 1 1
H
nmy ⋅= l s . Expanding this result to the full area of 

investigation that contains P  objects, a general expression can be obtained as follows: 

 H= ⋅y L s   (3.40) 

where  

1

2

P

y
y

y

 
 
 =
 
 
 

y


. 

Image reconstruction is accomplished through y as a substitute for vector v. The 

same result can be achieved by means of matrix pseudoinverse of Equation (3.31) using 

the back-propagation method [8] [29].  

3.6 Summary 

The methodology presented in this chapter is the foundation for a hardware and 

software implementation as proof of concept of passive RF tomography. The hardware 

system design and its specifications, as well as the signal processing procedure for image 

formation are explained in detail in the next chapter, along with the obtained results. 
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IV.  Hardware Implementation, Results, and Analysis 

This chapter provides a proof of concept for passive RF tomography by means of 

hardware implementation and experiment. First, an overview of the specifications of the 

test system is discussed. This system is used to capture and process data of the 

experiment, which is described next. Recorded data are conditioned and demodulated to 

baseband for subsequent processing. These steps are described before results obtained 

from the experiment are explained and analyzed.  

4.1 Hardware Implementation  

The hardware experimental setup consists of four independent transmitters and 

four independent receivers. Each transmitter radiates different and arbitrarily generated 

waveforms. Each waveform is separated in frequency and time, according to the 

assumptions made in Chapter 1. All receivers are coherent and share the same reference 

clock. Each transmitter and receiver channel is connected to an antenna with a 10 dBi 

gain. The maximum length of the rugged low-loss connecting cables is 75 feet. For 

complete specifications of the test system, refer to Table 1. All operations, including 

waveform generation, signal conversion, data recording, processing, and image 

reconstruction are user-controlled through a high-power central computer workstation 

running MATLAB. Other attached instrumentation and equipment such as the pulse 

generator, Rubidium oscillator, signal generator (SigGen), local oscillator (LO), and 

power supply (PSU) are also controlled through MATLAB over TCP/IP. AC power input 

to the system is protected by an uninterruptible power supply (UPS) unit. The rack-

mounted equipment is shown in Figure 16. 
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 (a)  (b) 

Figure 16: Photos of the test system: (a) front and (b) back 

 

4.1.1 General Operation 

Although this experiment is meant to prove the concept of passive RF 

tomography, it is more feasible to actively transmit suitable signals that conform to the 

assumptions discussed in Chapter 1; however, the passive mode of operation can still be 

realized by ignoring the knowledge of the transmitters and their generated waveforms at 

the signal processing steps. 

The operation of the test system is as follows. Signals generated from the 4-

channel advanced waveform generator (AWG) are transmitted to the input of each 

channel of the transmitter. This signal has a bandwidth of 400 MHz with a starting 

frequency near DC. This bandwidth yields a bistatic range resolution of approximately 

0.375cos
2 cosr

cd
B

β
β

= ≈   m. Before being radiated through an antenna attached at the 

TX 

LO 
RX 

UPS 

PSU 
Computer 

SigGen 
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end of the transmission line, the signal first goes through a digitally controlled attenuator 

for the purpose of adaptive adjustment of the dynamic range. This feature allows the 

output power of each channel to be equal and independent of the length of RF cables 

connecting the antennas to the rest of the equipment mounted in a rack at the control 

station. It also maximizes dynamic range of the received signals to account for weak 

incoming waveforms (in the −80 dBm range) due to either distance of the transmitters or 

low transmission power.  

Next, the signal is low-pass filtered then modulated to the S-band at 2 GHz. This 

is accomplished by a mixer which produces a new output signal by adding the following 

frequencies from the input: The baseband and the LO signal operating at 2 GHz. This 

upconverted signal is band-pass filtered and mixed with another LO at 8 GHz to reach the 

desired operating frequency in the X-band. The two-stage mixing process was chosen to 

make this test system more flexible and adaptable to a wide range of operating 

frequencies. This flexibility is accomplished simply by tuning the LO of the second 

mixer. To achieve the average output power of 1 W (30 dBm), this signal is amplified 

twice. The first amplification stage is right before the long RF cable (up to 75 feet) 

attached to the radiating element. At this stage, the transmitted signal receives gain by a 

high-power amplifier (HPA). The second amplification is achieved by applying the same 

HPA at the end of the RF cable and before the antenna.  

Similarly, each of the four coherent receivers captures incoming waveforms 

through an antenna with the same specifications as those of transmitters. The output of 

this antenna first passes through a digitally controlled attenuator to equalize the dynamic 

range among all four channels. This signal is amplified by a low-noise amplifier (LNA) 
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close to the antenna. A RF cable, up to 75 ft in length, conducts this signal back to the 

equipment rack, where it is amplified again with an identical LNA. The signal is filtered, 

down-converted to the S-band using a mixer with an LO signal at 6 GHz, and then mixed 

with a second LO at 2 GHz to arrive at baseband. At this stage, it is amplified one last 

time, low-pass filtered, and transcoded by an analog-to-digital converter (ADC) for later 

processing. For a full block diagram, refer to Figure 17. This diagram divides the system 

into three distinct portions: The computer, equipment rack, and antennas. The first part of 

the system is the brain which contains the DAC and ADC, the software (MATLAB) to 

control all equipment and operations, and storage for recording data. The second is the 

enclosure of all active and passive components which translate outgoing and incoming 

signals to and from the computer. The last components in the transmission lines are 

located close to the transmitter and receiver antennas, along with their accompanying 

amplifiers and digital attenuators. 
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Table 1: Hardware specifications of X-band test system 

Specification Value 

Number of Transmitters 4 

Number of Receivers 4 

Frequency of Operation 8.2-10.6 GHz 

Bandwidth 500 MHz 

Average Output Power 30 dBm (1 W) Typical 

Antenna Gain 10 dBi 

Advanced Waveform Generator Speed 1.2 GS/s 

Analog to Digital Converter Speed 1.2 GS/s at 8-bit resolution 

Noise Floor −84 dBm 

Maximum Received Power +25 dBm (with attenuation) 

Range (0 dB RCS) 4 to 200 m (calculated) 

Cable Length (to Antenna) 25 - 50 - 75 ft 

Pulse Repetition Frequency Up to continuous streaming 

Synchronization Rubidium clock 10 MHz 

DDR3 Memory Capacity 256 GB 

Data Recording Speed 1.2 GB/s 

Storage Capacity 6 TB  
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4.1.2 Adaptive Adjustment of the Dynamic Range 

For the purpose of regulating the output and input power of the transmitted and 

received signals, a digitally- controlled attenuator is installed on each channel. On the 

transmitters’ side, the attenuators are located at the baseband, whereas the receivers’ 

attenuators are at the X-band, next to the antennas. Each attenuator is connected to a 

NetDuino through its Digital I/O ports. The transmitters’ and receivers’ attenuators have 

different levels as well as steps of attenuation. This variation results in different number 

of control bits used in each channel. Depending on the number of the control bits, an 

identical number of pins are used to define the attenuation level for each attenuator. The 

maximum levels of attenuation are 65 dB and 42 dB for the TX and RX sides, 

respectively. The NetDuino communicates with the central computer’s software 

MATLAB through TCP/IP. Figure 18 details the schematic of a digital attenuator setup. 

Ideally, the system should be able to automatically detect the signal levels and 

adjust the amount of attenuation accordingly to equalize the transmitted and received 

waveforms. This feature helps maximizing the SNR of both outgoing and incoming 

signals; however, due to time constraints of the project, this goal was not fully 

accomplished. Instead, the attenuation levels are manually tuned for each receiver 

channel during the experiment. Adjusting attenuation values is done by observing the 

clipping of received waveforms and adjusting the degree of attenuation appropriately to 

eliminate signal compression. This step is the precursor of the next procedure, signal 

conditioning, which prepares the recorded data for image reconstruction.  
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Figure 18: Schematic of one digitally controlled attenuator 

 

4.2 Signal Conditioning 

Incoming signals recorded at the four receivers are not ready for signal processing 

due to possible misalignment with respect to each other; furthermore, the recorded 

waveforms have to be demodulated to reduce the bandwidth, sample size, and to obtain 

in-phase (I) and quadrature (Q) information.  

4.2.1 Data Alignment 

The received waveforms from different sensors are not always aligned even 

though they share the same reference clock. This effect could be due to inaccuracies in 

the DAC module which may result in a small shift, usually one to three samples, among 

the captured data series. Additionally, the high sampling rate of 1.2 GS/s may exacerbate 
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the errors and increase the variance of the shifts. Because reconstruction relies on the 

accuracy of the TDOA, it is crucial to have all incoming waveforms at all four receivers 

aligned for an accurate image to be formed.  

A simple solution to this problem is realignment of data from each receiver so that 

they all line up at the first pulse. Because this experiment is meant for passive mode of 

operation, transmitted pulses are not available for referencing; instead, the first received 

pulse is used as reference for lagging pulses. Figure 19 illustrates a simple case of three 

misaligned captured waveforms and how they are corrected using the first pulse as 

reference. 

 
Figure 19: (a) Misaligned signals from different receivers, (b) Realigned data 

 

4.2.2 Digital Demodulation and Resampling 

After realignment, every recorded waveform needs demodulating for subsequent 

processing. Because received data are real, their Fourier transforms are symmetric in the 

frequency domain. This symmetry makes it possible to discard the negative frequency 

portion of the signal spectrum without loss of information. After filtering out this 

negative frequency component, the remaining positive part is demodulated to baseband 
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with center frequency at zero. With the inverse FFT, I and Q data are recovered. This 

process is illustrated in Figure 20. 

 

 
Figure 20: Digital demodulation. Real recorded signal (a) and its symmetric frequency 

spectrum (b). The negative frequency part (c) can be removed without loss of 

information. Signal is demodulated to baseband (d) and its inverse Fourier transform (e) 

4.3 Experiment Setup 

The experiment is based on the theory, established in Chapter 3, in which 

distributed receivers are scattered about the scene of interest. There are four transmitters 

and four receivers. Although information about transmitters’ waveforms is ignored in the 

signal processing steps as described in Section 4.1, the waveforms are controlled to 

properly fit the necessary conditions laid out in the assumptions.  

The transmitter and receiver constellation are set up as follows: On an 8×8 m 

square grid, the transmitters’ antennas are placed at the vertices and the receivers’ 

antennas at the midpoints of the sides. They are labeled TXn for the nth transmitter 

channel and RXm for the mth receiver channel. All antennas are raised approximately 1.5 
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meters off the ground by tripods. The approximated main beam of each antenna is 

pointed towards the center of the square grid, and the grid center is assigned to be the 

center of the coordinate system. Due to the time and budget constraints of this project, the 

effect of antenna pattern is not studied in this thesis.  

The transmitters’ antennas are located at coordinates (−4, −4), (−4, 0), (4, 4), and 

(4, −4) for TX1, TX2, TX3, and TX4, respectively. Similarly, the positions of receivers’ 

antennas are (−4, 0), (0, 4), (4, 0), and (0, −4) for RX1, RX2, RX3, and RX4, respectively. 

Within this square is a 5×5 m discretized area of interest where possible objects are 

located. A 12-inch (30 cm) diameter test object is placed inside this imaging grid at 

coordinates (−1, −1). It is also approximately raised 1.5 m off ground by a non-reflective 

stand. This geometry is illustrated in Figure 21. 
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(a) 

 
(b) 

Figure 21: Experiment setup. (a) Geometry (not drawn to scale). (b) Overhead view of 

actual layout  
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It is important to note that although the theory calls for transmitters infinitely far 

away from receivers and objects, spatial constraints of the testing area as well as cable 

length do not allow for such conditions; therefore, the geometry of the experiment has to 

limit the distance of the transmitters, thus making them a finite quantity. This setup, 

however, does not invalidate the theory developed in Chapter 3. Instead of using a
n = ∞r  

for the source localization to estimate the direction of incoming waves from each 

transmitter, ˆ a
nn , it can be calculated directly by applying the known distance a

nr  per 

each transmitter to Equation (3.19). This is the only difference in the theory and 

experiment. All subsequent signal processing steps and RF tomographic image 

reconstruction follow the exact theoretical procedure discussed in Chapter 3. 

4.4 Results and Analysis 

After data acquisition and signal conditioning, image reconstruction can take 

place using the bottom line expression from Equation (3.40). When y is solved, the 

tomographic image is reconstructed as follows: Each element of y represents the 

reflectivity of each pixel in the discretized imaging region. Because this area is a square 

grid, the pixels are rearranged in such a way that their reflectivity values are concatenated 

in one vector, y. The form of this vector is similar to the example in Figure 15.  

To better understand the tomographic image obtained from this experiment, the 

process of reconstruction can be divided to multiple steps. In each step, a transmitter and 

receiver pair returns a possible set of points where the object is located. This is called the 

isorange contour, as discussed in Section 2.5. Because there is one object, all contours 

intersect at a single point at the object location. This procedure is repeated until the 
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number of pairs of TX-RX is exhausted. Each image is plotted with a dynamic range of 

10 dB, as shown in Figure 22 through 27. 

Results from the TX1-RX1 pair show the isorange contour, which is an ellipse 

with foci located at the first transmitter and receiver. Figure 22 clearly shows how the 

isorange contour matches the theory of bistatic radar, demonstrated in Figure 3. This 

ellipse visibly passes through the point (−1, −1) where the object is present. Additionally, 

from this figure, the range resolution can be determined. It is equal to the thickness of the 

isorange contour and can be measured at approximately 0.4 m. This value matches that of 

the theoretical range resolution of a pulse having the 400 MHz bandwidth calculated in 

Section 4.1.1. with an estimated error of 10%. The object location and the TX and RX 

locations are manually overlaid for easier visualization. 

Because the experiment was conducted indoors with multiple clutters, background 

subtraction was employed to remove as much undesired effects from clutters as possible. 

As the name implies, the process of background subtraction involves using a set of data 

taken without the object as the background reference. In an attempt to remove the clutter, 

this reference is then subtracted from the data set that includes the. To further enhance the 

SNR of the final image, gating was also applied to the data after the background was 

removed. This action discards echoes beyond a certain distance from each antenna so that 

only scattered signals from the scene of interest are used for imaging. Anything outside 

of this region is truncated.  
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Figure 22: TX1-RX1 isorange contour 

 

Expanding the result to contain two pairs of transmitters and receivers, the same 

result can be seen with the addition of one extra ellipse. The intersection point of these 

two contours is exactly where the object is. Figure 23 illustrates this case. 
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Figure 23: TX1-RX1 and TX1-RX4 isorange contours. The intersection locates the object.  

 

With three and four pairs of transmitters and receivers, similar results are 

achieved, as shown in Figure 24 and Figure 25. The ellipses still share one common point 

at the location of the object; however, there is a secondary strong peak near (−5, −2), 

which is not the object location. This peak is regarded as a ghost object and may be 

ignored by inspecting the blind regions of each receiver. For example, in this case, this 
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ghost object is in the blind region of RX1 with respect to TX1, therefore, it can be safely 

disregarded as a real object. Another simple method to eliminate ghost objects is by 

ignoring the regions outside of the imaging grid. For example, the ghost object in Figure 

24 can be easily identified and ignored because it’s outside of the region of interest 

(superimposed yellow square.) 

 

Figure 24: Isorange contours of TX1-RX1, TX1-RX4, and TX2-RX1 with a ghost object 
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Figure 25: Isorange contours of TX1-RX1, TX1-RX4, TX2-RX1, and TX3-RX3  

 

Finally, with every pair of transmitter and receiver data, a complete tomographic 

image of the scene of interest can be constructed, as shown in Figure 26. This image is 

generated by plotting vector H= ⋅y L s  in its original form. Because the hardware setup 

consists of four transmitters and four receivers, the total number of isorange contours is 

sixteen. They all intersect at ( )1,  1− − , where the object is expected to be.  
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Figure 26: Complete tomographic image using information from all four transmitters and 

four receivers, for a total of sixteen isorange contours 

 

Examining Figure 22 through Figure 25, it is evident that the greater the number 

of transmitter and receiver pairs used in reconstruction, the more defined the object is in 

the formed image. This is because when the intensity of the intersection of all ellipses is 

coherently added, object’s magnitude is much greater than that of the remaining points in 

the ellipses. In other words, the SNR increases proportionally with the number of data 

points.  
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The interference pattern in Figure 26, however, may create difficulties in 

determining the actual object location. To remedy this, another plotting method is 

employed. A new image is formed by plotting the absolute value of vector y, i.e., 

H= ⋅y L s , shown in Figure 27. This results in the loss of phase information, thus 

decreasing the SNR; nonetheless, it is still possible to determine the object location by 

searching for the absolute peak of the intensity. In this plot, the highest peak is 

determined by the strongest white spot in the middle region.  

 

Figure 27: Image constructed by plotting the absolute value of vector y, where phase 

information is ignored 
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With data from all possible pairs of transmitter and receiver, there is noticeable 

interference around the object area, as evident in Figure 26 and Figure 27. To alleviate 

this effect and make object detection easier, some sets of data may be taken out. To 

determine which results to discard, plotting every set of data reveals the undesirables, as 

shown in Figure 28. 

 

Figure 28: Plots of all sets of transmitter and receiver data 
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From these individual plots, it is easy to identify three possible types of problems. 

One of them is multiple returns, as evident from the plots of TX2-RX2, TX3-RX1, and 

TX4-RX3. A possible explanation of this problem is that the experiment was conducted 

indoors with strong clutter returns from metal objects inside the test facility. The second 

problem may be that when the transmitter, object, and receiver are nearly in a straight 

line, as shown in the plots of TX1-RX2, TX1-RX3, TX2-RX4, and TX4 –RX1, the resulting 

images are not as clear as other isorange contours. Recall from the bistatic range 

resolution in Section 2.3.3 and derivation of the receiver’s blind region in Section 3.5.2, 

the receiver cannot distinguish between direct-path and echo signals if the transmitter, 

object, and receiver line up in that order. In this case, when the bistatic angle is almost 

180°, the range resolution breaks down. The last problem appears when the clutter returns 

are stronger than those of the objects. This happens when background subtraction takes 

place. If the object echoes appear to be weaker than the background reference, as 

described early in this section, the object will be discarded as part of the background. The 

resulting images are thus incorrect, as shown in the plot of TX3-RX2. 

After identifying the troubled data sets and discarding them, new images are 

reconstructed using the same method as before. These new images have less interference, 

and object detection is easier compared to Figure 26 and Figure 27. Figure 29 illustrates 

this result.  
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Figure 29: Reconstructed images in which undesirable data sets are manually taken out. 

Vector. (a) Plot of complex data ( )H= ⋅y L s . (b) Plot of absolute values ( )H= ⋅y L s  
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V.  Discussion and Conclusion 

5.1 Chapter Overview 

This chapter summarizes this thesis by recapping the accomplishments as well as 

shortcomings of the passive RF tomography research. First, an overview of the theory 

along with the signal processing procedure is given. The proof of concept experiment 

setup and results also are reviewed. Finally, this thesis concludes with recommendations 

for future work. 

5.2 Summary of Theory 

This research has expanded upon the previous passive RF tomography work by 

broadening the theory with additional concepts, as well as providing a proof of concept 

by means of hardware experimentation. The concept of RF tomography has been 

explored in recent literature with many applications in ground penetrating radars and 

tunnel detection. Passive RF tomography eliminates the active transmitters and relies 

only on the signals of opportunity presumably already present in the environment. This 

mode of operation allows the hardware implementation to be more cost-effective and 

provides the added benefit of frequency compliance due to the lack of transmitters; 

however, the signal processing requires advanced methodology and solutions. There are 

certain conditions the signals of opportunity have to meet for the algorithm to work. The 

most important assumptions are that the incoming waveforms have to be similar to radar 

signals, or LFM chirps. They also have to be separated in time and frequency. The 

transmitters are assumed to be infinitely far from the receivers and scene of interest for 

their transmitted wavefronts to be planar.  
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The methodology developed in this research relies on the knowledge of the 

receivers’ locations and estimated directions of the signals of opportunity for image 

reconstruction. The procedure progresses as follows: 

1. Identification of Signals of Opportunity - The system scans the 

surrounding environment of the scene of observation. Captured data are 

analyzed for radar signals suitable for detection and imaging purposes. 

2. Differentiation between Incident and Scattered Signals - Recorded data are 

divided into incident and scattered signals. Incident, or direct path, signals 

come directly from the transmitters. Scattered signals, or echoes, are 

reflections from objects illuminated by the same direct path waveforms. 

3. Estimation of the Time Differences of Arrivals - Once the signals of 

opportunity are identified and separated, the TDOA for each transmitter 

and receiver pair is calculated for the next step. 

4. Source Localization - TDOA information is used to estimate the direction 

of incoming wavefronts. Because transmitters’ exact locations are 

unknown, they have to be approximated through the bearing angles of the 

sources of opportunity. 

5. RF Tomography in Time Domain - A modified version of RF tomography 

is applied to the matched filtered scattered returns, using the estimated 

direction of each transmitter instead of its exact location. 

These steps are applied to captured data from an experiment conducted with a 

hardware implementation. This test system consists of four transmitters and four 

receivers. Each independent transmitter radiates a different waveform that conforms to 
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the assumptions laid out in Section 1.2. These waveforms illuminate a scene of interest 

where possible objects are present. If there is an object, the reflectivity measured in the 

backscattered signal is greater than zero; otherwise, the magnitude of the echo is zero. 

With four pairs of transmitters and receivers, there are sixteen data sets to process. Each 

set of received data consists of two parts: direct-path and echo. Finally, by applying the 

methodology of passive RF tomography, an image is reconstructed based on all different 

perspective views of each receiver. Obtained results are analyzed to confirm the theory 

and methodology, as well as to reveal the successes and shortcomings of the experiment.  

5.3 Experiment Accomplishments  

Results obtained from the hardware implementation show that the methodology 

developed in this research performs properly and accurately under the assumptions 

outlined in Chapter 1. With one object in the scene of imaging, the algorithm produces 

expected results. Individual plots of processed data from each pair of transmitter and 

receiver demonstrate the isorange contours in the shape of an ellipse whose foci coincide 

with the transmitter’s and receiver’s locations. When all sixteen data sets are 

superpositioned on one plot, the single object located at (−1, −1) is identified by its 

highest peak; furthermore, the derivation of the receiver’s blind region is also proved to 

be correct in cases when the transmitter, object, and receiver are in a near straight line. 

This geometry approaches the point at which the range resolution is no longer valid. This 

rendered object detection difficult and inaccurate. After identifying and discarding these 

troubling data sets, the final reconstructed image is cleaner and has less ambiguity and 

interference around the object location. Finally, the results also suggest that the hardware 
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system constructed for this experiment is proven for this type of operation; therefore, 

both goals of this research are achieved. 

5.4 Future Work Recommendations 

The results demonstrated in Chapter 4 have several weaknesses that can be 

addressed if future funding continues. First, an experiment carried out in an open 

environment can improve results due to reduced clutter and interference. It was not 

possible to experiment in an open environment due to the lack of manpower, time, and 

funding in planning and execution; furthermore, the hardware went through multiple 

revisions in the prototyping phase because such a low-cost and mobile system had never 

been built before at AFRL.  

Another recommendation for future work is a multiple-object experiment setup. 

Because the methodology was developed for more than one objects, this test should be 

possible with few to no changes in the algorithm as well as the hardware; however, it 

may be better to attempt this experiment outdoors or in an anechoic chamber to avoid 

false positives coming from indoor clutter. 

Finally, the theory may be expanded to include detection of moving objects. 

Doppler processing is a useful addition to the methodology to make the theory more 

complete and applicable to realistic scenarios. Additionally, the experiment could be 

modified to accommodate a three-dimensional imaging area in which objects can have 

movements in the z-direction. This extension could increase the number of possible 

applications for both military and civilian purposes.   
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