
 

 

Software Assurance Curriculum Project 
Volume IV: Community College 
Education 

Nancy R. Mead, Software Engineering Institute 
Elizabeth K. Hawthorne, Union County College 
Mark Ardis, Stevens Institute of Technology 

September 2011 

TECHNICAL REPORT 
CMU/SEI-2011-TR-017 
ESC-TR-2011-017 

CERT® Program 
 

http://www.sei.cmu.edu 

 

http://www.sei.cmu.edu


 

SEI markings v3.2 / 30 August 2011 

Copyright 2011 Carnegie Mellon University. 

This material is based upon work funded and supported by the United States Department of Homeland Security under 

Contract No. FA8721-05-C-0003 with Carnegie Mellon University for the operation of the Software Engineering 

Institute, a federally funded research and development center sponsored by the United States Department of Defense. 

Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do 

not necessarily reflect the views of the United States Department of Homeland Security or the United States Department 

of Defense.  

This report was prepared for the 

SEI Administrative Agent 

ESC/XPK 

5 Eglin Street 

Hanscom AFB, MA 01731-2100 

NO WARRANTY 

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS 

FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY 

KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, 

WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS 

OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY 

WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT 

INFRINGEMENT. 

This material has been approved for public release and unlimited distribution except as restricted below.  

Internal use:*  Permission to reproduce this material and to prepare derivative works from this material for internal use is 

granted, provided the copyright and “No Warranty” statements are included with all reproductions and derivative works. 

External use:*  This material may be reproduced in its entirety, without modification, and freely distributed in written or 

electronic form without requesting formal permission. Permission is required for any other external and/or commercial 

use. Requests for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu. 

* These restrictions do not apply to U.S. government entities. 

mailto:permission@sei.cmu.edu


 

CMU/SEI-2011-TR-017 | i 

Table of Contents 

Table of Contents i 

List of Tables iii 

Acknowledgments v 

Abstract vii 

1 Introduction 1 

2 Review of Related Curricula 3 

3 Outcomes and Body of Knowledge 6 

4 Target Audience and Expected Background 12 

5 Overview of Courses 13 

6 Computer Science I 15 

7 Computer Science II 18 

8 Computer Science III 21 

9 Introduction to Computer Security 24 

10 Secure Coding 26 

11 Introduction to Assured Software Engineering 28 

12 Resources 31 

Appendix A: Related Curricula 34 

Appendix B: Bloom’s Taxonomy and the GSwE2009 42 

Appendix C: Community College Profiles 43 

Appendix D: Relevant Research Articles 46 

Bibliography 48 

 

 



 

CMU/SEI-2011-TR-017 | ii 

  



 

CMU/SEI-2011-TR-017 | iii 

List of Tables 

Table 1: Software Assurance BOK Across Curriculum Levels 6 

Table 2: Syllabus for Computer Science I Course 15 

Table 3: Course Assessment Features for Computer Science I Course 17 

Table 4: Syllabus for Computer Science II Course 18 

Table 5: Course Assessment Features for Computer Science II Course 19 

Table 6: Syllabus for Computer Science III Course 21 

Table 7: Course Assessment Features for Computer Science III Course 23 

Table 8: Outline for Introduction to Computer Security Course 24 

Table 9: Syllabus for Secure Coding Course 26 

Table 10: Syllabus for Introduction to Assured Software Engineering Course 28 

Table 11: Typical Introduction to Assured Software Engineering Course Sequence Option 1 30 

Table 12: Typical Introduction to Assured Software Engineering Course Sequence Option 2 30 

Table 13: Bloom's Taxonomy 42 

 



 

CMU/SEI-2011-TR-017 | iv 

  



 

CMU/SEI-2011-TR-017 | v 

Acknowledgments 

The authors thank the following individuals for their contributions to this report. We greatly 
appreciate their insights and efforts.  

• Our sponsor Joe Jarzombek, U.S. Department of Homeland Security (DHS) National Cyber 
Security Division (NCSD), had the insight to recognize the need for such a curriculum and 
support its development. 

• The DHS NCSD Workforce Education & Training Working Group provided valuable review 
comments on the draft document. 

The following individuals contributed to the earlier Association for Computing Machinery (ACM) 
Community College Course Outlines: 

• Robert D. Campbell, City University of New York Graduate Center 

• Karl J. Klee, Alfred State College of Technology 

• Anita M. Wright, Camden County College 

We also appreciate the thoughtful peer review provided by 

• Julia H. Allen, Software Engineering Institute 

• Thomas B. Hilburn, Embry-Riddle Aeronautical University 

• Andrew J. Kornecki, Embry-Riddle Aeronautical University 

 
We acknowledge the contributions by Jennifer Kent as report editor and Shannon Haas in helping 
to assemble the report.  



 

CMU/SEI-2011-TR-017 | vi 



 

CMU/SEI-2011-TR-017 | vii 

Abstract 

The fourth volume in the Software Assurance Curriculum Project led by a team at the Software 
Engineering Institute, this report focuses on community college courses for software assurance. 
The report includes a review of related curricula, outcomes and body of knowledge, expected 
background of target audiences, and outlines of six courses. The courses are intended to provide 
students with fundamental skills for continuing with graduate-level education or to provide 
supplementary education for students with prior undergraduate technical degrees who wish to 
become more specialized in software assurance.  

Previous volumes of this project are Volume I: Master of Software Assurance Reference 
Curriculum, Volume II: Undergraduate Course Outlines, and Volume III: Software Assurance 
Course Syllabi.   



 

CMU/SEI-2011-TR-017 | viii 

 



 

CMU/SEI-2011-TR-017 | 1 

1 Introduction 

Nearly every facet of modern society depends heavily on highly complex software systems. The 
business, energy, transportation, education, communication, government, and defense 
communities rely on software to function, and software is an intrinsic part of our personal lives. 
Software assurance is an important discipline to ensure that software systems and services 
function dependably and are secure.  

Recognizing the importance of the software assurance discipline for protecting national 
infrastructures and systems, the U.S. Department of Homeland Security (DHS) has recognized the 
growing need for skilled practitioners in this area. At the direction of the DHS, the Software 
Engineering Institute (SEI) at Carnegie Mellon University developed the Software Assurance 
Curriculum Project. Volume I is the Master of Software Assurance Reference Curriculum 
(MSwA2010) [Mead 2010a], Volume II is the Undergraduate Course Outlines [Mead 2010b], 
and Volume III is the Master of Software Assurance Course Syllabi [Mead 2011]. 

This report, Volume IV, focuses on community college courses for software assurance. In 
addition to the earlier volumes of the Software Assurance Curriculum Project, the Association for 
Computing Machinery (ACM) Committee for Computing Education in Community Colleges 
(CCECC) Computer Science Curriculum was a primary resource in the development of this report 
[ACM 2009]. The foundation of the Software Assurance Curriculum Project includes the SEI’s 
work on the DHS Build Security In website [DHS 2011a] and work by DHS on the Software 
Assurance Curriculum Body of Knowledge (SwACBK) [DHS 2011b].  

The courses outlined in this document are intended to provide students with fundamental skills for 
continuing with undergraduate-level education or supplementary education for students with prior 
undergraduate technical degrees who wish to become more specialized in software assurance. 

Definition of Software Assurance 

In developing the Master of Software Assurance Reference Curriculum, the authors started with a 
clear definition of “software assurance.” They used as the foundation the definition from the 
Committee on National Security Systems as follows [CNSS 2009]: 

Software assurance (SwA) is the level of confidence that software is free from vulnerabilities, 
either intentionally designed into the software or accidentally inserted at any time during its 
life cycle, and that the software functions in the intended manner.  

For purposes of the Master of Software Assurance Reference Curriculum report, the authors 
expanded the CNSS definition as follows [Mead 2010a]: 

Application of technologies and processes to achieve a required level of confidence1 that 
software systems and services function in the intended manner, are free from accidental or 

 
1  In the CNSS definition, the use of the word “confidence” implies that there is a basis for the belief that software 

systems and services function in the intended manner. 



 

CMU/SEI-2011-TR-017 | 2 

intentional vulnerabilities, provide security capabilities appropriate to the threat 
environment, and recover from intrusions and failures. 

The expanded definition emphasizes the importance of both technologies and processes in 
software assurance, observes that computing capabilities may be acquired through services as well 
as new development, recognizes that security capabilities must be appropriate to the expected 
threat environment, and identifies recovery from intrusions and failures as an important capability 
for organizational continuity and survival. 



 

CMU/SEI-2011-TR-017 | 3 

2 Review of Related Curricula 

Based on our team’s expertise, we did a brief literature search and considered the following 
existing curricula as possible sources for this report:  

• CyberWatch Information Assurance Curriculum  

• Software Engineering 2004 (SE 2004) Curriculum Guidelines for Undergraduate Degree 
Programs in Software Engineering [IEEE-CS 2004b] 

• ACM Committee for Computing Education in Community Colleges (CCECC) Computer 
Science Curriculum [ACM CCECC 2009a] 

• Information Assurance (IA) Curricula Guidelines (ITiCSE Working Group Guidelines) 
[Cooper 2010] 

• Survivability and Information Assurance (SIA) Curriculum [CERT 2007] 

• Computer Society of the Institute for Electrical and Electronic Engineers (IEEE-CS) and the 
Association for Computing Machinery (ACM) Computing Curricula 2001 (CC 2001) [IEEE-
CS 2001] 

• IEEE-CS and ACM Computing Curricula 2008 (CS 2008) [IEEE-CS 2008] 

• SEI SwA Undergraduate Course Outlines [Mead 2010b] 

Brief synopses of the publicly available materials follow, and additional details are in  
Appendix A. 

CyberWatch Information Assurance Curriculum 

CyberWatch is an Advanced Technological Education (ATE) Center, headquartered at Prince 
George’s Community College and funded by a grant from the National Science Foundation 
(NSF). CyberWatch has four model information assurance programs available: 

• Associate of Applied Science (A.A.S.) in Information Assurance 

• Associate of Science (A.S.) in Information Assurance 

• Certificate in Information Assurance 

• Certificate in Information Assurance Management 

CyberWatch has six of the eight model courses it developed currently available for download. In 
addition, CyberWatch has virtual lab facilities to assist its member institutions in delivering the IA 
courses and assists with curriculum development that emphasizes creating associate’s degree and 
certificate programs from a core set of technical and industry certification courses.  

Software Engineering 2004 (SE 2004) Curriculum Guidelines for Undergraduate Degree 

Programs in Software Engineering  

These curriculum guidelines provide guidance on what should be included in an undergraduate 
software engineering education. The recommendations include the skills and knowledge that 



 

CMU/SEI-2011-TR-017 | 4 

every software engineering graduates should know as well as ways to teach those skills and 
knowledge. 

ACM Committee for Computing Education in Community Colleges (CCECC) Computer 

Science Curriculum  

The foundation for the computer science associate-degree transfer program is the three-course 
sequence of Computer Science I, Computer Science II, and Computer Science III. Students can 
take additional computing courses based on factors like transfer requirements, institutional 
specializations, and student interests.  

Information Assurance (IA) Curricula Guidelines (ITiCSE WG Guidelines)  

The ACM Conference on Innovation and Technology in Computer Science Education (ITiCSE) 
Information Assurance (IA) Curriculum Guidelines Working Group examined existing IA 
academic program curricula and governmental and industry IA standards and guidelines. The 
working group used this information as the foundation for proposing a body of knowledge for IA.  

Survivability and Information Assurance (SIA) Curriculum 

The CERT® Program at the SEI published the SIA Curriculum in 2006. The three-course 
curriculum offers a problem-solving methodology built on key SIA principles that are 
independent of specific technologies. The major topic areas that correspond to each course are 

1. Principles of Survivability and Information Assurance: This course details the ten principles 
on which the entire SIA curriculum is based. 

2. Information Assurance Networking Fundamentals: This course applies the ten principles to 
the concepts and an implementation of Transmission Control Protocol (TCP)/Internet 
Protocol (TCP/IP) networking. 

3. Sustaining, Improving, and Building Survivable Functional Units (SFUs) 

IEEE-CS and ACM Computing Curricula 2001 (CC 2001) 

The Computing Curricula 2001 project is a joint effort of IEEE-CS and ACM. CC 2001 makes 
recommendations for undergraduate programs in computer science based on the report’s computer 
science body of knowledge, the computer science undergraduate core material, learning 
objectives, curriculum models, and course descriptions.  

IEEE-CS and ACM Computing Curricula 2008 (CS 2008) 

After the Computing Curricula was published in 2001, which focused on recommendations for 
computer science undergraduate programs, IEEE-CS and ACM published additional volumes of 
recommendations for computer engineering, information systems, information technology, and 
software engineering. CS 2008 is an interim review report of the original CC 2001 that also 
considers the additional volumes and input from those in industry and academia. CS 2008 

 
® CERT is a registered trademark owned by Carnegie Mellon University.  



 

CMU/SEI-2011-TR-017 | 5 

includes an update of the CC 2001 Body of Knowledge, with additional commentary and 
recommendations in the text.  

Software Assurance Undergraduate Course Outlines 

These course outlines are the second volume in the SEI’s Software Assurance Curriculum Project. 
The seven course outlines are intended to provide students with an undergraduate curriculum 
specialization in software assurance. The goal is for students to be equipped with fundamental 
skills for either entering the field directly or continuing with graduate-level education.  

Conclusions 

After reviewing the above curricula, we were able to sharpen our focus. We recognized that 
existing curricular models designated as either information assurance or information security were 
not the primary topics of our effort, and so curricula in those areas were less helpful to us. Rather, 
we were focused on software assurance, while recognizing that in a two-year program, students 
would typically not be able to complete more than three to four related courses. To this end, the 
sources that we considered most useful included CS 2008, CC 2001, the ACM CCECC 
Curriculum, and the ITiCSE Working Group Guidelines. SE 2004, the Undergraduate Course 
Outlines, and the SIA Curriculum were considered partially useful. We did not evaluate certificate 
programs, training programs leading to certificates, or individual community college curricula.  

 



 

CMU/SEI-2011-TR-017 | 6 

3 Outcomes and Body of Knowledge 

To identify the desired outcomes for software assurance at the community college level, we 
started with the Master of Software Assurance (MSwA) Body of Knowledge (BoK) taken from 
the Master of Software Assurance Reference Curriculum [Mead 2010a]. The MSwA BoK is 
organized by outcome and indicates the level of knowledge that a student should obtain for each 
topic area. The knowledge levels are represented by the following Bloom’s cognitive levels, 
which are described in detail in Appendix B: 

• knowledge (K) 

• comprehension (C) 

• application (AP) 

• analysis (AN) 

We started with the existing MSwA knowledge levels and refined them for bachelor of science 
(BS) and associate of science (AS) degrees. The results of this exercise follow in Table 1. 

Table 1: Software Assurance BOK Across Curriculum Levels  

BoK Topics MSwA BS AS 

1. Assurance Across Life Cycles    

1.1. Software Life-Cycle Processes    

New development C C K 

Processes associated with the full development of a software product.    

Integration, assembly, and deployment C C K 

Processes concerned with the final phases of the development of a new or 
modified software product 

   

Operation and evolution C K NA 

Processes that guide the operation of the a software product and its change 
over time 

   

Acquisition, supply, and service C K NA 

Processes that support acquisition, supply, or service of a software product    

1.2. Software Assurance Processes and Practices    

Process/practice assessment AP K NA 

Methods, procedures, and tools used to assess assurance processes and 
practices 

   

Software assurance integration into SDLC phases AP C K 

The integration of assurance practices into typical life-cycle phases (e.g., 
requirements engineering, architecture and design, coding, test, evolution, 
and acquisition) 

   

2. Risk Management    

2.1. Risk Management Concepts    

Types and classification C K K 

Describe the different classes of risks (e.g., business, project, technical)    

Probability, impact, severity C K NA 

Describe basic elements of risk analysis    

Models, processes, metrics C K NA 

Understand various models, processes, and metrics used in risk 
management 

   



 

CMU/SEI-2011-TR-017 | 7 

BoK Topics MSwA BS AS 

2.2.Risk Management Process    

Identification AP C K 

Identify and classify risks associated with a project    

Analysis AP C NA 

Analyze the likelihood, impact, and severity of each identified risk    

Planning AP K NA 

Develop a risk management plan covering risk avoidance and mitigation    

Monitoring and management AP K NA 

Assess and monitor risk occurrence and manage risk mitigation    

2.3. Software Assurance Risk Management    

Vulnerability and threat identification AP C K 

Application of risk analysis techniques to vulnerability and threat risks    

Analysis of software assurance risks AP C K 

Analyze risks for both new and existing systems    

Software assurance risk mitigation AP K NA 

Plan for and mitigate software assurance risks     

Assessment of software assurance processes and practices AP K NA 

As part of risk avoidance and mitigation, assess the identification and use of 
appropriate software assurance processes and practices 

   

3. Assurance Assessment    

3.1. Assurance Assessment Concepts    

Baseline level of assurance; allowable tolerances, if quantitative AP K NA 

Establish and specify the required/desired level of assurance for a specific 
software application, set of applications, or a software-reliant system (and 
tolerance for same) 

   

Assessment methods C C K 

Understand how various methods (such as validation of security 
requirements, risk analysis, threat analysis, vulnerability 
assessments/scans, and assurance cases) can be used to determine if the 
software/system being assessed is sufficiently secure within tolerances 

   

3.2. Measurement for Assessing Assurance    

Product and process measures by life-cycle phase AP K NA 

Define and develop key product and process measurements that can be 
used to validate the required level of software assurance appropriate to a 
given life-cycle phase 

   

Other performance indicators that test for the baseline, by life-cycle phase  AP K NA 

Define and develop additional performance indicators that can be used to 
validate the required level of software assurance appropriate to a given life-
cycle phase 

   

Measurement processes and frameworks C NA NA 

Understand a range of software assurance measurement processes and 
frameworks and how these might be used to accomplish 1.2.1. and 1.2.2. 

   

Business survivability and operational continuity AP NA NA 

Define and develop performance indicators that can specifically address the 
software/system’s ability to meet business survivability and operational 
continuity requirements, to the extent the software affects these 

   

3.3. Assurance Assessment Process    

Comparison of selected measurements to the established baseline AP NA NA 

Analyze key product and process measures and performance indicators to 
determine if they are within tolerance when compared to the defined 
baseline 

   

Identification of out-of-tolerance variances AP NA NA 



 

CMU/SEI-2011-TR-017 | 8 

BoK Topics MSwA BS AS 

Be able to identify measures that are out of tolerance when compared to 
the defined baselines and be able to develop actions to reduce the variance 

   

4. Assurance Management    

4.1. Making the Business Case for Assurance    

Valuation and cost/benefit models, cost and loss avoidance, return on 
investment 

AP K NA 

Apply financially-based approaches, methods, models, and tools to develop 
and communicate compelling cost/benefit arguments in support of 
deploying software assurance practices 

   

Risk analysis C K K 

Understand how risk analysis can be used to develop cost/benefit 
arguments in support of deploying software assurance practices 

   

Compliance justification C K K 

Understand how compliance with laws, regulations, standards, and policies 
can be used to develop cost/benefit arguments in support of deploying 
software assurance practices 

   

Business impact/needs analysis C K NA 

Understand how business impact and needs analysis can be used to 
develop cost/benefit arguments in support of deploying software assurance 
practices, specifically in support of business continuity and survivability 

   

4.2. Managing Assurance    

Project management across the life cycle C K NA 

Understand how to lead software and system assurance efforts as an 
extension of normal software development (and acquisition) project 
management skills 

   

Integration of other knowledge units AN C K 

Be able to identify, analyze, and select software assurance practices from 
any knowledge units that are relevant for a specific software development 
or acquisition project  

   

4.3. Compliance Considerations for Assurance    

Laws and regulations C NA K 

Understand the extent to which selected laws and regulations are relevant 
for a specific software development or acquisition project, and how 
compliance might be demonstrated 

   

Standards C K K 

Understand the extent to which selected standards are relevant for a 
specific software development or acquisition project, and how compliance 
might be demonstrated 

   

Policies C NA NA 

Understand how to develop, deploy, and use organizational policies to 
accelerate the adoption of software assurance practices, and how 
compliance might be demonstrated  

   

5. System Security Assurance    

5.1. For Newly Developed and Acquired Software for Diverse Applications    

Security/safety aspect of computer intensive critical infrastructure systems 
such as power, telecommunication, water, and air traffic control 

K K K 

Know the kinds of safety and security risks associated with critical 
infrastructure systems such as power, telecommunications, water, and air 
traffic control systems 

   

Potential attack methods C K K 

Understand the variety of methods by which attackers can damage 
software or data associated with that software via weaknesses in the design 
or coding of the system 

   



 

CMU/SEI-2011-TR-017 | 9 

BoK Topics MSwA BS AS 

Analysis of threats to software AP K NA 

Analyze the threats to which software is most likely to be vulnerable in 
specific operating environments and domains 

   

Methods of defense AP K K 

Be familiar with appropriate countermeasures such as layers, access 
controls, privileges, intrusion detection, encryption, and coding checklists 

   

5.2 For Diverse Operational (Existing) Systems    

Historic and potential operational attack methods C K NA 

Understand and be able to duplicate the attacks that have been used to 
interfere with an application’s or system’s operations 

   

Analysis of threats to operational environments AN C NA 

Analyze the threats to which software is most likely to be vulnerable in 
specific operating environments and domains 

   

Designing and planning for access control, privileges, and authentication AP C NA 

Design and plan for access control and authentication    

Security methods for physical and personnel environments AP C NA 

Understand how gates, locks, guards, and background checks can address 
risks 

   

5.3 Ethics and Integrity in Creation, Acquisition, and Operation of Software 
Systems 

   

Overview of ethics, code of ethics, and legal constraints C K K 

Understand how people who are knowledgeable about attack and 
prevention methods are obligated to use their abilities, both legally and 
ethically 

   

Computer attack case studies C NA NA 

Understand the legal and ethical considerations involved in analyzing a 
variety of historical events and investigations 

   

6. System Functionality Assurance    

6.1. Assurance Technology     

Technology evaluation AN NA NA 

Evaluating capabilities and limitations of technical environments, 
languages, and tools with respect to creating assured software functionality 
and security  

   

Technology improvement AP NA NA 

Recommending improvements in technology as necessary within project 
constraints  

   

6.2. Assured Software Development     

Development methods AP AP/C AP/C/K 

Rigorous methods for system requirements, specification, design, 
implementation, verification, and testing to develop assured software  

   

Quality attributes C C K 

Software quality properties and how to achieve them    

Maintenance methods AP C NA 

Assurance aspects of software maintenance and evolution     

6.3. Assured Software Analytics    

Systems analysis AP K NA 

Analyzing system architectures, networks, and databases for assurance 
properties 

   

Structural analysis AP K NA 

Structuring the logic of existing software to improve understandability and 
modifiability  

   

Functional analysis AP K NA 



 

CMU/SEI-2011-TR-017 | 10 

BoK Topics MSwA BS AS 

Reverse engineering of existing software to determine functionality and 
security properties  

   

Analysis methods and tools C NA NA 

Capabilities and limitations of methods and tools for software analysis     

Testing for assurance AN K NA 

Evaluating testing methods, plans, and results for assuring software     

Assurance evidence AP NA NA 

Developing auditable assurance evidence     

6.4. Assurance in Acquisition    

Assurance of acquired software AP K NA 

Assuring software acquired through supply chains, vendors, and open 
sources, including developing requirements and assuring delivered 
functionality and security  

   

Assurance of software services AP K NA 

Developing service-level agreements for functionality and security with 
service providers and monitoring compliance  

   

7. System Operational Assurance    

7.1. Operational Procedures    

Business objectives C K NA 

Role of business objectives and strategic planning in system assurance     

Assurance procedures AP K NA 

Creation of security policies and procedures for system operations     

Assurance training C NA NA 

Evaluation of training for users and administrative personnel in secure 
system operations  

   

7.2. Operational Monitoring    

Monitoring technology C NA NA 

Capabilities and limitations of monitoring technologies, and installation and 
configuration or acquisition of monitors and controls for systems, services, 
and personnel  

   

Operational evaluation AP K NA 

Evaluation of operational monitoring results with respect to system and 
service functionality and security  

   

Operational maintenance AP K NA 

Maintenance and evolution of operational systems while preserving assured 
functionality and security 

   

Malware analysis AP K NA 

Evaluation of malicious content and application of countermeasures     

7.3. System Control    

Responses to adverse events AN K NA 

Planning for and executing effective responses to operational system 
accidents, failures, and intrusions  

   

Business survivability AP K NA 

Maintenance of business survivability and continuity of operations in 
adverse environments 

   

Although this is a valid mapping, the BoK topics are not distributed evenly across the MSwA 
curriculum. For example, item 6.2 in the BoK covers many topic areas, and this is where many of 
the community college topics appear. Some of the other items in the BoK do not apply to 
community college courses at all. Therefore, this exercise was not that helpful for the level of 



 

CMU/SEI-2011-TR-017 | 11 

detail needed in the community college courses. We therefore decided to build the course outlines 
and associated outcomes from the bottom up. We used the proposed IA body of knowledge in the 
ITiCSE workshop report [Cooper 2010] and the courses from the ACM CCECC computer science 
transfer curriculum [ACM 2009] as a base.  



 

CMU/SEI-2011-TR-017 | 12 

4 Target Audience and Expected Background 

We did a brief survey of the profiles of community college students. Summaries of the relevant 
results appear below, with extracted material in Appendix C.  

According to the American Association for Community Colleges, more than half of U.S. 
undergraduate students have attended community college. Community colleges provide access to 
postsecondary education that minority, low income, and first-generation college students may not 
otherwise have. Community colleges prepare students for transfer to four-year institutions, help 
working adults prepare for new careers, and offer noncredit programs that offer a range of 
knowledge and skills, like learning a new language.  

According to the Community College Research Center located at Teachers College, Columbia 
University, most community college students are older than 25, though many students are also 
recent high school graduates who want to cost effectively start their college education.  

According to the presentation CTE Dual Enrollment: Preparing Students for College and Careers 
[Hughes 2011], community college computing2 students include 

• recent high school graduates interested in a career as computer programmers or game 
developers who want to earn an associate’s degree before transferring to a four-year 
institution 

• students who have completed an undergraduate degree in a field other than computing and 
want to learn about computing so they can either use the skills in their current career or enter 
a computing career 

• students who have completed an undergraduate degree in computing and want to update their 
knowledge and skills  

• students interested in either earning a technical certificate, indicating that they have 
completed a specific set of courses in a specialty area, or who are just looking to learn a skill 
and not interested in a certificate 

• students in a computing career who need a credential, like CISSP, to further their career  

Although the students attending community colleges are quite diverse, the courses outlined in this 
report are intended to provide all these types of students with fundamental skills for continuing 
with undergraduate-level education or supplementary education for students with prior 
undergraduate technical degrees who wish to become more specialized in software assurance. 

 

 
2  Community college computing here refers to computer science, information technology, and other broad 

computing topics. 



 

CMU/SEI-2011-TR-017 | 13 

5 Overview of Courses 

Courses at the community college level are typically three to four credits each. The Computer 
Science I–II–III course sequence, typical at community colleges as well as smaller four-year 
colleges, is the equivalent of the Computer Science I–II course sequence at other four-year 
colleges and universities. See guidance for introductory courses described in Appendix A, 
Computing Curricula 2001 section. In addition, a student might form a specialty by taking two to 
three elective courses. Associate computing degrees are typically in computer science (CS), 
information technology (IT), or information systems (IS). The specialties (such as SwA in our 
case) may be defined formally by the individual colleges and appear in the catalog, but they do 
not appear on the diploma. We concluded that an appropriate selection of courses for an SwA 
specialty could include Computer Science I, II, and III and more specialized courses such as 
Introduction to Computer Security, Secure Coding, and Introduction to Assured Software 
Engineering. These are not intended to be an exhaustive list of possible courses but rather a set of 
courses that could reasonably be taken by students wishing to pursue further education in software 
assurance. 

The six courses that we describe in this report appear in two different formats. Since Computer 
Science I, II, and III include updates to existing course descriptions from the ACM CCECC we 
decided to retain that original format, which is closer to a syllabus with learning outcomes for 
assessment than an outline of course topics. The other three courses, which are more specialized, 
appear in the outline format that was used in Volume II of our software assurance education 
report series [Mead 2010b]. Currently, we do not have enough information or actual experience to 
describe them in more detail as community college courses. Brief descriptions of all six courses 
follow, and the syllabi and outlines are in Sections 6 through 11.  

Computer Science I: This course is the first in a three-course sequence that provides students 
with a foundation in computer science. Students develop fundamental programming skills using a 
language that supports an object-oriented approach, secure coding awareness, human-computer 
interactions, and social responsibility. 

Computer Science II: This course is the second in a three-course sequence that provides students 
with a foundation in computer science. Students develop intermediate programming skills using a 
language that supports an object-oriented approach, with an emphasis on algorithms, software 
development, secure coding techniques, and ethical conduct.  

Computer Science III: This course is the third in a three-course sequence that provides students 
with a foundation in computer science. Students develop advanced programming skills using a 
language that supports an object-oriented approach, with an emphasis on data structures, 
algorithmic analysis, software engineering principles, software assurance checklists, and 
professionalism. 

Introduction to Computer Security: This course provides an overview of the fundamentals of 
computer security. Topics include security standards, policies, and best practices; principles, 



 

CMU/SEI-2011-TR-017 | 14 

mechanisms, and implementation of computer security and data protection; security policy, 
encryption, and authentication; access control and integrity models and mechanisms; network 
security; secure systems; programming and vulnerabilities analysis; principles of ethical and 
professional behavior; regulatory compliance and legal issues; information assurance; risk 
management and threat assessment; business continuity and disaster recovery planning; and 
security across the life cycle. 

Secure Coding: This course covers security vulnerabilities of programming in weakly typed 
languages like C and in more modern languages like Java. Common weaknesses exploited by 
attackers are discussed, as well as mitigation strategies to prevent those weaknesses. Students 
practice programming and analysis of software systems through testing and static analysis. Topics 
covered include methods for preventing unauthorized access or manipulation of data, input 
validation and user authentication, memory management issues related to overflow and 
corruption, misuse of strings and pointers, and inter-process communication vulnerabilities. 

Introduction to Assured Software Engineering: This course covers the basic principles and 
concepts of assured software engineering; system requirements; secure programming in the large; 
modeling and testing; object-oriented analysis and design using the unified modeling language 
(UML); design patterns; frameworks and application programming interfaces (APIs); client-server 
architecture; user interface technology; and the analysis, design and programming of extensible 
software systems.  

 

 



 

CMU/SEI-2011-TR-017 | 15 

6 Computer Science I 

Course Description  

This course is the first in a three-course sequence that provides students with a foundation in 
computer science. Students develop fundamental programming skills using a language that 
supports an object-oriented approach, incorporating secure coding, human-computer interactions, 
and social responsibility. 

Prerequisites  

• Computer fluency (no previous programming or computer science experience expected) 

• Precalculus-ready (that is, proficiency sufficient to enter college-level precalculus course)  

• English Composition I-ready (that is, proficiency sufficient to enter college-level English I 
course)  

Co-Requisite  

Discrete Structures 

Syllabus 

Course Minimum Contact Hours: 42 (recommended hours per topic identified below) 

Table 2: Syllabus for Computer Science I Course 

Topic Bloom’s 
Level 

Secure coding (2 hours): data protection techniques of input validation, data encapsulation, information 
hiding and integrity, and strict data typing 

A 

Fundamental programming constructs (11 hours): basic syntax and semantics of a higher-level 
language; variables (scope and lifetime), types, expressions, and assignment; self-documentation; 
standard and file input/output; conditional and iterative control structures; structured decomposition; 
pseudo-random number generator 

A 

Fundamental algorithms and problem-solving (6 hours): problem-solving strategies; the role of 
algorithms in the problem-solving process; implementation strategies for algorithms; debugging 
strategies; the concept and properties of algorithms 

A 

Fundamental data structures (6 hours): primitive types, arrays, records, strings, references A 

Object-oriented principles (6 hours): abstraction, objects, classes, methods, parameter passing, 
encapsulation, inheritance, polymorphism 

A 

Program development (3 hours): program development phases, with emphasis on design, 
implementation, and testing and debugging strategies 

A 

Software tools and integrated development environment (IDE) (2 hours): compiling, interpreting, 
linking, executing, testing, and debugging 

A 

Programming languages (1 hour): comparison of object-oriented, procedural, functional programming C 

Human-computer interaction (1 hour): sound design concepts and fundamental graphical interface 
design; standard API graphics 

C 

Machine-level representation of data (1 hour): overview of the storage of instructions, numbers, and 
characters in a Von Neumann machine 

C 



 

CMU/SEI-2011-TR-017 | 16 

Topic Bloom’s 
Level 

Ethical conduct (1 hour): codes of ethics and responsible conduct; intellectual property, copyright, and 
plagiarism; “Ten Commandments for Computer Ethics” 

C 

Overview of operating systems (1 hour): role and purpose of operating systems; simple file 
management 

C 

Historical context of computing (1 hour): history of computing ideas, computing, and programming K 

Sources 

ACM Committee for Computing Education in Community Colleges. ACM Computing Curricula 
2009: Guidelines for Associate-Degree Transfer Curriculum in Computer Science. [ACM 2009]  

Taylor, B. & Shiva Azadegan, “Moving beyond security tracks: Integrating security in CS0 and 
CS1.” [Taylor 2008] 

Additional Items 

Course Student Learning Outcomes 

 Upon successful completion of this course, the student will be able to  

• choose professional behavior in response to ethical issues inherent in computing  

• produce algorithms for solving simple problems and trace the execution of computer 
programs  

• compare and contrast the primitive data types of a programming language; describe how 
each is stored in memory; and identify the criteria for selection 

• apply the program development and testing process to problems that are solved using 
fundamental programming constructs and predefined data structures 

• explain the need for secure coding techniques as applied to object-oriented programming 
solutions  

• decompose a program into subtasks and use parameter passing to exchange information 
between the subparts  

• differentiate between object-oriented, structured, and functional programming methodologies  

• describe the language translation phases of compiling, interpreting, linking, and executing 
and differentiate the error conditions associated with each phase  

Course Assessment Features 

The following table was taken from the ACM CCECC Assessment Rubric for Computer Science I 
[ACM CCECC 2009a].  



 

CMU/SEI-2011-TR-017 | 17 

Table 3: Course Assessment Features for Computer Science I Course 

Course Learning Outcome Approaches Goal Meets Goal Surpasses Goal 

Apply secure coding 
techniques to object‐oriented 
programming solutions.  

Describes secure coding 
techniques of an object-
oriented program, such as 
public versus private 
members, data integrity, 
and data typing.  

Applies secure coding 
techniques to an object-
oriented program. 

Devises a fully secure 
object-oriented program. 

Apply the program 
development process to 
problems that are solved 
using fundamental 
programming constructs and 
predefined data structures.  

Summarizes the phases of 
the program development 
cycle. 

With guidance during the 
design phase, produces 
working code and 
performs some testing. 

Develops a working program 
solution by implementing 
design, coding, and testing 
that includes error checking. 

Choose professional 
behavior in response to 
ethical issues inherent in 
computing. 

Explains the concepts of 
intellectual property, 
plagiarism, and software 
piracy. 

Chooses to respond 
professionally to ethical 
issues in computing, such 
as intellectual property, 
plagiarism, and software 
piracy. 

Values and respects 
intellectual property and 
chooses to act 
professionally. 

Compare and contrast the 
primitive data types of a 
programming language; 
describe how each is stored 
in memory; and identify the 
criteria for selection.  

Names the built-in data 
types of the programming 
language. 

Differentiates among the 
built-in data types and 
explains when it is 
appropriate to choose 
one over another. 

Consistently produces 
programming solutions with 
the correct data types 
implemented. 

Decompose a program into 
subtasks and use parameter 
passing to exchange 
information between the 
subparts.  

With guidance, translates 
a problem into a 
programming solution with 
subtasks. 

With guidance for 
program analysis and 
design, decomposes a 
problem into program 
components that share 
data. 

Independently analyzes a 
problem, formulates a design 
strategy, and decomposes a 
problem into program 
components that share data. 

Describe the language 
translation phases of 
compiling, interpreting, 
linking, and executing and 
differentiate the error 
conditions associated with 
each phase.  

Defines the programming 
language terms of 
compiling, interpreting, 
linking, executing, and 
error conditions. 

Describes the 
programming language 
translation phases of 
compiling, interpreting, 
linking, and executing.  

Compares the programming 
language translation phases 
of compiling, interpreting, 
linking, and executing and 
distinguishes the error 
conditions associated with 
each. 

Differentiate between the 
object‐oriented, structured, 
and functional programming 
methodologies. 

Recognizes the 
differences a d similarities 
of the object-oriented, 
structured, and functional 
programming 
methodologies.  

Differentiates between 
the object-oriented, 
structured, and functional 
programming 
methodologies. 

Compares and contrasts the 
three prominent 
methodologies of object-
oriented, structured, and 
functional programming. 

Produce algorithms for 
solving simple problems and 
trace the execution of 
computer programs. 

Defines the steps 
necessary to solve a 
programming problem. 

Produces a working 
programming solution for 
a given algorithm. 

Develops a generic solution 
for an algorithm that can be 
used to solve a range of 
related problems. 

 

 



 

CMU/SEI-2011-TR-017 | 18 

7 Computer Science II 

Course Description  

This course is the second in a three-course sequence that provides students with a foundation in 
computer science. Students develop intermediate programming skills using a language that 
supports an object-oriented approach, with an emphasis on algorithms, software development, 
software assurance and ethical conduct. 

Prerequisites  

• Computer Science I 

• Discrete Structures 

Co-Requisite  

Calculus I 

Syllabus 

Course Minimum Contact Hours: 42 (recommended hours per topic identified below) 

Table 4: Syllabus for Computer Science II Course 

Topic Bloom’s 
Level 

Secure coding (3 hours): buffer overflows; memory leaks; malicious code; unauthorized and back-door 
access; security-aware exception handling  

A 

Software development (4 hours): software life cycle; test case design; software tools; debuggers and 
simulators; characteristics of maintainable software; program code verification and data validation; 
software inspection 

A 

Object-oriented programming (7 hours): encapsulation and information hiding; inheritance; class 
hierarchies; polymorphism; abstract and interface classes  

A 

Object-oriented design and modeling (5 hours): class constructors and destructors; abstract data types 
(ADTs); reusable software components; APIs; modeling tools; class diagrams  

A 

Intermediate programming constructs (3 hours): cohesion and decoupling; assertions, including 
pre/post conditions and loop invariants; software reuse; self-documentation  

A 

Intermediate computing algorithms (5 hours): searching; sorting; recursive algorithms; complexity of 
algorithms  

A 

Intermediate data structures (7 hours): built-in; programmer-created; dynamic  A 

Event-driven programming (4 hours): graphics API; event creation; event-handling methods; exception 
handling  

A 

Human-computer interaction (2 hours): sound design concepts; interfaces between people and 
technology  

C 

Simple database integration (1 hour): database I/O; embedded SQL queries; SQL injection  C 

Societal and professional issues (1 hour): computing and the internet; social impact of computing; 
privacy  

C 



 

CMU/SEI-2011-TR-017 | 19 

Sources 

ACM Committee for Computing Education in Community Colleges. ACM Computing Curricula 
2009: Guidelines for Associate-Degree Transfer Curriculum in Computer Science. [ACM 2009]  

Stoneburner Gary; Hayden,Clark; & Feringa, Alexis. “Engineering Principles for Information 
Technology Security (A Baseline for Achieving Security), Revision A (NIST Special Publication 
800-27 Rev A).” [Stoneburner 2004] 

Additional Items 

Course Student Learning Outcomes  
Upon successful completion of this course, the student will be able to  

• discuss significant trends and societal impacts related to computing, software, and the 
internet  

• construct object-oriented programming solutions for reuse, using ADTs that incorporate 
encapsulation, data abstraction, and information hiding  

• construct multiple-file or multiple-module programming solutions that use class hierarchies, 
inheritance, and polymorphism to reuse existing design and code  

• design and develop secure programs that mitigate the most common security vulnerabilities 

• verify program correctness through the development of sound test plans and the 
implementation of comprehensive test cases and software inspections 

• create programming solutions that use data structures and existing libraries  

Course Assessment Features 

The following table was taken from the ACM CCECC Assessment Rubric for Computer Science 
II [ACM CCECC 2009b]. 

Table 5: Course Assessment Features for Computer Science II Course 

Course Learning 
Outcome 

Approaches Goal Meets Goal Surpasses Goal 

Analyze the execution of 
searching and sorting 
algorithms. 

Describes the execution 
trace of one searching 
algorithm and one sorting 
algorithm. 

Analyzes the execution of 
various searching and 
sorting algorithms. 

Evaluates the execution of 
various searching and 
sorting algorithms 
including a recursive 
solution. 

Construct multiple‐file or 
multiple‐module 
programming solutions 
that use class hierarchies, 
inheritance, and 
polymorphism to reuse 
existing design and code.  

Describes when 
inheritance and the use of 
class hierarchies is an 
appropriate design 
strategy. 

With guidance, produces a 
programming solution 
using inheritance and 
polymorphism. 

Designs and constructs a 
programming solution 
using the features of 
inheritance and 
polymorphism 
appropriately. 



 

CMU/SEI-2011-TR-017 | 20 

Course Learning 
Outcome 

Approaches Goal Meets Goal Surpasses Goal 

Construct object-oriented 
programming solutions for 
reuse, using ADTs that 
incorporate encapsulation, 
data abstraction, and 
information hiding.  

Summarizes the concepts 
of encapsulation, data 
abstraction, and 
information hiding and 
explains how they apply to 
object-oriented 
programming. 

Organizes programming 
solutions that include 
encapsulation, information 
hiding, and data 
abstraction.  

Constructs reusable 
software components that 
incorporate encapsulation, 
data abstraction, and 
information hiding. 

Create programming 
solutions that use data 
structures and existing 
libraries. 

Produces programming 
solutions that use existing 
library code.  

Organizes programming 
solutions that incorporate 
appropriate data 
structures and pre-existing 
code. 

Designs and develops 
programming solutions 
that use data structures, 
pre-existing libraries, and 
individual library code. 

Design and develop 
secure and fault‐tolerant 
programs that mitigate 
potential security 
vulnerabilities.  

Summarizes important 
characteristics of software 
assurance, such as the 
elimination of buffer 
overflows, memory leaks, 
and back-door access.  

Produces a program using 
the foundations of 
software assurance to 
mitigate potential security 
vulnerabilities. 
  

Designs and develops a 
secure programming 
solution using principles of 
software assurance.  

Discuss significant trends 
and societal impacts 
related to computing, 
software, and the internet. 

Explains how databases 
and the internet can 
impact privacy and 
property rights.  

Discusses the potential 
uses and abuses of data 
and the consequences of 
the loss of privacy. 

Practices ethical behavior 
when addressing property 
rights and privacy issues. 

Produce graphical user 
interfaces that incorporate 
simple color models and 
handle events. 

Differentiates between 
good and bad design 
concepts for human-
computer interfaces. 

Produces programming 
code of a graphical user 
interface that utilizes a 
simple color model 
effectively, and efficiently 
handles events triggered 
by user interaction. 

Develops programming 
code for a graphical user 
interface that incorporates 
the concepts of good 
human-computer 
interaction (HCI) design. 

Verify program 
correctness through the 
development of sound test 
plans and the 
implementation of 
comprehensive test cases. 

Produces test plans for 
object-oriented 
programming solutions 
that consider code 
coverage.  

Analyzes a program and 
devises a test plan that 
examines code coverage 
and develops test cases 
for data coverage.  

Constructs a test driver for 
code coverage and 
creates a formal test plan 
choosing comprehensive 
test cases for data 
coverage. 

 



 

CMU/SEI-2011-TR-017 | 21 

8 Computer Science III 

Course Description  

This course is the third in a three-course sequence that provides students with a foundation in 
computer science. Students develop advanced programming skills using a language that supports 
an object-oriented approach, with an emphasis on data structures, algorithmic analysis, software 
engineering principles, software assurance, and professionalism. 

Prerequisites  

• Computer Science II 

• Calculus I  

Syllabus 

Course Minimum Contact Hours: 42 (recommended hours per topic identified below)  

Table 6: Syllabus for Computer Science III Course 

Topic Bloom’s 
Level 

Software assurance (3 hours): conformance with assurance coding standards and practices, 
trustworthiness, and predictable execution testing; quality reviews; engineering and security tradeoffs; 
risks and liabilities of computer-based systems; fault prevention in software life-cycle stages; intentional 
and unintentional software security vulnerabilities.  

A 

Formal computing algorithms (8 hours): efficiency of various sorting and searching algorithms; hashing; 
collision-avoidance strategies; binary search trees; depth- and breadth-first traversals; shortest-path 
algorithms; minimum spanning tree; transitive closure; topological sort 

A 

Canonical data structures (7 hours): stacks; queues; linked lists; hash tables; trees; graphs  A 

Recursion (7 hours): recursive mathematical functions; divide-and-conquer, first-and-rest, and last-and-
rest strategies; backtracking; recursion with linked lists; trees; graphs  

A 

Software reuse (3 hours): design patterns; parametric polymorphism (templates or generics); code 
libraries; container classes and iterators 

A 

Human-computer interaction (2 hours): universal principles; human-centered considerations; usability 
testing and verification; design tradeoffs; secure user interfaces  

C 

Software engineering (4 hours): standard approaches and implementation tools for analysis and design; 
measurement and metrics; software life-cycle stages, processes, and documentation; software process 
maturity scale  

C 

Algorithmic strategies (2 hours): brute-force; greedy; branch-and-bound; heuristics; pattern matching; 
string/text  

C 

Basic algorithmic analysis (3 hours): asymptotic analysis of upper and average complexity bounds; best, 
average, and worst case behaviors; Big-O and little o notations; standard complexity classes; empirical 
measurements of performance; time and space tradeoffs; recurrence relations 

C 

Concurrency (2 hours): threads; scheduling, synchronization and timing; multi-threaded programs; race 
conditions 

C 

Professionalism (1 hour): standards of professional behavior; professional computing societies and 
publications; professional responsibilities and liabilities; ACM Code of Conduct; career paths in 
computing 

C 



 

CMU/SEI-2011-TR-017 | 22 

Sources 

Association for Computing Machinery (ACM) Committee for Computing Education in 
Community Colleges. ACM Computing Curricula 2009: Guidelines for Associate-Degree 
Transfer Curriculum in Computer Science. [ACM 2009]  

Stoneburner Gary; Hayden,Clark; & Feringa, Alexis. “Engineering Principles for Information 
Technology Security (A Baseline for Achieving Security), Revision A (NIST Special Publication 
800-27 Rev A).” [Stoneburner 2004] 

Association for Computing Machinery (ACM), Inc. ACM Code of Ethics and Professional 
Conduct. [ACM 2011] 

Association for Computing Machinery (ACM) & IEEE Computer Society (IEEE-CS) Joint Task 
Force on Software Engineering Ethics and Professional Practices (SEEPP). Software Engineering 
Code of Ethics and Professional Practice (Version 5.2). [ACM 1999] 

Additional Items 

Course Student Learning Outcomes  

Upon successful completion of this course, the student will be able to  

• practice the tenets of ethical and professional behavior promoted by professional societies 
and accept the professional responsibilities and liabilities associated with software 
development  

• use standard analysis and design techniques to produce a team-developed, medium-sized 
software application that is fully implemented and formally tested for the elimination of 
common software security vulnerabilities 

• compare and contrast a range of searching and sorting algorithms and analyze time and space 
efficiencies  

• assess the appropriateness of using recursion to solve a given problem  

• design and construct programming solutions using a variety of recursive techniques  

• analyze the efficiency of recursive algorithms  

• design and develop reusable software using appropriate data structures and templates  

• create effective, efficient, and secure software, reflecting standard principles of software 
engineering and software assurance 

Course Assessment Features 

The following table was taken from the ACM CCECC Assessment Rubric for Computer Science 
III [ACM CCECC 2009c].  



 

CMU/SEI-2011-TR-017 | 23 

Table 7: Course Assessment Features for Computer Science III Course 

Course Learning 
Outcome 

Approaches Goal Meets Goal Surpasses Goal 

Analyze the efficiency of 
recursive algorithms. 

With guidance, interprets a 
recursive method. 

Analyzes a recursive 
method and correctly 
predicts its output. 

Evaluates recursive 
algorithms in terms of 
efficiency and time and space 
tradeoffs. 

Assess the appropriateness 
of using recursion to solve 
a given problem. 

Explains the utility of 
recursion to solve certain 
problems. 

Compares and contrasts 
the tradeoffs in terms of 
recursive and non-
recursive solutions. 

Justifies when to choose a 
recursive solution over a non-
recursive solution (and vice 
versa) in terms of efficiency, 
Big-O, and comprehensibility.

Compare and contrast a 
range of searching and 
sorting algorithms and 
analyze time and space 
efficiencies. 

Uses various searching 
and sorting algorithms, 
and investigates time and 
space tradeoffs. 

Compares and contrasts a 
range of searching and 
sorting algorithms for time 
and space efficiencies. 

Critiques searching and 
sorting algorithms, including 
recursive solutions, for 
various algorithmic 
efficiencies and evaluates 
them in terms of Big-O. 

Create effective, efficient 
and secure software, 
reflecting standard 
principles of software 
engineering and software 
assurance.  

Ranks the risks and 
liabilities of a computer-
based solution using 
standard software 
assurance and 
engineering principles.  

Creates an effective, 
efficient, and secure 
solution, utilizing principles 
of software assurance and 
software engineering. 

Judges the security of a 
software solution.  

Design and construct 
programming solutions 
using a variety of recursive 
techniques. 

Converts a simple 
recursive algorithm into a 
working recursive method.

With guidance, develops 
recursive programming 
solutions for applications 
that use data structures 
such as trees and lists. 

Independently designs and 
develops recursive 
programming solutions for 
applications that use 
backtracking and data 
structures such as trees and 
lists. 

Design and develop 
reusable software using 
appropriate data structures 
and templates.  

Differentiates among the 
classic data structures and 
selects a suitable data 
structure for use in an 
application. 

With guidance, designs 
and develops applications 
using appropriate data 
structures for a given 
problem. 

Independently designs and 
develops applications using 
appropriate data structures 
and incorporates reusable 
software components in the 
solution. 

Practice the tenets of ethics 
and professional behavior 
promoted by computing 
societies; accept the 
professional responsibilities 
and liabilities associated 
with software development.  

Studies the tenets of 
ethics and professional 
behavior promoted by 
international computing 
societies, such as ACM 
and IEEE-CS. 

Practices the tenets of 
ethics and professional 
behavior promoted by 
international computing 
societies and recognizes 
the liabilities associated 
with software 
development. 

Displays ethical and 
professional behavior 
associated with the 
responsibilities of software 
development. 

Use standard analysis and 
design techniques to 
produce a team‐ 
developed, medium‐sized, 
secure software application 
that is fully implemented 
and formally tested. 

As part of a team, 
produces an executable, 
medium-sized software 
application that meets 
some program 
requirements and includes 
design documentation and 
some evidence of testing. 

As part of a team, 
produces a working, 
medium-sized software 
application on time that 
meets many program 
requirements including 
design and some test plan 
documentation. 

As part of a team, 
successfully develops a 
medium-sized, secure 
software application on time 
that meets all program 
requirements including 
design and formal test plan 
documentation.  



 

CMU/SEI-2011-TR-017 | 24 

9 Introduction to Computer Security  

Course Description  

This course provides an overview of the fundamentals of computer security. Topics include 
security standards, policies, and best practices; principles, mechanisms, and implementation of 
computer security and data protection; security policy, encryption, and authentication; access 
control and integrity models and mechanisms; network security; secure systems; programming 
and vulnerabilities analysis; principles of ethical and professional behavior; regulatory 
compliance and legal issues; information assurance; risk management and threat assessment; 
business continuity and disaster recovery planning; and security across the life cycle 
(requirements, architecture and design, construction, testing, operation, maintenance, acquisition, 
and services). 

Prerequisites  

Computer Science I  

Outline  

Table 8: Outline for Introduction to Computer Security Course 

Topic 
Bloom’s 
Level 

Security goals and fundamentals: confidentiality, integrity, availability, reliability, etc. K 

Secure systems: types, models, design, changes to non-secure systems; comparative analysis C 

Access controls: controlling access to resources, access matrix model, access control lists and 
capability lists; mandatory controls, originator controls 

C 

Networks and security: internet security architecture, internet protocols, implementation 
considerations; firewalls 

C 

Integrity: cryptographic checksums, malicious logic, viruses, Trojan horses; defenses, prevention K 

Cryptography fundamentals: classical, public key; implementation problems K 

Authentication: passwords C 

Attacks: software attacks (malicious code, buffer overflows, social engineering, injection attacks, and 
related defense tools); network attacks (denial of service, flooding, sniffing and traffic redirection, 
defense tools and strategies); website attacks (cross-site scripting) 

K 

Management: planning for security; introduction to risk assessment and management; business cases; 
regulatory compliance and legal issues; Federal Information Security Management Act; and business 
continuity/disaster planning 

K 

Security standards in government and industry: NIST 800-39 (risk management), NIST 800-53 
(security controls), ISO 27001, and ISO 27002; sample corporate and institutional security policies 

K 

Security issues in requirements, architecture, design, implementation, testing, operation, maintenance, 
acquisition, and services 

K 

Ethics and professionalism as related to computer security K 



 

CMU/SEI-2011-TR-017 | 25 

Sources 

Association for Computing Machinery (ACM) & IEEE Computer Society (IEEE-CS). “Computer 
Science Curriculum 2008: An Interim Revision of CS 2001.” Computing Curriculum Series. 
[ACM 2008] 

Allen, Julia H.; Barnum, Sean; Ellison, Robert J.; McGraw, Gary; & Mead, Nancy R. Software 
Security Engineering: A Guide for Project Managers. [Allen 2008] 

Bishop, Matt. Computer Security: Art and Science. [Bishop 2002] 

Redwine, Samuel T., Jr. Secure Software Engineering Education. This is a description of the first 
three years of the master’s program in secure software engineering at James Madison University, 
including a somewhat detailed description of a one-semester course in secure software 
engineering. [Redwine 2010] 

Stallings, W. Network Security Essentials. [Stallings 2007] 

Wright, Marie & Kakalik, John. Information Security: Contemporary Cases. [Wright 2006] 

Additional Items 

Course Delivery Features 

In addition to conventional lecture and discussion methods, the following techniques are 
appropriate for course delivery: 

• This course provides an excellent opportunity to use case studies. Information Security: 
Contemporary Cases by Wright and Kakalik provides a source for reading, study, and case-
study exercises. 

• A number of hands-on individual and team projects could be assigned; for example 

− an exercise or discussion of quality attributes related to security 

− an exercise involving the review of program code to identify security problems 

− comprehension of the security shortcomings of an existing software artifact or a 

computing system (standalone application, network, operating system, website) 

− presentation on a current security technology or issue 

Course Assessment Features 

Most of the course topics are listed at the K (Knowledge) Bloom’s level, which means that 
students need a basic familiarity with the topics. They must be able to discuss and describe at a 
level that shows appreciation of computer security issues. Assessment of the results of the 
activities and exercises discussed in the “Course Delivery Features” section is a good way of 
judging achievement at the specified Bloom’s level.  

 



 

CMU/SEI-2011-TR-017 | 26 

10 Secure Coding 

Course Description  

This course covers security vulnerabilities of programming in weakly typed languages like C and 
in more modern languages like Java. Common weaknesses exploited by attackers are discussed, 
as well as mitigation strategies to prevent those weaknesses. Students practice programming and 
analysis of software systems through testing and static analysis. 

Prerequisites and Co-Requisites 

4. Computer Science I as a prerequisite (with experience programming in C or C++), or  

5. Computer Science II as a co-requisite (with experience coding in Java), otherwise  

6. Computer Science II as a prerequisite  

Syllabus 

Table 9: Syllabus for Secure Coding Course 

Topic Bloom’s Level 

Overview of security vulnerabilities and risks in software: Common Weakness Enumeration 
(CWE), Open Web Application Security Project (OWASP) Top 10 

C 

Data protection: methods for preventing unauthorized access or manipulation of data AP 

Input validation and user authentication AP 

Memory management: buffer overflow, memory corruption, and privilege violations AP 

Integer overflow and misuse of strings and pointers AP 

Communication vulnerabilities: concurrency, secure inter-process communication and 
authorization, authentication and networking protocols 

AP 

Unit testing for security vulnerabilities: fuzzing, abuse cases AP 

Code review: formal inspections and static analysis AP 

Vulnerabilities in modern languages: insecurities in Java and hypertext preprocessor (PHP) C 

Standard risk mitigation strategies and resources: coding standards, enterprise security API 
(ESAPI) 

C 

Professional development: OWASP, certification C 

Sources 

Cooper, Stephen; Nickell, Christine; Pérez, Lance C.; Oldfield, Brenda; Brynielsson, Joel; Gencer 
Gökce, Asim; Hawthorne, Elizabeth K.; Klee, Karl J.; Lawrence, Andrea; & Wetzel, Susanne. 
Towards Information Assurance (IA) Curricular Guidelines (ITiCSE 2010 Working Group 
Report). [Cooper 2010] 

Merkow, Mark S. & Raghavan, Lakshmikanth. Secure and Resilient Software Development. 
[Merkow 2010] 

Seacord, Robert C. Secure Coding in C and C++. [Seacord 2005]  

 



 

CMU/SEI-2011-TR-017 | 27 

Additional Items 

Course Delivery Features 

In addition to conventional lecture and discussion methods, a number of hands-on individual and 
team projects are appropriate for course delivery; for example 

• individual programming projects (including coding using a coding standard, preparation of a 
unit test plan, and test results) 

• individual or team review/inspections 

• individual or team testing and analysis of artifacts produced by other students or available 
online 

Course Assessment Features 

Many of the course topics are listed at the AP (Application) Bloom’s level, which means that 
students must be able to use information, methods, concepts, and theories to solve problems that 
require the skills or knowledge taught in the course. For topics labeled C (Comprehension), 
students must be able to discuss, describe, and interpret the topics. Assessment of the results of 
the activities and exercises discussed in the “Course Delivery Features” section is a good way of 
judging achievement at the specified Bloom’s level.  

 



 

CMU/SEI-2011-TR-017 | 28 

11 Introduction to Assured Software Engineering  

Course Description  

This course covers the basic principles and concepts of assured software engineering; system 
requirements; secure programming in the large; modeling and testing; object-oriented analysis and 
design using the UML; design patterns; frameworks and APIs; client-server architecture; user 
interface technology; and the analysis, design, and programming of extensible software systems.  

Prerequisite  

Computer Science II  

Co-Requisite 

Computer Science III 

Syllabus 

This syllabus is largely based on the ACM CCECC course descriptions modified and abstracted to 
the outline level [ACM CCECC 2009d, ACM CCECC 2009e]. 

Table 10: Syllabus for Introduction to Assured Software Engineering Course 

Topic 
Bloom’s 
Level 

Introduction to software project management: project planning, estimation, configuration management, 
risk management; and software security process models: Building Security In Maturity Model (BSIMM), 
OWASP Software Assurance Maturity Model (SAMM), Microsoft Software Development Lifecycle 
(SDL) 

C 

Role of assured software engineering: software engineering for assurance and its place as an 
engineering discipline  C 

Requirements analysis: requirements analysis for functional and quality requirements  AP 
Introduction to software architecture: introduction to software architecture, including architectural 
patterns (pipe & filter, MVC), client-server computing  C 

Use and misuse cases: use cases, misuse cases, and user-centered design  C 
Design patterns: abstraction-occurrence, composite, player-role, singleton, observer, delegation, 
facade, adapter, etc.  C 

UML: review of object-oriented principles, UML class diagrams, and object-oriented analysis AP 

Domain modeling: examples of building class diagrams to model various domains  C 
Reusable technologies: review of reusable technologies as a basis for software engineering, risks 
associated with reuse (e.g. Ariane) C 

Software behavior: representing software behavior: sequence diagrams, state machines, activity 
diagrams, correctness under all conditions of use  AP 

Verification and validation: inspections and reviews, integration, system, and acceptance testing AP 

Sources 

ACM Committee for Computing Education in Community Colleges (CCECC). Program Details: 
Introduction to Software Engineering. [ACM CCECC 2009d] 



 

CMU/SEI-2011-TR-017 | 29 

ACM Committee for Computing Education in Community Colleges (CCECC). Course Details: 
Introduction to Software Engineering. [ACM CCECC 2009e] 

IEEE Computer Society (IEEE-CS) & Association for Computing Machinery (ACM). “Software 
Engineering 2004: Curriculum Guidelines for Undergraduate Degree Programs in Software 
Engineering.” Computing Curriculum Series. [IEEE-CS 2004b] 

Allen, Julia H.; Barnum, Sean; Ellison, Robert J.; McGraw, Gary; & Mead, Nancy R. Software 
Security Engineering: A Guide for Project Managers [Allen 2008]. 

Redwine, Samuel T., Jr. Secure Software Engineering Education. This is a description of the first 
three years of the master’s program in secure software engineering at James Madison University, 
including a somewhat detailed description of a one-semester course in secure software 
engineering [Redwine 2010]. 

Additional Items 

Course Delivery Features 

Sample labs and assignments include the following: 

• evaluating the assurance and performance of various simple software designs 

• adding features, including assurance features, to an existing system 

• testing a system to verify conformance to test cases including assurance 

• building a graphical user interface (GUI) for an application 

• numerous exercises building models in UML, particularly class diagrams and state machines 

• developing and presenting a simple set of assured software requirements (to be done as a 
team) for some innovative client server application of very small size 

• implementing the above, using reusable technology to the greatest extent possible, while 
understanding the risks associated with reuse  

In addition to conventional lecture and discussion methods, the following techniques are 
appropriate for course delivery: 

• This course is a good starting point for exposing students to moderately sized existing 
systems. With such systems, students can learn and practice the essential skills of reading 
and understanding code written by others. Students should write secure code in the context 
of a particular domain, for example, the biological, physical, mathematical, or chemical 
sciences or even wider spectra such as game programming, business applications, and 
graphics and animation. 

• We suggest that a core subset of UML be taught rather than trying to cover all features.  

• It may be challenging for instructors to convey the nature of software engineering to 
students; however, this challenge may be addressed through strategies such as field trips to 
businesses and industries that utilize large software systems, guest lectures by developers 
and users of large software systems, and discussions about embedded systems in everyday 



 

CMU/SEI-2011-TR-017 | 30 

life including automated teller machines (ATMs), wireless devices, cell phones, various 
mobile devices, and computer games and their associated risks and vulnerabilities.  

Course Assessment Features 

The depth of coverage of the course topics varies, as do the associated Bloom’s levels. In many 
areas, students need to be able to discuss and describe the topics, but in other areas they must be 
able to apply the techniques learned in the course to actual software projects. In general they must 
be able to discuss, describe, and apply the techniques at a level that shows appreciation of assured 
software engineering. Assessment of the results of the activities and exercises discussed in the 
“Course Delivery Features” section is a good way of judging achievement at the specified 
Bloom’s level.  

Table 11: Typical Introduction to Assured Software Engineering Course Sequence Option 1 

Term 1 Term 2 Term 3 Term 4 

CS I CS II CS III Secure Coding 

Discrete Structures Calculus I Assured Software Engineering  

 Introduction to 
Computer Security 

  

 

Table 12: Typical Introduction to Assured Software Engineering Course Sequence Option 2 

Term 1 Term 2 Term 3 Term 4 

CS I CS II CS III Secure Coding 

Discrete Structures Calculus I Introduction to 
Computer Security 

Assured Software Engineering 

 
 
  



 

CMU/SEI-2011-TR-017 | 31 

12 Resources 

Computer Science I 

Association for Computing Machinery (ACM) Committee for Computing Education in 
Community Colleges. ACM Computing Curricula 2009: Guidelines for Associate-Degree 
Transfer Curriculum in Computer Science. [ACM 2009]  

Computer Science II 

Association for Computing Machinery (ACM) Committee for Computing Education in 
Community Colleges. ACM Computing Curricula 2009: Guidelines for Associate-Degree 
Transfer Curriculum in Computer Science. [ACM 2009]  

Stoneburner Gary; Hayden,Clark; & Feringa, Alexis. “Engineering Principles for Information 
Technology Security (A Baseline for Achieving Security), Revision A (NIST Special Publication 
800-27 Rev A).” [Stoneburner 2004] 

Computer Science III 

Association for Computing Machinery (ACM) Committee for Computing Education in 
Community Colleges. ACM Computing Curricula 2009: Guidelines for Associate-Degree 
Transfer Curriculum in Computer Science. [ACM 2009]  

Stoneburner Gary; Hayden,Clark; & Feringa, Alexis. “Engineering Principles for Information 
Technology Security (A Baseline for Achieving Security), Revision A (NIST Special Publication 
800-27 Rev A).” [Stoneburner 2004] 

Association for Computing Machinery (ACM), Inc. ACM Code of Ethics and Professional 
Conduct. [ACM 2011] 

Association for Computing Machinery (ACM) & IEEE Computer Society (IEEE-CS) Joint Task 
Force on Software Engineering Ethics and Professional Practices (SEEPP). Software Engineering 
Code of Ethics and Professional Practice (Version 5.2). [ACM 1999] 

Introduction to Computer Security 

Association for Computing Machinery (ACM) & IEEE Computer Society (IEEE-CS). “Computer 
Science Curriculum 2008: An Interim Revision of CS 2001.” Computing Curriculum Series. 
[ACM 2008] 

Allen, Julia H.; Barnum, Sean; Ellison, Robert J.; McGraw, Gary; & Mead, Nancy R. Software 
Security Engineering: A Guide for Project Managers. [Allen 2008] 

Bishop, Matt. Computer Security: Art and Science. [Bishop 2002] 



 

CMU/SEI-2011-TR-017 | 32 

Redwine, Samuel T., Jr. Secure Software Engineering Education. This is a description of the first 
three years of the master’s program in secure software engineering at James Madison University, 
including a somewhat detailed description of a one-semester course in secure software 
engineering. [Redwine 2010] 

Stallings, W. Network Security Essentials. [Stallings 2007] 

Wright, Marie & Kakalik, John. Information Security: Contemporary Cases. [Wright 2006] 

Secure Coding 

Cooper, Stephen; Nickell, Christine; Pérez, Lance C.; Oldfield, Brenda; Brynielsson, Joel; Gencer 
Gökce, Asim; Hawthorne, Elizabeth K.; Klee, Karl J.; Lawrence, Andrea; & Wetzel, Susanne. 
Towards Information Assurance (IA) Curricular Guidelines (ACM ITiCSE 2010 Working Group 
Report). [Cooper 2010] 

Merkow, Mark S. & Raghavan, Lakshmikanth. Secure and Resilient Software Development. 
[Merkow 2010] 

Seacord, Robert C. Secure Coding in C and C++. [Seacord 2005]  

Introduction to Assured Software Engineering 

Association for Computing Machinery (ACM) Committee for Computing Education in 
Community Colleges (CCECC). Program Details: Introduction to Software Engineering. [ACM 
CCECC 2009d] 

Association for Computing Machinery (ACM) Committee for Computing Education in 
Community Colleges (CCECC). Course Details: Introduction to Software Engineering. [ACM 
CCECC 2009e] 

IEEE Computer Society (IEEE-CS) & Association for Computing Machinery (ACM). “Software 
Engineering 2004: Curriculum Guidelines for Undergraduate Degree Programs in Software 
Engineering.” Computing Curriculum Series. [IEEE-CS 2004b] 

Allen, Julia H.; Barnum, Sean; Ellison, Robert J.; McGraw, Gary; & Mead, Nancy R. Software 
Security Engineering: A Guide for Project Managers [Allen 2008]. 

Redwine, Samuel T., Jr. Secure Software Engineering Education. This is a description of the first 
three years of the master’s program in secure software engineering at James Madison University, 
including a somewhat detailed description of a one-semester course in secure software 
engineering [Redwine 2010]. 

Websites of Interest 

Build Security In 

Sponsored by the DHS National Cyber Security Division (NCSD), this website provides 
practices, tools, guidelines, rules, principles, and other resources that software developers, 



 

CMU/SEI-2011-TR-017 | 33 

architects, and security practitioners can use to build security into software in every phase of its 
development. 

 https://buildsecurityin.us-cert.gov/bsi/home.html 

CERT Podcasts 

The CERT podcast series provides both general principles and specific starting points for business 
leaders who want to launch an enterprise-wide security effort or make sure their existing security 
program is as good as it can be. 

http://www.cert.org/podcast/ 

National Software Assurance Repository 

The National Software Assurance Repository (NSAR) is a Department of Defense/National 
Security Agency funded knowledge base of commonly accepted current practices, principles, 
methodologies, and tools for software assurance. The NSAR incorporates as many life-cycle 
methodologies and tools for assuring software as could be identified in the literature. It also 
itemizes all related supporting principles and concepts to ensure the security of internally and 
externally developed and sustained software.  

http://cybersecurity.udmercy.edu/manage/search.php 

SEI Virtual Training Environment 

The SEI Virtual Training Environment (VTE) amplifies the training and best practices the SEI has 
developed and delivered in the classroom. Because of the rich media instruction and hands-on 
training labs, VTE allows users to access high-quality training material anywhere in the world, 
with only a Web browser and an Internet connection.  

https://www.vte.cert.org/vteWeb/ 

Software Assurance Community Resource Information Clearinghouse 

Also sponsored by the DHS NCSD, this website provides additional resources on many software 
assurance topics including workforce education and training, processes and practices, technology 
and tools, acquisition and outsourcing, measurement, establishing a business case, and malware. 

https://buildsecurityin.us-cert.gov/swa/ 

https://buildsecurityin.us-cert.gov/bsi/home.html
http://www.cert.org/podcast/
http://cybersecurity.udmercy.edu/manage/search.php
https://www.vte.cert.org/vteWeb/
https://buildsecurityin.us-cert.gov/swa/


 

CMU/SEI-2011-TR-017 | 34 

Appendix A: Related Curricula 

CyberWatch Curriculum 

The following information is from http://www.cyberwatchcenter.org [CyberWatch 2011].  

Four CyberWatch model Information Assurance programs have been developed and are 
available from CyberWatch: 

• A.A.S. in Information Assurance 

• A.S. in Information Assurance 

• Certificate in Information Assurance 

• Certificate in Information Assurance Management 

CyberWatch has developed eight model courses, six of which are currently available for 
download. We have an active program to make all of these courses also available in an online 
format, with an expected completion date of Fall 2010: 

• CW 110 Ethics in the Information Age 

• CW 130 Microcomputer Operating Systems 

• CW 160 Security+ 

• CW 225 Hardening the Infrastructure 

• CW 230 Microsoft Windows Server 2003 

• CW 235 Network Defense and Countermeasures 

• CW xxx Computer Forensics I (not yet available for download) 

• CW xxx Disaster Recovery and Risk Management (not yet available for download) 

CyberWatch maintains virtual lab facilities to assist member institutions in the delivery of IA 
courses. These include the CyberWatch Virtual Lab, the Digital Forensics Lab, and the 
CyberWatch Underground Tunnel System. 

CyberWatch provides assistance to member institutions for curriculum development and for 
mapping of courses to the Committee on National Security Systems (CNSS) 4011 and 4013 
national IA training standards. Curriculum development emphasizes building associate's degree 
and certificate programs from a set of core technical courses that, in addition to meeting 4011 
and/or 4013 standards, help prepare students for several industry certifications including: 

• CompTIA's Network+ and Security+ 

• Cisco Certified Network Associate (CCNA) 

• Microsoft Certified Professional (MCP) 

• Security Certified Network Professional (SCNP) 

http://www.cyberwatchcenter.org


 

CMU/SEI-2011-TR-017 | 35 

 

Software Engineering 2004 (SE 2004) Curriculum Guidelines for Undergraduate Degree 

Programs in Software Engineering  

The following information is from http://sites.computer.org/ccse [IEEE-CS 2004b] 

The primary purpose of this volume is to provide guidance to academic institutions and 
accreditation agencies about what should constitute an undergraduate software engineering 
education. These recommendations have been developed by a broad, internationally based 
group of volunteer participants. This group has taken into account much of the work that has 
been done in software engineering education over the last quarter of a century. Software 
engineering curriculum recommendations are of particular relevance, since there is currently a 
surge in the creation of software engineering degree programs and accreditation processes for 
such programs have been established in a number of countries. 

The recommendations included in this volume are based on a high-level set of characteristics of 
software engineering graduates presented in Chapter 3. Flowing from these outcomes are the 
two main contributions of this document: 

• SEEK: Software Engineering Education Knowledge - what every SE graduate must know 

• Curriculum: ways that this knowledge and the skills fundamental to software engineering 
can be taught in various contexts 

ACM Committee for Computing Education in Community Colleges (CCECC) Computer 

Science Curriculum  

The following information is from  
http://www.acmccecc.org/pgm_inventory/programdetail.aspx?pID=38 [ACM CCECC 2009a]. 

The foundation for the Computer Science associate-degree transfer program is the three-course 
computing sequence CS I - CS II - CS III. This sequence should be accompanied by the 
opportunity for additional computing courses based on a variety of factors, including transfer 
requirements, institutional specializations, and student interests. 

Past computer science model curricula have identified at least three “paradigms” or approaches 
that one could take to computer science content: objects-first (centered on object-oriented 
programming), breadth-first (an initial holistic view subsequently progressing deeper), and 
imperative-first (centered on procedural programming). The Computer Science associate-
degree transfer program now calls for a blended approach:  

• Object-oriented programming is emphasized in CS I, but not necessarily early in the 
semester. 

• The topics of algorithms and fundamental programming constructs are important 
components of CS I and are consistent with the Böhm-Jacopini theory for procedural 
programming. 

http://sites.computer.org/ccse
http://www.acmccecc.org/pgm_inventory/programdetail.aspx?pID=38


 

CMU/SEI-2011-TR-017 | 36 

• The breadth-first approach is used in the coverage of three important topics: ethics and 
professionalism, security, and software engineering principles. 

These topics are covered in deeper and deeper fashion as the student progresses from CS I to 
CS II to CS III.  

Conference on Innovation and Technology in Computer Science Education (ITiCSE) 

Information Assurance Curriculum Guidelines Working Group Guidelines 

The following information is from http://delivery.acm.org/10.1145/1980000/1971686/p49-
cooper.pdf?key1=1971686&key2=7516375031&coll=DL&dl=ACM&ip=128.237.28.14&CFID=
23747146&CFTOKEN=92148513 [Cooper 2010]. 

Information assurance and information security are serious worldwide concerns. Computer 
security is one of the three new focal areas of the ACM/IEEE's Computer Science Curriculum 
update in 2008. This ACM/IEEE report describes, as the first of its three recent trends, "the 
emergence of security as a major area of concern.  

The purpose of this working group report is to continue the work of the 2009 working group on 
information assurance (IA) education. The focus of the 2010 working group is to examine the 
curricula of existing academic programs, as well as at the key academic governmental and 
industry IA education standards and guidelines identified by the 2009 IA working group in 
order to begin defining the IA education space as a first step towards developing curricular 
guidelines. 

Survivability and Information Assurance (SIA) Curriculum 

The following information comes from http://www.cert.org/sia/ [CERT 2007]. 

Introduction 

Today's organizations rely on networked systems powered by fast-changing technology. This 
reliance makes them more vulnerable to attacks and forces system administrators to seek new 
approaches to computer and network security. To help them, CERT has developed a 
downloadable three-course curriculum in survivability and information assurance (SIA). This 
curriculum offers a problem-solving methodology built on key SIA principles that are 
independent of specific technologies. These principles form the foundation of CERT’s SIA 
Curriculum. A summary of the curriculum is provided below.  

SIA Curriculum Foundations 

We based the SIA Curriculum on five key foundations. Each is detailed in Foundations of the 
SIA Curriculum:  

1. Principles of Survivability and Information Assurance: Making decisions through an 
organized thought process  

2. The Enterprise Network Supports the Mission of the Business: Understanding how 
technology choices and applications impact the mission of the business  

http://delivery.acm.org/10.1145/1980000/1971686/p49-cooper.pdf?key1=1971686&key2=7516375031&coll=DL&dl=ACM&ip=128.237.28.14&CFID=
http://delivery.acm.org/10.1145/1980000/1971686/p49-cooper.pdf?key1=1971686&key2=7516375031&coll=DL&dl=ACM&ip=128.237.28.14&CFID=
http://www.cert.org/sia/


 

CMU/SEI-2011-TR-017 | 37 

3. Survivable Functional Units: Reducing the complexity of the enterprise to a manageable 
size  

4. Inherit an Enterprise Network: Integrating seamlessly new functionality in the network 
while keeping mission and constraints of the business in focus  

5. Challenge Assumptions: Understanding first the assumptions, challenging them, and then 
making an informed decision  

These foundations inform the courseware in the SIA Curriculum. Understanding them is the 
key to successfully teaching and implementing it.  

SIA Curriculum Overview 

The SIA Curriculum Overview explains the key features of the SIA curriculum: its audience, 
structure, the technology used, and the characteristics students and teachers should possess to 
be able to get the most out of the curriculum.  

The curriculum consists of the following major topic areas, each of which corresponds to one 
course:  

1. Principles of Survivability and Information Assurance: This course presents in detail the 
ten principles of survivability and information assurance, on which the entire SIA 
curriculum is based.  

2. Information Assurance Networking Fundamentals: This course applies the ten principles 
to the concepts and an implementation of TCP/IP networking.  

3. Sustaining, Improving, and Building Survivable Functional Units (SFUs)  

Computing Curricula 2001 

The following information is from Computing Curricula 2001: Computer Science, Final Report 
[IEEE-CS 2001].  

CC 2001- Executive Summary 

This document represents the final report of the Computing Curricula 2001 project 

(CC2001)—a joint undertaking of the Computer Society of the Institute for Electrical and 
Electronic Engineers (IEEE-CS) and the Association for Computing Machinery (ACM) to 
develop curricular guidelines for undergraduate programs in computing. The report continues a 
long tradition of recommendations for academic programs in computing related fields dating 
back to 1965, as described in Chapter 2 of the report. 

This volume of the report outlines a set of recommendations for undergraduate programs in 
computer science. As described in Chapter 1, the CC2001 report will eventually consist of 
several volumes containing separate recommendations for other computing disciplines, 
including computer engineering, software engineering, and information systems. Those reports 
are each under the control of separate committees and will be published as they are completed. 

Highlights of this report include the following: 



 

CMU/SEI-2011-TR-017 | 38 

• The CS body of knowledge. We have identified a body of knowledge appropriate to 
undergraduate computer science programs. Drawing on the structure of earlier curriculum 
reports, we have arranged that body of knowledge hierarchically, subdividing the field 
into areas, which are then broken down further into units and individual topics. An 
overview of the body of knowledge appears in Chapter 5. 

• The CS undergraduate core. From the 132 units in the body of knowledge, we have selected 
64 that represent core material, accounting for approximately 280 hours of instruction. As 
noted in our statement of principles in Chapter 4, we defined the core as the set of units 
for which there is a broad consensus that the material is essential to an undergraduate 
degree in computer science. The philosophy behind the definition of the core is described 
in more detail in Chapter 5. 

• Learning objectives. For each of the units in the body of knowledge, we have developed a set 
of learning objectives designed to promote assessment of student achievement. These 
learning objectives appear as part of the detailed description of the body of knowledge in 
Appendix A. In addition to the individual learning objectives, Chapter 11 of the report 
outlines a more general set of objectives that all computer science graduates should be 
able to meet. 

• Curriculum models. The report identifies six approaches to introductory computer science 
that have proven successful in practice, as described in Chapter 7. Building on that 
foundation, Chapter 8 offers a set of four thematic approaches for presenting the core 
material in intermediate-level courses. The discussion of curricular models continues in 
Chapter 9, which offers several models for the curriculum as a whole. 

• Course descriptions. Appendix B contains detailed course descriptions for 47 courses that 
are part of the various curriculum models. In addition, we have identified over 80 
additional advanced courses that would be appropriate for undergraduate programs. 

The process of developing the report has been highly inclusive. More than 150 people have 
been directly involved in the focus groups established to contribute to the process. In addition, 
the report has been widely reviewed by academics and practitioners through a series of three 
public drafts. We have also held a series of feedback sessions at conferences and meetings, 
including the Special Interest Group on Computer Science Education symposium (SIGCSE), 
the Frontiers in Education conference (FIE), the World Congress on Computers and Education 
(WCCE), along with various smaller meetings in Europe, Asia, and various parts of the United 
States. These meetings have provided us with critically important feedback, which we have 
used to shape the final report. 

The length of the introductory sequence 

Although the philosophy and structure of introductory courses have varied widely over the 
years, one aspect of the computer science curriculum has remained surprisingly constant: the 
length of the introductory sequence. For several decades, the vast majority of institutions have 
used a two-course sequence to introduce students to computer science. In the computer science 
education community, these two courses are generally known as CS1 and CS2, following the 
lead of Curriculum ’78 [ACM78]. While the content of these courses has evolved over time in 



 

CMU/SEI-2011-TR-017 | 39 

response to changes in technology and pedagogical approach, the length of the sequence has 
remained the same. 

We believe the time is right to question this two-course assumption. The number and 
complexity of topics that entering students must understand have increased substantially, just as 
the problems we ask them to solve and the tools they must use have become more 
sophisticated. An increasing number of institutions are finding that a two-course sequence is no 
longer sufficient to cover the fundamental concepts of programming, particularly when those 
same courses seek to offer a broader vision of the field. Expanding the introductory sequence to 
three courses makes it far easier to cover the growing body of knowledge in a way that gives 
students adequate time to assimilate the material. 

The CC2001 Task Force strongly endorses the concept of moving to a three-course 
introductory sequence and believes that this option will prove optimal for a relatively wide 
range of institutions. At the same time, the three-course approach will not be right for everyone. 
The fact that the traditional two-course approach fits into a single year of study at semester-
based institutions often makes it easier to fit the introductory material into the whole of the 
curriculum without interfering with the scheduling of sophomore level courses. Similarly, the 
task of assigning credit for courses taken at other institutions, including advanced placement 
programs in secondary schools, becomes more complicated if one institution follows a two-
semester calendar while the other covers the introductory material in three. 

To support both two- and three-course introductions, the CC2001 Task Force has developed 
both options. . . [IEEE-CS 2001, p. 29] 

Computer Science Curriculum 2008 

The following information is from Computer Science Curriculum 2008: An Interim Revision of 
CS 2001 [ACM 2008].  

Preface to the Interim Revision 

In recent times, the ACM and the IEEE Computer Society have sought to provide curriculum 
guidance on computing at approximately ten-year intervals. Thus 1968, 1978, 1991, and 2001 
were the dates of publication of previous guidance on Computer Science. 

Around the time of the publication of the most recent Computer Science volume, in December 
2001, a commitment was made by the ACM and the Computer Society to provide curriculum 
guidance on a more regular basis. This was to recognize the rapid rate of change in the 
discipline and the consequent need for guidance to the community. It was felt that after a period 
of around 5 years steps should be taken to address this. Yet such guidance should not be seen to 
create revolution or confusion in the community; rather it should help and support. This present 
volume is provided in that spirit. 

Since 2001, much has happened in computing. Today there is talk of a crisis, with enrollments 
having plummeted in many countries, often by as much as 60 – 70% from the peak of 2001. 
This fall in numbers has come at a time when there is increased recognition of the role of 



 

CMU/SEI-2011-TR-017 | 40 

computing in innovation across engineering, in science, in business, in education, in 
entertainment and indeed in all walks of life. At the same time, the number of jobs in 
computing has risen while the supply of good graduates has fallen and some data suggests is 
failing to meet the demand in certain countries. The reasons for this are many and complex. 
However, many argue that the traditional curriculum in computing is unattractive to present-
day students and that creates a challenge. 

Part of the CC 2001 endeavor was to create documents that would complement the Computer 
Science guidance document. This resulted in the publication, over recent years, of volumes in 
Computer Engineering, Information Systems, Information Technology, and Software 
Engineering. An Overview volume has also been published; this sought to highlight the 
differences and draw out the similarities, but basically to provide a framework within which the 
various volumes could be seen to fit. This creates a different kind of environment in which to 
review the Computer Science volume. 

Taking all these various matters into consideration, this review of the computer science volume 
comes at a crucial time. In addition, there is wide recognition that a considerable amount of 
work is needed to discover better and more effective ways of presenting the discipline of 
computing. This has enormous importance, economic and strategic. 

Yet it would be misleading to recommend ideas that were not regarded as sound advice and 
best practice based on appropriate trials and testing. 

This interim review has benefited from input from many (from industry, academia, etc.) 
through consultation and through discussion. It should be seen as a necessary updating of the 
influential CS2001 volume. More precisely, the CS2001 Body of Knowledge has been updated 
and there is additional commentary / advice in the accompanying text. The process has lead to 
wide recognition of the need to find new and better ways to present and portray the discipline 
of computer science; that remains a challenge for us all. 

December 2008 

Software Assurance Undergraduate Course Outlines 

The following is the abstract from Software Assurance Curriculum Project Volume II: 
Undergraduate Course Outlines [Mead 2010b]. 

Modern society depends on software systems of ever-increasing scope and complexity. 
Virtually every sphere of human activity is impacted by these systems, from social interaction 
in our personal lives to business, energy, transportation, education, communication, 
government, and defense. Because the consequences of failure can be severe, dependable 
functionality and security are essential. As a result, software assurance is emerging as an 
important discipline for the development, acquisition, and operation of software systems and 
services that provide requisite levels of dependability and security. This report is the second 
volume in the Software Assurance Curriculum Project sponsored by the Department of 
Homeland Security. The first volume, the Master of Software Assurance Reference Curriculum 
(CMU/SEI-2010-TR-005), presented a body of knowledge from which to create a Master of 



 

CMU/SEI-2011-TR-017 | 41 

Software Assurance degree program, as both a standalone offering and as a track within 
existing software engineering and computer science master’s degree programs. This report 
focuses on an undergraduate curriculum specialization for software assurance. The seven 
courses in this specialization are intended to provide students with fundamental skills for either 
entering the field directly or continuing with graduate-level education. 

 

  



 

CMU/SEI-2011-TR-017 | 42 

Appendix B: Bloom’s Taxonomy and the GSwE2009 

Bloom’s Taxonomy is a classification system devised in 1956 by a group of educators lead by 
Benjamin Bloom [Bloom 1956]. The taxonomy can be used by educators to set the level of 
educational and learning objectives required for students engaged in an education unit, course, or 
program. Bloom’s Taxonomy divides educational objectives into three domains: affective, 
psychomotor, and cognitive. In this report, the focus is on the cognitive domain, which is 
concerned with what we know and how we know it [Huitt 2006]. Conventional education systems 
tend to stress outcomes in the cognitive domain, particularly the lower-level objectives. 

Bloom’s taxonomy is hierarchical; that is, learning at a higher level is dependent on attaining 
prerequisite knowledge and skills at the lower levels. Table 13 provides a description of the 
Bloom’s Levels for the Cognitive Domain.  

Note: This table was adapted from an appendix in the GSwE2009 [iSSec 2009]. 

Table 13: Bloom's Taxonomy 

Level   Competency Objective Descriptors 

Knowledge (K) (Lowest level) Remembering previously learned material. 
Test observation and recall of information, i.e., “bring to 
mind the appropriate information” (e.g., dates, events, 
places, knowledge of major ideas, and mastery of subject 
matter). 

list, define, tell, describe, 
identify, show, label, collect, 
examine, tabulate, quote, 
name (who, when, where, 
etc.) 

Comprehension (C) Understanding information and ability to grasp meaning of 
material presented. For example, translate knowledge 
into new context, interpret facts, compare, contrast, order, 
group, infer causes, predict consequences, etc. 

summarize, describe, 
interpret, contrast, predict, 
associate, distinguish, 
estimate, differentiate, 
discuss, extend 

Application (AP) Ability to use learned material in new and concrete 
situations. For example, use information, methods, 
concepts, and theories to solve problems requiring the 
skills or knowledge presented. 

apply, demonstrate, calculate, 
complete, illustrate, show, 
solve, examine, modify, relate, 
change, classify, experiment, 
discover 

Analysis (AN) Ability to decompose learned material into constituent 
parts in order to understand structure of the whole. This 
includes seeing patterns, organization of parts, 
recognition of hidden meanings, and identification of 
parts. 

analyze, separate, order, 
explain, connect, classify, 
arrange, divide, compare, 
select, explain, infer 

Synthesis (S) Ability to put parts together to form a new whole. This 
involves using existing ideas to create new ones, 
generalizing from facts, relating knowledge from several 
areas, and predicting and drawing conclusions. It may 
also involve adapting general solution principles to the 
embodiment of a specific problem. 

combine, integrate, modify, 
rearrange, substitute, plan, 
create, design, invent, what 
if?, compose, formulate, 
prepare, generalize, rewrite 

Evaluation (E) (Highest level) Ability to pass judgment on value of 
material within a given context or purpose. This involves 
making comparisons and discriminating between ideas, 
assessing value of theories, making choices based on 
reasoned arguments, verifying value of evidence, and 
recognizing subjectivity. 

assess, decide, rank, grade, 
test, measure, recommend, 
convince, select, judge, 
explain, discriminate, support, 
conclude, compare, 
summarize 



 

CMU/SEI-2011-TR-017 | 43 

Appendix C: Community College Profiles 

Students at Community Colleges (According to the American Association for 

Community Colleges)  

The information below was taken from 
http://www.aacc.nche.edu/AboutCC/Trends/Pages/studentsatcommunitycolleges.aspx [AACC 
2011]. 

Community colleges are a vital part of the postsecondary education delivery system. They 
serve almost half of the undergraduate students in the United States, providing open access to 
postsecondary education, preparing students for transfer to 4-year institutions, providing 
workforce development and skills training, and offering noncredit programs ranging from 
English as a second language to skills retraining to community enrichment programs or cultural 
activities. 

Community colleges serve close to half of the undergraduate students in the United States, 
which included more than 6.5 million credit students in the fall of 2010. The comprehensive 
mission of community colleges makes them attractive to a broad range of people who seek 
particular programs or opportunities of special interest. Community colleges are the gateway to 
postsecondary education for many minority, low income, and first-generation postsecondary 
education students. Since 1985, more than half of all community college students have been 
women. In addition, the majority of Black and Hispanic undergraduate students in this country 
study at these colleges.  

Community colleges also provide access to education for many nontraditional students who are 
adults and working while enrolled. The average age of a community college student is 29 years 
old, and two thirds of community college students attend part-time. At the same time, 
community colleges are not only providing access for adult students but also serving an 
increasing number of traditional age and high school students who take specific courses to get 
ahead in their studies. In fact, half of the students who receive a baccalaureate degree attend 
community college in the course of their undergraduate studies.  

The costs to attain a postsecondary degree are on the rise. As a result, increasing numbers of 
students at community colleges (and 4-year institutions) are looking to the federal financial aid 
programs to help offset or finance the costs of their education. Almost half of the students 
attending community college receive some form of financial aid to help finance their studies. In 
2005, more than 2 million community college students received Pell grant dollars. However, in 
recent years, there has been a shift in government policies away from grants toward student 
loans. Because of the low costs to attend community college, the amounts borrowed are lower 
for community college students than they are for their counterparts at 4-year institutions (public 
and private).  

Community colleges are diverse institutions that serve a wide variety of needs. These include 
the students who come to upgrade their skills for a particular job, students who are pursuing an 

http://www.aacc.nche.edu/AboutCC/Trends/Pages/studentsatcommunitycolleges.aspx


 

CMU/SEI-2011-TR-017 | 44 

associate degree to transfer to a 4-year institution and students who come to pursue a hobby 
(such as learning a language). The educational outcomes of community college students reflect 
this diversity.  

According to the Community College Research Center located at Columbia University, 
Teachers College, most community college students are older than 25 though many students are 
also high school graduates who want to cost-effectively start their college education.  

Community College Research Center located at Columbia University, Teachers College 

The following information was taken from http://ccrc.tc.columbia.edu/History.asp [CCRC 2011]. 

The Community College Research Center (CCRC) is the leading independent authority on the 
nation’s more than 1,200 two-year colleges. Since our inception, CCRC’s consortium of 
researchers has strategically assessed the problems and performances of community colleges. 
Our mission is to conduct research on the major issues affecting community colleges in the 
United States and to contribute to the development of practice and policy that expands access to 
higher education and promotes success for all students. CCRC’s extensive body of research 
provides a strong foundation on which to build new policies and initiatives to improve the 
outcomes of these institutions so integral to the higher education system, employment 
landscape, and national economy. 

Community colleges serve high numbers of non-traditional students who are often older than 
25, working part- or full-time, parents with dependent children, from ethnic minorities, and 
from low-income households. These institutions cater to high school students seeking enhanced 
learning opportunities, high school graduates looking for a cost-effective way to begin their 
college education, individuals interested in obtaining technical or vocational certification, and 
full-time employees who seek special training.  

CTE Dual Enrollment: Preparing Students for College and Careers 

The following information was taken from http://ccrc.tc.columbia.edu/Presentation.asp?UID=357 
[Hughes 2011]. 

Conference: California Community College Association for Occupational Education 
(CCCAOE) 2011 Conference 

Date: March 23, 2011 4:00PM 

Location: Oakland Marriott City Center, Oakland, CA 

Additional relevant research articles are summarized in the appendix. 

A few scenarios of typical community college “computing” students include: (“computing” in 
this context is used broadly referring to computer science, information technology, etc.) 

• High school students who want to become computer programmers and/or game developers. 

http://ccrc.tc.columbia.edu/History.asp
http://ccrc.tc.columbia.edu/Presentation.asp?UID=357


 

CMU/SEI-2011-TR-017 | 45 

− Typically want to earn associates degree intending either to enter the workforce 

(A.A.S) or transfer to a baccalaureate program (A.S.). 

• Non-computing baccalaureate degree holders who need to learn about computers so they can 
either apply these skills to their field or enter into a career in “computing.” 

− Typically want to earn either associates degree or technical certificate. 

• “Computing” baccalaureate degree holders who need to update their knowledge and skills 
(lifelong learning). For example, the waning programming languages of COBOL and 
RPG. 

− Typically want to earn a technical certificate or not interested in any credential just the 

knowledge and skill. 

• “Computing” professional in need of a credential to further their career, such as CISSP or 
Security +. 

For our purposes, we narrowed down our audience to include: 

• High school students intending to earn an A.S. degree in order to transfer to a 4-year college 

• Baccalaureate degree holders with degrees in computing, math, science, or engineering who 
want to update their skills 

• Existing computing professionals in need of a credential to further their career 

We do not include high school students who want a two year degree in order to immediately 
enter the workforce, or baccalaureate degree holders in “non-computing” or non-technical 
fields in our target audience.  



 

CMU/SEI-2011-TR-017 | 46 

Appendix D: Relevant Research Articles 

The authors reviewed the following research articles that are relevant to community college 
education.  

“The Reverse Transfer Process” in Community College Review [Chen 2008] 

“These reverse transfer students have graduated high school, and they have attended college 
for a period of time or, in some cases, have even graduated from a traditional four-year college. 
For a variety of reasons, though, these students decide that the traditional four-year college is 
just not for them, and they embrace the opportunity to enroll in and to attend a two-year 
community college. 

Subsequently, they transfer from their four-year college and join a two-year college, and while 
they are moving forward in terms of their education, they are ‘taking a step back’ by switching 
from a traditional college or university to a community college. Hence, they are reverse 
transfer students.” 

“The New Reverse Transfer” in Inside Higher Ed [Moltz 2009] 

 “Stephanie Jamiot is a community college transfer student, but not the kind one might expect. 
Instead of following the steady flow of students who move from two-year institutions to four-
year institutions, she is one of a growing number of so-called ‘reverse transfers’ who leave 
four-year universities to attend community college. 

Cuyahoga Community College in Cleveland – Ohio’s largest two-year institution and the one 
Jamiot currently attends – had an 11 percent increase in the number of ‘reverse transfers’ this 
spring compared to last. These students mostly come from public and private institutions 
around Ohio. Nationally, the American Association of Community Colleges notes that a third 
of all two-year students previously attended a four-year institution. The recession had led to a 
surge in community college enrollments this year, and some experts believe these ‘reverse 
transfers’ are an important and sometimes overlooked portion of that growing student body at 
two-year institutions.” 

“Four-Year Graduates Attending Community Colleges As Serious Credit Students” by 
Community College Research Center [Quinley 1988] 

“This [CCRC] Brief is drawn from a report of a qualitative study conducted at Central 
Piedmont Community College in Charlotte, North Carolina. The study took two approaches – a 
telephone survey of four-year graduates who had completed at least 15 credit hours at that 
community college, and an examination of student records to describe the enrollment trends of 
this population over a ten-year period. The results from these two approaches were compared 
with the findings reported in the literature. 



 

CMU/SEI-2011-TR-017 | 47 

In the fall of 1996, Central Piedmont Community College had over one thousand students 
(1,104) – a little more than 7 percent of the school’s total enrollment – who had previously 
earned a baccalaureate degree.” 

“The College of 2020: Students” by Chronicle Research Services [Chronicle Research Services 
2009]  

“This is the first Chronicle Research Services report in a three-part series on what higher 
education will look like in the year 2020. It is based on reviews of research and data on trends 
in higher education, interviews with experts who are shaping the future of colleges, and the 
results of a poll of members of a Chronicle Research Services panel of admissions officials. 

The traditional model of college is changing, as demonstrated by the proliferation of 
colleges, hybrid class schedules with night and weekend meetings, and, most significantly, 
online learning. The idyll of four years away from home—spent living and learning and 
growing into adulthood—will continue to wane. It will still have a place in higher education, 
but it will be a smaller piece of the overall picture.  

Students’ convenience is the future. More students will attend classes online, study part time, 
take courses from multiple universities, and jump in and out of colleges. Students will demand 
more options for taking courses to make it easier for them to do what they want when they want 
to do it. And they will make those demands for economic reasons, too. The full-time residential 
model of higher education is getting too expensive for a larger share of the American 
population. More and more students are looking for lower cost alternatives to attending college. 
Three-year degree programs, which some colleges are now launching, will almost assuredly 
proliferate. The trend toward low-cost options also will open doors for more inexpensive online 
options.   

Community colleges and for-profit institutions should continue to thrive because of their 
reputations for convenience. The rest of colleges—regional public universities, small liberal-
arts colleges, and private universities without national followings—can expect to compete for 
students based on price, convenience, and the perceived strengths of the institutions.” 

 



 

CMU/SEI-2011-TR-017 | 48 

Bibliography 

URLs are valid as of the publication date of this document. 

[AACC 2011] 
American Association of Community Colleges (AACC). Students at Community Colleges. 
http://www.aacc.nche.edu/AboutCC/Trends/Pages/studentsatcommunitycolleges.aspx (2011). 

[ABET 2010] 
ABET, Inc. ABET: Leadership and Quality Assurance in Applied Science, Computing, 
Engineering, and Technology Education. http://www.abet.org/ (2010). 

[ACM 1991] 
Association for Computing Machinery (ACM) & IEEE Computer Society (IEEE-CS) Joint 
Curriculum Task Force. Computing Curricula 1991. ACM Press and IEEE Computer Society 
Press (1991).  

[ACM 1993] 
Association for Computing Machinery (ACM) Two-Year College Computing Curricula Task 
Force. Computing Curricula Guidelines for Associate-Degree Programs: Computing Sciences. 
ACM Press (1993).  

[ACM 1999] 
Association for Computing Machinery (ACM) & IEEE Computer Society (IEEE-CS) Joint Task 
Force on Software Engineering Ethics and Professional Practices (SEEPP). Software Engineering 
Code of Ethics and Professional Practice (Version 5.2). ACM & IEEE-CS, 1999. 
http://www.acm.org/serving/se/code.htm  

[ACM 2003] 
Association for Computing Machinery (ACM) Two-Year College Computing Curricula Task 
Force. Computing Curricula 2003: Guidelines for Associate-Degree Curricula in Computer 
Science. ACM Press (2003).  

[ACM 2008] 
Association for Computing Machinery (ACM) & IEEE Computer Society (IEEE-CS). “Computer 
Science Curriculum 2008: An Interim Revision of CS 2001.” Computing Curriculum Series. 
http://www.acm.org/education/curricula/ComputerScience2008.pdf (2008). 

[ACM 2009] 
Association for Computing Machinery (ACM) Committee for Computing Education in 
Community Colleges. Computing Curricula 2009: Guidelines for Associate-Degree Transfer 
Curriculum in Computer Science. ACM and IEEE Computer Society, 2009. 
http://www.acmccecc.org/committee/CommitteeFileUploads/2009ComputerScienceTransferGuid
elines.pdf 

http://www.aacc.nche.edu/AboutCC/Trends/Pages/studentsatcommunitycolleges.aspx
http://www.abet.org/
http://www.acm.org/serving/se/code.htm
http://www.acm.org/education/curricula/ComputerScience2008.pdf
http://www.acmccecc.org/committee/CommitteeFileUploads/2009ComputerScienceTransferGuid


 

CMU/SEI-2011-TR-017 | 49 

[ACM 2011] 
Association for Computing Machinery (ACM) Inc. ACM Code of Ethics and Professional 
Conduct. http://www.acm.org/constitution/code.html (2011). 

[ACM CCECC 2009a] 
ACM Committee for Computing Education in Community Colleges (CCECC). Program Details: 
Computer Science. http://www.acmccecc.org/pgm_inventory/programdetail.aspx?pID=38 (2009).  

[ACM CCECC 2009b] 
ACM Committee for Computing Education in Community Colleges (CCECC). Assessment 
Rubric for Course Learning Outcomes: Computer Science I. 
http://www.acmccecc.org/reports/report_assessmentRubric.aspx?cID=43 (2009). 

[ACM CCECC 2009c] 
ACM Committee for Computing Education in Community Colleges (CCECC). Assessment 
Rubric for Course Learning Outcomes: Computer Science II. 
http://www.acmccecc.org/reports/report_assessmentRubric.aspx?cID=47 (2009).  

[ACM CCECC 2009d] 
ACM Committee for Computing Education in Community Colleges (CCECC). Assessment 
Rubric for Course Learning Outcomes: Computer Science III. http://www. 
acmccecc.org/reports/report_assessmentRubric.aspx?cID=98 (2009). 

[ACM CCECC 2009e] 
ACM Committee for Computing Education in Community Colleges (CCECC). Program Details: 
Software Engineering. http://acmccecc.org/pgm_inventory/programdetail.aspx?pID=40 (2009). 

[ACM CCECC 2009f] 
ACM Committee for Computing Education in Community Colleges (CCECC). Course Details: 
Introduction to Software Engineering. 
http://acmccecc.org/course_inventory/coursedetail.aspx?cID=113 (2009).  

[Allen 2008] 
Allen, Julia H.; Barnum, Sean; Ellison, Robert J.; McGraw, Gary; & Mead, Nancy R. Chapters 1, 
7, and 8 in Software Security Engineering: A Guide for Project Managers. Addison-Wesley 
Professional, 2008.  

[Bishop 2003] 
Bishop, Matt. Computer Security: Art and Science. Addison-Wesley, 2003.  

[Bloom 1956] 
Bloom, B. S., ed. Taxonomy of Educational Objectives: The Classification of Educational Goals: 
Handbook I, Cognitive Domain. Longmans, 1956. 

http://www.acm.org/constitution/code.html
http://www.acmccecc.org/pgm_inventory/programdetail.aspx?pID=38
http://www.acmccecc.org/reports/report_assessmentRubric.aspx?cID=43
http://www.acmccecc.org/reports/report_assessmentRubric.aspx?cID=47
http://www
http://acmccecc.org/pgm_inventory/programdetail.aspx?pID=40
http://acmccecc.org/course_inventory/coursedetail.aspx?cID=113


 

CMU/SEI-2011-TR-017 | 50 

[CERT 2007] 
CERT. Survivability and Information Assurance Curriculum. Software Engineering Institute, 
Carnegie Mellon University. http://www.cert.org/sia/ (2007). 

[Chen 2008] 
Chen, Grace. “The Reverse Transfer Process.” Community College Review. 2008. 
http://www.communitycollegereview.com/articles/22 

[Chronicle Research Services 2009] 
Chronicle Research Services. The College of 2020: Students. 2009. 
http://www.compassknowledge.com/wp-content/uploads/2010/04/06-2009-The-2020-Students-
Part-1of-3-The-Chronicle-of-HE.pdf 

[CNSS 2009] 
Committee on National Security Systems (CNSS). Instruction No. 4009, National Information 
Assurance Glossary. Revised June 2009. 

[CCRC 2011 ] 
Community College Research Center (CCRC). History/Mission. 
http://ccrc.tc.columbia.edu/History.asp (2011). 

[Cooper 2010] 
Cooper, Stephen; Nickell, Christine; Pérez, Lance C.; Oldfield, Brenda; Brynielsson, Joel; Gencer 
Gökce, Asim; Hawthorne, Elizabeth K.; Klee, Karl J.; Lawrence, Andrea; & Wetzel, Susanne. 
Towards Information Assurance (IA) Curricular Guidelines (ITiCSE 2010 Working Group 
Report). ACM, 2010. http://delivery.acm.org/10.1145/1980000/1971686/p49-
cooper.pdf?key1=1971686&key2=6295195031&coll=DL&dl=ACM&ip=128.237.28.14&CFID=
22435773&CFTOKEN=11620354 

[CyberWatch 2011] 
CyberWatch. College Curriculum. 
http://www.cyberwatchcenter.org/index.php?option=com_content&view=article&id=99&Itemid=
64 (Accessed June 2011). Note: Downloading the curriculum requires registration.  

[DHS 2011a] 
Department of Homeland Security (DHS) Software Assurance (SwA). Build Security In. 
https://buildsecurityin.us-cert.gov/daisy/bsi/home.html (2011).  

[DHS 2011b] 
Department of Homeland Security (DHS) Software Assurance (SwA) Workforce Education and 
Training Working Group. Software Assurance CBK/Principles Organization. 
https://buildsecurityin.us-cert.gov/bsi/dhs/927-BSI.html (2011). 

http://www.cert.org/sia/
http://www.communitycollegereview.com/articles/22
http://www.compassknowledge.com/wp-content/uploads/2010/04/06-2009-The-2020-Students-Part-1of-3-The-Chronicle-of-HE.pdf
http://www.compassknowledge.com/wp-content/uploads/2010/04/06-2009-The-2020-Students-Part-1of-3-The-Chronicle-of-HE.pdf
http://ccrc.tc.columbia.edu/History.asp
http://delivery.acm.org/10.1145/1980000/1971686/p49-cooper.pdf?key1=1971686&key2=6295195031&coll=DL&dl=ACM&ip=128.237.28.14&CFID=
http://delivery.acm.org/10.1145/1980000/1971686/p49-cooper.pdf?key1=1971686&key2=6295195031&coll=DL&dl=ACM&ip=128.237.28.14&CFID=
http://www.cyberwatchcenter.org/index.php?option=com_content&view=article&id=99&Itemid=
https://buildsecurityin.us-cert.gov/daisy/bsi/home.html
https://buildsecurityin.us-cert.gov/bsi/dhs/927-BSI.html


 

CMU/SEI-2011-TR-017 | 51 

 

[Hughes 2011] 
Hughes, Katherine. “CTE Dual Enrollment: Preparing Students for College and Careers.” 
Presented at the CA Community College Association for Occupational Education Conference. 
2011. 
http://ccrc.tc.columbia.edu/DefaultFiles/SendFileToPublic.asp?ft=pdf&FilePath=c:\Websites\ccrc
_tc_columbia_edu_documents\332_914.pdf&fid=332_914&aid=47&RID=914&pf=Publication.a
sp?UID=914 

[Huitt 2006] 
Huitt, W. “The cognitive system.” Educational Psychology Interactive. Valdosta State University, 
http://www.edpsycinteractive.org/topics/cogsys/cogsys.html (2006).  

[IEEE-CS 2001] 
IEEE Computer Society (IEEE-CS) & Association for Computing Machinery (ACM). Computing 
Curricula 2001: Computer Science, Final Report. 
http://www.acm.org/education/curric_vols/cc2001.pdf (2001).  

[IEEE-CS 2004a] 
IEEE Computer Society (IEEE-CS) & Association for Computing Machinery (ACM). “Computer 
Engineering 2004: Curriculum Guidelines for Undergraduate Degree Programs in Computer 
Engineering.” Computing Curriculum Series. 
http://www.acm.org/education/education/curric_vols/CE-Final-Report.pdf (2004). 

[IEEE-CS 2004b] 
IEEE Computer Society (IEEE-CS) & Association for Computing Machinery (ACM). “Software 
Engineering 2004: Curriculum Guidelines for Undergraduate Degree Programs in Software 
Engineering.” Computing Curriculum Series. http://sites.computer.org/ccse/SE2004Volume.pdf 
(2004).  

[IEEE-CS 2008] 
The Association for Computing Machinery (ACM) & IEEE Computer Society (IEEE-CS). 
“Computer Science Curriculum 2008: An Interim Revision of CS 2001.” Computing Curriculum 
Series. http://www.acm.org/education/curricula/ComputerScience2008.pdf (2008). 

[IEEE-CS 2011] 
IEEE Computer Society. IEEE Computer Society Educational Activities Board. 
http://www.computer.org/education/ (2011). 

[iSSEc 2009] 
Integrated Software & Systems Engineering Curriculum (iSSEc) Project. Graduate Software 
Engineering 2009 (GSwE2009) Curriculum Guidelines for Graduate Degree Programs in 
Software Engineering, Version 1.0. Stevens Institute of Technology, 2009.  

http://ccrc.tc.columbia.edu/DefaultFiles/SendFileToPublic.asp?ft=pdf&FilePath=c:\Websites\ccrc
http://www.edpsycinteractive.org/topics/cogsys/cogsys.html
http://www.acm.org/education/curric_vols/cc2001.pdf
http://www.acm.org/education/education/curric_vols/CE-Final-Report.pdf
http://sites.computer.org/ccse/SE2004Volume.pdf
http://www.acm.org/education/curricula/ComputerScience2008.pdf
http://www.computer.org/education/


 

CMU/SEI-2011-TR-017 | 52 

[Mead 2010a] 
Mead, Nancy R.; Allen, Julia H.; Ardis, Mark; Hilburn, Thomas B.; Kornecki, Andrew J.; Linger, 
Rick; & McDonald, James. Software Assurance Curriculum Project Volume I: Master of Software 
Assurance Reference Curriculum (CMU/SEI-2010-TR-005). Software Engineering Institute, 
Carnegie Mellon University, 2010. http://www.sei.cmu.edu/library/abstracts/reports/10tr005.cfm 

[Mead 2010b] 
Mead, Nancy R.; Hilburn, Thomas B.; & Linger, Rick. Software Assurance Curriculum Project 
Volume II: Undergraduate Course Outlines (CMU/SEI-2010-TR-019). Software Engineering 
Institute, Carnegie Mellon University, 2010. 
http://www.sei.cmu.edu/library/abstracts/reports/10tr019.cfm 

[Mead 2011] 
Mead, Nancy R.; Allen, Julia H.; Ardis, Mark; Hilburn, Thomas B.; Kornecki, Andrew J.; & 
Linger, Rick. Software Assurance Curriculum Project Volume III: Master of Software Assurance 
Course Syllabi (CMU/SEI-2011-TR-013). Software Engineering Institute, Carnegie Mellon 
University, 2011. http://www.sei.cmu.edu/library/abstracts/reports/11tr013.cfm 

[Merkow 2010] 
Merkow, Mark S. & Raghavan, Lakshmikanth. Secure and Resilient Software Development. CRC 
Press, 2010 (ISBN: 9781439826966). 

[Moltz 2009] 
Moltz, David. “The New Reverse Transfer.” Inside Higher Ed. 2009. 
http://www.insidehighered.com/news/2009/02/18/reverse 

[Quinley 1988] 
Quinley, John W. & Quinley, Melissa P. Four-Year Graduates Attending Community Colleges: A 
New Meaning for the Term “Second Chance.” Community College Research Center, 1988. 
http://ccrc.tc.columbia.edu/DefaultFiles/SendFileToPublic.asp?ft=pdf&FilePath=c:\Websites\ccrc
_tc_columbia_edu_documents\332_41.pdf&fid=332_41&aid=47&RID=41&pf=Publication.asp?
UID=41 

[Seacord 2005] 
Seacord, Robert C. Secure Coding in C and C++. Addison-Wesley, 2005. 

[Stallings 2007] 
Stallings, W. Network Security Essentials, 3rd Ed. Prentice Hall, Upper Saddle River, NJ, 2007. 

[Stevens 2004] 
Stevens, Danielle D. & Levi, Antonia J. Introduction to Rubrics: An Assessment Tool to Save 
Grading Time, Convey Effective Feedback, and Promote Student Learning, Stylus Publishing, 
Virginia (2004). 

http://www.sei.cmu.edu/library/abstracts/reports/10tr005.cfm
http://www.sei.cmu.edu/library/abstracts/reports/10tr019.cfm
http://www.sei.cmu.edu/library/abstracts/reports/11tr013.cfm
http://www.insidehighered.com/news/2009/02/18/reverse
http://ccrc.tc.columbia.edu/DefaultFiles/SendFileToPublic.asp?ft=pdf&FilePath=c:\Websites\ccrc


 

CMU/SEI-2011-TR-017 | 53 

[Redwine 2010] 
Redwine, Samuel T., Jr. Secure Software Engineering Education. https://buildsecurityin.us-
cert.gov/swa/downloads/JMU_SSE.pdf (Accessed August 2010). 

[Stoneburner 2004] 
Stoneburner Gary; Hayden,Clark; & Feringa, Alexis. “Engineering Principles for Information 
Technology Security (A Baseline for Achieving Security), Revision A (NIST Special Publication 
800-27 Rev A).” Computer Security. Computer Science Division, Information Technology 
Laboratory, National Institute of Standards and Technology, 2004. 
http://csrc.nist.gov/publications/nistpubs/800-27A/SP800-27-RevA.pdf 

[Taylor 2008] 
Taylor, B. & Shiva Azadegan, “Moving beyond security tracks: Integrating security in CS0 and 
CS1.” Presented at Special Interest Group Computer Science Education (SIGCSE). ACM, 2008. 

[Wright 2006] 
Wright, Marie & Kakalik, John. Information Security: Contemporary Cases. Jones & Bartlett 
Publishers, 2006. 
  

https://buildsecurityin.us-cert.CMU/SEI-2011-TR-017
https://buildsecurityin.us-cert.CMU/SEI-2011-TR-017
https://buildsecurityin.us-cert.CMU/SEI-2011-TR-017
http://csrc.nist.gov/publications/nistpubs/800-27A/SP800-27-RevA.pdf


 

CMU/SEI-2011-TR-017 | 54 

REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, 
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments 
regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington 
Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to 
the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. 

1. AGENCY USE ONLY 

(Leave Blank) 

2. REPORT DATE 

September 2011 

3. REPORT TYPE AND DATES 
COVERED 

Final 

4. TITLE AND SUBTITLE 

Software Assurance Curriculum Project Volume IV: Community College Education 

5. FUNDING NUMBERS 

FA8721-05-C-0003  

6. AUTHOR(S) 

Nancy R. Mead, Elizabeth K. Hawthorne, and Mark Ardis 

 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

Software Engineering Institute 
Carnegie Mellon University 
Pittsburgh, PA 15213 

8. PERFORMING ORGANIZATION  
REPORT NUMBER 

CMU/SEI-2011-TR-017 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

HQ ESC/XPK 
5 Eglin Street 
Hanscom AFB, MA 01731-2116 

10. SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

ESC-TR-2011-017 

11. SUPPLEMENTARY NOTES 

 

12A DISTRIBUTION/AVAILABILITY STATEMENT 

Unclassified/Unlimited, DTIC, NTIS 

12B DISTRIBUTION CODE 

 

13. ABSTRACT (MAXIMUM 200 WORDS) 

The fourth volume in the Software Assurance Curriculum Project led by a team at the Software Engineering Institute, this report focuses 
on community college courses for software assurance. The report includes a review of related curricula, outcomes and body of 
knowledge, expected background of target audiences, and outlines of six courses. The courses are intended to provide students with 
fundamental skills for continuing with graduate-level education or to provide supplementary education for students with prior 
undergraduate technical degrees who wish to become more specialized in software assurance.  

Previous volumes of this project are Volume I: Master of Software Assurance Reference Curriculum, Volume II: Undergraduate Course 
Outlines, and Volume III: Software Assurance Course Syllabi. 

14. SUBJECT TERMS 

software assurance, software assurance education, software engineering education, software 
security education, community college education 

15. NUMBER OF PAGES 

64 

16. PRICE CODE 

 

17. SECURITY CLASSIFICATION OF 
REPORT 

Unclassified 

18. SECURITY CLASSIFICATION 
OF THIS PAGE 

Unclassified 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 

Unclassified 

20. LIMITATION OF 
ABSTRACT 

UL 
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 

298-102 

 

 

 

 


	Software Assurance Curriculum Project Volume IV: Community College Education
	Table of Contents
	List of Tables
	Acknowledgments
	Abstract
	1 Introduction
	2 Review of Related Curricula
	3 Outcomes and Body of Knowledge
	4 Target Audience and Expected Background
	5 Overview of Courses
	6 Computer Science I
	7 Computer Science II
	8 Computer Science III
	9 Introduction to Computer Security
	10 Secure Coding
	11 Introduction to Assured Software Engineering
	12 Resources
	Appendix A: Related Curricula
	Appendix B: Bloom’s Taxonomy and the GSwE2009
	Appendix C: Community College Profiles
	Appendix D: Relevant Research Articles
	Bibliography


