e-PLAS ANALYSIS OF SHORT PULSE LASER-MATTER INTERACTION EXPERIMENTS *

R. J. Mason†, M. Wei and F. Beg‡, R. B. Stephens§ and C. M. Snell∥

†Research Applications Corporation, Los Alamos, NM 87544,
‡University of California, San Diego, CA 92093, §General Atomics, San Diego, CA 92121,
∥Los Alamos National Laboratory, Los Alamos, NM 87545

Abstract

The transport of relativistic electrons generated in wire and foil targets by short-pulse lasers is examined with the new e-PLAS simulation code based on implicit-moment/hybrid techniques. In a 50 µm diameter Cu wire (Z\textsubscript{eff} = 15) as recently illuminated on the TITAN LLNL laser, for example, a 1.7x1020 W/cm2 simulated laser beam delivering a flat 30 µm spot from the left (with 40% absorption) generates the hot electron density profile depicted below at 940 fs. The peak hot density in the laser spot is ~3x1021 electrons/cm3. This density drops to 3x1019 electrons/cm3 200 microns into the wire. A peak temperature of 2 keV is achieved through Joule heating of the background electrons in the wire “head” near the deposition surface; a significantly lower ~0.4 keV is achieved in the wire body. Here, 300 MG thermoelectric B-fields are also calculated. Parameter studies relate the hot electron stopping to the surface B-field, modest drag slowing, and the background cold electron resistivity, which is bleached by background heating to low values at late times.

I. INTRODUCTION

Short pulse laser-matter experiments present a particular challenge to modeling. Large parts of the interacting plasma system are only mildly collisional, suggesting the use of particle-in-cell (PIC) techniques. Other closely coupled parts are fluidic and/or strongly collisional. The interacting region is often thousands of Debye lengths in scope, while traditional explicit PIC techniques require computational cells less than a Debye length in size.

To surmount these difficulties with some economy modelers have resorted to implicit coding, in which time advanced plasma currents are used to predict electric and magnetic (E- and B-) fields at the end of each computational cycle. In the Moment Method these advanced currents are obtained from a set of auxiliary fluid equations, used to advance accumulated densities and currents from an earlier cycle. Plasma particles and fluids are advanced in these predicted fields, yielding true currents that are subsequently used to correct the predicted fields for the next cycle.

We have applied this approach, as embodied in the e-PLAS code, to study the hot electrons generated in wire targets exposed to picosecond 1.06 µm laser pulses at 1.7 x 1020 W/cm2 intensities. A typical target is sketched in Fig. 1.

Figure 1. Nail target used in recent Titan laser experiments. The laser arrives from the left.

Hot electrons driven by the laser are typically generated at ponderomotive potential energies as predicted by Wilks, e.g. possessing here a relativisitic γ = 10.3. The wires are copper with an effective atomic number Z = 15. The hot electrons are stopped by drag against the background cold electrons, and by self-consistent E-fields arising from the resistance of the cold background returning to maintain charge neutrality. Relativistically corrected (using Jackson and Mosher’s analysis) Spitzer resistivity and drag are employed. The resistivity is given a ceiling (for cold electron temperatures T\textsubscript{e} < 100 eV) to replicate metallic limits. Heated colds are coupled to the ions at classical collisional rates. When ν\textsubscript{h-c} ~ ν\textsubscript{c-i} cold heating is directly mirrored in the ions. However, we find that this is frequently not the case. Self-consistent B-fields can form thermoelectrically at the nail head surface...
The transport of relativistic electrons generated in wire and foil targets by short-pulse lasers is examined with the new e-PLAS simulation code based on implicit moment/hybrid techniques. In a 50 μm diameter Cu wire (Zeff = 15) as recently illuminated on the TITAN LLNL laser, for example, a 1.7x10^20 W/cm^2 simulated laser beam delivering a flat 30 μm spot from the left (with 40% absorption) generates the hot electron density profile depicted below at 940 fs. The peak hot density in the laser spot is ~3x10^21 electrons/cm^3. This density drops to 3x10^19 electrons/cm^3 200 microns into the wire. A peak temperature of 2 keV is achieved through Joule heating of the background electrons in the wire head near the deposition surface; a significantly lower ~0.4 keV is achieved in the wire body. Here, 300 MG thermoelectric B-fields are also calculated. Parameter studies relate the hot electron stopping to the surface B-field, modest drag slowing, and the background cold electron resistivity, which is bleached by background heating to low values at late times.
and deflect hot electrons along it. For laser deposition we use a grid-following scheme, as in older hydro codes. The light follows the mesh to the neighborhood of the relativistic critical density, and dumps a fraction of its energy there, in an emitted hot component. This can be either a hot fluid element or hot PIC particles. In the later case, the emission spectrum is either a relativistic Maxwellian, or a momentum shell, each at an energy specified by earlier classical PIC calculations. Similarly, the emission direction of particle electrons is pre-specified, as generally isotropic but possibly as a beam. The influence of a mean ponderomotive force is also included as a density-limited influence of the local gradient of the laser intensity.

II. NAIL/WIRE SIMULATIONS

e-PLAS has been applied to recent experiments at the Rutherford (RAL) Laboratory and at Livermore on its TITAN laser. In these experiments picosecond pulses at 1.06 µm and 0.1 to 1.7 x 10^20 W/cm^2 were deposited onto the heads of copper nails (mean Z = 15). In simulation a flat pulse in planar polarization at normal incidence was deposited normally on nail heads, generally preceded by a 20 µm density ramp (from an assumed prepulse). The emitted hot electrons from this interaction were given an isotropic Maxwellian spectrum at ponderomotive energies, as predicted by Wilks\(^3\), here, typically at a \(\gamma = 10.3\).

In Fig. 2 we collect code prediction for hot electron transport and its consequences in a 50 µm diameter wire following 940 fs of illumination a 10 µm FWHM Gaussian spot. The mesh is Cartesian. We see that hot electrons tend to remain trapped near the head. A bright “figure 8” shaped region marks the laser deposition region. Jets of hot electron run nearly vertically toward the head edges as well as axially down the wire. Hot electrons have reached a depth of about 150 µm. Thereafter, they show a spotty presence out to the back of the wire at 250 µm. The actual wire in the experiments was 1 mm long, so here we may see reflections off the back, absent in the real experiment.

Frame (b) shows that the peak hot electron density is nearly 10^22 e/cm^3. A spike in density is coincident with the figure 8 hot spot, where the laser deposits. The hot density, \(n_h\) has decayed to 10^20 e/cm^3 by x = 180 µm. In (c) and (d) we collect cold electron temperature, \(T_c\) and \(T_i\) (ion temperature) cuts at y = 50 µm.

As in cone targets\(^1\), resistive heating is the most dominant mechanism at early times in these wires. The E-field arising from this resistivity is captured in frame (d) of Fig. 3. It is evidently \(\approx 0.02\) MeV/µm, so that over a distance of 100 µm, the hot electrons lose 2.0 MeV, clearly below their launch energy for \(\gamma = 10.3\), i.e. 4.7 MeV.

![Figure 2](image-url)

Figure 2. Conditions at 940 fs in the Cu wire. (a) hot electron density contours, (b) hot electron density, \(n_h(x,y)\) on the centerline, (c) cold background temperatures \(T_c(x,y)\), and (d) \(T_c\) and \(T_i\) (ion temperature) cuts at y = 50 µm.

Magnetic fields in the head are positive above the centerline, characteristic of thermoelectric sourcing, i.e. electrons near the centerline are heading out toward the laser. The predicted B-ffields are intense near the head, exceeding 400 MG. The B > 0 value above the wire near 120 µm indicates a preponderance of hot electrons.
transporting just outside the wire without a completely canceled cold return current.

![Figure 4.](image)

Figure 4. (a) flux of hot electron n_{vh}, (b) returning flux of cold background electrons n_{cv}, (c) n_{vh} vs. depth x, and (d) hot electron phase space, $f(u,x)$.

We collect flux data for the 50 µm wire experiment in Fig. 4. Clearly, the hot electron flux n_{vh} is circulating in the head under the intense B-fields. Frame (b) shows how the cold electron flux responds, attempting to replace the hot electrons in their fountain toward the laser. Frame (c) shows that the hot flux decays exponentially over one order of magnitude from the head near $x = 80$ µm down to 180 µm. The final frame (d) shows that a major fraction of the electrons are captured near the head, consistent with the density spike near the laser source in Fig. 2 (b).

Recent experiments have focused on modifications in the heating derived as the wire diameter was decreased for targets with a fixed head size. It appears that the wires become cooler with smaller diameters. In Fig. 5 we collect simulation results for diameters from 40 to 10 µm.

![Figure 5.](image)

Figure 5. Density plots at 2 ps for wires with the diameter: (a,b) 40 µm, (c,d) 20 µm, and (e,f) 10 µm. The vertical line marks the maximum depth of high hot density.

The figure shows decreased penetration of the hots as the wire diameter is decreased. In each case the peak n_h near the spot is of order 2×10^3 e/cm3. This hot density drops to 10^2 e/cm3 at 220, 200 and 170 µm, respectively, as the wire diameter is reduced from 40, through 20 to 10 µm. As earlier, the hot electrons tend to fill the head and accumulate brightly near the edges of the spot, where B-fields exceeding 300 MG are seen in all three cases.

![Figure 6.](image)

Figure 6. Cold electron temperature profiles $T_c(x,y)$ at 2 ps. Wires with diameters: (a) 40 µm, (c,d), 20 µm, and (e,f) 10 µm.

With Fig. 6 we capture the corresponding simulated cold electron temperature data. At 2 ps the colds in the wire at the same 220, 200, and 170 µm positions in our sequence of narrowed wires are 300, 250 and 200 eV, respectively. As the wires are parametrically narrowed, the cold temperature in the head rises from 600 to 900 eV at its base near 130 µm, testifying to more energy deposition there. The cold contours also show that cold surface heating is favored, presumably larger surface return currents allow for greater resistive heating there. In all cases, the ion temperatures remain well below the colds, even in the head; in (b) for example at 130 µm the ions reach only 300 eV, while the cold head electrons reach 600 eV.

We have done a few simulations with steep, 2 µm scale density ramps at the nail head, assuming colder hots ($\gamma = 2.2$) and greater absorption (80%), as might result light coupling directly to the densest points in the head. Under such favorable but unlikely conditions, these simulations predict that the 20 µm wire could reach 2 keV at the $x = 200$ µm depth.

III. SUMMARY

Implicit plasma simulation can provide useful insight for short-pulse hot electron driven heating experiments. A significant fraction of the energy appears to remain in the nail head. The simulations show weak coupling to the ions. Higher absorption rates and lower hot energies from...
possible steep density profiles can add to the cold heating, but such results exceed experimental findings.

IV. REFERENCES