
Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

Software Architecture for Big Data Systems

Ian Gorton
Senior Member of the Technical Staff - Architecture Practices

Ian Gorton is investigating issues related to software architecture at scale. This
includes designing large scale data management and analytics systems, and
understanding the inherent connections and tensions between software, data and
deployment architectures in cloud-based systems.

I've written a book in 2006, Essential Software Architecture, published by Springer-
Verlag. It sold well and has had several excellent reviews in Dr Dobbs and ACM's
QUEUE Magazine. A 2nd Edition was published in 2011. I also co-edited 'Data
Intensive Systems' which was published by Cambridge University Press in 2012. I've
also published 34 refereed journal and 100 refereed international conference and
workshop papers, with an h-index of 28.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
27 MAR 2014 2. REPORT TYPE

3. DATES COVERED
 00-00-2014 to 00-00-2014

4. TITLE AND SUBTITLE
Software Architecture for Big Data Systems

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Carnegie Mellon University ,Software Engineering
Institute,Pittsburgh,PA,15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

30

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

Copyright

Copyright 2014 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract
No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering
Institute, a federally funded research and development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the United States Department of Defense.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING
INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER
INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.
CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This material has been approved for public release and unlimited distribution.

This material may be reproduced in its entirety, without modification, and freely distributed in written or
electronic form without requesting formal permission. Permission is required for any other use.
Requests for permission should be directed to the Software Engineering Institute at
permission@sei.cmu.edu.

DM-0001080

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

Scale changes everything

Volume

Da!a SIZe

Software Engineering Institute (:anwg- it• .\lt'llonlnht·r~ih - .

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

WHAT IS BIG DATA?

FROM A SOFTWARE ARCHITECTURE
PERSPECTIVE …

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

Some Big Data …

Google:
•  Gmail alone is in the exabyte range

Salesforce.com
•  Handles 1.3 billion transactions per day

Pinterest.com
•  0 to 10s of billions of page views a month in two

years,
•  from 2 founders and one engineer to over 40

engineers,
•  from one MySQL server to 180 Web Engines,

240 API Engines, 88 MySQL DBs + 1 slave each,
110 Redis Instances, and 200 Memcache
Instances.

http://highscalability.com/blog/2014/2/3/how-google-backs-up-the-internet-along-with-exabytes-of-othe.html

http://highscalability.com/blog/2013/9/23/salesforce-architecture-how-they-handle-13-billion-transacti.html

http://highscalability.com/blog/2013/4/15/scaling-pinterest-from-0-to-10s-of-billions-of-page-views-a.html

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

Not so successful ….
Some first-wave big data projects 'written down'
says Deloitte
Not enough data a problem for some, while Hadoop integration has
proved tricky

By Simon Sharwood. 19 Feb 2014 '#Follow 3,278 tolowers

Transforming your business w~h ftash storage

Consultancy outfit Deloltte reckons early big data projects have had to be written
down because they failed, thanks in part to a "buy it and the benefits will come"
mentality.

The source of failure was sometimes difficulty making open source software work
and/or integrate with other systems. Deloitte Australia's technology consulting
partner Tim Nugent told Tfle Reg. Such failures weren't because the sonware was of
poor quality. Instead, organisations weren't able to make it do meaningful work
because they lacked the skills to do so. Integrating big data tools with other systems
also proved diffiCult.

The attempt to develop those skills
while also staying abreast of the
many changes in the field of big
data proved hard for some,
Nugent said. Happily. vendors and
services providers have since
come up to speed and are making
............ =-- #"'~ n r'n-:ani,..-· ""t

Why Most Big Data Projects Fail +
How to Make Yours Succeed
B) Dann Bart1K ~lay 14 2013 !II' Follow 18Stollowers

CXM Webinar: Deliver contextually relevant experiences across any channel,
device or language

: ~ • f:,l~ 100 10 1 00 l ; I '

,' . : ~ 1 c 0 .I DO 1 0 1(;' 0 ; : '
···0101010100.10101\.G. · ·
I 'l';lC Hftdi~fii1b It I•"

,, ~ ·:·~00 1 010101001 0 1 ':"

·" ··oo·o"•"'" , ~ ,,}c I I ·vi)·" I

Big data is on the minds of just about
everyone, with IT departments large
and small grappling with exponentially
growing volumes of both structured
and unstructured data. But despite big
data's place as a mainstream IT
phenomenon, the bulk of big data
projects still fail, as organizations
struggle to find ways to capture,

manage, make sense of and ultimately, derive value from their data and
information.

• Lack of knowledge_ Many of the technologies, approaches and disciplines
around big data are new, so people lack the knowledge about how to
actually work with the data and accomplish a business result

Software Engineering Institute (:al'negie 'lt·llon l ·n ht·•·sitv
' .

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

Big Data Survey
http://visual.ly/cios-big-data

Software Engineering Institute (:al'negie 'lt·llon l ·n ht·•·sitv
' .

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

Big Data – State of the practice
“The problem is not solved”
Building scalable, assured big data systems is hard
•  Healthcare.gov
•  Netflix – Christmas Eve 2012 outage
•  Amazon – 19 Aug 2013 – 45 minutes of downtime = $5M lost revenue
•  Google – 16 Aug 2013 - homepage offline for 5 minutes
•  NASDAQ – June 2012 – Facebook IPO

Building scalable, assured big data systems is expensive
•  Google, Amazon, Facebook, et al.
– More than a decade of investment
– Billions of $$$

•  Many application-specific solutions that exploit problem-specific properties
– No such thing as a general-purpose scalable system

•  Cloud computing lowers cost barrier to entry – now possible to fail cheaper
and faster

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

NoSQL – Horizontally-scalable database
technology
Designed to scale horizontally and provide
high performance for a particular type of
problem
•  Most originated to solve a particular system

problem/use case
•  Later were generalized (somewhat) and

many are available as open-source
packages

Large variety of:
•  Data models
•  Query languages
•  Scalability mechanisms
•  Consistency models, e.g.
– Strong
– Eventual

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

NoSQL Landscape

https://blogs.the451group.com/information_management/files/2013/02/db_Map_2_13.jpg

~-------------------r~,.---------------------------------~~~----------------------------------~

lucen~Solr

ttP Autonomy

Oracle
Endea~r

IBM lnloSphere
O.lta bplorer

AmVIO

mtrrprifl uorth

ll~•ncsearch

lu< dWorks
S.c Data

Micro\.Oft HOin~•rnt
NGOATA

0ynMn008
IBM

eXtreme
Scale

I

ScaleBilse
ScaleArc
Pllr(u tic

Tokutek
Codefuture.

Cononuent

z, mory Scale

G;~lera

ParStfeilm Ex<~wl XtfemeO<Jtil
Pervi!sl~ PSQL ParAccel
Proaress OpenEdge Luc•d06
Oracle TimesTen
IBM sohdOB Kx Svst ems

Monet DB

lnflmSpan

Memuched Ehache

\/Mware
Gemr~re

I
I

G1~Spaces XAP

O~'icle
Co~rt'nce

I

' Haze least
I

OoudT~'in

Software Engineering Institute (:arw·!dt• .\lt'llonlnht·r~ih - ' .

Research

•• - • NoSQL extensaon

- B'ITllbles
--Gr<~ph
-----Document
- Key Y;~lue stores

Key v;~tue direct acceu
-----Hi!doop

NewSQL extens•on
Sto,ae ena1nes

AdY;~nced
ctuuenna/·.hard•nll

Dilta ar•d
Index-based data
man.acement

--Appances

www.451research.com
@masiett

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

Horizontal Scaling Distributes Data
(and adds complexity)

Distributed systems theory is hard but well-established
•  Lamport’s “Time, clocks and ordering of events” (1978),

“Byzantine generals” (1982), and “Part-time parliament” (1990)
•  Gray’s “Notes on database operating systems” (1978)
•  Lynch’s “Distributed algorithms” (1996, 906 pages)

Implementing the theory is hard, but possible
•  Google’s “Paxos made live” (2007)

Introduces fundamental tradeoff among “CAP” qualities
•  Consistency, Availability, Partition tolerance (see Brewer)
•  “When Partition occurs, tradeoff Availability against Consistency,

Else tradeoff Latency against Consistency” (PACELC, see Abadi)

“A distributed system is one in which the failure of a computer
you didn’t even know existed can render your own computer
unusable”

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

Rule of Thumb:
Scalability reduces as implementation
complexity grows
Workload
•  # of concurrent sessions and operations
•  Operation mix (create, read, update, delete)
•  Generally, each system use case represents a

distinct and varying workload
Data Sets
•  Number of records
•  Record size
•  Record structure (e.g., sparse records)
•  Homogeneity/heterogeneity of structure/schema
•  Consistency

Complexity
of Solution

Scalability

X Eventual Consistency

Strong
Consistency
X

X Simple queries

Machine
Learning

X

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

Big Data –
A complex software engineering problem

Big data technologies implement data
models and mechanisms that:
•  Can deliver high performance, availability and

scalability
•  Don’t deliver a free lunch
– Consistency
– Distribution
– Performance
– Scalability
– Availability
– System management

•  Major differences between big data models/
technologies introduce complexity

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

Software Engineering at Scale
Key Concept:
•  system capacity must scale faster than

cost/effort
– Adopt approaches so that capacity

scales faster than the effort needed to
support that capacity.

– Scalable systems at predictable costs

Approaches:
•  Scalable software architectures
•  Scalable software technologies
•  Scalable execution platforms

 Time

Capacity

Cost

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

SO WHAT ARE WE DOING
AT THE SEI?

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

Enhancing Design Knowledge for Big Data
Systems

Design knowledge repository
for big data systems
•  Navigate
•  Search
•  Extend
•  Capture Trade-offs

Technology selection method
for big data systems
•  Comparison
•  Evaluation Criteria
•  Benchmarking

Scale

Design
Expertise

Knowledge

Technology

QuABase

LEAP4BD

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

LEAP4BD
Lightweight Evaluation and Architecture
Prototyping for Big Data (LEAP4BD)

Aims
•  Risk reduction
•  Rapid, streamlined selection/acquisition

Steps
1.  Assess the system context and landscape
2.  Identify the architecturally-significant requirements

and decision criteria
3.  Evaluate candidate technologies against quality

attribute decision criteria
4.  Validate architecture decisions and technology

selections through focused prototyping

Quality
Requirements

Evaluation
Criteria

Candidate(s)
Selection

Prototyping

LEAP4BD
Kbase

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

Some Example Scalability Prototypes - Cassandra

4500.0

4000.0

,~· I
3000.0

t 2.500.0

!
~ 2000.0

1500.0

'=·· r- • 500.0

0.0
2 4 8 16

Overall Throughput

•

32 64 12S 2S.O !>00 1000

• TNoughput tCassandra-011
Conslstencor-QUORUMI

Throughput {Cassandra-009 Cons.stency=ONEI

Software Engineering Institute (:al'negie 'lt·llon l ·n ht·•·sitv
' .

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

Knowledge Capture and Dissemination

Johannes

Gutenberg,

circa 1450

in Software Engineering

in Science (e.g. biology - http://www.ncbi.nlm.nih.gov)

Submission
Validation
Curation

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

QuABase –
A Knowledge Base for Big Data System Design

Semantics-based Knowledge Model

•  General model of software architecture
knowledge

•  Populated with specific big data
architecture knowledge

Dynamic, generated, and queryable content

Knowledge Visualization

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

QuABase Demo

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

QuABase Demo 1
QuASipedia- Architecture Quality At Scale

0 ['+ ~ + 0 10.128.2.62/ T'

My Del cious

Editing Main Page
Ria ~ ConsistenOJ Features > ConsistenOJ > Ensure read 1>,\-rite queturm > Ria!; > Ma in Pag e

Wikitext Preview Changes

B I

Heading Format : : ·­,_ ,_

== Quality Attri b utes ==

Advanced Special characters .. Help

Insert

{{ #ask: ([Catego r y :Quality attribute]] l f or mat=u1 }}

==Database Tec~ologies ==

{{ #ask: ([Catego r y : Database])

l i~tro=Select a ny o f t~e database below t o get i~formatio~ o~ their features a~d the tactics t he y support

1 forrr.at=u l

What links here

Related changes
Upload file

Special pages

Printable version

MongoOB

Neo4j

Aiak

Volt DB

Software Engineering Institute (:al'negie 'lt·llon l ·n ht·•·s itv
' .

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

QuABase Demo 2

ABIGDa
38lgdAT.

NaVGitiOn

Man page

Rooent changes

RandOm page

He!>

ContriJuto

Add 1 now qual!)'
attrbutc

Add a now qua lftY
attfl)uta seenarto
Add a now tactic

ToolbOx

l.Nhat links hate

Ra I! led changes
UplOad file

S~lpages

Prtntablo verscn

Perrrenent 11'11c:
Page llnlormatk:ln
Browse propenles

Read Edit with form Ed~ Vcw history • Search

Consistency
En&.,• t'Md~Wri.te ~ > Fottn:Tac:bc > Ens.-. f'NCll\w!te quot'l.1ml: > Mwl Page > Cone..stenc:y

Description

Conslstoncy Issues In distributod systems stem lrom replcation and tho spatiol separation ol dota objects, and whon two or moro objects must bo updBtod togOthor to malntoln logical consistency. Both those issues occur
cornf1'lC:>N/ il big data systems. and hence consistency is a fundamental qualily attributo for big data systems.

General Scenario for Consistency

Stlmulul

A WTite 10 slnglt dota objoct il iosued (OR)

A single writor updatos two or more objocts to rnU\tain consistency botwoonthem (OR)

Two wr-..rs atlempt 10 updalc tho samo object slll<J ttanooos~

Distributod dalabasa whh roplication (OR)

Environment Non-<fcstributod and ...,.,.roplcatod database (OR)

Cachod databaso access

Road-aftor-wrl a conoiotency: ahO< a wrke operation on dota object X tho new value will all<ays be soon by reodors ol X at somo time In the luture
Response

Updates to two or moro data ob;oc1s by a singlo writer result n consistent vakles across tho objects ttvough ether successful updates or an error that rols back objoct valtos to their previous state

Trnc for a ll object repicas to store same vatuc alter wriic succeeds

Reaponae Meeaure Muttiple objoctl updalad succ:essluly together Of an errO< io ilsuod and they aro returnod 10 their PfOVIous stale

Quality Attribute Scenarios and Tactics for Consistency

Quality Attribute Scenario ~ T8Ctlca ~

Asynclvonous roplca updato

Hintod handolfs
Ensure eventual consistency In • ropicatod, dlstrbutod databaso

Dlstrbutod transactions
Confkt resOOtion

Ensuro ovontuaJ consistency whon making multiple objoct updalo:s

Conllct ros<*Jtlon
Ensure strong consistency for a write-write confkt Ensure rcadlwrito quorums

OueueciWrles

Ensure readlwrito quorums

Ensure strong consiotoncy In a replcatod, distributod dolabase lor • singlo object update Rood lrom master~
Write to all replicas

DistrbJtod transoctioos

Donormalizod dota modlel
Ensure strong consistency 1\ a repicated, distributed database lor mu~le object updates

[od~l

[odh]

lod~J

Ensure strorxt.consistency 1\ an unrcplicated.._non-distributcd database for muttiplo ~t uodates I Oonorma.lization (Ncstod records)'--------------------------------

Software Engineering Institute (:al'negie 'lt·llon l ·n ht·•·sitv
' .

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

QuABase Demo 3

Ensure read/write quorums
Ria< Consistency Featutes > Ria< > Rlu Consistency Featu<es > Consistency > Ensur& read 'Wri te quoturm

Description

Assuming there are N replicas of any object, a writer may specify that a quorum@ of the replicas must be updated before the write succeeds. This ensures that a majority of the replicas are

updated before the write completes. If all writers perform quorum writes, this also prevents write-write conflicts as only one writer can ever achieve quorum at any instant.

(edit]

To ensure all readers see the updated value after any write completes, readers must also specify that a quorum of object values must be the same before the read succeeds. This ensures that a

reader cannot see a value at a replica that has not yet been updated with the new value.

In either case. if a quorum of replica objects cannot be written to or read from. the operation fails.

The general form or the requests to achieve strong consistency are: Qr + Qw > N Qw > N/2

A number of NoSQL databases provide quorum mechanisms for readers and writers to be able to tune consistency. This is typically specified on a per-write call to enable each write to be tuned

accordingly.

Improves Quality Consistency

Reduces Qual ity Performance. Availability

Related Tactics Hinted handoffs

Implementations

This tactic is supported by the feature Tunable consistency of the product Cassandra.

This tactic is supported by the feature Tunable c onsistency of the product MongoDB.

This tactic is supported by the feature Tunable c onsistency of the product Riak.

Software Engineering Institute (:al'negie 'lt·llon l ·n ht·•·sitv
' .

(edit]

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

QuABase Demo 4
ABIGDa
3BigdAT.

NIV'gotlon

Main page

Recent ollanges

Random page

Hell

ContrllUlo

Add a now quality
a'tt.tbuto

Add a new quality
attrbuto SQlnarlo
Add a new tactc

ToollOx

'h'hat links nere

RelaiOd c~angos

Upload tole

Special pages

Page Information

Edit Tactic: Ensure read/write quorums

Description (Required)

numin; there ~ore N rcphus of • nv object, • writer miy sptcify t hillt •
[hnp //tn.w,lu~dii.org/WI.ki/QuorumJU8diltributed_computtng5a9 quMu'l"'l ot tht rtpltuJ mun be upd~ttd bcfort tht

rttt succudt. Th.i! ensutt.J th•t a mljority of tht rcpllc.n a.rt upcb.ttd btfore tM wntt complttts. If all writers ptr1orm
uorum Wfl tU, thlt a l!o prevents Wt'ltt· wrdt confllas u only one writtr c.tn ewr achlew quorum at any t.nstant.

o ensure ~I readers see th.e updated va•ue after any wr.te completes, readers must also specify that a quorum of object
lues must be the sarre before tk r-ead succeeds . nus e nsures that a reader c.annot see a value at a repliCa that has no t yet

been updi.ted wtth t~ new v• lue.

n t ith._r cut, if • quorum of r t p liu objects u , not bt wrlnt n to or rt:•d from, the opc~tion f•lls..

e gt:ner.al form or the requut1 to .ac.hleve strong c.ond!tency .art:
r +Ow>N

> N/ 2

number ol l\oSQL databases provide quoru,., mechanisms for readers and wnters to 1:»e ab~e to t une consistency. Th is is
p calty spec~fitd on a per-write call to eniib'e e.ac.h write to be tuned i.Ccordm91'f.

Impr oves QA: ConsJst~ncy

R~u~QA: '-1~~~~-=-.M-e-.A~v~~~~~il~,~--------------------------~

Relat~ Tactics: H nted handofh.

ProdUdSmat ~~monl m$~ac --~

Product: Cuundr.a.

Feature: Tunable consiste ncy <l+ • Feeture Reference Link: hnp·/JW'Io\w,daustax.com/docu~ret

Product: Mongo08

FMt:ure; Tun• blt consiltt.ncy •
(Add another

Software Engineering Institute (:al'negie 'lt·llon l ·n ht·•·sit\'
' .

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

QuABase Demo 5
Ensure read/write quorums
Riak Consistency Feetu-res :> Ri!l: > Riel Con.sistency Festu-re:s >Consistency> E n.suJe read/write quorums

Description

Assuming there are N replicas of any object, a writer may specify that a quorum @ of the replicas must be updated before the write succeeds. This ensures that a majority of the repl icas are

updated before the write completes. If all writers perform quorum writes, this also prevents write-write conflicts as only one writer can ever achieve quorum at any instant.

[edit]

To ensure all readers see the updated value after any write completes, readers must also specify that a quorum of object values must be the same before the read succeeds. This ensures that a

reader cannot see a value at a replica that has not y et been updated with the new value.

In either case, if a quorum of replica objects cannot be written to or read from, the operation fails.

The general form or the requests to achieve strong consistency are: Qr + Qw > N Qw > N/2

A number of NoSQL databases provide quorum mechanisms for readers and writers to be able to tune consistency . This is typically specified on a per-write call to enable each write to be tuned

accordingly.

Improves Quality Consistency

Reduces Quality Performance. Availability

Related Tactics Hinted handoffs _j

Implementations

This tactic is supported by the feature Tunable consistency of the product Cassandra.

This tactic is supported by the feature Tunable consistency of the product MongoDB.

This tactic is supported by the feature Tunable consistency of the product Riak.

Software Engineering Institute (:al'negie 'lt·llon l ·n ht·•·sitv
' .

[edit]

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

QuABase Demo 6
Riak

Ria Feature; ---------------------------------

Tsdia Supported by RiL< -----------

Software Engineering Institute (:anwg- it• .\lt'llonlnht·r~ih - .

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

QuABase Demo 7

LEAP4BD

Evaluation

Features

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

Status

LEAP4BD
•  Initial trial with DoD client near completion
•  Rolling out as an SEI service

QuABase
•  Design/development in progress
•  Validation/testing over summer

Software Engineering for Big Data Course (1 day) and tutorial (1/2 day)
•  SATURN 2014 in Portland, May 2014

•  http://www.sei.cmu.edu/saturn/2014/courses/
•  WICSA in Sydney, Australia April 2014
•  Both available on request

Software Architecture:
Trends and New Directions
#SEIswArch
© 2014 Carnegie Mellon University

Thank you!

http://blog.sei.cmu.edu/

This document is available in the event console materials widget

