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Abstract 

Integrated Inertial Navigation System (INS) and Global Positioning System 

(GPS) solutions have become the backbone of many modern positioning and navigation 

systems. The Achilles’ heel of such systems are their susceptibility to GPS outages. 

Hence, there has been sustained interest in alternate navigation techniques to augment a 

GPS/INS system. With the advancement in camera technologies, visual odometry is a 

suitable technique. As the cost and effort required to conduct physical trials on a visual 

odometry system is extensive, this research seeks to provide a simulation platform that is 

capable of simulating different grades of GPS/INS systems under various realistic visual 

odometry scenarios. The simulation platform also allows standardized data to be tested 

across different navigation filters. The utility of this simulation platform is demonstrated 

by a trade study on factors affecting the performance of a GPS/INS system augmented 

with visual odometry. 
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SIMULATION PLATFORM FOR VISION AIDED INERTIAL NAVIGATION 
 
 

I.  Introduction 

Inertial navigation is an independent navigation system in which measurements 

provided by accelerometers and gyroscopes are used to determine the Position, Velocity 

and Attitude (PVA) of a vehicle relative to a known starting condition. It is used in a 

wide range of navigation applications in aircraft, spacecraft, land vehicles and ships. 

Advances in micro-electro mechanical systems (MEMS) technology have made it 

possible for small and light Inertial Navigation Systems (INS) to be used in small and 

low-cost vehicles.  

The advantage of an INS is that it requires no external reference to determine its 

position, velocity or attitude once it has been initialized. Hence, an INS is immune to 

jamming and deception. However, all INS suffer from integration drift as small errors in 

the measurement of acceleration and angular velocity are integrated into larger errors in 

position, velocity and attitude. Since the new position is derived from the previous 

calculated position, and due to the dynamics of the errors with an INS, these errors 

accumulate quickly as the time since initialization grows. Therefore, the position must be 

periodically corrected by some other type of navigation system. One of the best sources 

of measurements for position come from the Global Positioning System (GPS). 

The GPS is a system of satellites that transmits signals to receivers on or above 

the Earth’s surface. The receivers can determine their own position if four or more 

satellites are visible to the receiver. GPS is highly accurate, does not drift over time, has a 

low cost to implement and is available in real-time. Hence, position measurements from 
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GPS are suitable for updating an INS. The integration of GPS and INS allows the overall 

system to perform at levels which are difficult to attain with either sensor alone (M. Veth 

& Raquet, 2007). 

An inherent weakness of a GPS or GPS/INS system is the unavailability of GPS 

signals in environments that do not have a clear line of sight to the sky, such as urban 

canyons, indoors or underground. It is also possible for a GPS signal to be jammed. This 

weakness motivates the development of alternate navigation systems that can work in 

environments with GPS outages, and in particular for small, low-cost vehicles. One such 

alternate navigation system is vision-aided inertial navigation. This has become practical 

as inertial measurement units and cameras are becoming less expensive, smaller, and 

more reliable with improved processing capabilities. Hence, vision-aided inertial 

navigation can be applied in small, low-cost vehicles which need to operate in 

environments with GPS outages.  

As the development of a vision-aided inertial navigation system (VINS) requires a 

significant amount of effort for performance tuning, verification and validation, it would 

be beneficial to test the design of the system in various simulated environments prior to 

physical testing of the system in a real environment. Such simulations allow researchers, 

to focus on the design of navigation filters for a VINS while eliminating hardware and 

data synchronization problems. This research is in support of a Project Agreement 

between the United States and Singapore, entitled “GPS/Inertial/Vision Integrated 

Navigation System (GIVINS)”. 
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1.1 Problem Statement 

This research aims to (1) build a platform that can be used to simulate a VINS 

operating in an environment with limited GPS signals, and (2) to demonstrate the utility 

of the platform by using it to study the effects of key design parameters on the 

performance of a VINS. This simulation platform will then facilitate future research in 

the development of VINS. 

1.2 Scope and Assumptions 

 The scope of this research is to build a platform to simulate a VINS and to 

demonstrate the utility of the platform by performing a trade study on a low-cost VINS. 

The design of a navigation algorithm for the simulated VINS is limited to methods 

currently available in literature. The simulation platform is currently using real-world 

images and PVA data collected from a ground vehicle as part of the All Source 

Positioning Navigation (ASPN) program.  

1.3 Methodology 

The first part of this research focuses on building a simulation platform and 

verifying its operation and performance. The second part of this research demonstrates 

the utility of the platform by examining how various key design parameters of a VINS 

(such as Measurement Rate, INS Quality, Camera Quality, and Camera Pointing 

Direction) affects its performance. Three types of observations are utilized in the 

navigation filter: Limited (0 to 3) GPS pseudorange measurements, image derived 

measurements (rotation and direction of translation), and inertial measurements (specific 

forces and angular velocities). 
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1.4 Thesis Overview 

Chapter 2 presents background knowledge essential for this thesis. This includes 

descriptions of reference frames used for navigation, transformation between these 

reference frames, the concept of vision aided navigation and Kalman Filters. It will also 

present related research in the field of vision navigation and simulation of navigation 

systems. Chapter 3 explains how the simulation platform is built and how its operation 

and performance is verified. Chapter 4 presents analysis of a VINS trade space carried 

out using the simulation platform. Chapter 5 concludes this research and proposes 

potential future works based on the insights gained. 
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II. Literature Review 

This chapter presents the background knowledge required to complete this thesis. 

The first portion of this chapter begins by defining the standard mathematical notation 

which is used throughout the thesis. Next, reference frames used for navigation and a 

mathematical technique for transforming coordinates between these reference frames are 

defined. This is followed by the concept of visual navigation. Lastly, a brief overview of 

Kalman filter theory is presented. The second portion of this chapter describes research 

that is closely related to what this thesis aims to achieve.  

2.1 Mathematical Notation 

 The following mathematical notation is used in this thesis:  

• Scalars: Scalars are signified by a lower or upper-case case variables in 

italics (e.g., x). 

• Vectors: Vectors are by default given in column form and represented using 

lower-case bold letters (e.g., x). 

• Matrices: Matrices are represented using uppercase bolded letters (e.g., X). 

• Vector Transpose: The vector (or matrix) transpose is identified by a 

superscript Roman T, as in xT. 

• Estimated Variables: Variables which are estimates of random variables are 

denoted by the hat character, as in x�. 

• Direction Cosine Matrices: Direction cosine matrices used to transform 

vectors from coordinate frame a to coordinate frame b are denoted by Ca
b. 
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2.2 World Geodetic System 1984 

As the platform simulates the PVA of a vehicle moving on or near the surface of 

the Earth, a model of the Earth is required. This research uses parameters defined in the 

World Geodetic System 1984 (WGS-84) to model the geometry of the Earth (National 

Imagery and Mapping Agency, 2004). With this model, the position of any point on or 

near the Earth’s surface can be described using a geodetic latitude (φ), longitude (λ) and 

altitude (h). The rates at which the latitude and longitude change as a vehicle moves on or 

near the surface of the Earth is governed by the normal and meridian radii (Noureldin, 

Karamat, & Georgy, 2013). These radii are also used to convert geodetic latitude and 

longitude to a local-level navigation frame. The normal radius, RN, is defined for the east-

west direction as shown in Eq (1).  

RN=
a

(1-e2 sin2 φ)
1
2
 (1) 

where 

a = 6,378,137.0 m (WGS-84 semi-major axis) 

e = 0.08181919 (WGS-84 ellipsoid eccentricity). 

 
The meridian radius, RM, is defined for the north-south direction as shown in Eq (2). 

RM=
a (1-e2)

(1-e2 sin2 φ )
3
2
 (2) 

 
The rate of change of latitude and longitude are as shown in Eq (3) and (4) respectively. 

𝜑̇ =
𝑣𝑛

RM + ℎ
 (3) 

𝜆̇ =
𝑣𝑒

(RN + ℎ) cos𝜑
 (4) 
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2.3 Reference Frames 

This section describes reference frames that are used to express the PVA of a 

vehicle. It also includes transformations between these reference frames. 

2.3.1 Inertial Frame. 

The inertial reference frame, denoted by xi, yi and zi in Figure 1, originates at the 

center of the earth with the vertical z axis passing through the North Pole. The x axis 

points in an arbitrarily chosen direction that remains fixed in orientation relative to the 

rotating earth and together with the y axis completes a right handed Cartesian coordinate 

system. 

2.3.2 Earth Centered Earth Fixed Frame. 

The earth centered earth fixed frame (ECEF) reference frame, denoted by xe, ye 

and ze in Figure 1, is initially aligned with the inertial frame and rotates about the ze axis 

at the earth sidereal rate. The x axis projects through the prime meridian at the equator, 

and the y axis completes the right handed Cartesian coordinate system. 

2.3.3 Navigation Frame. 

The navigation frame, denoted by xn, yn and zn in Figure 1, has its origin located at 

a predefined point on a vehicle. It is also known as the local-level frame as the x, y, and z-

axes are aligned to the locally level North, East and Down (NED) directions, 

respectively. There is another commonly used navigation frame that differs from the 

NED frame, whereby the x, y, and z-axes are aligned to the locally level East, North and 

Up (ENU) directions, respectively. The NED frame is used for most part of this thesis. A 

distinction will be made when the ENU frame is used. 
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2.3.4 Body Frame.  

The body frame, denoted by xb, yb and zb in Figure 2, is an orthonormal basis, 

rigidly attached to the vehicle with origin co-located with the navigation frame. The x, y, 

and z-axes point out the nose, right-wing/door, and bottom of a vehicle respectively. 

2.3.5 Sensor Frame.  

The sensor frame or camera frame, as denoted by xc, yc and zc in Figure 3, has its 

origin at the sensor's optical center. The x and y axes point up and to the right, 

respectively, and are parallel to the image plane of the sensor. The z axis points out of the 

sensor perpendicular to the image plane. 

 
Figure 1. Inertial, ECEF and Navigation (NED) Frames from (M. J. Veth, 2006) 
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Figure 2. Body Frame from (M. J. Veth, 2006) 

 

 

Figure 3. Sensor (Camera) Frame from (M. J. Veth, 2006) 
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2.4 Coordinate Transformations 

Coordinate transformations describe the relationships between vectors expressed 

in various reference frames. For the purposes of this thesis, the relevant transformations 

are Euler angles and direction cosine matrices (DCM). 

2.4.1 Euler Angle. 

Euler angles are elements of a three-component vector corresponding to a specific 

sequence of single-axis rotations to rotate from one reference frame to another. A 

common application of Euler angles is expressing the transformation from the body to 

navigation frame of a vehicle as a roll (ϕ), pitch (θ) and yaw angle (ψ).  

2.4.2 Direction Cosine Matrix. 

Direction cosine matrices are four-parameter transformations expressed as a 3 x 3 

matrix. The matrix consists of the inner product (or cosines) of each unit basis vector in 

one frame with each unit basis vector in another frame. The matrix form of the direction 

cosine is convenient for transforming vectors, as in Eq (5), where a vector expressed in 

frame a is rotated to frame b by multiplying it with a DCM. 

pb= Ca
bpa (5) 

 

The DCM has the following properties when it is used to transform right-hand 

Cartesian coordinates 

Det�Ca
b�  ≡  �Ca

b� = 1  (6) 

Cb
a =  �𝐂ab�

−1
=  �𝐂ab�

T
 (7) 

Ca
c =  Cb

cCa
b (8) 
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2.5 Visual Navigation 

This section describes the key processes in visual odometry. It begins with the 

identification of features in an image. This is followed by matching features between the 

images. Finally, the movement (rotation and direction of translation) of the sensor can be 

estimated using epipolar constraints.  

2.5.1 Identifying Features in an Image. 

 A feature refers to a location in an image that is distinct in some manner. There 

are many techniques to detect features in an image. These techniques are commonly 

classified into their principles for detection, such as edge detection, corner detection, blob 

detection, and feature description. The technique used in this thesis to identify a feature is 

the Scale Invariant Feature Transform (SIFT) developed by Lowe (Lowe, 1999). This 

technique works using the principle of feature description. As the SIFT features are 

unaffected by scaling, orientation, and mostly unaffected by lighting and affine distortion, 

it is ideal for detecting features in moving images, and the features are suitable for 

tracking. SIFT identifies image features that have the characteristics described above by 

using Gaussian blurring to identify features that are maximum/minimum in scale space. 

Descriptors that uniquely describe these features are then formed. More details can be 

found in (Lowe, 1999) and (Lowe, 2004). 

2.5.2 Matching Features between Images. 

As SIFT descriptors uniquely describe features in an image, features with 

identical or relatively similar descriptors can be considered to be the same. Feature 

matching identifies corresponding features from a pair of successive images. This process 

starts by determining the similarity of a feature in the leading image with all the features 
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in the trailing image. The trailing image feature with the closest similarity is declared to 

be a match. To remove outliers in the matching process, additional processing, such as 

verification that the candidate feature is significantly closer than the next closest feature 

to be matched can be performed. The same process is repeated for the remaining features 

in the leading image and a list containing only matched features for each successive pair 

of images is obtained.  

2.5.3 Estimating the Rotation and Direction of Translation of the Sensor. 

Epipolar geometry refers to the intrinsic projective geometry between two views 

(Hartley & Zisserman, 2004). It is independent of scene structure, and only depends on 

the cameras’ internal parameters and relative pose. If a point in 3D space is imaged as 

point x in the first view and point x’in the second view, as shown in Figure 4, these 

points and the camera centers are coplanar. The 3 x 3 Fundamental matrix F is the 

algebraic representation of epipolar geometry that satisfies the constraint as shown in Eq 

(9). 

𝐱′𝒑T𝐅𝐱𝒑 = 0 (9) 

where 𝐱𝒑  and 𝐱′𝒑  are homogeneous pixel coordinates 
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Figure 4. Epipolar Geometry from (J. Raquet, 2014) 

The Essential matrix E also establishes an epipolar constraint. It is related to the 

Fundamental matrix through the following relationship E = K’TFK, where the camera 

calibration matrix K is defined as shown in Eq (10). 

K = �
𝑓𝑐(1) 𝛼𝑐𝑓𝑐(1) 𝑐𝑐(1)

0 𝑓𝑐(2) 𝑐𝑐(2)
0 0 1

� (10) 

where 
fc (1),  fc (2) = horizontal and vertical focal length 

cc (1), cc (2) = principal point, or center point of the image plane  

αc = angle between the horizontal and vertical sensor axes. 
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Hence, the epipolar constraint shown in Eq (9) can be re-written in terms of the Essential 

matrix as shown   

𝐱′𝒑T * (K’T)-1EK-1 * 𝐱𝒑  = 0 (11) 

𝐱′𝒏TE𝐱𝒏  = 0 (12) 

where 𝐱′𝒏  and 𝐱𝒏  are homogeneous normalized coordinates of 𝐱′𝒑 and 𝐱𝒑  respectively. 
 

Hence, given a list of matched features, it is possible to compute the Essential 

matrix. As the measurements of the matched features are subjected to noise, an exact 

solution for the Essential matrix is usually not possible. A total least squares approach 

can be used to estimate an Essential matrix which optimally satisfies the epipolar 

constraints for the given list of matched features. This approach is commonly known as 

the eight-point algorithm and a further description can be found in (Longuet-Higgins, 

1987).  Finally, the rotation and direction of translation of the sensor can be determined 

by computing the singular value decomposition of the Essential matrix as described by 

(Hartley & Zisserman, 2004). 

2.6 Kalman Filter 

The Kalman filter is a recursive algorithm that uses a system model and a stream 

of noisy measurement updates to produce an optimal (minimum variance) estimate of the 

system state. This thesis uses the conventional Kalman filter, which assumes a linear 

system, and that the state and measurement errors can be modelled using zero mean white 

Gaussian noise (WGN).  
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In continuous time, the system is modelled in terms of first-order differential 

equation as shown in Eq (13). 

𝐱̇(𝑡) = 𝐅(𝑡)𝐱(𝑡) + 𝐁(𝑡)u(𝑡) + 𝐆(𝑡)𝐰(𝑡) (13) 

where  
x(t) = system states 

F(t) = state dynamics matrix 

B(t) = input matrix 

u(t) = vector of deterministic inputs 

G(t) = noise distribution matrix 

w(t) = WGN state uncertainty with noise strength Q(t). 

 

In discrete time, the system is expressed as a state-space model as shown in Eq 

(14). 

𝐱𝑘 = 𝚽𝑘𝐱𝑘−1 + 𝐁𝑘−1𝐮𝑘−1 + 𝐆𝑘−1𝐰𝑘−1 (14) 

 
where  

𝐱𝑘    = discrete states (n x 1) 

𝚽𝑘   = state transition matrix that transform the states from tk-1 to tk 

(n x n) 

𝐁𝑘−1= discrete input matrix (n x n) 

𝐮𝑘−1= vector of discrete inputs (n x 1) 

𝐆𝑘−1= discrete noise distribution matrix (n x s) 

𝐰𝑘−1= discrete noise vector with discretized noise strength Qd (s x 

1). 
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Given a discrete stochastic system model and initial conditions, the Kalman filter 

will provide state estimates over time by propagating the states and their covariance as 

shown in Eq (15) and (16) respectively. 

𝐱�𝒌− = 𝚽𝑘𝐱�𝑘−1 (15) 

𝐏𝑘− = 𝚽𝑘𝐏𝑘−1𝚽𝑘
𝑇 + 𝐐𝑘 (16) 

 

When there is no measurement, the state continues to propagate and its covariance 

increases. When a measurement is available, the Kalman gain Kk is computed as shown 

in Eq (17). The Kalman gain is used to weight a measurement for incorporation into the 

Kalman estimate. The optimal state estimate and its covariance are then computed as 

shown in Eq (18) and (19).  The filter will then propagate forward using the updated state 

estimate until the next measurement is available. 

𝐊𝒌 = 𝐏𝑘−𝐇𝑘
𝑇[𝐇𝑘𝐏𝑘−𝐇𝑇 + 𝐑𝑘]−1 (17) 

𝐱�𝑘 =  𝐱�𝑘− + 𝐊𝒌(𝐳𝐤 − 𝐇𝒌𝐱�𝒌−) (18) 

𝐏𝑘 =  (𝐈 − 𝐊𝑘𝐇𝑘)𝐏𝑘− (19) 

 

 The measurement residual and its covariance are given by Eq (20) and (21). The 

residual will be zero mean WGN as long as the Kalman filter assumptions are 

maintained. 

Residual =  𝐳𝐤 − 𝐇𝒌𝐱�𝒌− (20) 

Measurement Covariance = 𝐇𝑘𝐏𝑘−𝐇𝑇 + 𝐑𝑘 (21) 
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2.7 Related Research 

This thesis is closely related to two areas of research, namely integration of visual 

odometry with INS, and building a simulation platform for developing navigation-related 

systems.  

2.7.1 Integration of Visual Odometry with INS. 

Over the years, there have been numerous investigations focused on the 

integration of visual odometry and INS. The methods of gathering data for analysis can 

be grouped into 3 different categories. The data could be  

• Purely simulated (Dae Hee Won, Sukchang Yun, Young Jae Lee, & 

Sangkyung Sung, 2012; Giebner, 2003),  

• Based on real world (Chowdhary, Johnson, Magree, Wu, & Shein, 2013; 

George & Sukkarieh, 2007; Seong-Baek Kim, Seung-Yong Lee, Tae-

Hyun Hwang, & Kyoung-Ho Choi, 2004) , or  

• Based on a combination of simulation and real world (M. Veth & Raquet, 

2007).  

These researchers focused on the algorithms for integrating visual odometry and 

INS. None of the literature reviewed focused on building a simulation platform using real 

world data that could be used for developing or evaluating a VINS.  

2.7.2 Building Simulation Platform. 

There are datasets/simulation platforms that are created from real world data. 

However, these datasets are used for benchmarking robotics algorithms or Simultaneous 

Localization and Mapping (SLAM) related problems. For example, Technische 

Universität München provides a large dataset for the evaluation of visual SLAM systems 
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in an indoor environment (Technische Universität München, 2014). Robotics Data Set 

Repository provides a collection of data for the evaluation of robotics algorithms in an 

indoor environment (University of Southern California Robotics Research Lab, 2011). 

Rawseeds Project is another collection of data for evaluation and comparison of robotics 

algorithm (Bonarini et al., 2014). None of these datasets are suitable for the development 

of VINS in an outdoor environment.   

2.8 Summary 

In this chapter, the background knowledge required to complete this thesis was 

discussed. A physical model of the Earth was presented as it was required for simulating 

real world navigation. Navigation reference frames and methods for rotating coordinates 

between these reference frames were defined. This was followed by a presentation of the 

concept of visual odometry. Lastly, a brief overview of Kalman filter theory was 

presented. Research into the areas closely related to this thesis revealed that no similar 

work had been done to build a simulation platform for the development of VINS.  
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III.  Methodology 

The System Engineering methodology is used for the design approach for the 

simulation platform. The requirements for the simulation platform are derived from its 

goal. Conceptual designs of the simulation platform are planned using IDEF0 diagrams. 

Detailed design leads to the definition, construction and verification of the key 

components (Matlab functions) in the simulation platform. 

3.1 Requirements for the Simulation Platform 

The goal of the simulation platform is to be able to facilitate the design of 

navigation filters for a VINS while eliminating hardware and data synchronization 

problems. Requirements for the simulation platform were derived from this goal and 

discussions with the stakeholders/eventual users of the simulation platform. These 

requirements are broken down as shown in Table 1. 

3.2 Design of Simulation Platform 

With the requirements derived, the ASPN dataset was studied to determine the 

design of the simulation platform. The use case diagram of the simulation platform, 

shown in Figure 5, shows the normal scenario where a user is interacting with the 

simulation platform. The IDEF0 A-0 diagram, shown in Figure 6, defines the main 

components of the simulation platform, the inputs and outputs of these components, the 

control (i.e. algorithms) used in these components and the mechanism (i.e. the program 

that is used to build the simulation, Matlab). The top level design also shows how these 

components interact with each other.  
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Table 1. Requirements for Vision-aided Inertial Navigation Simulaton Platform 

No. Requirement 

1 Simulate IMU 
1.1  Simulate 3 different grades of IMU (Commercial, Tactical, and Navigation) 
1.1.1   The quality of the IMUs is defined by the following parameters:  

- Standard deviation of the time-correlated bias for accelerometer 
measurements, σaccel. 

- Time constant of the time-correlated bias for accelerometer 
measurements, Taccel. 

- Velocity random walk due to accelerometer, VRW 
- Standard deviation of the time-correlated bias for gyro measurements, 

σgyro. 
- Time constant of the time-correlated bias for gyro measurements, 

Tgyro. 
- Angular random walk due to gyro, ARW 

1.2  Simulate different trajectories using true position, velocity and attitude collected from 
 the ASPN program. 

2 Simulate Features  
2.1  Simulate realistic feature geometry (i.e. 3D location of features) using photos taken 

 from the ASPN program 
2.1.1   Features are detected by a monocular camera  
2.1.2   Features are in an outdoor environment 
2.1.3   Features are extracted from photos taken in multiples of a 0.25 second interval 
2.2  Simulate 2 different camera pointing directions (front, side) 
2.3  Simulate varying camera calibration quality 
3 Simulate GPS Pseudorange Measurements 
3.1  Errors must be added into the GPS pseudorange measurements based on 3 different 

 types of receiver clock (Crystal, Ovenized Crystal, and Rubidium) 
3.1.1   The quality of the receiver clock is defined by the following parameters: 

- Clock bias 
- Clock drift 

3.2  Simulate at least 3 pseudorange measurements  
3.3  Measurements are simulated from satellites with high elevation 
3.4  Capable of simulating different durations of GPS outage 
4 User Interface 
4.1  All parameters required to run the system must be kept in a single file 
4.2  Users should only need to access the parameter file when using the system. They should 

 not need to amend or access other files. 
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Figure 5. Use Case Diagram for VINS Simulation Platform. It provides a simplified 
representation of what the simulation platform does. It also shows the user’s interaction 
with the simulation platform, i.e. the user only needs to enter the parameters for 
simulation, Matlab will generate the data, execute the simulation and display the results 
to the user. 

 
Figure 6. Top Level Design of VINS Simulation Platform 
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The remaining part of this section describes the design of the various components 

of the simulation platform. 

3.2.1 Simulate Inertial Measurement Unit. 

An Inertial Measurement Unit (IMU) measures one of the following (1) specific 

forces and angular rates, or (2) specific force and angular rate integrated over a time 

interval. The simulation platform modelled the output of the IMU using the ΔV (specific 

force integrated over a time interval) and Δθ (angular rate integrated over a time interval). 

This was simulated by inverting the INS mechanization as shown in Figure 7. Error-free 

measurements from the IMU were derived using PVA information from the ASPN data. 

Noise and bias in the gyroscope and accelerometer were added to these error-free 

measurements to simulate output from any grade of INS (commercial, tactical and 

navigation). The biases were modelled as first-order Gauss-Markov (FOGM) processes, 

while the gyroscope and accelerometer noise were modelled as random walk processes. 

The parameters used for these processes are shown in Table 2. While a real inertial 

system may include other types of errors, modeling sensor errors as a combination of a 

random walk and a first order Gauss-Markov bias provide a reasonable approximation of 

inertial system performance (Kauffman, Morton, Raquet, & Garmatyuk, 2011). Figure 8 

and Figure 9 show examples of the simulated Δθ and ΔV measurements from a 

commercial IMU. 
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Figure 7. IDEF0 Diagram Illustrating Simulation of Inertial Measurement Unit 

 

 

Table 2. Parameters used for different INS Grades (FOGM time constant, τ = 3600s) 

(Kauffman et al., 2011) 

INS Grade 
Accel 

FOGM σ 
(m/s2) 

Accel 
RW σ 
(m/s3/2) 

Gyro 
FOGM σ 

(rad/s) 

Gyro 
RW σ 

(rad/s1/2) 
Commercial 
(Cloudcap Crista) 1.96e-1 4.3e-3 8.7e-3 6.5e-4 

Tactical  
(HG1700) 9.8e-3 9.5e-3 4.8e-6 8.7e-5 

Navigation 
(HG9900 – H764G) 2.45e-4 2.3e-4 7.2e-9 5.8e-7 
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(from truth_scen#.mat) lat1, lon1, alt1, lat0, lon0, alt0 Error-free delta theta
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University Edition - For Academic Use Only
Date:
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Figure 8. Simulation of Δθ from Commercial Inertial Measurement Unit. The figure 
shows the results from simulating 1 second of a commercial IMU. The blue lines show 
the Δθ from an error-free IMU, while the green lines show the Δθ from a simulated 
commercial IMU. 
 

 
Figure 9. Simulation of ΔV from Commercial Inertial Measurement Unit. The figure 
shows the results from simulating 1 second of a commercial IMU. The blue lines show 
the ΔV from an error-free IMU, while the green lines show the ΔV from a simulated 
commercial IMU. 
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3.2.2 Simulation of Matched Features. 

Matched features for the platform were simulated by reversing the process of 

visual odometry as shown in Figure 10. Using true PVA information and the set of 

images from the ASPN data, the rotation R and translation t of a sensor’s position in a 

pair of images could be determined. With the rotation and translation data, the Essential 

matrix relating matched features between the 2 images could be computed using Eq (22). 

E = [𝐭]xR  (22) 

where 
[𝐭]x is the matrix representation of the cross product with t. 

 
 

 

Figure 10. IDEF0 Diagram Illustrating Simulation of Matched Features. Simulation of 
matched features begins by selecting a pair of photos from the ASPN data (Block A.3.1). 
Next, the true rotation and translation of the sensor in vehicle frame are retrieved from 
the ASPN data. The rotation and translation are converted to the sensor frame using the 
body to sensor DCM (Block A.3.2). This is followed by features matching using SIFT 
and the Essential matrix (Block A.3.3). Lastly, the 3D position of the matched feature is 
calculated (Block A.3.4). 
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The next step involved detecting and matching features between successive pairs 

of images from the ASPN data using SIFT. First, the Euclidean distance between the 

SIFT description of the two features is used to determine their similarity. A match is only 

accepted if its distance is less than a pre-determined ratio times the distance to the second 

closest match. This pre-determined ratio typically ranges between 0.5 and 0.7. To 

improve the quality of matches, the Essential matrix found from the previous step was 

used to filter out bad matches. Features that did not meet the epipolar constraints were 

eliminated from the list of matched features. Figure 11 shows an example of features 

matching for 9 successive pairs of images. 

 

 

Figure 11. Feature Matching for 9 Successive Pairs of Images 

 

With the list of matched features, the last step in the simulation of matched 

features was to compute the position of these features in 3D-space given its pixel position 

in the two images. The method used in this thesis was based on the algorithm found in 
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(Longuet-Higgins, 1987).  Figure 12 depicts a visualization of the features found with 

respect to the location of the camera. 

 

Figure 12. Sample Output from Simulation Showing Location of Matched Features 

 

3.2.3 Simulate GPS Pseudorange. 

 The pseudorange from a GPS satellite to the GPS receiver can be modelled by Eq 

(23) as described in (Misra & Enge, 2006). 

𝜌𝐺𝑃𝑆𝑚  =𝑟𝑚 + 𝑐𝛿𝑡𝑟 − 𝑐𝛿𝑡𝑠 + 𝑐𝐼𝑚 + 𝑐𝑇𝑚 +  𝜀𝜌̃𝑚 (23) 

where 

𝜌𝐺𝑃𝑆𝑚   = measured pseudorange from the mth
 satellite to the GPS receiver   

(meters) 

𝑟𝑚  = the actual distance between the receiver antenna at the reception time 

and the satellite’s antenna at the transmit time (meters) 

𝛿𝑡𝑟  = the receiver clock error (sec) 
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c  = the speed of light (meters/sec) 

𝛿𝑡𝑠 = the satellite clock error (sec) 

𝐼𝑚 = ionospheric delay (sec) 

𝑇𝑚  = tropospheric delay (sec) 

𝜀𝜌̃𝑚 = error due to inexact modelling, receiver noise and multipath. 

 

For the simulation platform, only the receiver clock error was used to simulate 

pseudorange measurement. The satellite clock errors, ionospheric delay, and tropospheric 

delay were treated as measurement noise in the simulation platform. The process to 

simulate GPS pseudoranges is shown in Figure 13. First, the position of GPS satellites 

were calculated using GPS ephemeris data. The true range from the receiver to GPS 

satellites were then calculated using the true PVA information from the ASPN data. Next, 

a two-state clock from (Brown & Hwang, 1992) was used to model the receiver clock. It 

modelled random walk in both the clock bias and drift.  

Table 3 shows the parameters values for various timing standards used in the 

simulation platform. The power of the white noise in the clock bias Sf and drift Sg were 

determined using Eq (24). Figure 14 shows an example of how errors in a crystal clock 

accumulate. Finally, this clock error was added to the true range to obtain the simulated 

pseudorange. Figure 15 shows an example of a simulated pseudorange versus the true 

range. 
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Figure 13. IDEF0 Diagram Illustrating Simulation of GPS Pseudorange 

 

 

Table 3. Typical Allan Variance Parameters for Various Timing Standards (Brown & 

Hwang, 1992) 

Timing Standard h0 h-1 h-2 

Crystal 2e-19 7e-21 2e-20 
Ovenized Crystal 8e-20 2e-21 4e-23 
Rubidium 2e-20 7e-24 4e-29 
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Figure 14. Simulated Crystal Clock Error for GPS Receiver. After 420 seconds, there is 
an error of approximately 1800m in the GPS pseudorange measurements due to bias and 
drift in the crystal clock of the GPS receiver. 
 

 
Figure 15. Sample Output Showing Simulation of GPS Pseudorange. The simulated 
crystal clock error is added to the true range (blue line) to obtain the simulated 
pseudorange measurement (red line) 
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3.3 Error Model and Measurement Model for VINS 

In order to verify the operation and performance of the simulation platform, an 

error model integrated with visual odometry and GPS pseudorange measurements was 

built. The error model makes use of the data generated by the simulation platform to 

analyze the performance of VINS. It shows how the errors in a navigation system are 

propagated through the navigation equations. 

The error model used in this thesis combined the INS error model with the GPS 

error model. The overall error model is summarized as shown in Eq (25) and described in 

the following sub-sections. 

�𝐱̇𝐈𝐍𝐒𝐱̇𝐆𝐏𝐒
� = �𝐅𝐈𝐍𝐒 𝟎

𝟎 𝐅𝐆𝐏𝐒
� �
𝐱𝐈𝐍𝐒
𝐱𝐆𝐏𝐒� + �𝐆𝐈𝐍𝐒𝐆𝐆𝐏𝐒

�𝐰 (25) 

 

3.3.1 INS Error Model. 

The INS error model used in this thesis was built based on the model given in 

(Noureldin et al., 2013). The errors were modelled by linear state equations and can be 

represented as shown in Eq (26) 

𝐱̇𝐈𝐍𝐒 = 𝐅𝐈𝐍𝐒𝐱𝐈𝐍𝐒 + 𝐆𝐈𝐍𝐒𝐰 (26) 

 

The state vector, xINS, consists of position errors, velocity errors, attitude errors 

and errors in the gyro and accelerometers as shown in Eq (27).  
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The dynamic matrix, FINS, which propagates errors over time, is shown in Eq 

(28). 
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⎢
⎢
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⎡0 0 0 0

1
𝑅𝑀 + ℎ

0 0 0 0 0 0 0 0 0 0

0 0 0
1

(𝑅𝑁 + ℎ) cos𝜑 
0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 𝑓𝑢 −𝑓𝑛 0 0 0 𝑅11 𝑅12 𝑅13
0 0 0 0 0 0 −𝑓𝑢 0 𝑓𝑒 0 0 0 𝑅21 𝑅22 𝑅23
0 0 0 0 0 0 𝑓𝑛 −𝑓𝑒 0 0 0 0 𝑅31 𝑅32 𝑅33

0 0 0 0
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 (28) 

 

The noise distribution matrix, GINS, and its associated WGN are shown in Eq (29) 

and (30).  
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𝐆𝐈𝐍𝐒 = �𝟎3 x 12
𝐈12 x 12

�  (29) 

E[𝐰(𝑡)𝐰𝐓(𝑡 + 𝜏)] = 𝐐𝐈𝐍𝐒δ(𝜏) 

where 

𝐐𝐈𝐍𝐒 = diag �VRW2,VRW2,VRW2,ARW2,ARW2,ARW2,
2σg

2

Tg
,
2σg

2

Tg
,
2σg

2

Tg
,
2σa

2

Ta
,
2σa

2

Ta
,
2σa

2

Ta
� 

(30) 

 

3.3.2 GPS Error Model. 

Errors in GPS measurements can be modelled by Eq (31).  

𝐱̇𝐆𝐏𝐒 = 𝐅𝐆𝐏𝐒𝐱𝐆𝐏𝐒 + 𝐆𝐆𝐏𝐒𝐰 (31) 

 

The state vector, xGPS, consists of the bias and drift of the GPS receiver clock as 

shown in Eq (32).  

𝐱𝐆𝐏𝐒 = �𝛿𝑏𝑟𝛿𝑑𝑟
� = �Receiver Clock Bias Error Estimate

Receiver Clock Drift Error Estimate� 
(32) 

 

The dynamic matrix, FGPS, which propagates errors over time is shown in Eq 

(33). The noise distribution matrix, GGPS, and its associated WGN are shown in Eq (34) 

and Eq (35). 

𝐅𝐆𝐏𝐒 = �0 1
0 0� (33) 

𝐆𝐆𝐏𝐒 = �1 0
0 1 � (34) 

E[𝐰(𝑡)𝐰𝐓(𝑡 + 𝜏)] = 𝐐𝐆𝐏𝐒δ(𝜏) 
where 

𝐐𝐆𝐏𝐒 = �
𝑆𝑓 0
0 𝑆𝑔

� 

(35) 



34 

3.3.3 Image Measurement Model.  

In this thesis, measurements from visual odometry were integrated with INS in 

the form of a 2-dimensional zero velocity update (ZUPT). The concept of a 2D ZUPT is 

based on the premise that at any time instance, a vehicle is travelling in only one 

direction. Hence it has zero velocities the two directions orthogonal to the direction of 

travel. With the direction of travel derived from visual odometry, the zero velocity 

vectors were determined by finding the orthonormal basis for the null space of the 

direction of travel. In this research, this was done by performing a Singular Value 

Decomposition (SVD) on the direction of travel. For example, if the direction of travel, 

tenu, was as shown in Eq (36) 

𝐭𝐞𝐧𝐮 = �
0.0555
0.9971
−0.0519

� (36) 

 

Using a SVD, the direction of travel could be expressed as shown in Eq (37) 

𝐭𝐞𝐧𝐮 = 𝐔𝐒𝐕𝐓 = �
0.0555 −0.9971 0.0519
0.9971 0.0581 0.0491
−0.0519 0.0491 0.9974

� �
1
0
0
� [1]T (37) 

where U is a unitary matrix where the columns are the left-singular vectors of tenu. 

 

The null vector which was cross-tracked to the direction of travel was chosen to 

be the first null vector, n1, enu. The null vector in the vertical direction was chosen to be 

the second null vector, n2, enu, as shown in Eq (38). 

n1, enu = �
‐0.9971
0.0581
0.0491

�  and n2, enu = �
0.0519
0.0491
0.9974

� (38) 
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Although the ZUPT measurements should be incorporated using delayed-state 

update equations, the computation in this thesis was simplified by using average 

measurements in the update equations. Eq (39) to (41) shows how the image 

measurements and the measurement matrix, H, are derived for the ZUPT. 

 

In general, 
𝐕�𝐞𝐧𝐮 = 𝐕𝐞𝐧𝐮 + 𝛿𝐕�𝐞𝐧𝐮 (39) 

where 

  𝐕�𝐞𝐧𝐮 = the corrected velocities in ENU coordinates 

𝐕𝐞𝐧𝐮 = the velocities calculated by INS 

𝛅𝐕�𝐞𝐧𝐮 = the filter calculated velocities error value. 

 

Using ZUPT, 
𝐕�𝐞𝐧𝐮 ∙ 𝐧1 = �𝐕𝐞𝐧𝐮 + 𝛅𝐕�𝐞𝐧𝐮� ∙ 𝐧𝒙,𝐞𝐧𝐮 = 𝟎 (40) 

where nx, enu is the zero velocity vector (x = 1, 2).  

 

Hence, 
−𝐕𝐞𝐧𝐮 ∙ 𝐧𝒙,𝐞𝐧𝐮 = 𝛅𝐕�𝐞𝐧𝐮 ∙ 𝐧𝒙,𝐞𝐧𝐮 (41) 

where −𝐕𝐞𝐧𝐮 ∙ 𝐧𝒙,𝐞𝐧𝐮= the image measurement, zimage, x. 

 

The measurement matrix Himage for the ZUPT is as shown 

𝐇𝐢𝐦𝐚𝐠𝐞 =  �
𝑛1𝑒 𝑛1𝑛 𝑛1𝑢
𝑛2𝑒 𝑛2𝑛 𝑛2𝑢� (42) 

where 
n1e, n1n, n1u are the 1st null vector expressed in local level ENU coordinates 
n2e, n2n, n2u are the 2nd null vector expressed in local level ENU coordinates. 
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3.3.4 GPS Measurement Model.  

A tightly coupled method was used in this research to integrate GPS with INS. 

The GPS measurement is a pseudorange measurement from the receiver to each visible 

satellite. The INS also generates its own estimate of the same pseudorange. The 

difference between these two measurements are used to derive measurement(s) for the 

Kalman filter as shown in Eq (43). This method of integration allows GPS measurements 

to be used by the INS, even when there are less than four pseudorange measurements 

required by the GPS itself to determine the position. The derivation of the GPS 

measurement matrix, HGPS, is shown in Eq (43) to (47). Further details on the derivation 

can be found in (Noureldin et al., 2013). 

 

𝐳𝐆𝐏𝐒 = 𝝆𝑰𝑵𝑺 − 𝝆𝑮𝑷𝑺 (43) 

 

For m visible satellites, Eq (43) can be expanded into Eq (44) and (45). 

𝐳𝐆𝐏𝐒 = �
𝝆𝑰𝑵𝑺𝟏 − 𝝆𝑮𝑷𝑺𝟏

⋮
𝝆𝑰𝑵𝑺𝒎 − 𝝆𝑮𝑷𝑺𝒎

� (44) 

𝐳𝐆𝐏𝐒 = �
𝑙𝑥,𝐼𝑁𝑆
1 𝑙𝑦,𝐼𝑁𝑆

1 𝑙𝑧,𝐼𝑁𝑆
1

⋮ ⋮ ⋮
𝑙𝑥,𝐼𝑁𝑆
𝑚 𝑙𝑦,𝐼𝑁𝑆

𝑚 𝑙𝑧,𝐼𝑁𝑆
𝑚

�

𝑚 x 3

�
𝛿𝑥
𝛿𝑦
𝛿𝑧
�
3x1

− 𝑐 �
𝛿𝑏𝑟
⋮
𝛿𝑏𝑟

�
𝑚x1

 (45) 

where  
𝑙𝐼𝑁𝑆𝑚  = the line of sight unit vector from the receiver to the mth satellite in the 
receiver’s ECEF frame. 
 
𝛿𝑥, 𝛿𝑦, 𝛿𝑧 = the position error of the receiver in ECEF coordinates. 
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Eq (45) can be re-written in terms of geodetic coordinates as shown in Eq (46) and (47). 

𝐳𝐆𝐏𝐒 = �
𝑙𝑥,𝐼𝑁𝑆
1 𝑙𝑦,𝐼𝑁𝑆

1 𝑙𝑧,𝐼𝑁𝑆
1

⋮ ⋮ ⋮
𝑙𝑥,𝐼𝑁𝑆
𝑚 𝑙𝑦,𝐼𝑁𝑆

𝑚 𝑙𝑧,𝐼𝑁𝑆
𝑚

�

𝑚 x 3

�
−(𝑅𝑁 + ℎ) sin𝜑 cos 𝜆 −(𝑅𝑁 + ℎ) cos𝜑 sin𝜆 cos𝜑 cos 𝜆
−(𝑅𝑁 + ℎ) sin𝜑 sin𝜆 (𝑅𝑁 + ℎ) cos𝜑 cos 𝜆 cos𝜑 sin 𝜆

{𝑅𝑁(1 − 𝑒2) + ℎ}cos𝜑 0 sin𝜑
�

3x3

�
𝛿𝜑
𝛿𝜆
𝛿ℎ
�

3x1

− 𝑐 �
𝛿𝑏𝑟
⋮
𝛿𝑏𝑟

�
mx1

 

(46) 

𝐳𝐆𝐏𝐒 = 𝐇𝐆𝐏𝐒𝒎 𝐱 𝟑 �
𝛿𝜑
𝛿𝜆
𝛿ℎ
�
3x1

− 𝑐 �
𝛿𝑏𝑟
⋮
𝛿𝑏𝑟

�
mx1

 
(47) 

 

3.3.5 Overall Measurement Model.  

The measurement model for the image provided by Eq (42) and the measurement 

model for the pseudorange provided by Eq (47) can be combined to create an overall 

measurement model as shown 

⎣
⎢
⎢
⎢
⎡
𝑧𝑖𝑚𝑎𝑔𝑒,1
𝑧𝑖𝑚𝑎𝑔𝑒,2
𝑧𝐺𝑃𝑆,1
⋮

𝑧𝐺𝑃𝑆,𝑚 ⎦
⎥
⎥
⎥
⎤

= �
𝟎𝟐 x 𝟑 𝐇𝐢𝐦𝐚𝐠𝐞𝟐 𝐱 𝟑

𝟎𝟐 x 𝟗 𝟎𝟐 x 𝟏 𝟎𝟐 x 𝟏

𝐇𝐆𝐏𝐒𝒎 𝐱 𝟑 𝟎𝒎 x 𝟑 𝟎𝟐 x 𝟗 −𝒄𝒎 x 𝟏 𝟎𝒎 x 𝟏
� �
𝐱𝐈𝐍𝐒
𝐱𝐆𝐏𝐒� 

(48) 

 

These measurements are incorporated into the navigation filter using the Kalman 

measurement update equations. The PVA error states after the measurement updates are 

used to correct errors in the VINS. 

3.4 Verification of Simulation Platform 

Using the VINS model described in the previous section, the data generated from 

the simulation platform was verified for its accuracy in two main phases. The first phase 

verified each component of the simulation platform individually while the second phase 

verified the simulation platform as a whole.  
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The IMU was verified by adding a small amount of noise to the simulated ΔV and 

Δθ measurements. Without including any measurement updates, positions calculated 

from the VINS model were then checked to ensure that they replicated the truth closely. 

The same approach was also used to verify the simulated GPS pseudoranges. To verify 

the simulated features, the direction of translation computed using the matched features 

were verified against the true direction of translation.  

Verification of the whole simulation platform was performed by incorporating 

both GPS and image measurements with the IMU. The covariance of the error states and 

the error states were verified for the correct order of magnitude. 

3.5 Summary 

This chapter described the requirements for the simulation platform, and how it 

was designed, built and verified. An error model integrated with visual odometry and 

GPS pseudorange measurements was built to verify the accuracy of the data generated 

from the simulation platform.   
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IV.  Analysis and Results 

The utility of the simulation platform was demonstrated by making use of it to 

conduct a trade study on the design of a VINS. The results from this trade study are 

discussed in this chapter. A total of 36 test cases, each comprising a different set of 

design parameters for a VINS, were analyzed. The performance measures used to 

compare results among the different test cases were (1) the average Distance Root Mean 

Square (DRMS) errors along the trajectory, and (2) the percentage error of DRMS error 

over distance traveled. 

4.1 Scenarios for Trade Study 

 The simulation platform was tested using 6 sets of real-world images and 3 sets of 

PVA data collected from a ground vehicle as part of the ASPN program. The ASPN 

program identified the 3 sets of PVA data as ‘Scenario 2’, ‘Scenario 6’ and ‘Scenario 7’. 

To ensure consistency with the ASPN program, the same names were adopted for this 

research. 2 sets of photos, from a side-looking camera and a forward-looking camera, 

were collected from each scenario. 

4.1.1 Scenario 2. 

 Scenario 2 depicted driving a vehicle around an urban environment in daylight 

with numerous low-rise buildings along the way. The distance travelled was 2463.5m and 

the duration was 420 seconds. The horizontal trajectory is shown in Figure 16. The 

altitude of the vehicle ranges from 159.5m to 165.3m as shown in Figure 17. The number 

of matched features, found using SIFT and epipolar constraints from the side and front 

camera, is shown in Figure 18 and Figure 19 respectively. 
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4.1.2 Scenario 6. 

Scenario 6 depicted driving a vehicle in rectangular circuits around a carpark lot 

during the day. The heading angle of the vehicle changes rapidly compared to the other 

scenarios. The distance travelled was 1664.2m and the duration was 325 seconds. The 

trajectory is shown in Figure 20 and the altitude of the vehicle ranges from 190.0m to 

191.8m as shown in Figure 21. The number of matched features, found using SIFT and 

epipolar constraints from the side and front camera, is shown in Figure 22 and Figure 23 

respectively. 

4.1.3 Scenario 7. 

Scenario 7 is a scenario of driving a vehicle around a city area with high rise 

buildings and multiple traffic stops during the day. The distance travelled was 3012.0m 

and the duration was 600 seconds. The trajectory is shown in Figure 24 and the altitude 

of the vehicle ranges from 194.0m to 202.1m as shown in Figure 25. The number of 

matched features, found using SIFT and epipolar constraints from the side and front 

camera, is shown in Figure 26 and Figure 27 respectively. 
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Figure 16. True Horizontal Trajectory (Scenario 2). All the horizontal trajectory plots in 
this thesis starts at (0, 0). The turns in this scenario were smoother compared to the turns 
in Scenario 7. 
 

 
Figure 17. True Altitude (Scenario 2). As these scenarios were recorded using a ground 
vehicle, the change in altitude are minimal compared to an aerial vehicle. 
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Figure 18. Number of Matched Features Found from Scenario 2 Side Camera Images. 
There are a total of 1677 pairs of images in this scenario. The blue lines indicate 1301 
time instances where there are more than 3 matched features, and hence updates to the 
navigation solution from image measurements. The red circles indicate 376 time 
instances where there are less 3 matched features, and hence no update to the navigation 
solution from image measurement. 
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Figure 19. Number of Matched Features Found from Scenario 2 Front Camera Images. 
There are a total of 1677 pairs of images in this scenario. The blue lines indicate 1670 
time instances where there are more than 3 matched features, and updates to the 
navigation solution from image measurements. The red circles indicate 7 time instances 
where there are less 3 matched features, and no update to the navigation solution from 
image measurement. These were due to damaged images as the camera faced direct glare 
from sunlight 
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Figure 20. True Horizontal Trajectory (Scenario 6). While the distance travelled in this 
scenario was around 1664m, the maximum displacement was smaller (50m) compared to 
the other scenario. 
 

 
Figure 21. True Altitude (Scenario 6). Among the 3 scenarios, this scenario had the least 
variation in altitude. 
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Figure 22. Number of Matched Features Found from Scenario 6 Side Camera Images. 
There are a total of 1290 pairs of images in this scenario. The blue lines indicate 1018 
time instances where there are more than 3 matched features, and updates to the 
navigation solution from image measurements. The red circles indicate 272 time 
instances where there are less 3 matched features, and no update to the navigation 
solution from image measurement. There are a high number of matched features in the 
first 50 seconds as the vehicle was stationary during this period of time. 
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Figure 23. Number of Matched Features Found from Scenario 6 Front Camera Images. 
There are a total of 1290 pairs of images in this scenario. The blue lines indicate 1241 
time instances where there are more than 3 matched features, and updates to the 
navigation solution from image measurements. The red circle indicates 49 time instances 
where there are less 3 matched features, and no update to the navigation solution from 
image measurement. These happened when the vehicle was making rapid heading 
changes. 
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Figure 24. True Horizontal Trajectory (Figure 7). This scenario depicted driving in a city 
area where there were many right angle turns, with constant headings in between turns. 
 

 
Figure 25. True Altitude (Scenario 7). This scenario has the largest change in altitude 
among the 3 scenarios.  
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Figure 26. Number of Matched Features Found from Scenario 7 Side Camera Images. 
There are a total of 2399 pairs of images in this scenario. The blue lines indicate 2039 
time instances where there are more than 3 matched features, and updates to the 
navigation solution from image measurements. The red circle indicate 360 time instances 
where there are less 3 matched features, and no update to the navigation solution from 
image measurement. The reasons for having less than 3 matched features are attributed to 
either (1) damaged images as the camera faces direct glare from sunlight, (2) over 
exposed images as camera emerges from a dark location (e.g. underpass) to a brightly lit 
location, (3) dark images as the camera looks at a sheltered and unlit parking garage, etc. 
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Figure 27. Number of Matched Features Found from Scenario 7 Front Camera Images. 
There are at least 42 matched features between all the 2399 successive pairs of images. 
This is the only set of photos where there are measurements from all the images. 
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4.2 Results from Trade Study 

The trade study examined the effects of 7 parameters, as shown in Table 4, on the 

performance of a VINS. A total of 36 test cases, each comprising a different set of design 

parameters as shown in Table 5, were analyzed. The nominal test case was Scenario 2 

Side Camera with a camera quality of 2 pixel noise, commercial grade IMU and crystal 

GPS receiver clock with 2 pseudorange measurements. 20 Monte Carlo runs of each test 

case were carried out. To ensure fair comparison among the test cases and replicability of 

results, the random number generator was reset at the beginning of each of the 20 runs. 

For each run, the following performances were calculated: (1) root mean square of the 

horizontal distance error (Distance Root Mean Square, DRMS) between the calculated 

position and the true position as shown in Eq (49), and (2) percentage of the DRMS error 

over the total distance travelled. The mean DRMS error over the 20 runs was then 

calculated as the final performance measure for each test case.   

DRMS= �
∑ (𝑥𝑖2 + 𝑦𝑖2)𝑛
𝑖=1

n  
(49) 

where n = the number of measurement epochs in the scenario 

 xi, yi = errors in the north and east direction for the ith measurement. 

 

Table 4. Parameters Examined in Trade Study 
 Parameters Options 
1 Interval Between Updates 0.25 sec vs 1 sec 
2 IMU Quality Commercial, Tactical, Navigation 
3 Camera Quality Standard Deviation of Pixel Noise (0, 1, 2, 4, and 10) 
4 Camera Pointing Direction Front vs Side 
5 Method of  Zero Velocity Update a. Calculate zero velocity vector using rotation from 

INS (‘Cal t known R’) 
b. Calculate zero velocity vector using rotation and 
translation from image measurements (‘Cal t and R’) 

6 GPS Clock Crystal, Ovenised Crystal, Rubidium 
7 Number of Pseudorange Measurements 0 - 3 
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Table 5. Configurations of Test Cases. Changes to the nominal test case are highlighted 
in yellow. 

 

Case Number Image Scenario
Update Interval 

(sec)
IMU Pixel Noise Camera Translation Clock

Number of 
Pseudorange 

Measurements
1 

(Nominal)
Yes 2 0.25 Commercial 2 Side Cal t known R Crystal 2

2 
(No Measurement)

No 2 NA Commercial NA NA NA NA 0

3
(Full GPS View)

No 2 0.25 Commercial NA NA NA Crystal 12

4
(2 PR Case)

No 2 0.25 Commercial NA NA NA Crystal 2

5
(Image Only)

Yes 2 0.25 Commercial 2 Side Cal t known R NA 0

Interval Between Updates
1 Yes 2 0.25 Commercial 2 Side Cal t known R Crystal 2
6 Yes 2 1 Commercial 2 Side Cal t known R Crystal 2
7 Yes 6 0.25 Commercial 2 Side Cal t known R Crystal 2
8 Yes 6 1 Commercial 2 Side Cal t known R Crystal 2
9 Yes 7 0.25 Commercial 2 Side Cal t known R Crystal 2
10 Yes 7 1 Commercial 2 Side Cal t known R Crystal 2

IMU Quality
1 Yes 2 0.25 Commercial 2 Side Cal t known R Crystal 2
11 Yes 2 0.25 Tactical 2 Side Cal t known R Crystal 2
12 Yes 2 0.25 Navigation 2 Side Cal t known R Crystal 2
13 No 2 NA Tactical NA NA NA NA 0
14 No 2 NA Navigation NA NA NA NA 0

Camera Quality
1 Yes 2 0.25 Commercial 2 Side Cal t known R Crystal 2
15 Yes 2 0.25 Commercial 0 Side Cal t known R Crystal 2
16 Yes 2 0.25 Commercial 1 Side Cal t known R Crystal 2
17 Yes 2 0.25 Commercial 4 Side Cal t known R Crystal 2
18 Yes 2 0.25 Commercial 10 Side Cal t known R Crystal 2

Camera Pointing Direction
1 Yes 2 0.25 Commercial 2 Side Cal t known R Crystal 2
19 Yes 2 0.25 Commercial 2 Front Cal t known R Crystal 2
7 Yes 6 0.25 Commercial 2 Side Cal t known R Crystal 2
20 Yes 6 0.25 Commercial 2 Front Cal t known R Crystal 2
9 Yes 7 0.25 Commercial 2 Side Cal t known R Crystal 2
21 Yes 7 0.25 Commercial 2 Front Cal t known R Crystal 2

Method of Calculating Direction of Translation
1 Yes 2 0.25 Commercial 2 Side Cal t known R Crystal 2
22 Yes 2 0.25 Commercial 2 Side Cal t and R Crystal 2
7 Yes 6 0.25 Commercial 2 Side Cal t known R Crystal 2
23 Yes 6 0.25 Commercial 2 Side Cal t and R Crystal 2
9 Yes 7 0.25 Commercial 2 Side Cal t known R Crystal 2
24 Yes 7 0.25 Commercial 2 Side Cal t and R Crystal 2

GPS Clock
1 Yes 2 0.25 Commercial 2 Side Cal t known R Crystal 2
25 Yes 2 0.25 Commercial 2 Side Cal t known R Ovenised Crystal 2
26 Yes 2 0.25 Commercial 2 Side Cal t known R Rubidium 2
4 No 2 0.25 Commercial NA NA NA Crystal 2
27 No 2 0.25 Commercial NA NA NA Ovenised Crystal 2
28 No 2 0.25 Commercial NA NA NA Rubidium 2

Number of Pseudorange Measurements
1 Yes 2 0.25 Commercial 2 Side Cal t known R Crystal 2
29 Yes 2 0.25 Commercial 2 Side Cal t known R Crystal 1
30 Yes 2 0.25 Commercial 2 Side Cal t known R Crystal 3
31 Yes 2 0.25 Commercial 2 Side Cal t known R Crystal 4
32 Yes 2 0.25 Commercial 2 Side Cal t known R Crystal 8
4 No 2 0.25 Commercial NA NA NA Crystal 2
33 No 2 0.25 Commercial NA NA NA Crystal 1
34 No 2 0.25 Commercial NA NA NA Crystal 3
35 No 2 0.25 Commercial NA NA NA Crystal 4
36 No 2 0.25 Commercial NA NA NA Crystal 8
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4.2.1 Accuracy of a Nominal VINS. 

 Table 6 lists the performance among a commercial INS without measurement 

updates, a commercial INS with 2 GPS pseudoranges, a commercial INS with image 

measurements, the nominal VINS configuration, and a commercial INS with full GPS 

view (12 pseudoranges). The results show the benefits of the nominal VINS, i.e. an INS 

that incorporates visual odometry and GPS pseudoranges while in a GPS limited 

environment. The nominal VINS had a position accuracy that was 2.5 times better than 

an INS that incorporate visual odometry only.  Its position accuracy was 250 times better 

than an INS that incorporates 2 GPS pseudoranges. Figure 28 and Figure 29 shows the 

position errors and velocity errors of the nominal VINS configuration respectively. These 

results served as the motivation behind the trade study on the design of a VINS. While 

the position accuracy of the nominal VINS was approximately 59 times worse than an 

INS with full GPS view, the trade study would help to identify key parameters that could 

be changed to improve its performance. 

 

Table 6. Accuracy of a nominal VINS. Comparison of performance to the nominal test 
case in this thesis is calculated by taking the ratio of the DRMS error in nominal case to 
the DRMS error in the test case. A ratio that is more than 1 indicates a better performance 
for the test case while a ratio that is less than 1 indicates a worse performance for the test 
case. 

Description of Test Case DRMS (m) DRMS / Distance 
Travelled (%) 

Performance 
Compared to 

Nominal 
No Measurement 24915.0 1011.4 0.003 

2 Pseudoranges with no Image 20969.0 851.2 0.004 
Image Only 183.8 7.5 0.4 

2 Pseudoranges with Image 
(Nominal) 77.0 3.1 1.0 

Full GPS View 1.3 0.05 59.2 
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Figure 28. Position Errors of Nominal VINS Configuration. In this thesis, the blue dotted 
lines indicate the standard deviation of the error computed by the filter, while the black 
line shows the error from a single simulation run. 

 
Figure 29. Velocity Errors of Nominal VINS Configuration  
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4.2.2 Interval between Update. 

 A key design parameter for a VINS is the interval between update. A shorter 

update interval would require the VINS to have a higher real-time computation 

requirement and also a camera capable of taking images at the required update interval. 

Table 7 compared the effects of varying the update interval from 0.25 sec to 1 sec for all 

three scenarios. The results showed that a longer update interval had a negative effect on 

the position accuracy. It would increase the DRMS error by 1.6 times to 31.5 times.  

Scenario 6 had the highest increase in DRMS error as the vehicle in this scenario 

had a higher rate heading changes. Therefore, the update interval of 1 second was too 

slow to capture the motion of the vehicle accurately. In comparison, Scenarios 2 and 7 

had slower rate heading changes. Hence, an update interval of 1 second had less 

detrimental effect on the position accuracy of the system. 

 

Table 7. Effects of Interval between Updates on Accuracy of Position. The performance 
of 0.25 sec update interval is compared to 1 sec update interval. A value that is more than 
1 indicates a better performance for a 0.25 sec update interval while a value that is less 
than 1 indicates a worse performance for a 0.25 sec update interval. 

Scenario 

DRMS  
-  

0.25 sec Update Interval 
(m) 

DRMS  
-  

1 sec Update Interval 
(m) 

Performance of  
0.25 sec Update Interval 

Compared to  
1 sec Update Interval  

2 77.0 126.7 1.6 
6 43.7 1378.0 31.5 
7 80.3 231.4 2.9 
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4.2.3 IMU Quality. 

The performance of a VINS is directly related to the IMU quality. This was 

validated by the results shown in Table 8. While a low-cost VINS is most likely to use a 

commercial grade INS, the trade study considered the improvement in position accuracy 

if a tactical grade or a navigation grade IMU was used. The tactical grade IMU performed 

approximate 1.9 times better than a commercial grade IMU, while a navigation grade 

IMU performed approximately 36.7 times better. Table 9 shows the effects of 

incorporating image measurements into the 3 different grades of IMU. By incorporating 

image measurements, there are improvements in the position accuracy for all 3 grades of 

IMU. The comparisons between the trajectories, position errors and velocity errors are 

shown in Figure 30 to Figure 34. 

 
Table 8. Effects of Grade of IMU on Accuracy of Position 

IMU Grade DRMS 
(m) 

DRMS / Distance 
Travelled (%) 

Performance 
Compared to 

Nominal 
Commercial (nominal) 77.0 3.1 1 

Tactical 41.5 1.7 1.9 
Navigation 2.1 0.08 36.7 

 

Table 9. Effects of Grade of IMU on Accuracy of Position (with Image Measurements 
and without Image Measurements). The performance of IMU with image measurements 
is compared to IMU without image measurement. A value that is more than 1 indicates a 
better performance for an IMU with image measurement while a value that is less than 1 
indicates a worse performance for an IMU with image measurement. 

IMU Grade 

DRMS  
–  

with Image 
(m) 

DRMS  
-  

without Image 
(m) 

Performance of  
IMU with Image Measurement  

Compared to  
IMU without Image Measurement 

Commercial (nominal) 77.0 24915.0 323.6 
Tactical 41.5 319.6 7.7 

Navigation 2.1 2.2 1.05 
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Figure 30. Comparison of Trajectories among Different Grades of IMU. The red dotted 
lines show the true trajectories while the blue lines show the computed trajectory from 
the VINS. 
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Figure 31. Comparison of Position Error (Commercial IMU vs Tactical IMU). For the 
comparison of position and velocity errors in this thesis, the blue dotted lines indicate the 
standard deviation of the error while the black line shows the results from a single 
simulation run. 
 

 
Figure 32. Comparison of Velocity Error (Commercial IMU vs Tactical IMU). The 
magnitude of velocity errors from the tactical IMU are smaller compared to the 
commercial IMU. 
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Figure 33. Comparison of Position Error (Commercial IMU vs Navigation IMU). The 
commercial IMU has horizontal position errors that are in the order of hundreds of 
meters, whereas the navigation IMU has horizontal position error in the order of meters. 
 

 
Figure 34. Comparison of Velocity Error (Commercial IMU vs Navigation IMU). The 
velocity errors for a navigation IMU are close to zero whereas the commercial IMU has 
errors that range from -5 to 5 m/s for velocity in the North direction and -10 to 10 m/s for 
velocity in the East direction. 
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4.2.4 Quality of Camera. 

 The quality of camera is a key design parameter of a VINS. In this thesis, this 

quality was characterized by inaccuracy associated with the pixel coordinates of features 

on images taken by the camera. Table 10 shows the performance of the VINS as the 

quality of the camera was varied from 0 pixel to 10 pixels. As the camera quality was 

improved from 2 pixels (nominal) to 0 pixel, there was an approximate 33% 

improvement in the position accuracy. Similarly, as the camera quality was worsened 

from 2 pixels to 4 pixels, there was an approximate 34% drop in the position accuracy. 

The position accuracy worsen by approximately 66% when the camera quality was 

worsen from 2 pixel to 10 pixel. 

 

Table 10. Effects of Quality of Camera on Accuracy of Position 
Standard 

Deviation of 
Noise in 
Image 
(pixel) 

Standard 
Deviation of 

Measurement 
Noise  

(Vector 1) 

Standard 
Deviation of 

Measurement 
Noise  

(Vector 2) 

DRMS 
(m) 

DRMS / 
Distance 
Travelled 

(%) 

Performance 
Compared to 

Nominal 

0 0.8239 0.2120 58.1 2.4 1.33 
1 0.9532 0.2048 66.1 2.7 1.16 

2 (nominal) 1.1881 0.2167 77.0 3.1 1 
4 1.9368 0.2867 115.4 4.7 0.67 

10 3.9470 0.4693 228.8 9.3 0.34 
 

As noise associated with image measurement was not known prior to this thesis, 

the simulation platform was also used to determine this noise level. It was calculated by 

computing the differences between true ZUPT measurements and computed ZUPT 

measurements. The results are shown in Figure 35. It was observed that the noise 

measurement for the 2nd null vector was always smaller than that of the 1st vector. As the 

2nd null vector in the simulation platform was typically in the vertical direction and the 1st 
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null vector was typically in the cross-track direction, it was postulated that the smaller 

velocity errors in the upwards direction led to a smaller noise measurement for the 2nd 

null vector. 

 
Figure 35. Image Measurement Noise of VINS 

 
Figure 36. Comparison of Trajectories among Different Camera Quality. The trajectory 
with 4 pixel noise is considerably worse compared to the trajectory with 0 pixel noise. 
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Figure 37. Comparison of Position Error (2 Pixel Noise vs 0 Pixel Noise). Position errors 
with 0 pixel noise are smaller compared to position error with 2 pixel noise. 
 

 
Figure 38. Comparison of Velocity Error (2 Pixel Noise vs 0 Pixel Noise). Velocity errors 
with 0 pixel noise are similar to velocity error with 2 pixel noise. Velocity errors in the 
Up direction are smaller compared to the East and North direction. 
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Figure 39. Comparison of Position Error (2 Pixel Noise vs 4 Pixel Noise). Position errors 
with 4 pixel noise are slightly larger compared to 2 pixel noise. 
 

 

 
Figure 40. Comparison of Velocity Error (2 Pixel Noise vs 4 Pixel Noise). Magnitude of 
velocity errors are similar with 2 pixel noise and 4 pixel noise. 
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4.2.5 Camera Pointing Direction. 

 The figures in Section 4.2 showed that the pointing direction of a camera had an 

effect on the number of features that could be matched. The effect of a camera pointing 

direction on the position accuracy of a VINS was not evident prior to this thesis. Hence, 

the simulation platform was used to study this relationship and the results are presented in 

Table 11. For all 3 scenarios, there was a marginal improvement in a forward-looking 

camera compared to a side-looking camera. This could be attributed to the observation 

that images from a forward-looking camera produced more matched features compared to 

images from a side-looking camera. Figure 41, Figure 42 and Figure 43 show the 

comparison between the side and forward-looking cameras for Scenario 2, 6, and 7 

respectively. 

 

 

Table 11. Effects of Camera Pointing Direction on Accuracy of Position. The 
performance of integrating images from a forward looking camera is compared to the 
performance of integrating images from a side looking camera. A value that is more than 
1 indicates a better performance for a forward looking camera while a value that is less 
than 1 indicates a worse performance. 

Scenario 

DRMS  
–  

Side Looking 
(m) 

DRMS  
–  

Forward Looking 
(m) 

Performance of  
Forward Looking Camera 

Compared to  
Side Looking Camera 

2 77.0 76.0 1.01 
6 43.7 36.6 1.19 
7 80.3 74.8 1.07 
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Side-Looking 

 
Forward-Looking 

Figure 41. Comparison of Trajectories between Camera Pointing Directions (Scenario 2) 
 

 
Side-Looking 

 
Forward-Looking 

Figure 42. Comparison of Trajectories between Camera Pointing Directions (Scenario 6) 
 

 
Side-Looking 

 
Forward-Looking 

Figure 43. Comparison of Trajectories between Camera Pointing Directions (Scenario 7) 
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4.2.6 Method of Calculating Direction of Translation. 

The ZUPT measurements implemented in this thesis were dependent on how the 

direction of translation of the sensor was determined. There are two methods of doing 

this in a VINS. In the first method, the rotation of the sensor was determined by the IMU 

and this information was used to determine the direction of translation. This method, 

termed as ‘Cal t known R’ in this thesis, is novel as it coupled the measurements from an 

IMU to visual odometry. In the second method, both the rotation and translation of the 

sensor, termed as ‘Cal t and R’ in this thesis, were determined by visual odometry 

without any measurements from IMU. Both methods of calculating the direction of 

translation were implemented in the simulation platform and the results are shown in 

Table 12. In all 3 scenarios, ‘Cal t known R’ performed better than ‘Cal t and R’. It is 

postulated that the ‘Cal t known R’ method has better performance as this method took 

the rotation measurement from IMU and hence it was less susceptible to noise in the 

image measurements. Conversely, ‘Cal t and R’ was more susceptible to noise in the 

image measurements approximately 30%  of the translations and rotations, calculated 

using this method, were assessed to be invalid as shown in Table 13. These invalid 

translations were not used as image measurements to update the VINS. 
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Table 12. Effects of Method of Calculating Direction of Translation on Accuracy of 
Position. The performance of ‘Cal t and R’ is compared to the performance of ‘Cal t 
known R’. A value that is more than 1 indicates a better performance for ‘Cal t and R’ 
while a value that is less than 1 indicates a worse performance for ‘Cal t and R’. 

Scenario 
DRMS  

-  
Cal t known R (m) 

DRMS  
-  

Cal t and R (m) 

Performance of  
‘Cal t and R’ 
Compared to  

‘Cal t known R’  
2 77.0 219.9 0.35 
6 43.7 96.9 0.45 
7 80.3 513.6 0.15 

 
 

 
 

 

 
 
 

Table 13. Number of Invalid Translation and Rotation with ‘Cal t and R’ 

Scenario Number of Image 
Measurements 

Number of Invalid 
Translation and 

Rotation  

Percentage of Invalid 
Translation and 

Rotation (%) 
2 1301 397 30.5 
6 1018 345 33.9 
7 2039 643 31.5 
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4.2.7 GPS Clock. 

 In areas of GPS outages, it might be possible for 3 or less GPS pseudorange 

measurements to be available. Although these pseudoranges could not be used to 

determine a navigation solution on its own, they could be used to improve the accuracy of 

a VINS as seen from Section 4.2.1. Table 14 shows the improvement in the position 

accuracy of a nominal VINS with different grades of GPS receiver clock. The Rubidium 

and Ovenised Crystal clocks performed 9% to 15% better than the Crystal clock. It was 

observed that the higher quality clock, Rubidium, did not give better improvement 

compared to Ovenised Crystal. A postulation for this observation was that the advantage 

of having a better clock does not materialize when there were fewer than 3 pseudorange 

measurements. Table 15 shows that with only 2 pseudorange measurements, the 

performance of an ovenised crystal GPS receiver clock is comparable to the performance 

of a Rubidium GPS receiver clock. 

 

Table 14. Effects of Type of GPS Receiver Clock on Accuracy of Position (With Image 
and 2 Pseudorange Measurements) 

GPS Receiver 
Clock 

DRMS 
(m) 

DRMS / Distance 
Travelled (%) 

Performance 
Compared to Nominal 

Crystal (nominal) 77.0 3.13 1 
Ovenised Crystal 67.2 2.73 1.15 

Rubidium 70.6 2.87 1.09 
 
 
 
Table 15. Effects of Type of GPS Receiver Clock on Accuracy of Position (With 2 
Pseudorange Measurements) 

GPS Receiver 
Clock 

DRMS 
(m) 

DRMS / Distance 
Travelled (%) 

Performance 
Compared to Crystal 

Crystal 20969 851.18% 1 
Ovenised Crystal 8858 359.57% 2.36 

Rubidium 8338 338.46% 2.51 
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4.2.8 Number of Pseudorange Measurements. 

 As the VINS would be used in areas with GPS outages, the trade study focused 

mainly on the effects of having 3 or less pseudoranges from GPS. Table 16 shows the 

effects of the number of pseudorange measurements on position accuracy. A VINS with 3 

or more pseudorange measurements would have an error of less than 1% over the 

distance travelled. However, this is not representative of a typical situation with GPS 

outage. It is more realistic for a VINS to receive not more than 2 pseudorange 

measurements in areas of GPS outage. In these situations, the advantage of having 2 

pseudorange measurement is significant as the position accuracy improved by a factor of 

two compared to having 1 or no pseudorange measurements. Table 17 shows the benefits 

of incorporating image measurements when there are 3 or less pseudorange 

measurements, as the position accuracy improves by more than 38 times. The benefits of 

incorporating image measurements are less significant (approximately 1% improvement) 

when there are 4 or more pseudorange measurements. 

 
Table 16. Effects of Number of Pseudoranges on Accuracy of Position (includes Image 
Measurements) 

Number of 
Pseudoranges 

DRMS 
(m) 

DRMS / Distance Travelled 
(%) 

Performance 
Compared to Nominal 

0 183.8 7.46 0.42 
1 155.3 6.30 0.50 

2 (nominal) 77.0 3.13 1 
3 4.2 0.17 18.17 
4 3.1 0.13 24.69 
8 1.8 0.07 44.02 
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Table 17. Effects of Number of Pseudoranges on Accuracy of Position (with Image 
Measurements and without Image Measurements) 

Number of 
Pseudoranges 

DRMS 
- With Image 

(m) 

DRMS 
- Without Images (m) 

Performance of  
“With Image” 
compared to  

“Without Image” 
1 155.3 35730.0 230 
2 77.0 20969.0 272 
3 4.2 161.5 38 
4 3.1 3.5 1.1 
8 1.8 1.8 1 

 

 

 

 
Figure 44. Comparison of Trajectories among Different Number of Pseudorange 
Measurements 
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Figure 45. Comparison of Position Error (2 Pseudoranges vs 1 Pseudorange) 

 
Figure 46. Comparison of Velocity Error (2 Pseudoranges vs 1 Pseudorange) 
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Figure 47. Comparison of Position Error (2 Pseudoranges vs 3 Pseudoranges) 

 
Figure 48. Comparison of Velocity Error (2 Pseudoranges vs 3 Pseudoranges) 
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4.3 Conclusion from Trade Study 

Results from the trade study confirmed that in an area with limited GPS signals, 

the performance of a VINS (commercial grade INS integrated with visual odometry and 

GPS pseudorange measurements) is better than an INS that is integrated with either 

visual odometry or GPS pseudorange. The trade study also revealed the trade-off in the 

performance of a VINS as a function of its update interval, IMU quality, camera quality 

and camera pointing direction. 

4.4 Summary 

The simulation platform developed in this research was used to carry out a trade 

study on the design of a VINS. This demonstrated the utility of the platform in the 

development and evaluation of a VINS.  
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V.  Conclusions and Recommendations 

This chapter concludes the research and highlights its significance. Thereafter, 

recommendations are also made for future work. 

5.1 Conclusions of Research 

This research successfully developed a simulation platform using real-world 

images and PVA data collected from a ground vehicle as part of the ASPN program. The 

simulation platform was built using Matlab. It met all the requirements stated in Table 1 

and is capable of simulating a VINS operating in an environment with limited GPS 

signals. A trade study on the design of a VINS demonstrated the utility of the platform 

and the key findings were: 

• In an environment with limited GPS signals, an INS that incorporated both image 

and GPS pseudorange measurements performed better than an INS that 

incorporated either image or GPS pseudorange measurements by themselves. 

• Among the different grades of IMU, the benefit of incorporating image and GPS 

pseudorange measurements was most significant for a commercial grade IMU. 

The benefit was negligible for a navigation grade IMU for the scenarios tested.  

• Despite additional matched features that a forward-looking camera was able to 

pick up compared to a side-looking camera, the performance of a VINS that 

incorporated a forward-looking camera was only slightly better than that of a 

VINS that incorporated a side-looking camera. 

• The quality of GPS clock had minimal effect on the performance of a VINS when 

there were fewer than 3 pseudorange measurements.  
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• A VINS with image and 3 pseudorange measurements has similar performance to 

an INS with no image and 4 pseudorange measurments. 

5.2 Significance of Research 

The development of a VINS requires a significant amount of effort for 

performance tuning, verification and validation. The simulation platform, developed in 

this research, would allow future researchers to test the design of a VINS in various 

simulated environments prior to physical testing of the system in a real environment. 

Such simulations allow researchers to focus on the design of navigation filters for a VINS 

while eliminating hardware and data synchronization problems.  

5.3 Recommendations for Future Research 

 The following recommendations on future research areas are proposed based on 

the experiences gained in this research. 

5.3.1 Alternate Filter Implementation. 

 There are many options for integration of INS, visual odometry and GPS 

pseudoranges in a VINS. This research used a basic Kalman filter to integrate these 

measurements. The simulation platform could be modified to implement an advanced 

navigation filter and to model a more complex VINS. This would further exploit the 

benefits of integrating visual odometry with INS, and would yield additional 

improvements in performance. 

5.3.2 Implement Delayed State Update Equation. 

For simplification, this research did not implement a delayed-state update 

equation for the zero velocity update. Hence, results from the simulation platform were 



75 

not as accurate as it could be. A delayed-state update equation could be implemented in 

future research to improve the operation and performance of the simulation platform. 

5.3.3 Using Design of Experiment for Trade Space Analysis. 

This research made use of the trade space analysis to demonstrate the utility of the 

simulation platform. A couple of postulations were made to explain some of the results 

observed. Future research could carry out a more thorough and systematic analysis of the 

trade space by using the design of experiment approach. This would provide results that 

are better substantiated. 

5.3.4 Implement Altitude Aiding. 

 This research did not implement any form of altitude aiding for the VINS. As it is 

fairly common for INS to have altitude aiding, future research could study the benefits of 

including altitude aiding in a VINS. 
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