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Abstract 
 

This report presents a literature review on the modeling of dielectric polymer actuators 
(DPA). The principle of actuation of these actuators and the underlying physics of dielectrics 
is exposed in order to introduce all the sources of difficulty responsible for the complex 
behaviour of DPAs. A variational formulation is proposed to model the behaviour of DPA, 
based on the variation of the dielectric enthalpy and on the virtual work of the non-
conservative part of the electric displacement. A finite element method is developed, based on 
this formulation. A reverse mapping requirement is raised that limits the type of element that 
can be used. An example of a possible implementation is presented for the case of a linear 
tetrahedron.  Finally, DPA modeling challenges are summarized and recommendations are 
made for future work. 

 

Résumé 
 

Ce rapport présente une revue de la littérature sur la modélisation des actionneurs à polymère 
diélectrique (APD). Le principe de fonctionnement de ces actionneurs, ainsi que les 
phénomènes physiques sous-jacents sont exposés afin de montrer toutes les sources de 
difficulté responsables du comportement complexe de ces APD. Une formulation 
variationnelle est proposée pour modéliser le comportement des APD, basée sur la variation 
de l’enthalpie diélectrique et sur le travail virtuel de la partie non conservative du déplacement 
électrique. Une méthode élément fini est développée, basée sur cette formulation. Un 
problème de réversibilité de la transformation est levé qui limite l’application de cette 
méthode à certains éléments. Un exemple possible d’implémentation est présenté pour le cas 
d’un tétraèdre linéaire. Enfin, les challenges de la modélisation d’un APD sont listés et des 
recommandations sont proposées pour de futurs travaux. 
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Executive summary 
 

Background 

Dielectric Polymer Actuators  (DPAs) that utilize the Maxwell stress effect consist of a thin 
membrane of non-conductive elastomer sandwiched between elastomeric electrodes. When an 
electrostatic charge is applied to the electrodes, the opposite charges attract, resulting in 
compression of the elastomer in one direction and extension in the other. Dielectric Polymers 
present a non-linear response to a time varying voltage due to: (i) the variable membrane 
thickness dependency of the electric field and (ii) the variable area of the electrodes. Maxwell 
stress acting on a compliant elastomer apparently generates the same effects as electrostriction 
(i. e. the dynamic response is roughly proportional to the square of the driving voltage). 
However it is clearly a different mechanism. It was demonstrated in the literature that DPAs 
have a great potential as “muscle-like actuators”, and they present a good impedance match 
with water so that they could make good low frequency acoustic projectors. However, up to 
now, DPAs have been built by trial and error, using crude analytical models as design 
guidelines. Thus, there is a need for a more reliable design tool for developing optimized 
DPAs. Modeling and characterizing Dielectric Polymers (DP) present a lot of difficult 
challenges since these materials can present electric, dielectric and mechanical losses, as well 
non-linear material properties.  

Principal Results 

This work presents the state of the art in DPA modeling. It describes the underlying physics of 
DPAs to explain the origin of the major difficulties of DPA modeling and DP 
characterization. A finite element formulation was developed which could be the starting 
point for developing a finite element code for predicting the behaviour of DPAs. The 
background knowledge of this project is from the public domain. This knowledge has been 
enhanced by the finite element formulation proposed in this report. 

Significance of Results 

This work represents a signific nt milestone in the TIF project “Dielectric Actuators for 
Active/Passive Vibration Isolatio
DPAs, which will be crucial for
vibration isolation. 

Future Work 

Future modelling work will inc
properties on actuation behaviou
the VVES suite of programs fo
element tools for DPAs. 

Beslin, O. 2002. Analytical Mod
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Sommaire 
 

Contexte 

Les actionneurs à polymère diélectrique (APD), dont le fonctionnement est basé sur l’effet de 
contrainte de Maxwell, sont constitués d’une mince membrane faite d'un élastomère non 
conducteur disposé entre des électrodes constituées, elles aussi, d'un élastomère. Lorsqu’une 
charge électrostatique est appliquée sur les électrodes, les charges opposées s’attirent et 
provoquent la compression de l’élastomère dans une direction et son allongement dans l’autre 
direction. Les polymères diélectriques ont une réponse non linéaire lorsqu’ils sont exposés à 
une tension qui varie avec le temps, et ce, pour les raisons suivantes : i) le champ électrique 
dépend de l’épaisseur de la membrane et ii) la surface des électrodes est variable. La 
contrainte de Maxwell qui s'exerce sur un élastomère souple produit apparemment des effets 
identiques à l’électrostriction (c.-à-d. que la réponse dynamique est approximativement 
proportionnelle au carré de la tension appliquée). Toutefois, il s'agit nettement d'un 
mécanisme différent. Selon la littérature, les APD présentent un potentiel élevé comme 
« actionneurs de type musculaire » et pourraient constituer de bons projecteurs acoustiques de 
faible fréquence en raison de leur impédance qui est semblable à celle de l’eau. Toutefois, 
jusqu’ici, on a élaboré des APD par approximation, en se basant, pour la conception, sur des 
modèles analytiques brutes. Il y a donc lieu de disposer d'un outil de conception plus fiable 
pour mettre au point des APD optimisés. La modélisation et la caractérisation des polymères 
diélectriques comportent de nombreux défis difficiles, car ces matériaux peuvent présenter des 
pertes mécaniques, diélectriques et électriques, ainsi que des propriétés de matériaux  non 
linéaires.  

Principaux résultats  

On présente ici la fine pointe de la technologie en matière de modélisation des APD. On décrit 
les propriétés physiques sous-jacentes des APD pour expliquer l’origine des principales 
difficultés que comportent la modélisation des ADP et la caractérisation des polymères 
diélectriques. On a élaboré une formulation par éléments finis, qui pourrait constituer le point 
de départ de la mise au point d’un code d'éléments finis pour prévoir le comportement des 
APD. Les connaissances nécessa res à la mise en œuvre de ce projet sont du domaine public. 
Elles ont été approfondies grâce 
rapport. 

Importance des résultats  

Ces travaux constituent une imp
« Actionneurs diélectriques d'is
d'établir une base à partir de laq
APD, qui seront d'une importan
basse fréquence et l'isolation activ

 

Beslin, O. 2002. Modélisation
CR 2002-160, MacDonald De
 

iv 
 
  
 

i

à la formulation par éléments finis proposée dans le présent 

ortante étape du projet financé dans le cadre du FIT intitulé 
olation active et passive des vibrations ». Ils permettent 
uelle seront effectués d'autres travaux de modélisation des 

ce cruciale pour des applications comme les sonars actifs à 
e des vibrations. 
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Futurs travaux 

Les travaux ultérieurs de modélisation comprendront : a) une étude des effets des propriétés 
électriques et mécaniques sur l'action des actionneurs, à l’aide de modèles simples; b) 
l'incorporation d’une capacité d’APD dans la suite de programmes VVES sur l'isolation des 
vibrations; et c) l'élaboration d’outils généraux d'éléments finis pour APD. 
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1. Introduction 
 

The possible use of a dielectric polymer (DP) as a means of actuation was initially proposed 
by SRI International in 1998 [1]. The principle of actuation of a Dielectric Polymer Actuator 
(DPA) can be summarized as follows: A DPA is a condenser filled with a polymeric 
dielectric. The electrodes of the condenser are mechanically supported by the dielectric 
medium instead of being maintained by a rigid frame as classical condensers. When an 
electric voltage is applied to the condenser, the Maxwell electrostatic forces acting on the 
electrodes tend to squeeze the dielectric medium. The electrodes move toward one another 
until equilibrium is reached between the elastic stress of the dielectric medium and the 
Maxwell forces. When the dielectric is squeezed, depending on its Poisson ratio and 
depending on the compliance of the electrodes, it tends to expand along the directions of the 
plane of the condenser. This type of actuator benefits from two mechanisms of 
“amplification”: The first mechanism is related to the compliance of the dielectric (i) When 
the electrodes tend to merge, the gap of the condenser decreases so that the electric field 
increases. (ii) If the bulk modulus of the dielectric is high, and if the electrodes are compliant, 
the dielectric and the electrodes expand, increasing the surface area of the condenser. Thus, 
both mechanisms tend to increase the capacity of the condenser when a voltage is applied to  
it. This coupling between the Maxwell stress and the elastic stress leads to a non linear 
mechanism of actuation, yielding a strain approximately proportional to the square of the 
driving voltage. In this description of the principle of actuation of a DPA, the permittivity of 
the dielectric was assumed to be a constant. However, in practice, other effects can interfere 
(in an additive or subtractive manner) with these two “amplification mechanisms”:  

• Electrostriction: i.e. The permittivity of the dielectric medium is strain dependent. 

• Quadratic permittivity i.e. The permittivity of the dielectric medium depends on the 
electric field. 

These two non-linear effects add some complexity to the development of a DPA prediction 
code, moreover, they present difficult challenges for characterizing the mechanical and 
dielectric properties of the dielectric polymer. 

An additional source of difficulty when modeling and/or characterizing dielectric polymers is 
losses. Losses can be classified as electric, dielectric and mechanical. 

• Electric losses: 

• Electric losses are due to mobile charges in the dielectric, providing a reminiscent 
conductivity, they can also come from the electrodes resistivity. Moreover, this 
resistivity can depend on the electrodes’ expansion. 

• Dielectric losses: 

DRDC Atlantic CR 2002-160 1 
 
  
 



  
 

• Dielectric losses are due to the fact that the polarization vector is not instantaneously 
following the electric field in the dielectric medium. Complex relaxation mechanisms 
can occur, as well as phase transitions. 

• Mechanical losses: 

• Silicone elastomers can be considered as fully elastic, however, acrylate elastomers 
can present a marked viscoelastic behavior. 

All these losses contribute to a temperature increase, which is another source of variation of 
the permittivity. In particular, for polar rubbers, the polarization is highly temperature 
dependent, as rendered by the Debye model presented in section 2.4. Moreover, thermal 
runaway can occur in actuators made from elastomers with a reminiscent conductivity. 

Several papers [1-4] from SRI International have experimentally demonstrated the efficiency 
and the potential of DPA using two families of dielectric polymers: 

• Silicone rubber films (polar rubber with a polydimethyl siloxane backbone) 

• Polyacrylates (3M Company VHB acrylic series) 

Silicone rubbers are low-loss and soft polymers (0.2 to 0.4 MPa) with a fast response 
(dynamic response up to 1000Hz) and a good tear resistance. Polyacrylates present higher 
losses and a higher modulus (0.5-0.6MPa) with a slower response (up to 100 Hz). These 
papers have demonstrated the viability of the concept.  However, further work is required to 
fully understand the underlying physics behind these results in order to predict the behavior of 
DPA. 

A PhD study [5-7] was conducted at the Danish Polymer Center focused on the polyacrylate 
3M VHB 4910. A simple analytical model (single rectangular layer ) was developed to 
explain experimental measurements. It was found experimentally that the real part of the 
permittivity drops when the film is stretched. They tried to attribute this tendency to the 
electrostriction effect. However, the electrostrictive behavior of the VHB 4910 was revealed 
too weak to explain properly this experimental tendency. It was concluded that the 
discrepancies between the model and the experiment were probably due to the simplistic 
model they used. Particularly, a stretched rectangle is no longer a rectangle and some curving 
edge effects have to be accounted for. This study revealed that even for a simple experimental 
case, the associated prediction model must be sufficiently complex to take into account the 
geometrical effect of stretching. 

The other big difficulty in DPA modeling is the availability of input parameters. As 
mentioned previously, the effects of intrinsic electrostriction and Maxwell stress merge to 
generate the same global behaviour. Thus, it is difficult to isolate each effect and to measure 
its associated coefficients, as the observed response is the result of a strong coupling between 
these different effects. Guillot et al.[8] have proposed a method to measure the electrostrictive 
coefficients of a polymer film without being influenced by Maxwell stress effects. They have 
used this method to characterize the electrostrictive coefficients of a polyurethane. This 
method should be tried to characterize the dielectric of a DPA. The weakness of the method, 
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however, is that the sample to be tested must be sandwiched between two silicone rubber 
layers. The stiffness of the rubber layers is assumed to be negligible compared to the stiffness 
of the sample. This assumption could probably not be made when characterizing silicone 
rubber films, however, it could be possible to characterize polyacrylates with this method. 

In summary, modeling a DPA and characterizing a DP present a lot of challenges. The aim of 
this report was to give a synthesis on the state of the art in this domain and to provide the 
basis for the development of a finite element code for predicting the behaviour of DPAs. 

Section 2 presents the underlying mechanism of dielectricity (polarization effect). The 
classical Debye model is presented. The Clausius Mossotti formula is established and used to 
explain the electrostriction effect and why uncompressible elastomers present a low 
electrostrictive effect. 

Section 3 presents the Hamilton’s functional of a DP (and a pre-stressed DP). The variation of 
the local dielectric enthalpy is calculated to show the origin of electrostriction and quadratic 
dielectricity. Dielectric loss is presented as the work of the non-conservative part of the 
electric displacement for a variation of the electric field. Finally, a finite element formulation 
for modeling Maxwell stress effect in DP is presented, calculating the variation of the 
dielectric enthalpy. A reverse mapping requirement issue is raised that limits the type of 
element that can be used. An example of possible implementation is presented for the case of 
a linear tetrahedron. Then, it is shown how the dielectric loss can be modeled by adding the 
virtual work of the non-conservative part of the electric displacement. 
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2. Summary of the theory of dielectrics 
 

In this section, the theory of polarization is presented to explain the behaviour of a DP. 

2.1 Vacuum condenser 

 

 

 

 

 

 

 

 

 

Vacuum 

V

d 

A

- - 

+ ++ 

- 

Figure 1: Vacuum condenser 

Figure 1 represents a vacuum condenser consisting of two parallel plates (electrodes) of 
surface A. The distance between the two plates d is assumed to be small compared to the 
dimensions of the plates. If a potential V is imposed on the upper plate while the lower plate is 
left grounded, a surface density charge +σ appears on the upper electrode while a surface 
density charge -σ appears on the lower one. The charges, give rise to an electric field E which 
inside the condenser is practically homogeneous and directed perpendicular to the surface. Let 
us call z the axis perpendicular to the plates and oriented toward the up direction. The electric 
field is aligned along the z-axis and its z-axis component Ez is given by: 

d
VEz −=   

The charge density on the electrodes σ , and the electric field between the electrodes E, are 
classically related by the permittivity of the vacuum ε0 as follows: 

0ε
σ

=E  

The total electric charge maintained at potential V is Q=σA. 

4 DRDC Atlantic CR 2002-160 
 
  
 



  

The capacity of the condenser C is such that Q=CV, which can be expressed as: 

d
AC 0ε

=  

The condenser stores the total electrostatic energy Ue defined as: 

2

2
1

2
1 CVQVUe ==  

Increasing the condenser capacity C allows one to increase the storable electrostatic energy. 
This can be achieved by changing the geometric parameters A and d and/or by introducing 
between the electrodes a medium having a permittivity higher than the permittivity of the 
vacuum. These kind of media are referred to as dielectrics. 

 

2.2 Dielectric condenser 
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Figure 2: Dielectric condenser 

 

Figure 2 represents the same condenser as the one introduced in the previous section but 
containing a dielectric medium between its electrodes instead of vacuum. If the same 
experiment is done on such a condenser, the electric potential and electric field (i.e. the 
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macroscopic electric field) will remain the same, however, the surface density charge σ will 
be greater than the one of the vacuum case. The increase in σ is due to the presence of electric 
dipoles {pk} in the dielectric medium. Depending on the dielectric medium type, these dipoles 
can originate from different physical effects (electronic polarization, ionic polarization, polar 
molecules…). The average value of these electric dipoles over a small volume element is 
defined by the vector polarization P. As shown in Figure 2, these electric dipoles attract on 
the electrodes, some additional charges, so called bound charges, , (cf. red circled + and – 
signs in Figure 2). The other charges, so called free charges, (cf. ordinary + and – signs in 
Figure 2) are the charges that would appear alone on the electrodes if the condenser was not 
filled with the dielectric medium. The sum of the free charges and bound charges is called the 
true charges and σ actually represents the surface density of these true charges. 

Introducing the permittivity of the dielectric medium “ε”, the charge density σ is related to the 
electric field as follows: 

ε
σ

=E  

As σ  is higher for a dielectric medium than for vacuum, it can be seen that the dielectric 
permittivity is increased in the same proportion as for σ, since the electric field remains the 
same in both vacuum and dielectric-filled cases when the electric potential is imposed by an 
exterior generator. 

 

2.3 Macroscopic fields in dielectrics 

In a dielectric medium, it is convenient to introduce the electric displacement field D defined 
by: 

Equation 1  PED += 0ε  

Then, the basic equations that govern the behaviour of electric fields in dielectrics are: 

Equation 2  φ−∇=E  

Equation 3   0E =×∇

Equation 4  ρ=•∇ D  

where φ is the electric potential and ρ is the electric charge density. E is referred to as the 
macroscopic electric field.  

In the case of the dielectric condenser presented in Figure 2, the electric displacement can be 
considered as constant and collinear to the electric field (aligned along z-axis). Then, Equation 
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4 yields the simple relation between the surface density charge and the electric displacement: 
σ=zD . 

When the polarization is collinear to the electric field (most cases), Equation 1 can be turned 
into a simpler relation: 

Equation 5  ED ε=  

Sometimes, the relative permittivity εr is used, defined by: rεεε 0=  

Under the same assumption, the polarization can be related to the electric field by the relation: 

Equation 6  EP χε0=  

where χ is the electric susceptibility which is related to the permittivity by: χε += 1r . 
 

2.4 Theoretical models of the polarization vector 
The polarization vector P was briefly introduced in section 2.2 as “the average value of 
electric dipoles over a small volume element”. This section will present a summary of what 
are the origins of this polarization vector in dielectrics. 
There is essentially six ways in which a material body can acquire a dielectric polarization. 
These ways are classified as: 
 

• Pyroelectric effect (built-in permanent polarization). 
• Ferroelectric effect (built-in reversible polarization). 
• Piezoelectric effect (stress induced polarization). 
• Electronic polarization (induced by a surrounding electric field acting on 

electrons/nucleus). 
• Ionic polarization (induced by a surrounding electric field acting on ions). 
• Dipolar polarization (induced by a surrounding electric field acting on polar 

molecules). 
The material of interest for building dielectric polymer actuators must present a polarization 
induced by an exterior electric field, which corresponds to the last three effects listed above. 
Electronic, ionic and dipolar polarizations can be described (to the first order) using the 
polarizability parameter α. If n is the number of induced dipoles per unit volume, the 
polarization is expressed by: 

lEP αn=  
where El is the local electric field, which accounts for a correction due to the additional 
electric field induced by the polarization. A commonly accepted expression of the local field 
is: 

Equation 7  
03ε
PEEl +=  

Using Equation 6 and Equation 7, the relative permittivity can be expressed by the following 
formula, classically referred to in literature as the Clausius-Mossotti formula: 
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Equation 8  
)

3
(1

)
3

(21

0

0

ε
α
ε
α

ε n

n

r

−

+
=  

In Equation 8, α can stand for the electronic polarization (neαe), ionic polarization (niαi), 
dipolar polarization (ndαd) or a mixture of them ( ddiiee nnnn αααα ++= ). 
 
Polarizabilities are functions of frequency in the case of harmonic applied electric field, since 
the dipoles are not instantaneously following the driving electric field. Some relaxation and 
restoring force effects influence the magnitude and phase response of the polarization. 
Moreover, the dipolar polarization is greatly dependent on temperature. The Debye-Langevin 
theory gives (for low electric fields): 

Equation 9  
kT
p

d 3

2
0=α  

where p0 is the electric moment of the polar molecule, k is the Boltzmann constant and T is the 
temperature in degrees Kelvin. Equation 9 assumes that the dipoles are free to rotate and to 
follow instantaneously the driving electric field. In practice, additional restoring and friction 
forces must be considered depending of the type of molecules and geometry (polymer 
backbone orientation versus electric field direction). 

Due to the various origins of polarization and due to relaxation processes, it is evident that 
Equation 6 (even assuming a frequency dependent susceptibility) is too simple to account for 
all the physical phenomena occurring with time varying electric field and dielectric thickness. 

As a minimum, a time relaxation τ can be introduced in Equation 6, accounting for dielectric 
losses: 

Equation 10   

 

• Digression on Electrostriction 

The Clausius-Mossotti formula given in Equation 8 shows that the permittivity of a dielectric 
must depend on the number of dipoles (and so molecules) per unit volume. This means that a 
non-constant volume deformation leads to changes in permittivity. This effect of strain 
dependent permittivity will be referred to as electrostrictive effect in the following sections. 
Moreover, if the main dielectric property is due to dipolar polarization, the permittivity 
depends on temperature through the polarizability αd. 

Remark: A formula describing the electrostrictive effect (to the first order) can be derived 
from Equation 8: 
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Equation 11  )(
)1(1

3
21

)( 3322112 εεε
β

β
β

β
εε ++

−
−

−

+
≈IJr  

where 
0ε
αβ n

=  

This last equation allows us to understand the origin of intrinsic electrostrictive effect: Any 
volume strain (through the “ε11+ε22+ε33” term) will lead to a change in permittivity with a 
sensitivity that will depend on the parameter β. 
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3. Variational formulation 
 

3.1 Hamilton's functional of a dielectric polymer 

A dielectric polymer presents dielectric and mechanical losses associated with internal non-
conservative forces (hysteresis).   However, to clarify, the equations of motion of a dielectric 
polymer (DP) will be set up in this document using first the Hamilton principle of the 
associate conservative case and then, adding the virtual work of the non-conservative forces. 

3.1.1 Description of the dielectric medium 

Figure 3 presents the definition of the DP medium domain and variables. 

Definitions of the variables are: 

Ω and Γ : The volume and bounding surface, respectively, of the DP.  

 (x1, x2, x3) : The co-ordinates of a DP material point.  

ui : The displacement in direction i of a DP material point.  

ϕ: The electric potential in the DP.  

Ei : The electric field in the DP.  

Di : The  electric displacement field in the DP.  

Fi : The external surface force distribution applied on the boundary of the DP.  

Q : The external surface charge distribution applied on the boundary of the 
DP. 
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Figure 3. Definition of the dielectric domain and fields 

O 

Q (x1,x2,x3,t) 

F (x1,x2,x3,t)
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Ω

Γ 

n 

 

3.1.2 Hamilton's functional 

Considering {ui,ϕ} as the generalized displacement field, {εij , Ei } as the 
generalized strain field and {σij , Di}, as the generalized stress field, the DP 
Hamilton's functional can be written as: 

( )dtWWVVTttH
t

t
elecmechelecmech∫ ++−−=

2

1

),( 21  

Where the energy terms are: 

 :The Kinetic energy. 

∫
Ω

Ω= dV ijijmech εσ
2
1

: The mechanical potential energy. 
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∫
Ω

Ω−= dEDV iielec 2
1

: The dielectric enthalpy. 

∫
Γ

Γ= duFW iimech : The work of the applied external surface mechanical 

loads. 

∫
Γ

Γ= dQWelec ϕ : The work of the applied external electric surface charges. 

3.1.3 Variation of the dielectric enthalpy (conservative case) 

The enthalpy per unit volume of a dielectric material is given by: 

ii EDg
2
1

−=  

The variation of the dielectric enthalpy associated with a virtual variation of 
the electric field is: 

iiii DEEDg δδδ
2
1

2
1

−−=  

If hysteresis phenomena are neglected, the electric displacement is related to 
the electric field introducing the dielectric permittivity ξ . In the general case, 
this permittivity is a function of the mechanical strain and electric fields: 

iiiji EED ),(εξ=  

The variation of the electric displacement is then given by: 

iji

Eij
ii

i
i EEE

E
D

iij

δε
ε
ξδξξδ

ε











∂
∂

+




















∂
∂

+=  

Which leads to the following expression of the dielectric enthalpy variation: 

Equation 12 iji

Eij
ii

i
ii EEE

E
EEg

iij

δε
ε
ξδξδξδ

ε

22

2
1

2
1












∂
∂

−







∂
∂

−−=  

According to classical literature conventions [8], the three terms in the 
dielectric enthalpy variation of Equation 12 correspond to three physical 
effects, classified respectively by the following coefficient sets: 
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• ξ : The dielectric permittivity coefficient 

• 

ij
iE

ε

ξ








∂
∂

: The quadratic dielectric coefficients 

• 

iEij











∂
∂
ε
ξ

2
1

: The electrostrictive stress coefficients 

In the case of polyacrylate dielectric elastomers (3M VHB 4910) [6], it was 
shown that the electrostrictive effect was negligible. More generally, as 
shown previously in Equation 11, the change in permittivity is related to the 
volume strain in the polymer.  Thus, the more the polymer is incompressible, 
the less it is electrostrictive. The variation of the permittivity with E 
(quadratic dielectric coefficient) is a second order dielectric effect. 

3.1.4 Variation of the dielectric enthalpy (non-conservative case) 

For a mono-dimensional problem, considering the principle of superposition, 
the general linear relation between the electric displacement field D(t) and the 
time history of the electric field E(t) can be expressed as[9]: 

∫ −+= ∞

t

duutuEtEtD
0

)()()()( αξ  

Where α(t) is a decay function, vanishing with t. 

In this case, the generalized stress D(t) must be divided into its conservative 
and non-conservative parts: 

)(~)()( tDtEtD += ∞ξ  

With: 

∫ −≡
t

duutuEtD
0

)()()(~ α  

The first term, proportional to E(t) corresponds to the conservative part of the 
electric displacement so that it can be expressed as the gradient of a potential 
(the dielectric enthalpy). This first part has been treated in the previous 
section. 
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The second term )(~ tD is related to the time history of the electric field. This 
hysteretic part is non-conservative (the work of this stress over a cycle is not 
zero). Rigorously, the use of Hamilton principle requires all the forces to be 
conservative. However, the equation of motion can be set up using first the 
Hamilton principle considering only the conservative case and then, the 
virtual work of the non-conservative forces can be added to the equations. 

EDgW δδδ ~+−=  

A numerical implementation of this non-conservative case is to consider a 
finite vector {αm}(m=0 to M) representing the sampling values of the function 
α(t) with a sampling period T. 

Then the relation between D and E can be rewritten: 

nnn DED ~
0 += α  

Where Dn and En are the sampled values: Dn=D(nT) and En=E(nT). 

and where 

∑
=

−≡
M

m
mnmn ED

1

~ α  

3.1.4.1 Measurement of α(t) 

The decay function α(t) is not easy to measure using time domain 
experiments. Dielectric analyzers provide the complex 
permittivity in frequency domain: 

)(")(')(* ωξωξωξ i−=   

The relations between α(t) and can be found classically in 
the literature [9] as: 

)(* ωξ

( )∫
∞

∞−=
0

)cos()('2)( ωωξωξ
π

α dtt  

or 

∫
∞

=
0

)sin()("2)( ωωωξ
π

α dtt  
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Those two last expressions show that ξ'(ω) and ξ"(ω) are not 
independent. It can be shown[9] that the real and imaginary parts 
of the complex permittivity are interrelated by: 

∫
∞

∞ −
+=

0
22)("2)(' µ

ωµ
µµξ

π
ξωξ d  

or 

( )∫
∞

∞ −
−=

0
221 )('2)(" µ

µω
ωξµξ

π
ωξ d  

3.2 Hamilton's functional of a pre-stressed dielectric 
polymer. 

3.2.1 Definitions of the pre-stressed state and associated static 
and dynamic fields 

If the DP is pre-stressed by static electric and/or mechanical charge 
distributions {Q0, F0}, the DP domain and its bounding surface change. The 
new domain and boundary surface are noted Ω* and Γ* respectively. 

The following conventions are used: 

The displacement field is expressed as: 

*0
iii uuu +=  

With: 

ui
0 : The constant displacement in direction i, induced by the static loads {Q0, 

F0}. 

ui
* : The additional (time varying) displacement in direction i, induced by the 

dynamic loads {Q*, F*}. 

The strain field is expressed as: 

*0
ijijij εεε +=  

With: 

εij
0: The constant strain field, induced by the static loads {Q0, F0}. 
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εij
*: The additional (time varying) strain field, induced by the dynamic loads 

{Q*, F*}. 

The electric potential field is expressed as: 

*0 ϕϕϕ +=  

with: 

ϕ0 : The constant potential electric field, induced by the static loads {Q0, F0}. 

ϕ * : The additional (time varying) potential electric field, induced by the 
dynamic loads {Q*, F*}. 

The electric field is expressed as: 

*0
iii EEE +=  

With: 

Ei
0: The constant electric field, induced by the static loads {Q0, F0}. 

Ei
*: The additional (time varying) electric field, induced by the dynamic loads 

{Q*, F*}. 

The electric displacement field is expressed as: 

*0
iii DDD +=  

With: 

Di
0: The constant electric displacement field, induced by the static loads {Q0, 

F0}. 

Di
*: The additional (time varying) electric displacement field, induced by the 

dynamic loads {Q*, F*}. 

The mechanical stress field is expressed as: 

*0
ijijij σσσ +=  

With: 

σij
0: The constant mechanical stress field, induced by the static loads {Q0, 

F0}. 
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σij
*: The additional (time varying) mechanical stress field, induced by the 

dynamic loads {Q*, F*}. 

 

3.2.2 Hamilton's functional 

Using the notation presented in the previous section, the Hamilton's 
functional of a pre-stressed DP can be expressed as follow: 

( )dtWWWWVVTttH
t

t
elecelecmechmechelecmech∫ ++++−−=

2

1

*0*0
21

* ),(  

With: 

: The Kinetic energy. 

∫
Ω

Ω++=
*

))((
2
1 *0*0 dV ijijijijmech εεσσ : The DP mechanical potential energy. 

∫
Ω

Ω++−=
*

))((
2
1 *0*0 dEEDDV iiiielec : The DP dielectric enthalpy. 

∫
Γ

Γ=
*

*00 duFW iimec : The work of the applied static external surface 

mechanical loads. 

∫
Γ

Γ=
*

*** duFW iimec : The work of the applied dynamic external surface 

mechanical loads. 

∫
Γ

Γ=
*

*00 dQWelec ϕ : The work of the applied static external surface electric 

charges. 

∫
Γ

Γ=
*

*** dQWelec ϕ : The work of the applied dynamic external surface electric 

charges. 
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3.3 Macroscopic electrostriction and finite element mapping 

As mentioned previously, a dielectric polymer can present locally a negligible electrostrictive 
effect (particularly when its Poisson ratio is close to 0.5). However, when a finite element of 
DP is deformed (even if its volume is kept constant), the electric field inside the DP element 
can change due to its nodes’ displacements (even if the electric potential values are kept 
constant at these nodes). Hence, the dielectric energy of a DP element can vary with strain, 
due to strain-induced variation of the electric field. If g(e) is the enthalpy of a DP element, and 
{ui} its nodal displacements, then an electrostatic stress tensor {  must exist so that: })(e

iX

i

e
e

i u
gX
∂

∂
−=

)(
)(  

It will be shown in this section that the evaluation of this stress tensor using a finite element 
method requires an analytical expression of the transformation Jacobian matrix. 

3.3.1 Mapping 

The problem is discretized in space and time: 

• The DP medium is subdivided into a finite number of elements "e". 

• Time is discretized in samples n with a sampling period T. 

Figure 4 presents a diagram of the mapping between the reference element 
(ref) and the real element (e) at two instants t=(n-1)T and t=nT. 
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Figure 4. Finite element mapping 

nTt
nke

ix =}{ ;);(

≡−=
−

Tnt
nke

ix )1(
1;);( }{

u1
(e);k;n 

τ : (ref) ⇒ (e) 

node 3
(k=3)
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(k=1)

node 2
(k=2) 

{x1
(e);k;n-1, x2

(e);k; n-1 } 

V(e)

global co-ordinates {xi}
(element "e") 

local co-ordinates {ξi} 
(reference element) 

={x1
(e);k;n-1+ u1

(e);k;n, x2
(e);k; n-1+ u2

(e); k;n }

u2
(e);k;n 

x2

x1

node 3 
{ξi

3}={0,1} 

node 2 
{ξi

2}={1,0} 

V(ref) 

{ξi
1}={0,0} 
node 1 

ξ2 

ξ1

3.3.2 Generalized displacement field 

The generalized displacement field at time t=nT is expressed on one element 
e as: 

}){,(),( ;);(;);()( nke
iik

nke
i

e uxNnTx φϕ = : The electric potential field 

}){,(),( ;);(;);()( nke
iik

nke
ii

e
i uxNunTxu =  : The mechanical displacement field 

Where: 

•  is the value of the electric potential field on the node k of the 
element e at time nT 

nke ;);(φ

•  is the value of the mechanical displacement field on the node k of 
the element e at time nT 

nke
iu ;);(

• { }nke
iu ;);(  represents the set of the values of the mechanical displacement 

field at the nodes {k} of the element e, at time nT. 
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• is the interpolation function over the element (e) 
associated to the node k, and expressed as a function of the global co-
ordinates {x

}){,( ;);( nke
iik uxN

i}. It must be noted that those interpolation functions 
expressed in the global co-ordinates are functions of the nodal 
mechanical displacement set{ }nke

iu ;),( . 

3.3.3 Dielectric enthalpy 

Considering that the electric and electric displacement fields are co-linear and 
aligned along the axis 3 of the global coordinates, the dielectric enthalpy of 
the element e at time nT is given by: 

∫ −=
})({

)()()()(

;);()(

),(),(
2
1

nke
i

e uV

e
i

e
i

ee
n dVnTxEnTxDg  

Introducing the notation: 

3

;);(
;);( }){,(}){,(~

x
uxNuxN

nke
iiknke

iik ∂
∂

≡  

The electric field can be expressed on the element (e) as: 

}){,(~),( ;);(;);()( nke
iik

nke
i

e uxNnTxE φ−=  

Considering first the conservative case (D proportional to E), the electric 
displacement is given by: 

),(),( )(
0

)( nTxEnTxD i
e

i
e α=  

The dielectric enthalpy can then be expressed as a function of the generalized 
displacements{ }nkenke

iu ;);(;);( ,φ : 

Equation 13 

nkenke
i

kqnqee
n uIg ;);(;);(;);(0)( })({

2
φφα

−=  

Where: 

)(

})({

;);(;);(;);(

;);()(

}){,(~}){,(~})({ e

uV

nke
iiq

nke
iik

nke
i

kq dVuxNuxNuI
nke

i
e

∫=  
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The { Ikq } integrals are symmetrical and can be calculated on the reference 
element as presented in Equation14: 

 

Equation14 

∫ −
−−












∂

∂

∂

∂











∂

∂

∂
∂

=

)(

)(;);(1;);(

3

;);(1;);(
'

'3

;);(1;);(

;);(

})){},({(
}){},({}){},({

})({

refV

refnke
i

nke
i

nke
i

nke
ip

p

q
nke

i
nke

ip

p

k

nke
i

kq

dVuxJDet
x

uxN
x

uxN

uI

ξ
ξ

ξ
ξ

Where  

})){},({( ;);(1;);( nke
i

nke
i uxJDet − is the determinant of the Jacobian matrix of the transformation 

{ξi}⇒{xi} from the reference element to the element (e). 

Equation 13 can be rewritten in term of a capacity matrix Cqk, as follows: 

nkenke
i

nke
i

qknqee
n uxCg ;);(;);(1;);(;);()( }){},({

2
1 φφ −−=  

The capacity matrix depends on the position of the element nodes at time step n-1 and on the 
displacement at time step n: 

}){},({}){},({ );;()1;;(
0

);;()1;;( nke
i

nke
i

qknke
i

nke
i

qk uxIuxC −− = α  

3.3.4 Variation of the dielectric enthalpy 

The variation of the dielectric enthalpy is given by: 

Equation 15 

}){},({

}){},({
;);(1;);(;');(;');(

;);(;);(1;);(;);()(

nke
i

nke
i

nqe
i

nqe
i

nkenke
i

nke
i

qknqee
n

uxXu

uxCg
−

−

−

−=

δ

φδφδ
 

where { } are the electrostatic Maxwell nodal forces given by. nqe
iX ;');(

nke
nqe

i

qk
nqenke

i
nke

i
nqe

i u
CuxX ;);(

;');(
;);(;);(1;);(;');(

2
1}){},({ φφ

∂
∂

≡−  

Maxwell electrostatic forces are functions of the nodal electric potential as 
well as the derivatives of the matrix capacity versus the mechanical nodal 
displacements 
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3.3.5 Mapping requirements 

To evaluate nqe
i

qk

u
C

;');(∂
∂

, the analytical expressions of }
j

i

x∂
{∂ξ

as functions of the 

global coordinates {xi} are required. Possible finite elements could be [10]: 

• Linear tetrahedron (4 nodes, C0) for 3D problems. 

• Linear Triangle (3 nodes, C0) for 2D problems) 

3.3.5.1 Linear tetrahedron 

 

Figure 5 presents a linear tetrahedron and Equation 16 presents its associated 
interpolation and mapping functions (isoparametric element): 
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Figure 5: Linear tetrahedron 
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Equation 16: Linear tetrahedron interpolation and mapping functions: 

 
 

3211 1)( ξξξξ −−−≡iN 
 
 

12 )( ξξ ≡iN
 
 
 

23 )( ξξ ≡iN
 
 
 34 )( ξξ ≡iN
 

 

The relation between the derivatives of the interpolation functions on the 
reference and real element is given by the Jacobian matrix J: 

{ } [ ]{ }
ji xJ ∂=∂ξ  

In the case of the linear tetrahedron, J is given by: 

[ ]
















−−−
−−−
−−−

=















=

nnnnnn

nnnnnn

nnnnnn

xxxxxx
xxxxxx
xxxxxx

JJJ
JJJ
JJJ

J
;1

3
;4

3
;1

2
;4

2
;1

1
;2

1

;1
3

;3
3

;1
2

;3
2

;1
1

;2
1

;1
3

;2
3

;1
2

;2
2

;1
1

;2
1

333231

232221

131211

~~~~~~
~~~~~~
~~~~~~

 

where nk
ix ;~ are the coordinates of the nodes of the real element at the time 

step n: nk
i

nk
i ux ;1;nk

ix ;~ += − . 

The Ikq integrals given in Equation14 can be evaluated since an analytical 

expression of 
j

i

x∂
∂ξ

can be derived by inverting the Jacobian matrix J. 

[ ]

























∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

=−

3

3

3

2

3

1

2

3

2

2

2

1

1

3

1

2

1

1

1

xxx

xxx

xxx

J

ξξξ

ξξξ

ξξξ

 

The inverse and the determinant of the Jacobian matrix are given by: 
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[ ]
















−−−
−−−
−−−

=−

211222111132311222313221

112313213113331133212331

221323123312321323323322
1

)det(
1

JJJJJJJJJJJJ
JJJJJJJJJJJJ
JJJJJJJJJJJJ

J
J  

)()()()det( 223132211333212331122332332211 JJJJJJJJJJJJJJJJ −+−+−=  

Each Jnm terms are functions of the previous positions of the element nodes at 
time step n-1 : and of the displacement at current time step n: u . 1; −nk

ix nk
i

;

 

Let us introduce the following notations: 

})){},({(
}){},({}){},({

}){},({

;);(1;);(

3

;);(1;);(
'

3

;);(1;);(

;);(1;);(
'

nke
i

nke
i

nke
i

nke
ip

nke
i

nke
ip

nke
i

nke
ipp

uxJDet
x

ux
x

ux

uxF

−
−−

−

∂
∂

∂
∂

≡

ξξ  

and  

∫ ∂
∂

∂
∂

≡
)(

)(

'
'

~
refV

ref

p

q

p

k
qkpp dV

NNI
ξξ

 

The terms Fpp’ are functions of the real element nodes positions at time step n-
1 and of the nodal displacement at time step n. 

Integrals '
~

qkppI are constant terms as they are defined on the reference 

element. For the linear tetrahedron, the terms
j

iN
ξ∂

∂
 are constants equal to 0,1 

or –1, as: 

11 −=
∂
∂

i

N
ξ

, for i=1 to 3 

11 =
∂

∂ +

i

iN
ξ

, for i=1 to,3 

The other terms are zeros. 

Using these notations, the capacity matrix terms can be expressed as: 
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}){},({~}){},({ ;);(1;);(
''0

;);(1;);( nke
i

nke
ippqkpp

nke
i

nke
i

qk uxFIuxC −− = α  

So that the terms 'k
i

qk

u
C

∂
∂

can be calculated as: 

}){},({~ ;);(1;);(
'
'

'0'
nke

i
nke

ik
i

pp
qkppk

i

qk

ux
u
F

I
u
C −

∂
∂

=
∂
∂ α  

 

 

3.3.6 Virtual work of the non conservative part of the electric 
displacement 

The non-conservative part of the electric displacement can be expressed as a 
weighted summation of the time history of the electric field from time step n-
M to time step n-1, following the element in its motion with time. Using a 
tetrahedral element, the electric field is constant in the whole element since it 
is calculated by differentiating linear interpolation functions. So the non-
conservative part of the electric displacement of the element (e) can be 
expressed as a function of the element electric field value with time: 

∑
=

−≡
M

m

e
mnm

e
n ED

1

)()(~ α  

The variation of the electric field related to the variations of the nodal electric 
potential and nodal displacement is given by: 

nke
nqe

i

knqe
ik

nkee

u
NuNE ;);(

;);(
;);(;);()(

~~ φδδφδ
∂

∂
−−=  

The virtual work of the non conservative part of the electric displacement on 
the element is given by: 

)()()(

)(

~ e

V

ee
n dVEDW

e
∫= δδ  

This work can be divided into the following electric and mechanical works: 

uWWW δδδ φ +=  

The electric work can be expressed as: 
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Equation 17 

)();(;);( ~~ e
n

ne
k

nke DQW δφδ φ −=  

where the integrals ne
kQ );(~

 are given by: 

∫≡
)(

)();( ~~
eV

e
k

ne
k dVNQ  

The mechanical work can be expressed as: 

Equation 18 

nkenqke
i

e
n

nqe
iu FDuW ;);(;);()(;);( ~~ φδδ −=  

where the integrals nqke
iF ;);(~

are given by: 

)(
;);(

;);(

)(

~~ e

V
nqe

i

knqke
i dV

u
NF

e
∫ ∂

∂
≡  

Integrals Q ne
k

);(~
and nqke

iF ;);(~
can be calculated on the reference element using 

the same technique as the one presented in the previous section, using the 
analytical expression of the Jacobian matrix. 

Equation 15, Equation 17 and Equation 18 yield the contribution of the 
electromechanical coupling between the electric potential field and the 
displacement field to the general problem. The contributions of the other 
terms can be found in the classical finite element literature. 

Note: To simplify meshing, linear tetrahedrons can be assembled to build 
triangular prismatic elements, as shown in the annex A. 
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4. Conclusion and recommendations 
 

 

This report has presented the multiple challenges of modeling a DPA and characterizing a DP. 
It was demonstrated in the literature that DPAs have great potential. However, up to now, they 
have been built by trial and error, using crude analytical models as design guidelines. Some 
discrepancies between experimental and theoretically expected results were left without any 
clear answer, due to the complex behaviour of a DP. 

DPA modeling presents challenges at two different and complementary levels: 

• The experimental characterization of DP. 

• The modeling itself. 

These challenges are due to the complex behaviour of DP which can be summarized as 
follows: 

DPs are soft materials presenting large strain. 

DPs present a strong coupling between the electric field and the mechanical deformation field. 

DPs can present high mechanical losses (viscoelasticity), particularly the acrylic ones. 

DPs present high dielectric losses (hysteresis cycle in D,E diagram) 

DPs can present electric losses (reminiscent conductivity) 

DPs can present a small electrostriction effect. 

The principle of actuation of DPAs rely precisely on behaviours (1) and (2). That is, they are 
wanted behaviours. These behaviours are a first source of complexity for modeling DPAs 
since they require a non linear model that must be solved in the time domain. 

Behaviours (3) to (5) are unwanted properties that will have to be minimized when developing 
new DP materials. These behaviours decrease the actuator efficiency. Moreover, they make 
difficult the experimental characterization of DPs. Particularly, due to the strong 
electromechanical coupling, it will be difficult to separate dielectric and mechanical losses, 
making difficult the measurement of the dielectric and mechanical relaxation functions. 

Behaviour (6) can be a good property if its effect tends to add the DPA principle of actuation 
(i. e. Maxwell stress + compliance of the dielectric medium). However it will make difficult 
the experimental measurement of the permittivity of the DP since the electrostrictive effect 
and the DPA principle of actuation produce the same effect (strain proportional to the square 
of the driving voltage).  
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This study has presented a possible finite element method to model Maxwell stress in a DPA. 
This method requires the analytical expression of the Jacobian matrix of the transformation as 
a function of the nodes’ co-ordinates on the real elements. It was shown that a linear 
tetrahedral element could be used. Even the dielectric losses could be calculated (provided 
that the relaxation function of the DP can be measured). It will be interesting to use this linear 
3D dielectric element to simulate the experimental results presented by Kofod et al. [7]. In 
this case, the predicted strain should be closer to the experiment than the crude model they 
used. 

To build a reliable finite element code for predicting DPAs behaviour, it will be wise to start 
with a low loss and low electrostrictive material. To validate the proposed element, a soft 
elastic and non-dielectric material could be used instead of a dielectric material. This will 
insure a constant permittivity, however the strain will be small so that high voltages will be 
required, hopefully a compromise could be found between excitation voltage and material 
elasticity so that a non-linear relation between excitation and strain could be measured. 
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Annexe A: Example of tetrahedral elements 
assembly 

 

 

Three tetrahedral elements can be assembled as follows, to make a one triangle prismatic 
element to simplify meshing (and post-processing data visualisation). 
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