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Abstract

The development and incorporation of the latest enhancements to the AVAST code
are described. The purpose of this work was to make the modeling of the physical
environment more realistic, while ensuring that the code runs as efficiently as
possible. To this end several new features have been added. These include modifying
the high-frequency Kirchhoff scattering method in order to allow for at least one
reflection and upgrading the existing boundary element surface panel integration
routines. The contract also addresses the need to investigate the high frequency target
strength of Manta shapes.

Résumé

L’élaboration et I’intégration des améliorations les plus récentes apportées au logiciel AVAST
sont décrites dans le présent document. Le but des travaux était de modéliser le milieu
physique de maniére plus réaliste, tout en veillant a ce que le logiciel soit exécuté le plus
efficacement possible. A cette fin, de nouveaux attributs y ont été ajoutés. lls consistent a
modifier la méthode de diffusion de Kirchhoff pour les hautes fréquences de fagon a permettre
au moins une réflexion et a améliorer les routines actuelles d’intégration des panneaux de
surface par éléments de frontiére. Le contrat porte également sur I’étude de I’indice de
réflexion a haute fréquence des mines Manta.

DRDC Atlantic CR 2007-216 i
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Executive summary

Introduction

Work by DRDC and Martec in underwater/structural acoustics has resulted in the
development of a series of computer programs, collectively named AVAST, for the
numerical prediction of the acoustic radiation and scattering from floating or
submerged elastic structures immersed in either infinite, half-space or finite-depth
fluid domains. AVAST combines both the finite element method for the structure and
the boundary integral equation technique for the fluid. The finite element method is
used to predict the natural frequencies and related mode shapes of the structure in-
vacuo. The boundary integral equation method is used to generate a system of
equations relating structural displacements to fluid acoustic pressures. In an attempt to
make the modeling of sound radiated and scattered from structures more realistic,
several enhancements were incorporated into the existing AVAST suite. These
include modifying the high-frequency Kirchhoff scattering method to allow for at
least one reflection and upgrading the existing boundary element surface panel
integration routines. This report also includes a summary of a series of AVAST elastic
target strength analysis conducted on Manta-like mine models.

Results

The AVAST software was upgraded to allow for the prediction of high frequency
target strengths of underwater targets in shallow water, to include the effects of
multiple scatterers and secondary reflections, and to allow for modelling of thin
bodies. A realistic examination of the target strength of a Manta-like mine was also
performed demonstrating the increased target echo strength at frequencies close to the
structural resonant frequencies (when submerged).

Significance

This upgraded version of AVAST will be used to improve the accuracy of target echo
strength predictions of all underwater targets and the results from the mine
investigation will be used to compare with other measured or predicted data when
available to assess the accuracy of the AVAST software for this class of problems.

Future plans

The improved AVAST will be used to assess the acoustic target strength of CF
submarines and the elastic target strength of other mine-like targets.

Brennan, D.P. 2007. Further Enhancements to the High Frequency Target Strength
Prediction Capabilities of AVAST. DRDC Atlantic CR 2007-216. DRDC Atlantic.
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Sommaire

Introduction

Le programme de recherche en collaboration entre RDDC et Martec sur I’acoustique sous
marine (structures immergées) a donné lieu a I’élaboration d’une série de logiciels, regroupés
sous I’appellation AVAST, permettant de calculer le rayonnement acoustique et la diffusion
du rayonnement par des structures élastiques flottantes ou immergées dans un fluide infini, ou
finie, occupant un demi espace ou un volume défini. Le logiciel AVAST conjugue la méthode
des éléments finis (MEF), pour la structure, et la méthode des équations intégrales de
frontiére, pour le fluide. La méthode des éléments finis (MEF) sert a prévoir les fréquences
naturelles et les formes connexes de la structure in vacuo. La méthode des équations
intégrales de frontiére sert a produire un systeme d’équations qui relie les déplacements
structuraux aux pressions acoustiques du fluide.

Dans le but de rendre la modélisation du son émis et diffusé par les structures plus réaliste, on
a récemment apporté plusieurs améliorations a la suite AVAST. Celles ci consistaient
notamment a améliorer la méthode de diffusion de Kirchhoff pour les hautes fréquences afin
de tenir compte d’au moins une réflexion, et a améliorer les routines actuelles d’intégration
des panneaux de surface par éléments de frontiére. Le rapport comprend également le résumé
d’une série d’analyses de I’indice de réflexion par des cibles élastiques réalisées sur des
modeéles semblables aux mines Manta, a I’aide du programme AVAST.

Résultats

Le logiciel AVAST a été amélioré afin de calculer I’indice de réflexion des cibles émettrices
de hautes fréguences en eaux peu profondes, en vue de tenir compte des effets des diffusions
multiples et des réflexions secondaires et de permettre la modélisation des structures minces.
Un examen réaliste de I’indice de réflexion des cibles semblables aux mines Manta a
également été réalisé dans le but de démontrer que I’amplitude de I’écho des cibles est plus
grande a des fréquences proches de la fréquence de résonance de la structure (cibles
immergées).

Portée

La version améliorée du programme AVAST permettra d’améliorer I’exactitude des calculs
de I’'amplitude de I’écho de toutes les cibles sous marines, et les résultats de I’étude sur les
mines seront utilisés pour comparer ces prévisions avec d’autres données mesurées ou
calculées lorsqu’elles seront disponibles, dans le but d’évaluer la pertinence de I’utilisation du
logiciel AVAST pour la résolution de ce type de problémes.

Recherches futures

Le programme AVAST amélioré sera utilisé pour évaluer I’indice de réflexion acoustique des
sous marins des FC et I’indice de réflexion d’autres cibles élastiques semblables a des mines.

Brennan, D.P. 2007. Further Enhancements to the High Frequency Target Strength
Prediction Capabilities of AVAST. DRDC Atlantic CR 2007-216. DRDC Atlantic.
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1. Introduction

Phases one though fourteen of the DRDC/Martec collaborative research in
underwater/ structural acoustics has resulted in the development of a series of
computer programs, collectively named AVAST, for the numerical prediction of the
acoustic radiation and scattering from floating or submerged elastic structures
immersed in either infinite, half-space or finite depth fluid domains. AVAST
combines both the finite element method (FEM) for the structure and the boundary
integral equation technique for the fluid. The finite element method is used to predict
the natural frequencies and related mode shapes of the structure in-vacuo. The
boundary integral equation method (BIEM) is used to generate a system of equations
relating structural displacements to fluid acoustic pressures.

In an attempt to make the modeling of sound radiated and scattered from structures
more realistic, several enhancements have recently been incorporated into the
previously existing AVAST suite. These include modifying the high-frequency
Kirchhoff scattering method in order to allow for at least one reflection and upgrading
the existing boundary element surface panel integration routines.

In the discussion which follows, details concerning the development and
incorporation of these latest enhancements to the AVAST suite will be presented.
Also included in this report is a summary of a series of AVAST elastic target strength
analysis conducted on Manta-shaped mine models.

DRDC Atlantic CR 2007-216



2. Manta Shape Target Strength Analysis

The basic geometry of the Manta shape is displayed in Figure 2.1. The larger radius of
the shape is 1000mm and the smaller radius is 500mm. The shape is 375mm in height.
The shape was modeled using 4-node quadratic elements and the mesh used is shown
in Figure 2.2. Figure 2.2 also shows the interior of the shape with the core section
modeled. The outer shell of the shape was assumed to be a composite material with a
thickness of 20mm. The core and the bottom plate were assumed to be steel. The light
blue elements represent the steel portions of the shape and the brown elements
represent the composite sections. For simplicity, the composite was modeled as an
isotropic material with a density of 2500kg/m3, an elastic modulus of 40GPa and
Poisson’s ratio of 0.35. The steel elements were assigned a density of 7900 kg/m3, an
elastic modulus of 207GPa and Poisson’s ratio of 0.30.

2.1 Structural Modeling

The algorithm used in AVAST for computing the elastic target strength is based on a
dry-mode wet-mode approach, i.e., the dry (in-vacuo) modes of the structure are used
to predict the submerged elastic response. For the purposes of this analysis, a finite
element model was created based on the description provided above and a series of
dry structural modes were computed using the VAST finite element code. The finite
element model had a total of 21084 degrees of freedom with a total of 30 modes
computed. The results of the natural frequency run are provided below in Table 2.1.
Note that for the purposes of this analysis, the mine was modeled as a free-free system
(no boundary constraints).

2.2 Boundary Element Modeling

The boundary element model used to represent the Manta shape is represented below
in Figure 2.1 (using the surface panels only) and represents the wetted surface of the
structure. A total of 2552 quadrilateral surface panels were used. Field points (for
calculating the target strength) were located at a distance of 100 meters from the
center of the shape and at a height of 165 millimeters above the sea floor (the sea floor
was represented as a rigid plane). The acoustic source used to excite the shape was
located at a distance of 1000 meters and a height of 165 mm above the sea floor. The
wet natural frequencies computed by AVAST are provided below in Table 2.2 and the
resulting mode shapes are shown in Figures 2.3-2.16.

2 DRDC Atlantic CR 2007-216



Dry Mine Modes Wet Mine Modes
Mode Number Frequency (Hz) | Mode Number Frequency (Hz)

7 188 7 347
8 398 8 440
10 457 10 475
11 521 13 526
13 639 15 643
15 658 17 663
17 722 19 750
19 745 25 803
21 769 27 991
23 787 29 1005
25 795

27 904

28 983

30 1034

2.3 Results

In order to study the effects of structural elasticity on the target strength of the Manta
shape, results were computed for narrow 8 Hz frequency bands approximately
centered on the wet natural frequencies of the structure. Figures 2.17 — 2.31 provide
plots of the radiated component of the acoustic pressure generated by a unit (1.0 Pa)
incident source with various damping factors used (from 0.0 to 0.5%). The horizontal
axis represents frequency while the vertical axis represents field point position in
degrees (one complete rotation). These plots clearly show significant changes in the
radiated pressure at the frequency approaches a coupled resonance. In a second series
of figures (see Figures 2.32 — 2.44), plots representing the ratio of radiated to scattered
acoustic pressure are provided. Once again, these plots clearly show a significant
increase in the radiated (i.e., elastic contribution) pressure in narrow frequency bands
close to coupled resonances.

2.4 Target Strength Predictions

In order to compute the elastic target strength, the formula used to compute the rigid
target strength was modified to include the radiated, or elastic, acoustic pressure, i.e.,

TS . = 20000 (%} +20L0g,,(R)

DRDC Atlantic CR 2007-216 3



where ¢, represents the scattering field pressure ¢.,, represents the radiated field
pressure, ¢, represents the incident pressure computed at the acoustic center (i.e.,

center of the mine), and R represents the distance from the acoustic center to the field
points (i.e., 100 meters).

Monostatic elastic target strength results for a few select frequencies are provided

below in Figures 2.45-2.50. The horizontal axis is the circumferential direction around
the mine shape.

DRDC Atlantic CR 2007-216
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Figure 2.1 . Schematic Showing Overall Dimensions of Manta Shape

Figure 2.2 . Finite Element Mesh of Manta Shape with Quarter Cut Out to Show Core Structure
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Figure 2.17 . Manta_365Hz_0e-3Damping
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Figure 2.18 . Manta_379Hz_0e-3Damping
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Figure 2.19 . Manta_396Hz_0e-3Damping

Radiated Sound
Pressure

3.006e-006
2.721e-006
2.436e-006
2151e-006
1.866e-006
1.581e-006
1.296e-006
1.011e-006

HREC NN

7.254e-007

Figure 2.20 . Manta_419Hz_0e-3Damping
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Figure 2.21 . Manta_434Hz_0e-3Damping
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Figure 2.22 . Manta_434Hz_1e-3Damping
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Figure 2.23 . Manta_434Hz_2e-3Damping
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Figure 2.24 . Manta_434Hz_5e-3Damping

16 DRDC Atlantic CR 2007-216



!
Radiated Sound
Pressure
8.286e-006
| R
£.270e-005
5. 2632005
4. 255e-006
3.247e-005
2.240e-006
1.232e-008
2.243e007
.
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Figure 2.27 . Manta_615Hz_0Oe-3Damping

Figure 2.28 . Manta_660Hz_0e-3Damping
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Figure 2.29 . Manta_699Hz_0e-3Damping
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Figure 2.30 . Manta_895Hz_0e-3Damping
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Figure 2.31 . Manta_900Hz_0Oe-3Damping
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Figure 2.32 . Manta_365Hz_0e-3Damping.RAT
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Figure 2.33 . Manta_379Hz_0e-3Damping.RAT
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Figure 2.34 . Manta_396Hz_0e-3Damping.RAT
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Figure 2.35 . Manta_419Hz_0e-3Damping.RAT
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Figure 2.36 . Manta_434Hz_2e-3Damping.RAT
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Figure 2.37 . Manta_434Hz_5e-3Damping.RAT
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Figure 2.38 . Manta_532Hz_0e-3Damping.RAT
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Figure 2.39 . Manta_545Hz_0e-3Damping.RAT
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Figure 2.40 . Manta_615Hz_0e-3Damping.RAT
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Figure 2.41 . Manta_660Hz_0e-3Damping.RAT
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Figure 2.42 . Manta_699Hz_0e-3Damping.RAT
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Figure 2.44 . Manta_900Hz_0e-3Damping.RAT
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Manta Mine Elastic Target Strength at 379 Hz
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Figure 2.45 . Manta Shape Monostatic Elastic Target Strength at 379 Hz
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Figure 2.46 . Manta Shape Monostatic Elastic Target Strength at 419 Hz
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Figure 2.47 . Manta Shape Monostatic Elastic Target Strength at 616 Hz

Manta Mine Elastic Target Strength at 660 Hz

Figure 2.48 . Manta Shape Monostatic Elastic Target Strength at 660 Hz
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Manta Mine Elastic Target Strength at 699 Hz
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Figure 2.49 . Manta Shape Monostatic Elastic Target Strength at 699 Hz
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Figure 2.50 . Manta Shape Monostatic Elastic Target Strength at 900 Hz
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3. Upgrade the AVAST Boundary Element Surface
Panel Integration Routines

During a recent series of numerical trials, it was found that the numerical integration
algorithms developed for use in AVAST were not capable of maintaining a high level
of accuracy for extremely thin bodies. This behavior was first identified in
simulations involving ship structures having highly tapered bows (see Figure 3.1 as an
example). An investigation into the cause of this loss of accuracy determined that the
numerical integration routines used to generate the matrix coefficients used in the
boundary element models were not well-suited for evaluating the nearly-singular
nature of these coefficients. This nearly-singular nature occurs when the centroids of
two adjacent panels are separated by a relatively small distance (relative in
comparison to the dimensions of the panels).

In order to correct this problem, a semi-analytic approach (based on the Hess-Smith
method — see [1]) has been developed and implemented into the latest version of the
AVAST code. This new approach is capable of computing matrix coefficients for
models having very thin or even collapsed edges.

Figure 3.1 . Sample Boundary Element Mesh for a Ship Hull
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4. Upgrade Kirchhoff Scattering Capability

During the previous AVAST development contract, a version of the Kirchhoff
scattering algorithm was implemented in the AVAST software. While target strength
predictions generated using this algorithm appear to agree closely with other codes,
the current AVAST formulation does not account for free surface/shallow water
effects or reflections from adjacent structure. The purpose of the current research
work is to address these modeling deficiencies and produce an enhanced version of
the Kirchhoff scattering algorithm in an upgraded version of the AVAST code.
Details related to this work are provided in the discussion which follows.

4.1 Free Surface — Shallow Water Effects

In order to account for the effects of free surfaces, rigid surfaces and shallow water
fluid domains, a formulation based on the method of images [2] has been incorporated
into the latest version of the AVAST code. A similar formulation has been employed
in AVAST to model low frequency acoustic radiation and scattering via the
Helmholtz equation. In cases involving free or rigid surfaces, a single “mirror” image
of the body is placed on the opposite side of the boundary. By positioning an image
in this way, the boundary condition on the boundary (i.e., pressure equals zero, or
velocity equals zero) is automatically satisfied. A similar technique is used for
shallow water fluid domains; however, a series of images must be used (see reference

[3D.

Fortunately, only minor changes were needed to upgrade the AVAST code in order to
provide this new modeling option. In fact, the bulk of the effort was spent modifying
the pre-existing Kirchhoff integral formulation (see Equation 4.1) in order to account
for the effects of the secondary images (see Equations 4.2-4.4).

Infinite fluid domain:

—ik pe "

"~ ard

pscat (P) pinc (Q )[COS(¢scat )+ Cos(¢inc )]dSQ (4'1)

Reg

Half fluid domain with free surface:

—ikR —ikR,
e e ™

—ik
pscat (P) - A f[ RpQ - §PQ J pinc (Q)[COS(¢scat )+ COS(¢inc )]dSQ (42)
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Half fluid domain with rigid surface:

Lk of @M o ikReq
R e MU TR

Shallow water (waveguide) fluid domain of depth h:

pealP)= | 6000 | QUeos(h) eos oS, (4

s \.n=1

where P represents the position of the field point, Q represents the location of the
centroid of the surface panel, k represents the acoustic wavenumber, R, represents

the distance between the field point and surface panel, ﬁPQ represents the distance
between the field point and image surface panel, p,, (Q) represents the magnitude of

the incident pressure at the surface panel Q, and ¢, and ¢,,. are assumed to

represent the angle between the surface normal and the vectors representing relative
position of the field and source points with respect to panel centroid.

inc

4.2 Multiple Reflections

In order to account for multiple reflections, the pre-existing AVAST Kirchhoff
formulation was modified so that the scattering pressure computed on the surface of
the boundary element panels would be modeled as secondary source terms. In terms
of the AVAST formulation, given the particular type of fluid domain, one of the four
equations provided above would be used to compute the scattered pressure
contribution made by source at the various field locations. This contribution is
considered the “primary” source term. Once this primary contribution has been
computed, then the contributions made by secondary reflections coming from the
individual panels are computed. For these secondary reflections, the location of the
source is moved to centroids of the individual panels, and the strength of the source is
set equal to the scattered pressure computed for the panel centroid. As a result, for an
infinite fluid domain, Equation (4.1) is solved once using the strength and location of
the primary source term, and then repeated once for each surface panel, this time
using the location of the panel centroid and the strength of the scattered pressured at
this location to serve as the secondary source.

4.3 Example

In order to demonstrate the capabilities of the newly upgraded AVAST Kirchhoff
scattering modeling capability, consider the model of boundary element model of a
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generic submarine sail provided below in Figure 4.1 [4]. For the purposes of this
study, target strength predictions have been made for two model configurations: the
sail at a depth of 3.0m and at a depth of 300m. For the 300m case, the fluid domain
was assumed to be infinite in extent. Figure 4.2 provides a comparison of the target
strength predictions made by newly upgraded AVAST code. As expected, the target
strength changes significantly (increasing particularly close to broadside (90°)) as the
sail approaches the free surface.

Figure 4.1. Generic Submarine Sail Model
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Figure 4.2. A Comparison of Target Strength Predictions for Submarine Sail at 4 kHz (infinite
Fluid vs a Free Surface Height 3m Above the Top of the Sail)
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