Circulation and Thermohaline Structure along the Chukchi-Beaufort Continental Slope

Thomas Weingartner
Institute of Marine Science
School of Fisheries and Ocean Sciences
University of Alaska
Fairbanks, AK 99775-7220
phone: 907-474-7993 fax: 907-474-7204 e-mail: weingart@ims.alaska.edu

Award Number: N00014-99-1-0460

LONG TERM GOALS

My long-term goal is to understand the mean and time-varying density structure and circulation dynamics of the continental slope of the Arctic Ocean and how the slope interacts with the adjacent shelves and basin. The circumpolar boundary currents of the Arctic Ocean are important in the distribution and exchange of mass, heat, and material around the basin and between the shelves and the interior ocean. However, this province of the Arctic Ocean is the least understood and sampled portion of the Arctic.

OBJECTIVES

The field effort and data analyses are addressing the following questions and objectives:

1. What is the decorrelation length scale of the alongslope density field? Does this length scale differ between the Chukchi and Beaufort slopes?
2. How does the magnitude of the alongshore pressure gradient vary along the Chukchi-Beaufort continental slope? Are these changes associated with distinctly different water masses?
3. How does the cross-slope pressure gradient vary along the Beaufort-Chukchi continental slope?
4. Is the flow in the upper halocline consistent with the thermal wind balance?
5. Combine the temperature-salinity data with biogeochemical measurements to better define the water masses encountered along the slope.

APPROACH

To address these objectives, I took advantage of the unique sampling capabilities of a nuclear submarine (SSN Hawkbill) operating beneath the ice pack along the Chukchi-Beaufort continental slope in April 1999. My portion of this program sampled the ocean using the sail-mounted CTD and twenty-five (25) submarine-launched expendable CTDs (SSXCTD) probes. The former sampled at 2-second intervals (subsequently averaged into 6-minute segments) at a constant depth while the submarine was in transit along a grid track that zigzagged across and along the continental slope. The SSXCTDs were deployed
Circulation and Thermohaline Structure along the Chukchi-Beaufort Continental Slope

1. **REPORT DATE**
 SEP 2000

2. **REPORT TYPE**

3. **DATES COVERED**
 00-00-2000 to 00-00-2000

4. **TITLE AND SUBTITLE**
 Circulation and Thermohaline Structure along the Chukchi-Beaufort Continental Slope

5a. **CONTRACT NUMBER**

5b. **GRANT NUMBER**

5c. **PROGRAM ELEMENT NUMBER**

5d. **PROJECT NUMBER**

5e. **TASK NUMBER**

5f. **WORK UNIT NUMBER**

6. **AUTHOR(S)**

7. **PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)**
 Institute of Marine Science, School of Fisheries and Ocean Sciences, University of Alaska, Fairbanks, AK, 99775

8. **PERFORMING ORGANIZATION REPORT NUMBER**

9. **SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)**

10. **SPONSOR/MONITOR’S ACRONYM(S)**

11. **SPONSOR/MONITOR’S REPORT NUMBER(S)**

12. **DISTRIBUTION/AVAILABILITY STATEMENT**
 Approved for public release; distribution unlimited

13. **SUPPLEMENTARY NOTES**

14. **ABSTRACT**

15. **SUBJECT TERMS**

16. **SECURITY CLASSIFICATION OF:**
 - a. REPORT: unclassified
 - b. ABSTRACT: unclassified
 - c. THIS PAGE: unclassified

17. **LIMITATION OF ABSTRACT**
 Same as Report (SAR)

18. **NUMBER OF PAGES**
 4

19a. **NAME OF RESPONSIBLE PERSON**

Standard Form 298 (Rev. 8-98)
Prepared by ANSI Z39-18
at pre-selected locations along the cruise track and sample between the surface (~10m depth) and 750 m depth. This project also supported Dr. Stephen Okkonen who was a rider on the SSN *Hawkbill* during the science mission. Dr. Okkonen was involved in all phases of the oceanographic data collection and is continuing with the analyses of the CTD (sail-mounted and SSXCTD) data sets. Some of these data are being analyzed in collaboration with Robin Muench (ADCP), Terry Whitledge and Dean Stockwell, (nutrients and chlorophyll), and Margo Edwards (high resolution bathymetry from the swath mapper SCAMP [Seafloor Characterization and Mapping Pods]).

WORK COMPLETED

The data have been collected and we are presently analyzing them in conjunction with the aforementioned colleagues. We have computed the geostrophic transports and the along and cross-slope dynamic height fields. We have estimated the heat loss from the Atlantic Layer of the boundary flow. We have also estimated that the decorrelation length scale along the slope is about 20 km, which is the typical diameter of eddies found in the Canada Basin. These decorrelation length scales appear to be similar to the along-slope length scales of bathymetric variability on the Beaufort continental slope.

RESULTS

Our results are showing that the Chukchi slope between the Northwind Ridge and Barrow is incised by a rugged topography that includes deep submarine canyons with vertical scales of hundreds of meters while east of Barrow the topography is gentler. The alongslope scale lengths of halocline temperature and salinity appear correlated with the seafloor topography and the dominant alongslope scale of variability is about 20 km. This correlation suggests that the halocline displacements result from interactions between the flow field and the slope topography.

We are also finding that the alongslope dynamic topography in April 1999 consisted of a trough in the dynamic height field centered midway along the Alaskan Beaufort slope. This trough, which suggests alongslope convergence in the alongslope flow field, is related to deep upwelling within the Atlantic Layer and halocline. This finding is consistent with the cross-slope dynamic height sections that suggest that the magnitude of the eastward transport in the halocline and Atlantic Water layers decreases moving eastward along the Beaufort slope. As the boundary current flows eastward along the Beaufort Sea slope, waters at depths between 300 and 600 m (within the Atlantic Layer) cool substantially. Concurrent velocity data from moorings (described below) suggest that the observed dynamic height field is not permanent feature of the slope circulation field but instead reflects a response to (probably seasonal) wind forcing. We have recently obtained the ECMWF surface pressure fields for 1999 so that we can compute the regional wind field. With these data we will be better able to interpret the CTD and current meter data.

IMPACT/APPLICATIONS

The submarine is the only platform capable of collecting the unique set of measurements being used herein from ice-covered portions of the Arctic Ocean. We were able to sample more than 1000 km of trackline during April in the Arctic Ocean collecting data at a spatial resolution of order tens of meters. The data set is among the most detailed ever collected in this region. The measurements are shedding new light on the dynamics of flow along the continental slope of the Arctic Ocean and along other slopes not under the influence of western boundary-type currents.
TRANSITIONS

These results, in conjunction with those described below, will provide an unusually valuable data set for guiding model development and for comparison with results from an Arctic Ocean general circulation model. D. Martinson (LDEO) and W. Maslowski (NPGS) have indicated an interest in undertaking such a comparison independent of this project.

RELATED PROJECTS

This SCICEX project complements a set of current meter measurements collected by this PI (and K. Aagaard, E. Carmack, and K. Shimada) under sponsorship by the U.S. Minerals Management Service and the Japan Marine Science and Technology Center. The current measurements were obtained from yearlong moorings deployed along the Beaufort continental slope between September 1998 and 1999.

PUBLICATIONS

We have presented a poster at the AGU/ASLO Ocean Sciences Meeting that was held in San Antonio in January, 2000. The citation is:

We will present more of this work, in conjunction with some of the MMS-supported current meter data at the ARCSS-Shelf Basin Interaction Meeting to be held in Atlanta in November, 2000.