Software Architecture: Trends and New Directions
3.27.14+10:00 am ET-12:30 pm ET

Software Architecture for Big Data Systems

Ian Gorton
Senior Member of the Technical Staff - Architecture Practices

Ian Gorton is investigating issues related to software architecture at scale. This
includes designing large scale data management and analytics systems, and
understanding the inherent connections and tensions between software, data and
deployment architectures in cloud-based systems.

I've written a book in 2006, Essential Software Architecture, published by Springer-
Verlag. It sold well and has had several excellent reviews in Dr Dobbs and ACM's
QUEUE Magazine. A 2nd Edition was published in 2011. I also co-edited 'Data
Intensive Systems' which was published by Cambridge University Press in 2012. I've
also published 34 refereed journal and 100 refereed international conference and
workshop papers, with an h-index of 28.

Software Architecture:
Trends and New Directions

=== Software Engineering Institute | Carnegie Mellon University OBl Al

© 2014 Carnegie Mellon University

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
27 MAR 2014 2. REPORT TYPE 00-00-2014 to 00-00-2014
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Softwar e Ar chitecture for Big Data Systems £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Carnegie Mellon University ,Softwar e Engineering REPORT NUMBER
Institute,Pittsburgh,PA,15213

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE Sa_me as 30
unclassified unclassified unclassified Report (SAR)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Copyright

Copyright 2014 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract
No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering
Institute, a federally funded research and development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the United States Department of Defense.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING
INSTITUTE MATERIAL 1S FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER
INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.
CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This material has been approved for public release and unlimited distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or
electronic form without requesting formal permission. Permission is required for an¥ other use.
Requests for permission should be directed to the Software Engineering Institute a
permission@sei.cmu.edu.

DM-0001080

Software Architecture:
Trends and New Directions

— Software Engineering Institute | Carnegie Mellon University SElswArch

© 2014 Carnegie Mellon University

Scale changes everything

Software Architecture:
Trends and New Directions

— Software Engineering Institute | Carnegie Mellon University SElswArch

© 2014 Carnegie Mellon University

WHAT IS BIG DATA?

PATABASE PATA BASE

OF USEFUL OF USELESS
INFORMATION INFORMATION

5K 300,000,000 68

FROM A SOFTWARE ARCHITECTURE
PERSPECTIVE ...

Software Architecture:
Trends and New Directions

=== Software Engineering Institute | Carnegie Mellon University 4SEIswArch

© 2014 Carnegie Mellon University

Some Big Data ...

Google:

e Gmail alone is in the exabyte range
Salesforce.com

e Handles 1.3 billion transactions per day

B4 488484 B
L)yol()l() OO 11

| m,o1o18113(;)801d:.‘_,, -
. 10101 1010001
Pinterest.com 1 10000 .
illi i i 2010000100101090900101010101
0 to 10s of billions of page views a month in two e 01010
years, ar00101101001010010000100
« from 2 founders and one engineer to over 40 R e ojoaiorD
engineers, il

o from one MySQL server to 180 Web Engines,
240 API Engines, 88 MySQL DBs + 1 slave each,
110 Redis Instances, and 200 Memcache
Instances.

http://highscalability.com/blog/2014/2/3/how-google-backs-up-the-internet-along-with-exabytes-of-othe.htmi
http://highscalability.com/blog/2013/9/23/salesforce-architecture-how-they-handle-13-billion-transacti.html
http://highscalability.com/blog/2013/4/15/scaling-pinterest-from-0-to-10s-of-billions-of-page-views-a.html

Software Architecture:

== e Trends and New Directi
=== Software Engineering Institute | Carnegie Mellon University Bl oo

© 2014 Carnegie Mellon University

Not so successful

Some first-wave big data projects 'written down’
says Deloitte

Not enough data a problem for some, while Hadoop integration has
proved tricky

Why Most Big Data Projects Fail +
How to Make Yours Succeed

W Follow < 185 followers

By Simon Sharwood, 19 Feb 2014 | W Follow 3,273 followers

Transforming your business with flash storage

Consultancy outfit Deloitte reckons early big data projects have had to be written

down because they failed, thanks in part to a “buy it and the benefits will come” CXM Webinar: Deliver contextually relevant experiences across any channel,
mentality. device or language
The source of failure was sometimes difficulty making open source software work i) .)
and/or integrate with other systems, Deloitte Australia's technology consulting 010010100 Big data is on the minds of just about
partner Tim Nugent told The Reg. Such failures weren't because the software was of 0010 0 everyone, with IT departments large
poor quality. Instead, organisations weren't able to make it do meaningful work ! and small grappling with exponentially
i i j i 01031001010 .

because they lacked the skills to do so. Integrating big data tools with other systems e growing volumes of both structured
also proved difficult. 1N0 . .

: AL and unstructured data. But despite big
The attempt to develop those skills 07010100 data’s place as a mainstream IT
while also staying abreast of the 010100 phenomenon, the bulk of big data
many changes in the field of big - . . - -

projects still fail, as organizations

data proved hard for some, .
Nugent said. Happily, vendors and struggle to find ways to capture,
services providers have since manage, make sense of and ultimately, derive value from their data and

come up to speed and are making information.

~ani==fnr Arnanie~" “t

e Lack of knowledge. Many of the technologies, approaches and disciplines
around big data are new, so people lack the knowledge about how to
actually work with the data and accomplish a business result.

Software Architecture:
Trends and New Directions

Software Engineering Institute | Carnegie Mellon University SSElswArch

© 2014 Carnegie Mellon University

Big Data Survey
http://visual.ly/cios-big-data

UF\BIG DATA PROJECTS
55% 1 vor covelere | B3

WHEN 1T covies To BIG DATA PROJE
THE MOST SIGNIFICANT CHALLENGE FA!

b8%

FINDING THE

INACCURATE SCOPE RIGHT TOOLS

10P REQUIREMENTS Or

5

JATA
UTIONS

7

=== Software Engineering Institute ‘ Carnegie Mellon University

#1 EASE OF
MANAGEMENT
ABILITY
T0 SCALE

Software Architecture:

Trends and New Directions
#SEIswArch

© 2014 Carnegie Mellon University

Big Data — State of the practice
“The problem is not solved”

Building scalable, assured big data systems is hard
e Healthcare.gov
e Netflix — Christmas Eve 2012 outage
e Amazon — 19 Aug 2013 — 45 minutes of downtime = $5M lost revenue
e Google — 16 Aug 2013 - homepage offline for 5 minutes
e NASDAQ — June 2012 — Facebook IPO
Building scalable, assured big data systems is expensive
e Google, Amazon, Facebook, et al.
— More than a decade of investment
— Billions of 3%
 Many application-specific solutions that exploit problem-specific properties
— No such thing as a general-purpose scalable system

e Cloud computing lowers cost barrier to entry — now possible to fail cheaper
and faster

Software Architecture:
Trends and New Directions

=== Software Engineering Institute ‘ Carnegie Mellon University SSElswArch

© 2014 Carnegie Mellon University

NoSQL - Horizontally-scalable database
technology

Designed to scale horizontally and provide
high performance for a particular type of
problem

* Most originated to solve a particular syster

problem/use case R

» | ater were generalized (somewhat) and Ot
many are available as open-source
packages O N |y

Large variety of:
e Data models
* Query languages
e Scalability mechanisms
e Consistency models, e.g.
— Strong
— Eventual

Software Architecture:
Trends and New Directions

— Software Engineering Institute | Carnegie Mellon University SElswArch

© 2014 Carnegie Mellon University

NoSQL Landscape

Toward's Google
Towards CRNTPITIN IO Mortar bole TTeasure Compute Amazon
E-discovery Lucene/Solr Data Qubole ™ pai5 ngine_ EMR Continuuity Metascale
Elasticsearch Infochimps (= _C =Q e (e T —_ Research
LucidWorks VertiCloudQ) EMC fﬂ?&nnp'um i BM r:““"“ Zettaset Hortonworks Analytics Stack
Big Data igInsights loud Oracle Big Data
HP-Autonomy Metamarkets , Cloudera i e

Microsoft HDInsight()

Oracle NGDATA HDrawn to Scale s S

Key:

HPCC
]

Endeca Server O
Splice Machine SQLite Hadapt Teradata RainStor Operationa
IBM InfoSphere Firebird Aster Analytic
Data Explorer Actian Ingres e <25 -SRI ViCE
SAP Sybase ASE
EnterpriseDB NoSQL extension
Attivio () vFabric Postgres SAP IBM Oracle BigTables
PostgresQL ata__PurgData e T e B
)(25 Document
O s
MarkLogi BerkelevDB Oracle IBM Informix sQL ParStream Exasol XtremeData Key value stores
OrientD ArangoDB i Database DB2 Server Pervasive PSQL ParAccel Key value direct access
Ipedo XM { Progress Opentdge 8t Hadoo
pDatabase uvolaBase FoundationDB VoltDB MV5QLO OSCAICL)‘J Oracle TimesTen kucidD = P
Tamino Aerospike I Cluster Clustrix IBM solidDB Kx Systems — NewSQL extension
- T T \& 2e engines
XML Server CassandraQ) O FairComNuoDB Drizzle GenieDB Amazon RDSQ MonetDB — Storage engines
Documentum Neod) Handlersocket ScaleBase i uckgpac‘e IBM InfoSphere=4 Alde ct?d e
xD xO Akiban ScaleArs Cloud Databases' Calpont—] clustering/sharding
UniData— DaZSta Riak P EL| .n Google Cloud SQLOY New SQL databases
un arElastic X P Sybase Q=1 S—
UniVerse=— —YarcData - Tokutek Hp %C%‘,‘ﬁ.,';‘a‘f o\ ::tj\.’:::rci—
Hypertable i CodeFutures FathomDB () s é = = ==Data caching extension
Adabaes Membrain Datomic EMC Greenplum=4
o DEX 2 : 5 Continuent Database.com() ‘ s a Data caching
HBase— ORedis \ MemsQL ontinuent Metamarkets Druid
IBMIMS=| Accumulo RethinkDB=— JustOneDB Zimory Scale QL Azure Actian VectorWise= lD‘c';d grid dd
WakandaDB={| I~ FlockDB Oracle NosQU Transiattics Gulaa Ssle,a, 33 ¢ dania Infobright= ’:J[e‘:-':?;;mrata
AffinityDB CouchDB~— oy =S o 8|gQ ery 1010data BitYota S
ObjectStore—{ ™ LevelDB SQLFire Xeround - ~ Appliances
App Engine 00 __0 Ol
. atastore RavenDB— \ Ku_,g nitio TempoDB Amazon
McObject— | Voldemort N—— Redshift www.451research.com
rinit arantia Data Amazon
& L MongoDB \\ Memcached Cloud IronCache ElastiCache @maslett
«ctian Versant— Giraph HyperDex .
InterSystems MongoHQ MemCachier
Cache™] HAlIegrogr::‘%h ObjectRocket o
; ypergrap Mongolab nfiniSpan
Objectivity Redis Cloud . —0

Iris Couch . Memcached Ehcache
Cloudant

InfiniteGraph

DynamoDB eXtreme VMware Oracle ScaleOut
Scale GemFire Coherence Software
Lotus Notes
GridGain GigaSpaces XAP Hazelcast CloudTran

https://Iblogs.the451group.com/information_management/files/2013/02/db_Map_2_13.jpg

Software Architecture:
Trends and New Directions

Software Engineering Institute | Carnegie Mellon University SSElswArch

© 2014 Carnegie Mellon University

Horizontal Scaling Distributes Data
(and adds complexity)

Distributed systems theory is hard but well-established

e Lamport’s “Time, clocks and ordering of events” (1978),
“Byzantine generals” (1982), and “Part-time parliament” (1990)
e Gray’s “Notes on database operating systems” (1978)
e Lynch’s “Distributed algorithms” (1996, 906 pages)
Implementing the theory is hard, but possible

» Google’s “Paxos made live” (2007)

Introduces fundamental tradeoff among “CAP” qualities

e Consistency, Availability, Partition tolerance (see Brewer)

* “When Partition occurs, tradeoff Availability against Consistenc
Else tradeoff Latency against Consistency” (PACELC, see Abadi)

“A distributed system is one in which the failure of a computer
you didn’t even know existed can render your own computer
unusable”

Software Architecture:
Trends and New Directions

=== Software Engineering Institute | Carnegie Mellon University SSElswArch

© 2014 Carnegie Mellon University

Rule of Thumb:
Scalability reduces as implementation

complexity grows

Workload Scalability
e # of concurrent sessions and operations ¢\
e Operation mix (create, read, update, delete)

e Generally, each system use case represents a
distinct and varying workload

Data Sets
e Number of records
e Record size
e Record structure (e.g., sparse records)
« Homogeneity/heterogeneity of structure/schema Complexity
e Consistency of Solution

Simple queries
Eventual Consistency

Strong
Consistency
Machine
Learning

Software Architecture:
Trends and New Directions

— Software Engineering Institute | Carnegie Mellon University SElswArch

© 2014 Carnegie Mellon University

Big Data —
A complex software engineering problem

Big data technologies implement data
models and mechanisms that:

e Can deliver high performance, availability and
scalability

e Don’t deliver a free lunch
— Consistency
— Distribution
— Performance
— Scalability
— Avalilability
— System management

e Major differences between big data models/
technologies introduce complexity

Software Architecture:
Trends and New Directions

=== Software Engineering Institute ‘ Carnegie Mellon University SSElswArch

© 2014 Carnegie Mellon University

Software Engineering at Scale

Key Concept:

e system capacity must scale faster than
cost/effort

— Adopt approaches so that capacity ¢\
scales faster than the effort needed to

support that capacity.
— Scalable systems at predictable costs

Capacity

Approaches:
* Scalable software architectures Egst
e Scalable software technologies 5
e Scalable execution platforms

Time

Software Architecture:
Trends and New Directions

— Software Engineering Institute | Carnegie Mellon University SSElswArch

© 2014 Carnegie Mellon University

SO WHAT ARE WE DOING
AT THE SEI?

CarnegieMellon.

Software Engineering Institute

Software Architecture:
—a— - - - Y . T e . Trends and New Directions
—== Software Engineering Institute | Carnegie Mellon University ST Arch

© 2014 Carnegie Mellon University

Enhancing Design Knowledge for Big Data
Systems

Design knowledge repository Design

for big data systems Expertise
* Navigate A
 Search QuABase
» Extend

e Capture Trade-offs

Technology selection method
for big data systems

e Comparison

e Evaluation Criteria

LEAP4BD
>

Scale

e Benchmarking

Software Architecture:
Trends and New Directions

— Software Engineering Institute | Carnegie Mellon University SElswArch

© 2014 Carnegie Mellon University

Pages / Home
L E A P4 B D LEAP Evaluation Criteria .
Added by lan Gorton, last edited by lan Gorton on Nov 17, 2013 (view change Qual Ity
LEAP Evaluation Framework
1 es

. . , _ Requirements
Lightweight Evaluation and Architecture
Prototyping for Big Data (LEAP4BD) l
Aims Evaluation
Criteria
 Risk reduction ~——
» Rapid, streamlined selection/acquisition LEAP4BD l
Kbase
Steps ~———— Candidate(s)
Selection
1. Assess the system context and landscape
2. ldentify the architecturally-significant requirements l
and decision criteria
3. Evaluate candidate technologies against quality :
attribute decision criteria Prototyping

4. Validate architecture decisions and technology
selections through focused prototyping

Software Architecture:
Trends and New Directions

Software Engineering Institute ‘ Carnegie Mellon University SElswArch

© 2014 Carnegie Mellon University

Some Example Scalability Prototypes - Cassandra

Overall Throughput
4500.0
o0 n ¥ =
!
3500.0 .
o
3000.0
-
T 2500.0
8
g
7 o
S 2000.0
-
1500.0
1000.0 l
o |-
0.0
1 2 4 8 16 32 b4 125 250 S0(1000

Software Architecture:

- - . ; . L Trends and New Directi
Software Engineering Institute | Carnegie Mellon University e o Diections

© 2014 Carnegie Mellon University

Knowledge Capture and Dissemination

in Software Engineering

Software
Architecture
in Practice
Third Edition

Johannes
Gutenberg,
circa 1450

in Science (e.g. biology - http://www.ncbi.nlm.nih.gov)

ENCE R) (R O JSign in to NCB)

Gene ~ [human muscular dystrophy e |
. - Submission
Display Settings: (¥) Tabular, 20 per page, Sorted by Relevance Sendto:@ Filters: Manage Filters -
. .
' Top Organisms [Tree] V I n @ @
Results: 1 to 20 of 388 Page 1 of20 et | Las Homo sapiens (260 I I N~
Mus musculus (54)
Name/Gene ID | Description Location Aliases MM

Rattus nonegicus (5

.
EKIN fokutn [Homo saiens (uman) Chromosome Renawsczrs, oo Galusgalus (5 (: u ratlo n
1D: 2218 NC_000009.11 CMD1X, FCMD, Pan troglodytes (4)

(108320411..108403399) LGMD2M, MDDGAX, Al other taxa (30)
MDDGB4, MDDGC4 More
LA lamin AIC [Homo sapiens Chromosome 1. RP11-54H19.1 150330
1D: 4000 (human)) NC_000001.10 COCD1, CODC, Find related data 5
(166052369. 156109880) CMD1A, CIT281
EMD2. FPL, FPLD, Database: Select
FPLD2, HGPS, IDC.
LOP1, LFP.
LGMD1B, LMN1
a LMINC, LMNL1)
mly PRO1 Search details B =
Chromosome EKRP fukutin related protein [Homo Chromosome 19, LGMD2I, MDC1C, 606596 | (" ganism) O
locations 1D:79147 sapiens (human)] NC_000019.9 MDDGAS, MDDGES, o < 2P mascutaz
Select (47249303.47261832) MDDGCS =i
DISE dyswinFomosapns Chromosome: FERILL LowDzB, 60300 s b, &
Clear all 10:8291 (human] NC 00000211 MMD1 S X

Software Architecture:
Trends and New Directions
#SEIswArch

2014 Carnegie Mellon University

Software Engineering Institute | Carnegie Mellon University

QuABase -
A Knowledge Base for Big Data System Design

WIKIPEDIA _
Semantics-based Knowledge Model

English Espaiiol
The Free Encyclopedia La enciclopedia libre .
4 072000+ aioaos » General model of software architecture
BHASE Pycckuii
) —5fisn ¢ .)X A\ CeobodHas 3Hyuknonedus kn OWI ed g e
92 000+ 235 =/ * k \3 \ 1083 000+ crareit . L .
Deutsch S O W !ﬂ: _ Frangais * POpUlated with SpeCIfIC b|g data
o Bl o architecture knowledge
) Por}uq:éj ' d % 7 , . It}alia;o}b .
i PN ercicopodic fbers Dynamic, generated, and queryable content
Polski thX . . .
Wolna encykiopedia BEMENEE Knowledge Visualization
1 025 000+ haset 747 000+ &ZE
English v E

Software Architecture:

—_— : ; - 3 . o o Trends and New Directi
=== Software Engineering Institute | Carnegie Mellon University e e Directions

© 2014 Carnegie Mellon University

[NDER DEVEL OPMENT |

(&
(-

QuABase Demo

Software Architecture:
Trends and New Directions

Software Engineering Institute | Carnegie Mellon University SElswArch

© 2014 Carnegie Mellon University

QuABase Demo

) ?| | 4| | + |@ 10.128.2.62 ¢
m s Dal < Mv Delic
Riak Consistency Festures > Consistency » Ensure read/write quorums > Riak > Main Fage
Wikitext | Preview | Changes
v Advanced » Special characters » Help
. = oemm e o=
Heading = Format ce= e @ 0. A* A° A A. sert |l Q
== Quality Attributes ==
#ask: [[Category:Quality attribute format=ul
==Database Technologies ==
#ask: [[Category:Database]]
intro=Select any of the databkase below to get information on their features and the tactics they support
format=ul
What links here MongoDB
Related changes Neo4j
Upload file Riak
Special pages VoltDB

Printable version

Software Engineering Institute

Carnegie Mellon University

Software Architecture:

Trends and New Directions
#SEIswArch

© 2014 Carnegie Mellon University

QuABase Demo

AL A 1 e e - , -
—d u Page Discussion Read Edit with form Edit View history ~ Go || Search

AB |G Da Consistency
Ensure read/write quorums > Form: Tactic > Ensure read/write quorums > Main Page > Consistenc
aBIgdAT |

Description [edit]

Navigation Consistency issues in distributed systems stem from replication and the spatial separation of data objects, and when two or more objects must be updated together to maintain logical consistency. Both these issues occur

Main page commonly in big data systems, and hence consistency is a fundamental quality attribute for big data systems.

Recent changes
Random page

Help General Scenario for Consistency [edit]
A write to single data object is issued (OR)
Contribute
Stimulus A single writer updates two or more objects to maintain consistency between them (OR)
Add a new quality)
attribute Two writers attempt to update the same object simultaneously
Add a new qualit . } S
attribute Sccqnamy Distributed database with replication (OR)
Add a new tactic Environment Non-distributed and non-replicated database (OR)
Cached database access
Toolbox
Read-after-write consistency: after a write operation on data object X the new value will always be seen by readers of X at some time in the future
What links here Response

Related changes Updates to two or more data objects by a single writer result in consistent values across the objects through either successful updates or an error that rolls back object values to their previous state

Upload fiie Time for all object replicas to store same value after write succeeds
Special pages Response Measure
Printable version

Permanent link

Page Information Quality Attribute Scenarios and Tactics for Consistency [edit]
Browse properties

Multiple objects updated successfully together or an error is issued and they are returned to their previous state

Quality Attribute Scenario Tactics

“*»
“*»

Asynchronous replica update

Ensure eventual consistency in a replicated, distributed database
ure eventu Ll AL, striou Hinted handoffs

Distributed transactions

Ensure eventual consistency when making multiple object updates 5 5
4 "9 i g = Conflict resolution

Conflict resolution
Ensure strong consistency for a write-write conflict Ensure read/write quorums
Queued Writes

Ensure read/write quorums
Ensure strong consistency in a replicated, distributed database for a single object update Read from master only
Write to all replicas

Distributed transactions

Ensure strong consistency in a replicated, distributed database for multiple object updates
Denormalized data model

. . . NPy . . Denormalization (Nested records)
Ensure strong consistency in an unreplicated, non-distributed database for multiple object updates | .~ _ N

Software Architecture:
{ Trends and New Directions

.‘,

Software Engineering Institute | Carnegie Mellon Universi

© 2014 Carnegie Mellon University

QuABase Demo 3

Ensure read/write quorums

Risk Consistency Festures > Risk > Risk Consistency Features > Consistency > Ensure read/writ

in
o
[5
I3
5
i

Description [edit]
Assuming there are N replicas of any object, a writer may specify that a quorum &7 of the replicas must be updated before the write succeeds. This ensures that a majority of the replicas are
updated before the write completes. If all writers perform quorum writes, this also prevents write-write conflicts as only one writer can ever achieve quorum at any instant

To ensure all readers see the updated value after any write completes, readers must also specify that a quorum of object values must be the same before the read succeeds. This ensures that a
reader cannot see a value at a replica that has not yet been updated with the new value

In either case, if a quorum of replica objects cannot be written to or read from, the operation fails
The general form or the requests to achieve strong consistency are: Qr + Qw > N Qw > N/2

A number of NoSQL databases provide quorum mechanisms for readers and writers to be able to tune consistency. This is typically specified on a per-write call to enable each write to be tuned
accordingly

Improves Quality| Consistency
Reduces Quality Performance, Availability

Related Tactics Hinted handoffs

Implementations [edit]

This tactic is supported by the feature Tunable consistency of the product Cassandra
This tactic is supported by the feature Tunable consistency of the product MongoDB

This tactic is supported by the feature Tunable consistency of the product Riak

Software Architecture:
Trends and New Directions

=== Software Engineering Institute | Carnegie Mellon University SSElswArch

© 2014 Carnegie Mellon University

QuABase Demo

ADIGDa
1BIgdAT

Navigation

Main page
Recent changes
Random page
Help

Contribute
Add a new quality
attribute

Add a new quality
attribute scenario

Add a new tactic

Toolbox

What links here
Related changes
Upload tlie
Special pages
Page Information

Edit Tactic: Ensure read/write quorums

Ensure read/wnite quorums > Consist > Ensure read/write quorums > Form:Tactic > Ensure read/wnte quorums

Description (Required)

lAssuming there are N replicas of any object, a writer may specify that a
[http://en.wikipedia.org/wiki/Quorum_%28distributed_computing¥29 quorum] of the replicas must be updated before the
write succeeds. This ensures that a majority of the replicas are updated before the write completes. If all writers perform
quorum writes, this also prevents write-write conflicts as only one writer can ever achieve quorum at any instant.

[To ensure all readers see the updated value after any write completes, readers must also specify that a quorum of object
values must be the same before the read succeeds. This ensures that a reader cannot see a value at a replica that has not yet
been updated with the new value.

In either case, if a guorum of replica objects cannot be written to or read from, the operation fails.

[The general form or the requests to achieve strong consistency are:

Qr+Qw>N

Qw > N/2

IA number of NoSQL databases provide quorum mechanisms for readers and writers to be able to tune consistency. This is
typically specified on a per-write call to enable each write to be tuned accordingly.

Improves QA: | Consistency
Reduces QA: Performance, Availability

Related Tactics: Hinted handoffs,

— Products that implement this tactic

Product: Cassandra
Feature: Tunable consistency

Feature Reference Link: http://www.datastax.com/documer

Product: MongoDB
Feature: Tunable consistency

Feature Reference Link:

Add another

{an

N\ %

?
%

Software Engineering Institute | Carnegie Mellon University

Software Architecture:

Trends and New Directions
#SEIswArch

© 2014 Carnegie Mellon University

QuABase Demo 5

Ensure read/write quorums

Risk Consistency Features > Risk > Risk Consistency Features > Consistency > Ensure read/write quorums

Description [edit]
Assuming there are N replicas of any object, a writer may specify that a quorum & of the replicas must be updated before the write succeeds. This ensures that a majority of the replicas are
updated before the write completes. If all writers perform quorum writes, this also prevents write-write conflicts as only one writer can ever achieve gquorum at any instant

To ensure all readers see the updated value after any write completes, readers must also specify that a quorum of object values must be the same before the read succeeds. This ensures that a
reader cannot see a value at a replica that has not yet been updated with the new value

In either case, if a quorum of replica objects cannot be written to or read from, the operation fails
The general form or the requests to achieve strong consistency are: Qr + Qw > N Qw > N/2
A number of NoSQL databases provide quorum mechanisms for readers and writers to be able to tune consistency. This is typically specified on a per-write call to enable each write to be tuned
accordingly
Improves Quality Consistency
Reduces Quality Performance, Availability
Related Tactics Hinted handoffs

Implementations [edit]

This tactic is supported by the feature Tunable consistency of the product Cassandra
This tactic is supported by the feature Tunable consistency of the product MongoDB

This tactic is supported by the feature Tunable consistency of the product Riak

Software Architecture:
Trends and New Directions

=== Software Engineering Institute | Carnegie Mellon University SSElswArch

© 2014 Carnegie Mellon University

QuABase Demo 6

Jmn Tage v Qe v TeTome Drssese VEn ¢ Ven Sage v Sek

Cvwrrww oo ey veoe =z

Risk Festures

Fetore Sewgory @

R Towrenc) Sewoe

Tactics Supporte

d by Risa
Trade-offs ’(::‘_Complexity—:;)
e ol Quality Attribute
¢ Conflict resolution 5 me——
" — — — Trade-offs
Trade-offs
_--'u —
Quality Attribute .'(\» Consistency ,)’
—— — . vyr—
(Hinted handoffs rade-offs X /
R SN Quality Attnbut/
\\ g
“~<Quality Attribute
I << Trad f;'!“ —»_ Performance)
pa——— . irade- s —
(_'»___ Ensure read/write quorums ___:_) e
=== Trade-offs
o p———— il s Trade-offs i o o
" Decentralized request (» Ava-lab:l.ty;_/
N router i Quality Attribute _—%
-

Software Engineering Institute

Software Architecture:
(w. necie I\l ‘“ L PR ‘.‘ . Trends and New Directions
AArne bl(elon vniversli _\ #SEIswArch

© 2014 Carnegie Mellon University

QuABase Demo 7

Rlak Con5|stency Features

Database Riak Evaluation

Object-Level isolation on updates |supported

Features

ACID transactions in single database not supported

Distributed ACID transactions not supported

Specify Quorum Reads/\Writes in client

Specify number of replicas to write to in client
Behaviour when write cannot complete on specified number of replicas no rollback: write returns replication error
Writes configured to never fail supported
Specify number of replicas to read from in client
Read from replica master only not supported
Updates applied to transaction log before returning from write supported
Object level timestamps to detect conflicts supported

Efficient protocol to rapidly propagate updates across replicas (minimize inconsistency window) by default

add explanations here

Categories: Consistency Features | Strong Consistency | Eventual Consistency

Software Architecture:
Trends and New Directions

Software Engineering Institute | Carnegie Mellon University SElswArch

© 2014 Carnegie Mellon University

Status

LEAP4BD
e Initial trial with DoD client near completion
* Rolling out as an SEI service
QuABase
e Design/development in progress
 Validation/testing over summer
Software Engineering for Big Data Course (1 day) and tutorial (1/2 day)
« SATURN 2014 in Portland, May 2014
* http://www.sei.cmu.edu/saturn/2014/courses/
 WICSA in Sydney, Australia April 2014
e Both available on request

Software Architecture:
Trends and New Directions

— Software Engineering Institute | Carnegie Mellon University SElswArch

© 2014 Carnegie Mellon University

Thank you!

http://blog.sei.cmu.edu/ {

The Importance of Software Architecture in Big
Data Systems

Browse Early Access Articles - Software, IEEE . - Volume:PP Issue:99

Distribution, Data, Deployment:
Software Architecture Convergence in
Big Data Systems

Gorton, 1. ; CMU, Pittsburgh ; Klein, J

Author(s)

Abstract Authors References Cited By Keywords Metrics

Exponential data growth from the Internet, low cost sensors, and high fidelity instruments has fueled the

development of advanced analytics operating on vast data repositories. These analytics bring business
benefits ranging from web content personalization to predictive maintenance of aircraft components. To
construct the data repositories that underpin these systems, there has been rapid innovation in
distributed data management technologies, employing schema-less data models and relaxing
consistency guarantees to satisfy scalability and availabilty requirements. This paper describes the
challenges of these "big data” systems that confront software architects. We show how distributed
software architecture quality attributes are tightly linked to the both the data and deployment
Pt architectures. This causes a consolidation of concerns, and designs must be closely harmonized
across these three structures to satisfy qualty requirements

This document is available in the event console materials widget

—== Software Engineering Institute | Carnegie Mellon University

LET'S SOLVE THIS PROBLEM BY
USING THE BIG DATA NONE
OF US HAVE THE SLIGHTEST
DEA WHATTO DO WITH

Software Architecture:

Trends and New Directions
#SEIswArch

© 2014 Carnegie Mellon University

