REPORT DOCUMENTATION PAGE

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. *PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.*

<table>
<thead>
<tr>
<th>1. REPORT DATE (DD-MM-YYYY)</th>
<th>2. REPORT TYPE</th>
<th>3. DATES COVERED (From – To)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Aug 2014</td>
<td>Journal Article</td>
<td>May 2011 – April 2014</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE AND SUBTITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>White matter hyperintensities on MRI in high-altitude U-2 pilots</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5a. CONTRACT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5b. GRANT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5c. PROGRAM ELEMENT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5d. PROJECT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5e. TASK NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5f. WORK UNIT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>USAF School of Aerospace Medicine</td>
</tr>
<tr>
<td>Aerospace Medicine Dept/FECN</td>
</tr>
<tr>
<td>2510 Fifth St.</td>
</tr>
<tr>
<td>Wright-Patterson AFB, OH 45433-7913</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. PERFORMING ORGANIZATION REPORT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFRL-SA-WP-JA-2013-0006</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10. SPONSORING/MONITOR’S ACRONYM(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. SPONSOR/MONITOR’S REPORT NUMBER(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. DISTRIBUTION / AVAILABILITY STATEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distribution A: Approved for public release; distribution is unlimited. Case Number: AFMC-2013-0019, 14 Mar 2013</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. SUPPLEMENTARY NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14. ABSTRACT</th>
</tr>
</thead>
<tbody>
<tr>
<td>The purpose of this study was to demonstrate that U-2 pilot occupational exposure to hypobaria leads to increased incidence of white matter hyperintensities (WMH) with a more uniform distribution throughout the brain irrespective of clinical neurologic decompression sickness history. We evaluated imaging findings in 102 U-2 pilots and 91 controls matched for age, health, and education levels. Three-dimensional, T2-weighted, high-resolution (1-mm isotropic) imaging data were collected using fluid-attenuated inversion recovery sequence on a 3-tesla magnetic resonance imaging scanner. Whole-brain and regional WMH volume and number were compared between groups using a 2-tailed Wilcoxon rank sum test. U-2 pilots demonstrated an increase in volume (394%; p = 0.004) and number (295%; p < 0.001) of WMH. Analysis of regional distribution demonstrated WMH more uniformly distributed throughout the brain in U-2 pilots compared with mainly frontal distribution in controls. Pilots with occupational exposure to hypobaria showed a significant increase in WMH lesion volume and number. Unlike the healthy controls with predominantly WMH in the frontal white matter, WMH in pilots were more uniformly distributed throughout the brain. This is consistent with our hypothesized pattern of damage produced by interaction between microemboli and cerebral tissue, leading to thrombosis, coagulation, inflammation, and/or activation of innate immune response, although further studies will be necessary to clarify the pathologic mechanisms responsible.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15. SUBJECT TERMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRI; white matter hyperintensities; hypobaric exposure; neurological decompression sickness</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. SECURITY CLASSIFICATION OF:</th>
<th>17. LIMITATION OF ABSTRACT</th>
<th>18. NUMBER OF PAGES</th>
<th>19a. NAME OF RESPONSIBLE PERSON</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. REPORT U</td>
<td>SAR</td>
<td>10</td>
<td>Dr. Stephen McGuire</td>
</tr>
<tr>
<td>b. ABSTRACT U</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. THIS PAGE U</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18
White matter hyperintensities on MRI in high-altitude U-2 pilots
Neurology 2013;81;729-735
DOI 10.1212/WNL.0b013e3182a1ab12

This information is current as of August 19, 2013

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://www.neurology.org/content/81/8/729.full.html

Neurology © is the official journal of the American Academy of Neurology. Published continuously since 1951, it is now a weekly with 48 issues per year. Copyright © 2013 American Academy of Neurology. All rights reserved. Print ISSN: 0028-3878. Online ISSN: 1526-632X.
White matter hyperintensities on MRI in high-altitude U-2 pilots

ABSTRACT

Objective: To demonstrate that U-2 pilot occupational exposure to hypobaria leads to increased incidence of white matter hyperintensities (WMH) with a more uniform distribution throughout the brain irrespective of clinical neurologic decompression sickness history.

Methods: We evaluated imaging findings in 102 U-2 pilots and 91 controls matched for age, health, and education levels. Three-dimensional, T2-weighted, high-resolution (1-mm isotropic) imaging data were collected using fluid-attenuated inversion recovery sequence on a 3-tesla MRI scanner. Whole-brain and regional WMH volume and number were compared between groups using a 2-tailed Wilcoxon rank sum test.

Results: U-2 pilots demonstrated an increase in volume (394%; \(p = 0.004 \)) and number (295%; \(p < 0.001 \)) of WMH. Analysis of regional distribution demonstrated WMH more uniformly distributed throughout the brain in U-2 pilots compared with mainly frontal distribution in controls.

Conclusion: Pilots with occupational exposure to hypobaria showed a significant increase in WMH lesion volume and number. Unlike the healthy controls with predominantly WMH in the frontal white matter, WMH in pilots were more uniformly distributed throughout the brain. This is consistent with our hypothesized pattern of damage produced by interaction between microemboli and cerebral tissue, leading to thrombosis, coagulation, inflammation, and/or activation of innate immune response, although further studies will be necessary to clarify the pathologic mechanisms responsible. Neurology 2013;81:729–735

GLOSSARY

BET = brain extraction tool; DCS = decompression sickness; FLAIR = fluid-attenuated inversion recovery; FMRIB = Functional MRI of the Brain; NDCS = neurologic decompression sickness; RF = radiofrequency; 3D = 3-dimensional; USAF = United States Air Force; WMH = white matter hyperintensities.

The United States Air Force (USAF) operates the U-2 high-altitude reconnaissance aircraft, which maintains a cabin altitude of approximately 9,000 m (28,000–30,000 ft) while operating above 21,000 m. Decompression sickness (DCS), including CNS neurologic DCS (NDCS), is a known occupational risk from exposure to low ambient pressure (hypobaria) in high-altitude aviators. The risk of DCS per flight increased from 0.076% pre-2006 to 0.23% during the 2006–2010 operation years, believed to be related to more frequent and longer periods of exposure for the pilots. Importantly, 44% of episodes were diagnosed as NDCS, with symptoms ranging from mild, such as complaints of slowed thought processes, to severe, including anosmia, confusion, unresponsiveness, and permanent cognitive decline.

We previously reported that clinical NDCS was associated with an increase in white matter hyperintensities (WMH). Herein, we examine the volume, number, and regional distribution of subcortical WMH in a healthy, young population of age-, health-, and education-matched pilots and controls who lack the common risk factors for recognized WMH etiologies, leaving occupational exposure to hypobaria as the main intergroup contrast. We hypothesized that this
increase in WMH was directly or indirectly related to microbubbles of predominantly nitrogen gas formed during hypobaria. Specifically, we hypothesized the entire U-2 pilot population would exhibit significantly greater subcortical WMH volume and number with a more uniform regional distribution throughout the brain than a normative control group.

METHODS

Standard protocol approvals, registrations, and patient consents. This study was reviewed and approved by the Air Force Research Laboratory Institutional Review Board. All study subjects were active-duty members of the US Armed Forces. All participants were recruited with strict adherence to Department of Defense requirements regarding protection of human subjects’ research. Participation in this study was voluntary without commander involvement or knowledge. All participants acknowledged this was not an anonymous study and results would become a permanent part of their electronic military medical record and provided informed consent.

All high-altitude U-2 pilots currently on active duty in the USAF were invited to participate, with a participation rate exceeding 90%. All active-duty military members with a doctorate degree assigned to duty within the continental United States were eligible to participate as normal controls, although recruitment was predominantly from the 2 San Antonio graduate medical education military facilities through presentations at professional staff meetings. Additionally, presentations were made seeking volunteers at international aerospace meetings and through electronic messaging such as facility daily bulletins. All pilots were healthy at the time of testing, meeting USAF Flying Class II standards8 and on active USAF flying status. All normative subjects also met USAF Flying Class II neurologic standards. Military medical records were reviewed to confirm self-reported medical information. Briefly, exclusionary criteria included a history of any of the following: head trauma with any loss of consciousness or amnesia; migraine headache; psychiatric or psychological disease requiring any medication; hypertension requiring any medication; diabetes or glucose intolerance; any neurologic disease including infection, seizure, or stroke; familial degenerative neurologic disease; substance or drug abuse or dependence; or any systemic disease with the potential for intolerance; any neurologic disease including infection, seizure, or requiring more than a single statin for control; diabetes or glucose intolerance; any neurologic disease including infection, seizure, or requiring more than a single statin for control; diabetes or glucose intolerance; or hospitalization; hypertension requiring more than a single angioplasty; psychiatric or psychological disease requiring any medication; migraine headache; any neurologic disease including infection, seizure, or requiring more than a single statin for control; diabetes or glucose intolerance; or hospitalization; hypertension requiring more than a single angioplasty; psychiatric or psychological disease requiring any medication; migraine headache; any neurologic disease including infection, seizure, or requiring more than a single statin for control; diabetes or glucose intolerance; or hospitalization; hypertension requiring more than a single angioplasty; psychiatric or psychological disease requiring any medication; migraine headache; any neurologic disease including infection, seizure, or requiring more than a single statin for control; diabetes or glucose intolerance; or hospitalization; hypertension requiring more than a single angioplasty; psychiatric or psychological disease requiring any medication; migraine headache; any neurologic disease including infection, seizure, or requiring more than a single statin for control; diabetes or glucose intolerance; or hospitalization; hypertension requiring more than a single angioplasty; psychiatric or psychological disease requiring any medication; migraine headache; any neurologic disease including infection, seizure, or requiring more than a single statin for control; diabetes or glucose intolerance; or hospitalization; hypertension requiring more than a single angioplasty; psychiatric or psychological disease requiring any medication; migraine headache; any neurologic disease including infection, seizure, or requiring more than a single statin for control; diabetes or glucose intolerance; or hospitalization; hypertension requiring more than a single angioplasty; psychiatric or psychological disease requiring any medication; migraine headache; any neurologic disease including infection, seizure, or requiring more than a single statin for control; diabetes or glucose intolerance; or hospitalization; hypertension requiring more than a single angioplasty; psychiatric or psychological disease requiring any medication; migraine headache; any neurologic disease including infection, seizure, or requiring more than a single statin for control; diabetes or glucose intolerance; or hospitalization; hypertension requiring more than a single angioplasty; psychiatric or psychological disease requiring any medication; migraine headache; any neurologic disease including infection, seizure, or requiring more than a single statin for control; diabetes or glucose intolerance; or hospitalization; hypertension requiring more than a single angioplasty; psychiatric or psychological disease requiring any medication; migraine headache; any neurologic disease including infection, seizure, or requiring more than a single statin for control; diabetes or glucose intolerance; or hospitalization; hypertension requiring more than a single angioplasty; psychiatric or psychological disease requiring any medication; migraine headache; any neurologic disease including infection, seizure, or requiring more than a single statin for control; diabetes or glucose intolerance; or hospitalization; hypertension requiring more than a single angioplasty; psychiatric or psychological disease requiring any medication; migraine headache; any neurologic disease including infection, seizure, or requiring more than a single statin for control; diabetes or glucose intolerance; or hospitalization; hypertension requiring more than a single angioplasty; psychiatric or psychological disease requiring any medication; migraine headache; any neurologic disease including infection, seizure, or requiring more than a single statin for control; diabetes or glucose intolerance; or hospitalization; hypertension requiring more than a single angioplasty; psychiatric or psychological disease requiring any medication; migraine headache; any neurologic disease including infection, seizure, or requiring more than a single statin for control; diabetes or glucose intolerance; or hospitalization; hypertension requiring more than a single angioplasty; psychiatric or psychological disease requiring any medication; migraine headache; any neurologic disease including infection, seizure, or requiring more than a single statin for control; diabetes or glucose intolerance; or hospitalization; hypertension requiring more than a single angioplasty; psychiatric or psychological disease requiring any medication; migraine headache; any neurologic disease including infection, seizure, or requiring more than a single statin for control; diabetes or glucose intolerance; or hospitalization; hypertension requiring more than a single angioplasty; psychiatric or psychological disease requiring any medication; migraine headache; any neurologic disease including infection, seizure, or requiring more than a single statin for control; diabetes or glucose intolerance; or hospitalization; hypertension requiring more than a single angioplasty; psychiatric or psychological disease requiring any medication; migraine headache; any neurologic disease including infection, seizure, or requiring more than a single statin for control; diabetes or glucose intolerance; or hospitalization; hypertension requiring more than a single angioplasty; psychiatric or psychological disease requiring any medication; migraine headache; any neurologic disease including infection, seizure, or requiring more than a single statin for control; diabetes or glucose intolerance; or hospitalization; hypertension requiring more than a single angioplasty; psychiatric or psychological disease requiring any medication; migraine headache; any neurologic disease including infection, seizure, or requiring more than a single statin for control; diabetes or glucose intolerance; or hospitalization; hypertension requiring more than a single angioplasty; psychiatric or psychological disease requiring any medication; migraine headache; any neurologic disease including infection, seizure, or requiring more than a single statin for control; diabetes or glucose intolerance; or hospitalization; hypertension requiring more than a single angioplasty; psychiatric or psychological disease requiring any medication; migraine headache; any neurologic disease including infection, seizure, or requiring more than a single statin for control; diabetes or glucose intolerance; or hospitalization; hypertension requiring more than a single angioplasty; psychiatric or psychological disease requiring any medication; migraine headache; any neurologic disease including infection, seizure, or requiring more than a single statin for control; diabetes or glucose intolerance; or hospitalization; hypertension requiring more than a single angioplasty; psychiatric or psychological disease requiring any medication; migraine headache; any neurologic disease including infection, seizure, or requiring more than a single statin for control; diabetes or glucose intolerance; or hospitalization; hypertension requiring more than a single angioplasty; psychiatric or psychological disease requiring any medication; migraine headache; any neurologic disease including infection, seizure, or requiring more than a single statin for control; diabetes or glucose intolerance; or hospitalization; hypertension requiring more than a single angioplasty; psychiatric or psychological disease requiring any medication; migraine headache; any neurologic disease including infection, seizure, or requiring more than a single statin for control; diabetes or glucose intolerance; or hospitalization; hypertension requiring more than a single angioplasty; psychiatric or psychological disease requiring any medication; migraine headache; any neurologic disease including infection, seizure, or requiring more than a single statin for control; diabetes or glucose intolerance; or hospitalization; hypertension requiring more than a single angioplasty; psychiatric or psychological disease requiring any medication; migraine headache; any neurologic disease including infection, seizure, or requiring more than a single statin for control; diabetes or glucose intolerance; or hospitalization; hypertension requiring more than a single angioplasty; psychiatric or psychological disease requiring any medication; migraine headache; any neurologic disease including infection, seizure, or requiring more than a single statin for control; diabetes or glucose intolerance; or hospitalization; hypertension requiring more than a single angioplasty; psychiatric or psychological disease requiring any medication; migraine headache; any neurologic disease including infection, seizure, or requiring more than a single statin for control; diabetes or glucose intolerance; or hospitalization; hypertension requiring more than a single angioplasty; psychiatric or psychological disease requiring any medication; migraine headache; any neurologi...
test was used because WMH data are not normally distributed. We considered \(p < 0.05 \) as the threshold for significance. The volume and number of WMH for U-2 pilots were adjusted using the linear regression coefficients obtained from the calibration study to accommodate for a higher signal-to-noise ratio of the Wilford Hall Ambulatory Surgical Clinic imaging center (see figures e-1 to e-3). Group-wise comparison was performed for both original and adjusted data.

Analyses of regional distribution of WMH were performed using the methods described elsewhere.\(^7\) In short, we performed intergroup comparisons of the volume and number of WMH for the major cerebral partitions based on the 3D Talairach atlas.\(^1\)\(^8\) Further, we tested the regional nonuniformity of lesion distribution by adjusting the fractional volume of lesions per brain region by the fractional volume of region obtained from the atlas. A uniform distribution of lesions would lead to this ratio not being significantly different from the unity. We tested this hypothesis by calculating the significance of the \(z \) value obtained by subtracting 1.0 from the normalized fraction of lesion volume and dividing the residual by normalized SD. All regional analyses were performed on raw volume and numbers.

RESULTS An example of punctate subcortical WMH findings in a 39-year-old U-2 pilot who denied ever experiencing symptoms of DCS is shown in figure 1. Population-wide overlap of individual subcortical WMH demonstrated both a much larger number of lesions in pilots and a more uniform regional distribution of WMH than in normal controls (figure 2). Pilots demonstrated a nearly 4-fold increase in volume (375\%) and a 3-fold increase in the number (294\%) of WMH; this difference was significant for both the raw data and the site-specific adjusted data (table 1). Spearman correlation coefficient between lesion volume and age approached significance for the normal controls but not for the pilots (\(p = 0.07 \) and 0.16; \(r = 0.19 \) and 0.14 for controls and pilots, respectively) (see figure e-4, top). The correlation coefficients between the number of lesions and age were not different (\(p = 0.14 \) and 0.2; \(r = 0.15 \) and 0.13 for controls and pilots, respectively) (see figure e-4, bottom). Likewise, the correlation coefficients between the volume and number of WMH and the number of U-2 flight hours were not different for the pilots (\(p > 0.5 \); \(r = 0.05 \) and 0.03 for volume and number, respectively) (see figure e-5).

Regional analysis revealed that frontal lobe lesions constituted the largest fraction of both volume and number of WMH loci in both U-2 pilots (50\% and 56\% for volume and number, respectively) and normative controls (69\% and 70\% for volume and number, respectively) (see tables e-1 and e-2). Pilots had a higher volume (\(p < 0.03 \)) of WMH in the frontal, insula, limbic, sublobar, and temporal regions and a higher number (\(p < 0.01 \)) of WMH in the insula, limbic, temporal, and sublobar regions. No difference was noted in the occipital and parietal regions. Analysis of regional heterogeneity demonstrated that the fractional WMH volume deviated from the homogeneous distribution for 2 regions in pilots (insula and temporal lobe) vs 5 regions in normal controls (figure 3A). The same analysis was performed on the number of lesions, demonstrating that the regional distribution for pilots relative to the regional volume was more uniform than in the controls (figure 3B).

DISCUSSION The volume and count of WMH are important markers of cerebral integrity.\(^7\) In addition, increasing volume and number of WMH are linked to age-related cognitive decline, particularly in executive functioning,\(^1\) processing speed, and general cognitive status.\(^2\) Histopathologic findings of MRI-localized punctate WMH reveal areas of demyelination and atrophy of the neuropil around fibrohyalinotic arterioles, halo-like rarefaction of myelinated fibers surrounding the atrophic neuropil, and a suggestion of focally decreased permeability of the vessel walls.\(^2\) There is a significant regional heterogeneity in the distribution of subcortical WMH in normal aging.\(^4\) The majority (60\%–80\%) of WMH are found in the frontal area, presumably because its high metabolic demand makes it more vulnerable to age-related cerebrovascular disorders,\(^2\) while a more uniform distribution of WMH is a hallmark finding in many neuroinflammatory disorders and traumatic brain injury and may be used to gauge disease severity and progression.\(^4\)\(^,\)\(^2\)

This study demonstrated that pilots exposed to hypobaria had increased volume and number of subcortical WMH compared with a healthy, age- and education-matched normative population. WMH in pilots were more uniformly distributed throughout the brain than in normal controls and did not increase with age in pilots, suggesting that hypobaric exposure produces white matter damage different from that occurring in normal aging. Both findings suggest injury produced by microemboli entering cerebral circulation at random.

Three potential sources of microemboli should be considered: microbubbles of gas, presumably nitrogen; platelet-based thrombi; and microparticles. The
symptoms of DCS classically are believed secondary to nitrogen gas bubbles exerting direct pressure on tissues, blocking small arteriolar vessels, and interacting with blood proteins. All of the WMH observed in pilots were located in deep white matter rather than in the cerebral cortex, suggesting that simple compression of white matter or arteriolar occlusion by gas bubbles cannot be the complete explanation. Additionally, arterial gas emboli are relatively uncommon, reported in only 6 of more than 1,500 altitude chamber exposure cases. However, the WMH may still be caused by occlusion or injury to small (5- to 30-μm) deep cerebral vessels from microembolic gas bubbles that are smaller than the 30-μm detection limit of clinical ultrasound scanners used for bubble detection. A second potential mechanism is occlusion of small cerebral vessels by platelet thrombi produced by accelerated coagulation of blood in the presence of venous nitrogen gas bubbles; in rabbits, microthrombi were noted in medium-sized and large lung arteries after DCS. This mechanism is also supported by the decreased platelet count with increased concentration of venous nitrogen gas bubbles in humans due to increases in platelet adhesion and aggregation. A third potential mechanism is microparticle release, 0.1- to 1.0-μm vesicles with proinflammatory potential, with induction of neutrophil activation and vascular damage in response to intravascular bubbles as demonstrated in mice. In scuba divers, microparticles are increased 3.4-fold, neutrophil activation occurs, and increased neutrophil interactions with platelet membranes are noted. Such an inflammatory mechanism might explain the clinical relapse we observed in 3 NDCS pilots after successful hyperbaric treatment (US Navy Treatment Table 6; 100% fraction of inspired oxygen; 2.8 atm absolute) when subsequently exposed to commercial airline cabin altitudes within the first 2 weeks after the incident. Further studies in laboratory animals are necessary to clarify the precise pathologic mechanisms responsible for formation of hypobaric-induced WMH.

Table 1 Whole-brain volume and number of WMH for pilots vs controls

<table>
<thead>
<tr>
<th></th>
<th>Doctorate-degree normal controls (n = 82)</th>
<th>U-2 pilots (original) (n = 105)</th>
<th>U-2 pilots (adjusted) (n = 105)</th>
<th>Original</th>
<th>Adjusted</th>
</tr>
</thead>
<tbody>
<tr>
<td>WMH volume, mean ± SD, cm³</td>
<td>0.042 ± 0.071</td>
<td>0.134 ± 0.271</td>
<td>0.155 ± 0.313</td>
<td>0.009</td>
<td>0.004</td>
</tr>
<tr>
<td>WMH count, mean ± SD</td>
<td>3.29 ± 4.49</td>
<td>7.57 ± 14.31</td>
<td>9.67 ± 18.26</td>
<td>0.020</td>
<td><0.001</td>
</tr>
</tbody>
</table>

Abbreviation: WMH = white matter hyperintensity.
Increased WMH burden was previously reported in high-altitude mountain climbers, attributed to a combination of hypoxia and hypobaria. Oxygenation status was maintained in our pilots; therefore, we can exclude hypoxia as a potential cause of our increased WMH. Another argument for ruling out hypoxia is increased WMH in divers who experience decompression going from depths to sea level. Increased WMH were detected in 23% (26/113) of Turkish military divers without a history of DCS compared with 11% (7/65) of controls. Similarly, an increase in WMH was observed in French military divers lacking a history of DCS when compared with normal controls. This suggests that the prevalence of WMH is increased in populations whose occupation subjects them to deviations in atmospheric pressure.

Our study suggests that occupational exposure to hypobaria induces WMH, presumably secondary to white matter injury, even in the absence of clinical symptoms of NDCS. The etiology of this is unknown but is believed to be secondary to microembolic gas bubbles, "thrombo-inflammatory" mechanisms, or microparticle-induced neutrophil activation and vascular damage rather than simple gas bubble occlusion of cerebral arterioles. Our study provides radiologic evidence supporting the premise of microemboli showering cerebral tissues and provides evidence of cerebral injury as a consequence of this activation. Cerebrovascular-induced WMH is typically permanent, but the long-term ramifications of hypobaric-induced WMH are unknown. More complete understanding of this pathologic mechanism will require development of a laboratory animal model of hypobaria-related white matter damage to detect the biological/neuropathologic mechanism and to develop neuroprotection/neurotreatment therapies designed to mitigate this damage.

AUTHOR CONTRIBUTIONS

Dr. McGuire: study concept, design, performance analysis, interpretation, and principal author of the manuscript. Dr. Sherman: study concept, design, performance analysis and interpretation. Dr. Profenna, Dr. Grogan, Dr. Sladky, Dr. Brown, and Dr. Robinson: acquisition of data, analysis and interpretation. Dr. Rowland, Dr. Hong, and Ms. Patel: analysis and interpretation. Dr. Tate: analysis, interpretation, and critical revision of the manuscript for important intellectual content. Ms. Kawano: critical scientific editorial assistance. Dr. Fox: study concept and design. Dr. Kochunov: study concept, design, performance, data analysis, and critical revision of the manuscript for important intellectual content.

© 2013 American Academy of Neurology. Unauthorized reproduction of this article is prohibited.
ACKNOWLEDGMENT
Opinions, interpretations, conclusions, and recommendations are those of
the authors and are not necessarily endorsed by the United States Air
Force. The authors thank Ms. LeeAnn Zarzabal, 59th Medical Wing,
Lackland AFB, TX, for statistical assistance.

STUDY FUNDING
Supported by United States Air Force Surgeon General grants (Log I-11-10
and I-11-44) to S.M.

DISCLOSURE
S. McGuire is supported by USAF Surgeon General grants Log I-11-10
and I-11-44. P. Sherman and L. Pellegrini report no disclosures. P. Grogan
has received speaker honoraria from USWork4Meds. J. Sladky, A. Brown,
and A. Robinson report no disclosures. L. Rowland serves as an editorial
board member of Schizophrenia Bulletin, and is funded by NIH grants
R01MH094520 and R01MH096263. E. Hong and B. Patel report no
disclosures. D. Tate has been a consultant to the Brigham and Women’s
Hospital, Boston, MA, for an NIH funded grant of brain injury. E.S.
Kawano reports no disclosures. P. Fox reports that his UTHSCSA salary
income from Wiley-Blackwell. P. Kochunov reports no disclosures. Go to
Neurology.org for full disclosures.

REFERENCES
2. Vann RD, Butler FK, Mitchell SJ, Moon RE. Decompression
3. Jersey SL, Hundemer GL, Stauffer RP, West KN,
Michaelson RS, Pilmanis AA. Neurological altitude decompression
2011;82:673–682.
4. Hundemer GL, Jersey SL, Stauffer RP, Butler WP,
Pilmanis AA. Altitude decompression sickness incidence among
5. Baldini UI, Pilmanis AA, Webb JT. Central nervous sys-
tem decompression sickness and venous gas emboli in
hypobaric conditions. Aviat Space Environ Med 2004;
75:969–972.
6. Jersey SL, Barril RT, McCarty RD, Millhouse CM. Severe
neurological decompression sickness in a U-2 pilot.
Aviat Space Environ Med 2010;81:64–68.
white matter lesions in 50 high-altitude pilots with neuro-
logic decompression sickness. Aviat Space Environ Med 2012;
83:1117–1122.
Air Force Instruction 48-123.
among neuroimaging indices of cerebral health during nor-
genetic variability and whole genome linkage of whole-
brain, subcortical, and ependymal hypertensive white matter
11. Bischof R, Caruthers SO, Janardhan V, Wasyw M. Intraventric-
tricular CSF pulsation artifact on fast fluid-attenuated
inversion-recovery MR images: analysis of 100 consecutive
motion correction protocol for high-resolution anatomical
MRI. Hum Brain Mapp 2006;27:957–962.
ship between white matter fractional anisotropy and other
indices of cerebral health in normal aging: tract-based spatial
14. Smith SM. Fast robust automated brain extraction. Hum
in functional and structural MR image analysis and imple-
17. Henry Feugas MC, De Marco G, Peretti II, Godon-
Hardy S, Fredy D, Schouman Claery ES. Age-related cerebral
white matter changes and pulse-wave encephalopathy: obser-
vations with three-dimensional MRI. Magn Reson Imaging
Talairach atlas labels for functional brain mapping. Human
MRI indices of cerebral integrity track cognitive trends in
executive control function during normal maturation and
White matter lesions in the elderly: pathophysiological
hypothesis on the effect on brain plasticity and reserve.
correlates of incidental MRI white matter signal hyperin-
22. Kennedy KM, Raz N. Pattern of normal age-related regional
differences in white matter microstructure is modified by
is correlated with cerebral health markers in the frontal
lobes as quantified by neuroimaging. Neuroimage 2010;
24. Maillard P, Carmichael O, Harvey D, et al. FLAIR and
diffusion MRI signals are independent predictors of white
matter hyperintensities. AJNR Am J Neuroradiol 2013;34:
54–61.
MRI study of traumatic axonal injury in patients with
moderate and severe traumatic brain injury. J Neurol Neu-
rosurg Psychiatry 2012;83:1193–1200.
26. Pilmanis AA, Meissner FW, Olson RM. Left ventricular
gas embolus in six cases of altitude-induced decompres-
sion sickness. Aviat Space Environ Med 1996;67:1092–
1096.
27. Olson RM. Echo Imaging Techniques Determine the Size
of Intravascular Bubbles in Decompression Sickness.
Brooks Air Force Base, TX: Armstrong Laboratory, Crew
28. Tanoue K, Mano Y, Kurokawa K, Suzuki H, Shibayama M,
Yamazaki H. Consumption of platelets in decompression
29. Pontier JM, Jimenez C, Blateau JE. Blood platelet count
and bubble formation after a dive to 30 mow for 30 min.

Received March 20, 2013. Accepted in final form May 9, 2013.

© 2013 American Academy of Neurology. Unauthorized reproduction of this article is prohibited.

Save These Dates for AAN CME Opportunities!

Mark these dates on your calendar for exciting continuing education opportunities, where you can catch up on the latest neurology information.

Regional Conference

• October 25-27, 2013, Las Vegas, Nevada, Encore at Wynn Hotel

AAN Annual Meeting

• April 26-May 3, 2014, Philadelphia, Pennsylvania, Pennsylvania Convention Center

17.5 CME Credits. 10% Savings.

The AAN Fall Conference—coming to the popular Encore Wynn Las Vegas October 25–27—is a unique opportunity to earn up to 17.5 AMA PRA Category 1 credits™ before the end of the year.

Choose from:

• Neurology Update—save 10% when you register for the full program track!
• Practice Management—save 10% when you register for the full program track!
• Neuromuscular Disease Update
• Dystonia Workshop
• Physician–led Advocacy
• More!

Early registration deadline: October 1 / Hotel registration deadline: September 23