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EXECUTIVE SUMMARY 

Measuring the biophysical characteristics of clothing and modeling the 
associated physiological impacts on the human is of significant interest to modelers, 
researchers, physiologists, and clothing developers.  It is well understood that thermal 
strain will occur from working in hot conditions or at moderate to high work rates, and 
that this impact varies with wind velocity.     

While there are ASTM standard test methods for comparing differences in 
biophysical characteristics of clothing ensembles, the methods for determining and 
modeling the changes that wind velocity has on heat and vapor transport are not well 
standardized.  One method for addressing the wind velocity effect on insulation and 
evaporative resistance includes conducting standardized thermal manikin testing 
followed by additional custom tests.  This current method tests at the standard one wind 
velocity (0.4 m/s) as well as at two additional wind speeds, for a total of six tests (i.e., 3 
for insulation and 3 for evaporative resistance).  This process seeks to create a set of 
measures to produce the gradient effect of wind, in order to obtain associated 
coefficients.   

This report outlines mathematical methods for determining reasonable estimates 
of wind velocity effect on biophysical measures using only the standardized test 
methods.  This new method will empower using the standard approach, for modeling 
purposes, while economically adding a simpler method for determining wind velocity 
effects. 
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INTRODUCTION 

The effect of wind velocity on the biophysical characteristics of clothing is of 
significant interest to modelers, researchers, physiologists, and clothing developers.  It 
is known that thermal strain will occur from working in hot conditions or at higher work 
intensities, and that this impact can be modified by the effects of wind velocity.  
Currently there are standardized testing methods for comparing different clothing 
ensembles as well as accepted modeling and simulation methods.  The effects of wind 
velocity are well recognized within this community.  Methods of determining this wind 
effect on the insulation and evaporative potential of clothing and the associated 
physiological impacts are less well understood and currently require unconventional 
testing outside of the standard methods. 

Thermoregulatory models such as Heat Strain Decision Aid (HSDA) (Givoni & 
Goldman, 1972; Gonzalez et al, 1997), or SCENARIO (Kraning & Gonzalez, 1997), 
predict thermo-physiological responses to various environments, clothing, and physical 
activities.  These models specifically address heat transfer from the human, through 
clothing, to the environment.  Critical inputs to these models are the effect that different 
wind velocity has on thermal insulation and evaporative resistance.  For this reason, 
custom testing methods have been developed to measure the wind velocity effect on 
varying clothing ensembles.   

Using a heated thermal manikin, each ensemble must be tested to ASTM 
standards for measuring thermal insulation (ASTM F1291-10) at 0.4 m/s (0.89 mph) and 
then again for evaporative resistance (ASTM F2370-10) at 0.4 m/s.  Following these 
standard tests, additional tests are conducted at two higher wind speeds in order to 
obtain a wind speed effect coefficient.   

The current estimation method for dry thermal insulation (clo) of ensembles 
includes testing at wind speeds of 0.4 m/s (0.89 mph), 1.0 m/s (2.24 mph), and 2.0 m/s 
(4.47 mph). For these tests, the thermal manikin ‘skin’ surface remains dry and heated 
to 35°C while the environment is held constant at 23°C and 50% RH. Following the dry 
thermal insulation testing, the evaporative resistance (im) is calculated, under at the 
same three wind speeds (i.e., 0.4, 1.0, and 2.0 m/s). For these tests, the thermal 
manikin ‘skin’ surface is 100% saturated and heated to 35°C and the environmental 
conditions are held constant at 35°C and 40% RH. Thus, at steady state all heat is loss 
is via evaporation. Each of these three sets of data a power trend line is developed with 
an associated wind effect coefficient (g).  This equation is gained by: 

 
       (Eq 1) 

or in logical linear form as: 

  ( )    ( )      ( )  (Eq 2) 

where y = the specific line (ln); a = the initial point or constant; v = rate of exponential 

growth; and g = growth coefficient.   
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With respect to the wind effect, we would replace a with the points of 
measurement (thermal insulation or evaporative resistance), v with the wind speed, and 
g with the wind effect coefficient.  Determining the constant value of a becomes part of 
the basis for estimating wind effects for different velocities.    

In theory, convective heat loss can be expressed as a function of wind speed.  
For clothing insulation we can derive equations based on data collected at one wind 
speed.  This research uses scientific methods for determining reasonable estimates of 
wind velocity effect on biophysical measures using only the standardized test methods; 
a reduction from six tests down to only two.  Having a method that uses the standard 
approach will allow for economical testing and conserving of resources, as well as the 
ability to test significantly more items of interest. 

 

METHODS 

The biophysical properties (thermal resistance and evaporative resistance) were 
assessed on 44 clothing ensembles with varied characteristics.  The clothing ranged 
from physical training (PT) uniform (shorts, t-shirt, socks, and running sneakers), 
standard Army uniform (underwear, t-shirt, pants, long-sleeved shirt, socks, and combat 
boots), Army uniform with helmet and full body armor, and chemical protective 
ensembles (gas mask, fully encapsulating chemical protective suit, gloves, and boots).   

Each ensemble was tested to American Society of Testing and Materials 
International (ASTM) standards for thermal insulation (ASTM F1291-10) and 
evaporative resistance (ASTM F2370-10) followed by repeated tests at additional wind 
speeds (standard 0.4 m/s, 1 m/s, and 2 m/s).  From these three measures a power 
trend line was calculated to obtain the associated wind effect coefficient (g) (Eq 1-2).  
The wind speed coefficients obtained using these methods were used as the standard 
for comparison against the estimation method developed.   

 

Statistical Analysis 

Statistical analyses were performed using SPSS 21.0 Statistical Software (SPSS 
Inc., an IBM Company, Chicago, IL). Descriptive statistics are presented as means ± 
standard deviations (SD).  A forward adding stepwise multiple linear regression 
modeling method was used to develop equations from the data to predict wind velocity 

coefficients for both the thermal resistance (clo  ) and the vapor permeability ratio 
(im/clo  )) using half of the dataset (N=22) (group I).  
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Verification  

Verification analysis was conducted using half of the dataset (N=22) (group II) of 
ensembles tested at the ASTM standard and at the same additional wind speeds.  

Actual and predicted values of clo   and im/clo   were compared and outlined to show 
percent deviation.  

Biomedical Modeling Validation 

Validation analysis was conducted using the worst-fit ensemble data (clo  ) error 
= 0.04 (im/clo  ) error = 0.12) to the developed equations, modeled using equations 
from the heat strain modeling methods outlined by Gonzalez et al (1997).  From this 
method a comparison was made to show the overall outcome differences modeled at 1 
m/s using the actual and predicted wind speed coefficients up to a predicted critical 
internal core body temperature (Tc) of 39°C (102.2°F).  

 
Simulations for the model assumed a normally hydrated male, weighing 70 kg, 

172 cm tall, a surface area of 1.8 m2, and heat acclimated 12 days.  During each 
simulation, the individual was modeled at three work intensities typical of military tasks: 
light (180 W), moderate (300 W), and high (500 W).  Modeling was conducted to 
simulate three night time environmental conditions: Desert (48.89°C; 20% RH); Jungle 
(35°C; 75% RH), and Temperate (35°C; 50% RH), with wind speeds of 1 m/s (Potter et 
al, 2013). 

 

RESULTS 

Biophysical assessments 

Biophysical properties of 44 ensembles were assessed, with 22 ensembles used 
for modeling (group I) and 22 ensembles used for verification (group II) (Tables 1, 2).  
For this assessment, only the values collected at the ASTM 0.4 m/s and 1.0 m/s are 
reported, as the additional data at 2 m/s wind speed follows this curvilinear line.   

 
Table 1. Modeled (group I) and verification (group II) ensembles at ASTM 0.4 m/s  

Variable Group I Group II 

 Mean ± SD Range Mean ± SD Range 

n  22 22 

clo (thermal resistance) 1.469 ± 0.332 0.877 to 1.849 1.679 ± 0.390 1.290 to 2.582 

im (vapor permeability) 0.366 ± 0.078 0.250 to 0.473 0.431 ± 0.041 0.349 to 0.537 

im/clo (evaporative potential) 0.277 ± 0.142 0.140 to 0.536 0.278 ± 0.072 0.135 to 0.374 
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Table 2. Modeled (group I) and verification (group II) ensembles at 1.0 m/s  
Variable Group I Group II 

 Mean ± SD Range Mean ± SD Range 

n  22 22 

clo (thermal resistance) 1.056 ± 0.285 0.646 to 1.290 1.375 ± 0.363 1.035 to 2.248 

im (vapor permeability) 0.411 ± 0.048 0.350 to 0.478 0.453 ± 0.042 0.387 to 0.524 

im/clo (evaporative potential) 0.441 ± 0.205 0.270 to 0.742 0.363 ± 0.104 0.172 to 0.513 

 
 

The wind velocity coefficients (g) being a function of the three wind speed tests 
remain constant across each measure (Table 3).   

 
Table 3. Modeled and verification ensemble wind velocity coefficients 

Variable Group I Group II 

 Mean ± SD Range Mean ± SD Range 

n  22 22 

clo    -0.255 ± 0.066 -0.370 to -0.164 -0.230 ± 0.032 -0.265 to -0.151 

im/clo   0.287 ± 0.064 0.178 to 0.397 0.293 ± 0.052 0.185 to 0.438 

 
 
 

Statistical Model Analysis 

Estimated wind velocity coefficients were derived using only the standard testing 
measures (0.4 m/s) seen in Table 1.  Variable correlation was conducted prior to 
modeling using Pearson Correlation (Tables 4, 5). 

 
Table 4. Pearson Correlation of modeled variables for clog 
Variable clo   clo im 

clo    1.000 0.926 -0.955 

clo 0.926 1.000 -0.865 

im -0.955 -0.865 1.000 

 
Table 5. Pearson Correlation of modeled variables for im/clog 

Variable im/clo   clo im 

im/clo    1.000 -0.838 0.867 

clo -0.838 1.000 -0.865 

im 0.867 -0.865 1.000 
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The first step in developing the predictive method using only one wind velocity is 
estimation of the constant value (a).  This constant value would be specific for both the 
estimation of clo as well as the im/clo estimation.   

For estimating a from the standard one wind velocity testing procedure, linear 
regression modeling was used to obtain the two models:  Model 1a (M1a) uses only a 
measure of clo at 0.4 m/s, categorized as: R = 0.994; R2 = 0.988, an adjusted R2 = 
0.987; SE = 0.03593, shown as: 

     (     )        (M1a) 

Model 1b (M1b) uses measures of both im and clo at 0.4 m/s, categorized as: R = 0.999; 
R2 = 0.998, an adjusted R2 = 0.998; SE = 0.01462, shown as: 

     (     )    (     )        (M1b) 

One model (M2) can be used for estimating the constant (a) for the im/clo estimation.  
This model uses only a value of clo measured at 0.4 m/s, categorized as: R = 0.993; R2 

= 0.986, an adjusted R2 = 0.985; SE = 0.02590, shown as: 

           (     ) (M2) 

The next step in developing the model (M3) for predicting this wind effect is to 
determine the exponent power effect from the wind (g). Using multiple linear regression 
with only these two data points for estimating the constant (g) for clo was categorized 
as: R = 0.975; R2 = 0.952, an adjusted R2 = 0.946; SE = 0.01518, shown below: 

     (     )    (     )        (M3) 

This same multiple linear regression method was used to develop the model 
(M4) using only these two data points for estimating the wind effect (g) for im/clo was 
categorized as: R = 0.885; R2 = 0.782, an adjusted R2 = 0.760; SE = 0.03148, shown 
below: 

    (     )     (     )        (M4) 

The modeled equations were applied to the verification data and the measured 
values coefficients compared closely (Table 6). 

 
Table 6. Verification data wind velocity coefficients compared to estimated values 

Variable Actual Estimated Absolute 

error 

Error range 

n 22    

clo   -0.230 ± 0.032 -0.272 ± 0.048 -0.04  -0.10 to 0.05  

im/clo    0.293 ± 0.052 0.303 ± 0.042 -0.01 -0.12 to 0.12 
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Using the initial equation of       , the predicted model equations can be 
used to substitute values to determine clo and im/clo.  Measuring at two points instead of 
three can be done simply, as the nature of the power regression allows for a minimum 
of two points for defining the line.  Measuring at only the one wind speed for clo we can 
apply model M1a or M1b in place of the constant (a), the desired wind speed (v), and 
use model M3 for the coefficient value (g).  This same method can be applied to the 
im/clo using M2 as constant (a) and M4 for the coefficient value (g). 

 
 

Figure 1. Predictions of clo using 2 point estimation compared to 3 point measured for 
a) 1 m/s and b) 1.8 m/s 

 
 

Figure 2. Predictions of clo using 1 point estimation method compared to 3 point 
measured for a) 1 m/s and b) 1.8 m/s 
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Biomedical Modeling Validation 

Modeling of the worst-fit ensemble was conducted in three environmental 

conditions and at three different work intensities.  The actual clo   and im/clo   values 
were compared to the estimated values (Figures 3 – 5). 

 

Figure 3. Impact of using estimated and actual     values for modeling temperate 

conditions (35°C; 50% RH, 1 m/s) at three work intensities (180, 300, 500W) 

 
Tc beyond 39°C is of less importance as this is considered a critical operating limit 
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Figure 4. Impact of using estimated and actual     values to model jungle conditions  

(35°C; 75% RH, 1 m/s) at three work intensities (180, 300, 500W) 

 
Tc beyond 39°C is of less importance as this is considered a critical operating limit 

 

Figure 5. Impact of using estimated and actual     values to model desert conditions  

(48.89°C; 20% RH, 1 m/s) at three work intensities (180, 300, 500W) 

 
Tc beyond 39°C is of less importance as this is considered a critical operating limit 
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Using the worst-fitting data with this estimation method we can see that there is 
some separation in the predictions when applied to a physiological model.  The areas of 
most concern are at the points where predictions reach the critical core temperature of 
39°C.  In temperate conditions working at light (180W) or moderate (300W) intensities 
there was very little difference; while working at high (500W) intensity the estimation 
method is more conservative in its prediction by 12 minutes.  Working in desert 
conditions at light (180W) or moderate (300W) intensities little differences are 
observable; while working at high (500W) intensity the estimation under predicts by 11 
minutes compared with using data from three wind speeds.  In jungle conditions each of 
the work intensities stayed relatively close with only a 3 minute under prediction at 
500W.  It is important to note that the largest separation numerically to reach the critical 
39°C point was observed in jungle conditions working at moderate (300W) intensity.  
However, this can be explained as both lines begin to flatten and run along the critical 
point, causing a larger separation at that point.    

 

DISCUSSION 

From a numerical standpoint the results show reasonable estimates can be 
obtained using this method along with the standardized ASTM single wind speed tests.  
Furthermore, from a comparison standpoint if all ensembles use this same estimation 
method there should be consistency in their observed rankings (i.e., constraints should 
remain consistent in each comparison).   

While there is a tight closeness of fit between most cases of estimation and 
actual measures, we can see from the worst-fit data that there would be observable 
differences.  Therefore, comparing ensembles using the different methods at this point 
is not recommended. 

This data suggests a number of factors create changes in the insulation and 
evaporative resistance of the ensembles based on wind velocity.  Some areas that 
deserve follow-on research include exposed surface area, clothing layers, and the 
difference in manikins or technologies.  Having more exposed surface area likely 
causes more impact on the evaporative and thermal resistance of the ensemble, as 
there is a direct impact of convective heat exchange and evaporation caused by the 
wind.  Therefore, follow-on work should include capturing of and possibly reporting of 
the exposed surface areas for each ensemble.  Along these same lines, the layering of 
full ensembles should be seen as an indicator of changes in insulation and evaporative 
resistance.  Specifically the addition of layers and the associated change in the internal 
boundary (air) insulation.  It can be reasonably assumed that with more layers the wind 
velocity will create less internal air layer changes compared to ensembles with fewer 
layers.  Therefore, the number of layers should be included as follow-on inputs to this 
estimation process.  Different manikin technologies and methods should be assessed 
for differences in this approach.  While in the current work there are multiple manikins 
technologies used as well as different methods (i.e., copper manikins versus carbon 
fiber; and sweating manikins versus non-sweating).    
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The worst-fit data was used to show the likely worst case scenario of prediction 
when used as inputs to accepted heat strain modeling methods.  However, this data 
was significantly further out of range compared to other ensemble data (Figure 4, first 
point) and could potentially be considered an outlier.  While this data was not typical 
compared to the rest of the dataset and can be explained, as it was the oldest data 
collected on an outdated manikin system, it was not excluded as to find the limitations of 
this method.  It could be speculated that there could be errors in the data or lower 
resolution in the method of collection; however, as a physics-based method there 
should be little differences.  Therefore, this further exposes the question of manikin 
technologies and method differences.  That said, using solely standardized test 
methods may allow for broader modeling and analysis capabilities. 

 

CONCLUSIONS 

This work shows that wind velocity coefficients can be reasonably and 
scientifically estimated using standard testing methods.  While others have attempted to 
show methods for determining these wind effects (Holmér et al., 1999; Parsons et al., 
1999), there has not been complex physiological modeling associated with these 
methods.  This approach has used both an estimation method of the biophysically 
gained data as well as the physiological modeling associated with these estimations.  

 

RECOMMENDATIONS 

This analysis suggests that reasonable estimations can be obtained using only 
the standard ASTM one wind velocity testing process.  Therefore, it is recommended 
that for expedient ensemble comparisons, or for analyses using data obtained from 
outside sources this method should be used over the more time consuming three wind 
speed testing.  This saving of time and resources can become significant and will allow 
for larger collections of data and faster turn-around time for customer-driven analyses. 

Given more wind-centric or more complex modeling (e.g., mixed environmental 
scenarios, etc.) the higher resolution, three wind speed testing method should be used.  
Uniforms that are expected to be or remain as issued items should be required to have 
this higher level testing conducted, to allow for complex modeling and simulation as 
needed.     
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