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Scale changes everything  

Volume 

Da!a SIZe 

Software Engineering Institute ( :anwg- it• .\lt'llonlnht·r~ih - . 
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WHAT IS BIG DATA? 
 
FROM A SOFTWARE ARCHITECTURE 
PERSPECTIVE … 
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Some Big Data … 

Google: 
•  Gmail alone is in the exabyte range 

Salesforce.com 
•  Handles 1.3 billion transactions per day 

Pinterest.com 
•  0 to 10s of billions of page views a month in two 

years,  
•  from 2 founders and one engineer to over 40 

engineers,  
•  from one MySQL server to 180 Web Engines, 

240 API Engines, 88 MySQL DBs + 1 slave each, 
110 Redis Instances, and 200 Memcache 
Instances. 

http://highscalability.com/blog/2014/2/3/how-google-backs-up-the-internet-along-with-exabytes-of-othe.html 

http://highscalability.com/blog/2013/9/23/salesforce-architecture-how-they-handle-13-billion-transacti.html 

http://highscalability.com/blog/2013/4/15/scaling-pinterest-from-0-to-10s-of-billions-of-page-views-a.html 
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Not so successful …. 
Some first-wave big data projects 'written down' 
says Deloitte 
Not enough data a problem for some, while Hadoop integration has 
proved tricky 

By Simon Sharwood. 19 Feb 2014 '#Follow 3,278 tolowers 

Transforming your business w~h ftash storage 

Consultancy outfit Deloltte reckons early big data projects have had to be written 
down because they failed, thanks in part to a "buy it and the benefits will come" 
mentality. 

The source of failure was sometimes difficulty making open source software work 
and/or integrate with other systems. Deloitte Australia's technology consulting 
partner Tim Nugent told Tfle Reg. Such failures weren't because the sonware was of 
poor quality. Instead, organisations weren't able to make it do meaningful work 
because they lacked the skills to do so. Integrating big data tools with other systems 
also proved diffiCult. 

The attempt to develop those skills 
while also staying abreast of the 
many changes in the field of big 
data proved hard for some, 
Nugent said. Happily. vendors and 
services providers have since 
come up to speed and are making 
............ =-- #"'~ n r'n-:ani,..-· ""t 

Why Most Big Data Projects Fail + 
How to Make Yours Succeed 
B) Dann Bart1K ~lay 14 2013 !II' Follow 18Stollowers 

CXM Webinar: Deliver contextually relevant experiences across any channel, 
device or language 

: ~ • f:,l~ 100 10 1 00 l ; I ' 

,' . : ~ 1 c 0 .I DO 1 0 1(;' 0 ; : ' 
···0101010100.10101\.G. · · 
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·" ··oo·o"•"'" , ~ ,,}c I I ·vi)·" I 

Big data is on the minds of just about 
everyone, with IT departments large 
and small grappling with exponentially 
growing volumes of both structured 
and unstructured data. But despite big 
data's place as a mainstream IT 
phenomenon, the bulk of big data 
projects still fail, as organizations 
struggle to find ways to capture, 

manage, make sense of and ultimately, derive value from their data and 
information. 

• Lack of knowledge_ Many of the technologies, approaches and disciplines 
around big data are new, so people lack the knowledge about how to 
actually work with the data and accomplish a business result 

Software Engineering Institute ( :al'negie 'lt·llon l ·n ht·•·sitv 
' . 
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Big Data Survey 
http://visual.ly/cios-big-data 

Software Engineering Institute ( :al'negie 'lt·llon l ·n ht·•·sitv 
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Big Data – State of the practice 
“The problem is not solved” 
Building scalable, assured big data systems is hard 
•  Healthcare.gov 
•  Netflix – Christmas Eve 2012 outage 
•  Amazon – 19 Aug 2013 – 45 minutes of downtime = $5M lost revenue 
•  Google – 16 Aug 2013 - homepage offline for 5 minutes  
•  NASDAQ – June 2012 – Facebook IPO 

Building scalable, assured big data systems is expensive 
•  Google, Amazon, Facebook, et al. 
– More than a decade of investment 
– Billions of $$$ 

•  Many application-specific solutions that exploit problem-specific properties 
– No such thing as a general-purpose scalable system 

•  Cloud computing lowers cost barrier to entry – now possible to fail cheaper 
and faster 
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NoSQL – Horizontally-scalable database 
technology 
Designed to scale horizontally and provide 
high performance for a particular type of 
problem 
•  Most originated to solve a particular system 

problem/use case 
•  Later were generalized (somewhat) and 

many are available as open-source 
packages 

Large variety of: 
•  Data models 
•  Query languages 
•  Scalability mechanisms 
•  Consistency models, e.g. 
– Strong  
– Eventual 
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NoSQL Landscape 

https://blogs.the451group.com/information_management/files/2013/02/db_Map_2_13.jpg 
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Horizontal Scaling Distributes Data 
(and adds complexity) 

Distributed systems theory is hard but well-established 
•  Lamport’s “Time, clocks and ordering of events” (1978), 

“Byzantine generals” (1982), and “Part-time parliament” (1990) 
•  Gray’s “Notes on database operating systems” (1978) 
•  Lynch’s “Distributed algorithms” (1996, 906 pages) 

Implementing the theory is hard, but possible 
•  Google’s “Paxos made live” (2007) 

 
Introduces fundamental tradeoff among “CAP” qualities 
•  Consistency, Availability, Partition tolerance (see Brewer) 
•  “When Partition occurs, tradeoff Availability against Consistency, 

Else tradeoff Latency against Consistency” (PACELC, see Abadi) 
 
“A distributed system is one in which the failure of a computer 
you didn’t even know existed can render your own computer 
unusable” 
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Rule of Thumb: 
Scalability reduces as implementation  
complexity grows 
Workload 
•  # of concurrent sessions and operations 
•  Operation mix (create, read, update, delete) 
•  Generally, each system use case represents a 

distinct and varying workload 
Data Sets  
•  Number of records 
•  Record size 
•  Record structure (e.g., sparse records) 
•  Homogeneity/heterogeneity of structure/schema 
•  Consistency 

Complexity  
of Solution 

Scalability 

X Eventual Consistency 

Strong  
Consistency 
X 

X Simple queries 

Machine  
Learning 

X 
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Big Data –  
A complex software engineering problem 
 
Big data technologies implement data 
models and mechanisms that: 
•  Can deliver high performance, availability and 

scalability 
•  Don’t deliver a free lunch  
– Consistency 
– Distribution  
– Performance 
– Scalability 
– Availability 
– System management  

•  Major differences between big data models/
technologies introduce complexity 
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Software Engineering at Scale 
Key Concept: 
•  system capacity must scale faster than 

cost/effort 
– Adopt approaches so that capacity 

scales faster than the effort needed to 
support that capacity. 

– Scalable systems at predictable costs 
 

Approaches: 
•  Scalable software architectures 
•  Scalable software technologies 
•  Scalable execution platforms 

 Time 

Capacity 

Cost 
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SO WHAT ARE WE DOING 
AT THE SEI? 
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Enhancing Design Knowledge for Big Data 
Systems 

Design knowledge repository  
for big data systems 
•  Navigate 
•  Search 
•  Extend 
•  Capture Trade-offs 

Technology selection method  
for big data systems 
•  Comparison 
•  Evaluation Criteria 
•  Benchmarking 

 
 
 

 

Scale 

Design  
Expertise 

Knowledge 

Technology 

QuABase 

LEAP4BD 
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LEAP4BD 
Lightweight Evaluation and Architecture  
Prototyping for Big Data (LEAP4BD) 
 
Aims 
•  Risk reduction 
•  Rapid, streamlined selection/acquisition 

Steps 
1.  Assess the system context and landscape 
2.  Identify the architecturally-significant requirements  

and decision criteria 
3.  Evaluate candidate technologies against quality  

attribute decision criteria 
4.  Validate architecture decisions and technology  

selections through focused prototyping 

Quality  
Requirements 

Evaluation 
Criteria 

Candidate(s) 
Selection 

Prototyping 

LEAP4BD 
Kbase 
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Some Example Scalability Prototypes - Cassandra 
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Software Engineering Institute ( :al'negie 'lt·llon l ·n ht·•·sitv 
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Knowledge Capture and Dissemination 

Johannes  

Gutenberg,  

circa 1450 

in Software Engineering 

in Science (e.g. biology - http://www.ncbi.nlm.nih.gov) 

Submission 
Validation 
Curation 
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QuABase –  
A Knowledge Base for Big Data System Design 

Semantics-based Knowledge Model 

•  General model of software architecture 
knowledge 

•  Populated with specific big data 
architecture knowledge 

Dynamic, generated, and queryable content 

Knowledge Visualization 
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QuABase Demo 
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QuABase Demo  1 
QuASipedia- Architecture Quality At Scale 

0 ['+ ~ + 0 10.128.2.62/ T' 

My Del cious 

Editing Main Page 
Ria ~ ConsistenOJ Features > ConsistenOJ > Ensure read 1>,\-rite queturm > Ria!; > Ma in Pag e 

Wikitext Preview Changes 

B I 

Heading Format : : ·­,_ ,_ 

== Quality Attri b utes == 

Advanced Special characters .. Help 

Insert 

{{ #ask: ([Catego r y :Quality attribute]] l f or mat=u1 }} 

==Database Tec~ologies == 

{{ #ask: ([Catego r y : Database]) 

l i~tro=Select a ny o f t~e database below t o get i~formatio~ o~ their features a~d the tactics t he y support 

1 forrr.at=u l 

What links here 

Related changes 
Upload file 

Special pages 

Printable version 

MongoOB 

Neo4j 

Aiak 

Volt DB 

Software Engineering Institute ( :al'negie 'lt·llon l ·n ht·•·s itv 
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QuABase Demo  2 

ABIGDa 
38lgdAT. 

NaVGitiOn 

Man page 

Rooent changes 

RandOm page 

He!> 

ContriJuto 

Add 1 now qual!)' 
attrbutc 

Add a now qua lftY 
attfl)uta seenarto 
Add a now tactic 

ToolbOx 

l.Nhat links hate 

Ra I! led changes 
UplOad file 

S~lpages 

Prtntablo verscn 

Perrrenent 11'11c: 
Page llnlormatk:ln 
Browse propenles 

Read Edit with form Ed~ Vcw history • Search 

Consistency 
En&.,• t'Md~Wri.te ~ > Fottn:Tac:bc > Ens.-. f'NCll\w!te quot'l.1ml: > Mwl Page > Cone..stenc:y 

Description 

Conslstoncy Issues In distributod systems stem lrom replcation and tho spatiol separation ol dota objects, and whon two or moro objects must bo updBtod togOthor to malntoln logical consistency. Both those issues occur 
cornf1'lC:>N/ il big data systems. and hence consistency is a fundamental qualily attributo for big data systems. 

General Scenario for Consistency 

Stlmulul 

A WTite 10 slnglt dota objoct il iosued (OR) 

A single writor updatos two or more objocts to rnU\tain consistency botwoonthem (OR) 

Two wr-..rs atlempt 10 updalc tho samo object slll<J ttanooos~ 

Distributod dalabasa whh roplication (OR) 

Environment Non-<fcstributod and ...,.,.roplcatod database (OR) 

Cachod databaso access 

Road-aftor-wrl a conoiotency: ahO< a wrke operation on dota object X tho new value will all<ays be soon by reodors ol X at somo time In the luture 
Response 

Updates to two or moro data ob;oc1s by a singlo writer result n consistent vakles across tho objects ttvough ether successful updates or an error that rols back objoct valtos to their previous state 

Trnc for a ll object repicas to store same vatuc alter wriic succeeds 

Reaponae Meeaure Muttiple objoctl updalad succ:essluly together Of an errO< io ilsuod and they aro returnod 10 their PfOVIous stale 

Quality Attribute Scenarios and Tactics for Consistency 

Quality Attribute Scenario ~ T8Ctlca ~ 

Asynclvonous roplca updato 

Hintod handolfs 
Ensure eventual consistency In • ropicatod, dlstrbutod databaso 

Dlstrbutod transactions 
Confkt resOOtion 

Ensuro ovontuaJ consistency whon making multiple objoct updalo:s 

Conllct ros<*Jtlon 
Ensure strong consistency for a write-write confkt Ensure rcadlwrito quorums 

OueueciWrles 

Ensure readlwrito quorums 

Ensure strong consiotoncy In a replcatod, distributod dolabase lor • singlo object update Rood lrom master~ 
Write to all replicas 

DistrbJtod transoctioos 

Donormalizod dota modlel 
Ensure strong consistency 1\ a repicated, distributed database lor mu~le object updates 

[od~l 

[odh] 

lod~J 

Ensure strorxt.consistency 1\ an unrcplicated.._non-distributcd database for muttiplo ~t uodates I Oonorma.lization (Ncstod records)'--------------------------------

Software Engineering Institute ( :al'negie 'lt·llon l ·n ht·•·sitv 
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QuABase Demo  3 

Ensure read/write quorums 
Ria< Consistency Featutes > Ria< > Rlu Consistency Featu<es > Consistency > Ensur& read 'Wri te quoturm 

Description 

Assuming there are N replicas of any object, a writer may specify that a quorum@ of the replicas must be updated before the write succeeds. This ensures that a majority of the replicas are 

updated before the write completes. If all writers perform quorum writes, this also prevents write-write conflicts as only one writer can ever achieve quorum at any instant. 

(edit] 

To ensure all readers see the updated value after any write completes, readers must also specify that a quorum of object values must be the same before the read succeeds. This ensures that a 

reader cannot see a value at a replica that has not yet been updated with the new value. 

In either case. if a quorum of replica objects cannot be written to or read from. the operation fails. 

The general form or the requests to achieve strong consistency are: Qr + Qw > N Qw > N/2 

A number of NoSQL databases provide quorum mechanisms for readers and writers to be able to tune consistency. This is typically specified on a per-write call to enable each write to be tuned 

accordingly. 

Improves Quality Consistency 

Reduces Qual ity Performance. Availability 

Related Tactics Hinted handoffs 

Implementations 

This tactic is supported by the feature Tunable consistency of the product Cassandra. 

This tactic is supported by the feature Tunable c onsistency of the product MongoDB. 

This tactic is supported by the feature Tunable c onsistency of the product Riak. 

Software Engineering Institute ( :al'negie 'lt·llon l ·n ht·•·sitv 
' . 

(edit] 
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QuABase Demo  4 
ABIGDa 
3BigdAT. 

NIV'gotlon 

Main page 

Recent ollanges 

Random page 

Hell 

ContrllUlo 

Add a now quality 
a'tt.tbuto 

Add a new quality 
attrbuto SQlnarlo 
Add a new tactc 

ToollOx 

'h'hat links nere 

RelaiOd c~angos 

Upload tole 

Special pages 

Page Information 

Edit Tactic: Ensure read/write quorums 

Description (Required) 

numin; there ~ore N rcphus of • nv object, • writer miy sptcify t hillt • 
[hnp //tn.w,lu~dii.org/WI.ki/QuorumJU8diltributed_computtng5a9 quMu'l"'l ot tht rtpltuJ mun be upd~ttd bcfort tht 

rttt succudt. Th.i! ensutt.J th•t a mljority of tht rcpllc.n a.rt upcb.ttd btfore tM wntt complttts. If all writers ptr1orm 
uorum Wfl tU, thlt a l!o prevents Wt'ltt· wrdt confllas u only one writtr c.tn ewr achlew quorum at any t.nstant. 

o ensure ~I readers see th.e updated va•ue after any wr.te completes, readers must also specify that a quorum of object 
lues must be the sarre before tk r-ead succeeds . nus e nsures that a reader c.annot see a value at a repliCa that has no t yet 

been updi.ted wtth t~ new v• lue. 

n t ith._r cut, if • quorum of r t p liu objects u , not bt wrlnt n to or rt:•d from, the opc~tion f•lls.. 

e gt:ner.al form or the requut1 to .ac.hleve strong c.ond!tency .art: 
r +Ow>N 

> N/ 2 

number ol l\oSQL databases provide quoru,., mechanisms for readers and wnters to 1:»e ab~e to t une consistency. Th is is 
p calty spec~fitd on a per-write call to eniib'e e.ac.h write to be tuned i.Ccordm91'f. 

Impr oves QA: ConsJst~ncy 

R~u~QA: '-1~~~~-=-.M-e-.A~v~~~~~il~,~--------------------------~ 

Relat~ Tactics: H nted handofh. 

ProdUdSmat ~~monl m$~ac ------------------------------------------------------------------------------------------------------------------~ 

Product: Cuundr.a. 

Feature: Tunable consiste ncy <l+ • Feeture Reference Link: hnp·/JW'Io\w,daustax.com/docu~ret 

Product: Mongo08 

FMt:ure; Tun• blt consiltt.ncy • 
( Add another 

Software Engineering Institute ( :al'negie 'lt·llon l ·n ht·•·sit\' 
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QuABase Demo  5 
Ensure read/write quorums 
Riak Consistency Feetu-res :> Ri!l: > Riel Con.sistency Festu-re:s >Consistency> E n.suJe read/write quorums 

Description 

Assuming there are N replicas of any object, a writer may specify that a quorum @ of the replicas must be updated before the write succeeds. This ensures that a majority of the repl icas are 

updated before the write completes. If all writers perform quorum writes, this also prevents write-write conflicts as only one writer can ever achieve quorum at any instant. 

[edit] 

To ensure all readers see the updated value after any write completes, readers must also specify that a quorum of object values must be the same before the read succeeds. This ensures that a 

reader cannot see a value at a replica that has not y et been updated with the new value. 

In either case, if a quorum of replica objects cannot be written to or read from, the operation fails. 

The general form or the requests to achieve strong consistency are: Qr + Qw > N Qw > N/2 

A number of NoSQL databases provide quorum mechanisms for readers and writers to be able to tune consistency . This is typically specified on a per-write call to enable each write to be tuned 

accordingly. 

Improves Quality Consistency 

Reduces Quality Performance. Availability 

Related Tactics Hinted handoffs _j 

Implementations 

This tactic is supported by the feature Tunable consistency of the product Cassandra. 

This tactic is supported by the feature Tunable consistency of the product MongoDB. 

This tactic is supported by the feature Tunable consistency of the product Riak. 

Software Engineering Institute ( :al'negie 'lt·llon l ·n ht·•·sitv 
' . 

[edit] 



Software Architecture:  
Trends and New Directions 
#SEIswArch 
© 2014 Carnegie Mellon University 

QuABase Demo  6 
Riak 

Ria Feature; ---------------------------------

Tsdia Supported by RiL< -----------

Software Engineering Institute ( :anwg- it• .\lt'llonlnht·r~ih - . 
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QuABase Demo  7 

LEAP4BD  

Evaluation 

Features 
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Status 

LEAP4BD 
•  Initial trial with DoD client near completion 
•  Rolling out as an SEI service 

QuABase 
•  Design/development in progress 
•  Validation/testing over summer 

Software Engineering for Big Data Course (1 day) and tutorial (1/2 day) 
•  SATURN 2014 in Portland, May 2014 

•  http://www.sei.cmu.edu/saturn/2014/courses/ 
•  WICSA in Sydney, Australia April 2014 
•  Both available on request 
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