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RESEARCH ARTICLE

                       M C G UIRE  SA, S HERMAN  PM, B ROWN  AC, R OBINSON  AY, T ATE  DF, 
F OX  PT, K OCHUNOV  PV . Hyperintense white matter lesions in 50 high-
altitude pilots with neurologic decompression sickness.  Aviat Space 
Environ Med 2012; 83: 1117  –  22 .  

   Introduction:   Neurologic decompression sickness (NDCS) can affect 
high-altitude pilots, causing variable central nervous system symptoms. 
Five recent severe episodes prompted further investigation.   Methods:   
We report the hyperintense white matter (HWM) lesion imaging fi ndings 
in 50 U-2 pilot volunteers, and compare 12 U-2 pilots who experienced 
clinical NDCS to 38 U-2 pilots who did not. The imaging data were col-
lected using a 3T magnetic resonance imaging scanner and high-resolution 
(1-mm isotropic) three-dimensional fl uid-attenuated inversion recovery 
sequence. Whole-brain and regional lesion volume and number were 
compared between groups.   Results:   The NDCS group had signifi cantly 
increased whole brain and insular volumes of HWM lesions. The inter-
group difference in lesion numbers was not signifi cant.   Conclusion:   A 
clinical episode of NDCS was associated with a signifi cant increase in 
HWM lesion volume, especially in the insula. We postulate this to be 
due to hypobaric exposure rather than hypoxia since all pilots were 
maintained on 100% oxygen throughout the fl ight. Further studies will 
be necessary to better understand the pathophysiology underlying these 
lesions.   
 Keywords:   hyperintense white matter lesions  ,   neurocognitive impairment  , 
  neurologic decompression sickness  ,   high altitude  ,   U-2 pilot  .     

 NEUROLOGIC decompression sickness (NDCS) is a 
common but underreported condition that affects 

high-altitude pilots ( 8 ). Neurologic symptoms associ-
ated with NDCS include syncope, nausea, disturbances 
of equilibrium and coordination, large sensory and mo-
tor tract dysfunction, amnesia, aphasia, hallucinations, 
tremor, and headaches ( 3 ). Variable degrees of neuro-
logical recovery may occur. The number of severe NDCS 
episodes in high-altitude U-2 pilots has increased in 
recent years, including fi ve near-fatalities. This increase 
is potentially related to an increased operational tempo 
in these pilots, although this remains unproven ( 19 ). In 
all fi ve cases, signifi cant neurological symptoms that 
included neurocognitive impairments with confusion, 
aphasia, and memory loss and coordination impairment 
with ataxia and tremor were reported. Notably, no acute 
clinical symptoms or fi ndings consistent with spinal 
cord involvement/injury were noted. This dichotomy 
in clinical signs suggests these pilots may have experi-
enced brain injury as a consequence of the NDCS epi-
sode. Here, we hypothesize that pilots who suffered 

NDCS will demonstrate evidence for brain injury by 
having a higher number and volume of hyperintense 
white matter (HWM) cerebral lesions than those pilots 
who did not experience NDCS. 

 The number and volume of HWM regions are sensi-
tive markers of cerebral health, commonly used to study 
the extent of the cerebral injury ( 9 ). Healthy cerebral 
white matter tracts are myelinated with compounds 
containing long-chain fatty acids with very short T2-
relaxation time and thus appear dark on T2-weighted 
images. Local edema, often associated with degradation 
of the myelin sheath, results in localized accumulation 
of extracellular water, which leads to an increased signal 
intensity on a T2-weighted image. HWM lesions also 
form in normal aging, where they begin to occur during 
midadulthood (fourth-fi fth decade of life). In both nor-
mal subjects and patients who suffered brain injury, the 
number and volume of HWM lesions are correlated with 
a decline in cerebral integrity ( 24 ), reduction in cerebral 
white matter and gray matter volumes ( 10 , 37 ), cerebral 
blood fl ow ( 26 ), and cerebral glucose metabolism ( 22 ). 
Increasing numbers and volumes of HWM regions have 
also been linked to cognitive declines, particularly in 
executive functioning ( 23 ), processing speed ( 35 ), and 
general cognitive status ( 14 ), and were correlated with the 
severity of neurocognitive defi cits in neuropsychiatric 
and neurological disorders ( 31 ). The etiology of HWM is 
nonspecifi c and is commonly associated with cerebral 
ischemia and disruptions of cerebral circulation ( 30 ). 
Histopathological fi ndings indicate there are two dis-
tinct types of HWM lesions: subcortical and ependymal. 
Subcortical HWM regions are more closely associated 
with ischemic factors ( 13 ). In contrast, periventricular 
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ependymal HWM lesions are thought to be of nonisch-
emic origin and potentially produced by pulse-wave 
encephalopathy ( 5 , 6 , 17 ). This condition refers to the 
microtears in the ependymal lining caused by the pulsa-
tile movements of ventricular cerebrospinal fl uid (CSF) 
( 6 , 28 , 29 ). 

 Here we aimed to better understand the prevalence, 
the potential contributing factors, and the clinical impli-
cations of HWM lesions in a voluntary study performed 
in 50 United States Air Force (USAF) U-2 pilots, 12 of 
whom suffered clinical NDCS. In addition to our pri-
mary hypothesis, we further hypothesized that clini-
cal NDCS will be associated with higher prevalence 
and volume of subcortical, rather than ependymal, 
lesions because of the differences in the pathogenic 
mechanism between these two types of lesions. This 
hypothesis was tested by analyzing the location of the 
lesions by both their type (subcortical and ependy-
mal) and their number and volume within the cere-
bral lobes.  

 METHODS  

    Subjects 

 This study did not constitute human research as deter-
mined by the Air Force Research Laboratory Institutional 
Review Board (4/2011) and the University of Texas 
Health Sciences Center San Antonio Institutional Review 
Board (5/2011). Pilots were recruited with strict ad-
herence to Department of Defense Instruction 3216.02 
guidelines. All high-altitude U-2 pilots currently on ac-
tive duty in the USAF were invited to participate. Pilot 
participation was voluntary without commander in-
volvement or knowledge. The pilots provided informed 
consent prior to participation. All pilots were healthy at 
the time of testing, meeting USAF Flying Class II stan-
dards ( 36 ). An indepth medical and fl ight history was 
obtained from each pilot including identifi cation of 
any episodes that might constitute type I (mild) decom-
pression sickness or type II (severe or neurological) 
decompression sickness. Each pilot underwent 2 h of 
neurocognitive testing; in some pilots comparison to 
identical neurocognitive testing performed at time of 
entry into undergraduate pilot training was possible. 
Finally, each pilot underwent a 1-h-long magnetic reso-
nance imaging (MRI) examination.   

 Imaging 

 Structural MRI data were collected at the Research 
Imaging Institute using a Siemens 3T Tim Trio scanner 
equipped with multichannel phase array coil. T2-weighted, 
three-dimensional (3D), high-resolution (isotropic 1-mm), 
fl uid-attenuated inversion recovery (FLAIR) data were 
collected using a turbo-spin-echo sequence with the 
following parameters: TR/TE/TI/Flip angle/ETL  5  5 
s/353 ms/1.8 s/180°/221. This 3D FLAIR protocol was 
specifi cally designed to overcome the limitations of a 
two-dimensional, thick-slice (5- to 10-mm) clinical imag-
ing protocol and to permit increased detection of smaller 
lesions and accurate tracing of lesion boundaries ( 20 , 24 ). 

This 3D FLAIR sequence uses a nonselective inversion 
radio frequency (RF) pulse to suppress CSF pulsation 
artifacts to reduce false-negative hyperintense artifacts 
that can be seen near CSF-containing structures in the 
two-dimensional FLAIR sequences ( 2 ). 

 In addition to FLAIR data, high-resolution (isotropic 
0.8-mm, voxel size  5  0.5 mm 3 ) T1-weighted data were 
collected with the following sequence parameters: TE/
TR/TI  5  3.04/2100/785 ms, fl ip angle  5  11°. A retro-
spective motion-correction technique ( 21 ) was used to 
reduce subject motion-related artifacts.   

 Image Analyses 

 Measurement of the number and volume of the HWM 
lesions from FLAIR images is described elsewhere ( 25 ). 
Briefl y, FLAIR images were preprocessed by removal of 
nonbrain tissue using FSL BET (brain extraction tool), 
freely available from the Oxford Centre for Functional 
MRI of the Brain (FMRIB) ( 33 ) (    Fig. 1A  ). Next, FLAIR 
images for individual subjects were registered to their 
corresponding T1-weighted images using FSL FLIRT 
(FMRIB ’ s linear image registration tool) ( 34 ) (  Fig. 1B  ). 
The T1-weighted images were then registered to a com-
mon, Talairach-atlas-based stereotactic frame using FSL 
FLIRT ( 34 ) and nine-parameter (three each for rotation, 
translation, and scaling) global normalization transfor-
mation. The purpose of this step is to reduce interindi-
vidual anatomical variance in the global brain size, 
shape, and orientation and to permit the use of auto-
mated labeling approaches by using a digital brain atlas 
( 27 ) (  Fig. 1C  ). Next, all images were corrected for radio 
frequency (RF) inhomogeneity artifact using the FSL 
BET method with default parameters. RF inhomogene-
ity artifact manifests itself as a low-frequency variation 
of MRI image intensity that impedes intensity-based 
image analysis unless corrected. HWM regions were 
then manually delineated in 3D-space using in-house 
software ( http://ric.uthscsa.edu/mango ) by an experi-
enced neuroanatomist with high intrarater (r 2   .  0.9) 
test-retest reproducibility who was blind to subjects ’  age 
and diagnosis status. Interrater correlation was also high 
(rho  5  0.924). During the labeling, HWM regions were 
coded as ependymal regions, contiguous with CSF struc-
tures, and as subcortical regions as previously described 
( 17 ). Finally, the volume and location of HWM lesions 
were analyzed using the boundaries for fi ve cerebral 
lobes and insula extracted from the digital Talairach atlas 
(  Fig. 1D  ).       

 Statistical Analysis 

 Group-wise differences in age and fl ight hours were 
assessed using a two-tailed  t -test. The same method 
could not be used to compare differences in the number 
and volume of the HWM lesions because these data for 
NDCS subjects were not normally distributed (    Fig. 2  ). A 
single-tailed Mann-Whitney  U -test (also known as the 
Mann-Whitney-Wilcoxon or Wilcoxon rank-sum test) 
was therefore used to perform the intergroup compari-
sons on HWM measurements. This is a nonparametric 
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test that assumes no specifi c distribution of the data and 
estimates the probability that one sample is stochastically 
greater than the other. We considered a  P -value  �  0.05 
statistically signifi cant, demonstrating an association 

between a clinical NDCS event and an increase in HWM 
lesion volume and number. A  P -value of 0.05  ,   P   �  0.10 
suggests a potentially signifi cant fi nding that is limited 
by our small sample size.         

  

  Fig.     1.         HWM lesions data processing pipeline included A) removal of nonbrain tissue, B) global spatial normalization to the corresponding T1-
weighted image that was registered to Talairach reference frame and correction for RF homogeneity, C) delineation of subcortical (yellow) and epen-
dymal (green) lesions, and D) Talairach-atlas-based analysis of regional distribution of HWM lesions by cerebral lobe.    

  

  Fig.     2.         Histogram of the volume of the HWM lesions in NDCS and normal controls.    
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 RESULTS 

 No signifi cant differences were observed between the 
pilots who had experienced an episode of NDCS and 
those who had not in age (37.4  6  5.2 yr vs. 38.9  6  6.1, 
 P   5  0.46), total high-altitude fl ight hours (774  6  499 h 
vs. 743  6  408,  P   5  0.84), or average high-fl ight hours per 
month over their U-2 career (18.1  6  6.4 h/mo vs. 16.5  6  
7.2,  P   5  0.56). No difference was noted in the presence 
of mild hypertension or mild hyperlipidemia. No pilot 
had a history of signifi cant head injury, signifi cant scuba 
diving history, episode of decompression illness associ-
ated with diving, or high-altitude exposure other than 
that associated with USAF fl ight duties. 

 HWM lesions were clearly visualized on 3D FLAIR 
MRI (  Fig. 3  and  4  ). The average and lobar-based HWM 
lesion number and volume (total, subcortical, ependy-
mal) are provided in     Table I  . The NDCS pilots demon-
strated a signifi cantly higher total HWM lesion volume 
( P   5  0.026) compared to the non-NDCS pilots but not a 
signifi cant increase in total lesion count ( P   5  0.120). 
Analysis of the lesion by type (subcortical vs. ependy-
mal) did not demonstrate a signifi cant difference be-
tween NDCS pilots and non-NDCS pilots ( P   5  0.059). 
Examination of regional measurements revealed pilots 
who experienced NDCS had signifi cantly higher num-
ber and volume of insular subcortical lesions ( P   5  0.020 
and  P   5  0.018, respectively).               

 DISCUSSION 

 Our study demonstrated an elevation in whole-brain 
volume ( P   5  0.026) but not whole-brain number of 
HWM lesions in pilots who experienced clinical NDCS 
when compared to a matching group of pilots who had 
not. In agreement with our initial hypothesis, pilots 
who experienced NDCS had a higher number and vol-
ume of subcortical HWM lesions in the insular white 
matter regions ( P   5  0.020;  P   5  0.018). Histopathological 
fi ndings suggest subcortical HWM lesions are pro-
duced by ischemic and/or neuroinfl amatory etiologies 
( 4 , 6 , 7 , 13 ). Therefore, elevation of subcortical HWM le-
sions in NDCS might be associated with a barometric-
pressure-related gas microemboli leading to loss of 
permeability/occlusion of small cerebral vessels and 
subsequent immune-system-mediated gliosis. If in-
deed this is the mechanism, this might explain the de-
layed onset and/or the clinical relapse in the fi rst 2 wk 
observed in some pilots following initial successful hy-
perbaric treatment. 

 Several previous studies reported imaging fi ndings 
associated with NDCS in high-altitude mountain climb-
ing ( 1 , 12 ) and deep sea divers ( 11 , 15 ). High-altitude moun-
tain climbers have been reported as having an increased 
preponderance of subcortical HWM lesions and enlarged 
Virchow-Robin spaces relative to normal controls. Ele-
vated numbers of frontal and parietal HWM lesions were 

  

  Fig.     3.         Multiple HWM lesions in pilot 1.    

  

  Fig.     4.         Multiple HWM lesions in pilot 2.    
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also reported in deep sea divers compared to age-matched 
controls, though the mechanism of this pathology re-
mains speculative. Previous reports suggested increased 
number and volume of lesions were potentially related 
to extreme changes in barometric pressure, although 
hypoxia was also named among potential contributing 
factors. The pilots in our study were maintained on 
100% oxygen with aircraft cabin pressures in the range 
of 8534-8839 m (28,000-29,000 ft). Previous studies in 
altitude chambers demonstrated a 100% oxygen inhaled 
concentration maintains normal arterial oxygenation to 
altitudes up to 10,060 m (33,000 ft) ( 16 ), making hypoxia 
an unlikely contributing factor in this study. 

 The clinical signifi cance of these lesions remains un-
known. The association between executive function and 
episodic memory with the frontal volume of HWM le-
sions has previously been reported by this and other 
groups ( 23 , 32 , 35 ). One U-2 pilot developed mild perma-
nent executive processing cognitive impairment, presum-
ably due to multiple large frontal and parietal HWM 
lesions, assumed to be secondary to NDCS ( 18 ). The pilots 
enrolled in this study reported improvement of their 
cognitive functioning back to baseline within 1-12 mo 
following the clinical NDCS episode. Additional studies 
examining the relationship between HWM lesions and 
cognitive fi ndings are ongoing in this sample. 

 While this study demonstrates a signifi cant increase 
in HWM lesion volume following an episode of clinical 
NDCS, still unknown is whether or not there is an in-
crease in HWM lesions in all high-altitude pilots ex-
posed to severe hypobaric conditions when compared 
to a matched control group; an ongoing companion 
study will attempt to answer this question. Also un-
known is the effect of severe hypobaric conditions on more 
sensitive measurements of cerebral integrity derived 
from the MRS and diffusion tensor imaging data; analysis 

of these data is in progress and will be subsequently re-
ported. This study demonstrates a correlation between 
subcortical HWM lesions and clinical NDCS but does 
not provide a causative explanation. We speculate there 
may be an infl ammatory component induced by expo-
sure to extreme hypobaric conditions, but why this 
should have a predilection for the insular regions re-
mains unclear. 

 In conclusion, clinical neurologic decompression sick-
ness following extreme altitude exposure is associated 
with increased hyperintense white matter lesion vol-
ume with a predilection surprisingly for insular regions. 
This pattern of HWM lesion distribution appears unique 
and related to clinical NDCS. This pattern is distinc-
tively different from that in U-2 pilots who have not 
experienced clinical NDCS. Still unknown are the ex-
act precipitating factors, the mechanism of injury, the 
micropathological changes, and the clinical implica-
tions both now and in the future. Current ongoing stud-
ies are addressing these issues.    
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  TABLE I.         WHOLE-BRAIN AND REGIONAL MEASUREMENTS FOR THE NUMBER AND VOLUME OF HWM LESIONS.  

  All Pilots ( N   5  50) Pilots with NDCS ( N   5  12) Pilots without NDCS ( N   5  38)  

 HWM Lesions Average  6  1 SD Average  6  1 SD Average  6  1 SD Z ( P ) (One-Tailed Mann-Whitney)  

  N whole-brain lesions 8.20  6  7.33 12.25  6  12.23 6.92  6  4.09 -1.176 (0.120) 
 V whole-brain lesions (cm 3 ) 1.05  6  0.54 1.37  6  0.79 0.95  6  0.37 -1.954 (0.026) 
 By Lesion Type 
 N subcortical 3.76  6  6.10 7.25  6  10.66 2.66  6  2.85 -1.041 (0.149) 
 V subcortical  (cm 3 ) 0.07  6  0.12 0.13  6  0.14 0.054  6  0.11 -1.612 (0.059) 
 N ependymal 4.44  6  2.48 5.00  6  2.55 4.26  6  2.42 -0.997 (0.160) 
 V ependymal  (cm 3 ) 0.98  6  0.54 1.24  6  0.84 0.89  6  0.37 -1.204 (0.115) 
 By Region 
 N subcortical  frontal lobe 2.28  6  3.72 4.50  6  6.32 1.58  6  1.89 -1.108 (0.134) 
 V subcortical  frontal lobe (cm 3 ) 0.03  6  0.06 0.07  6  0.10 0.02  6  0.03 -1.306 (0.096) 
 N subcortical  parietal lobe 0.52  6  0.17 1.25  6  3.06 0.29  6  0.65 -0.487 (0.313) 
 V subcortical  parietal lobe (cm 3 ) 0.005  6  0.018 0.014  6  0.034 0.002  6  0.005 -0.580 (0.281) 
 N subcortical  temporal lobe 0.30  6  0.70 0.58  6  1.12 0.21  6  0.47 -1.134 (0.129) 
 V subcortical  temporal lobe (cm 3 ) 0.004  6  0.009 0.008  6  0.014 0.003  6  0.006 -1.332 (0.092) 
 N subcortical  occipital lobe 0.06  6  0.31 0.17  6  0.55 0.03  6  0.16 -0.903 (0.183) 
 V subcortical  occipital lobe (cm 3 ) 0.001  6  0.004 0.003  6  0.009 0.0001  6  0.0005 -0.903 (0.183) 
 N subcortical  limbic lobe 0.22  6  0.51 0.17  6  0.37 0.24  6  0.53 -0.204 (0.419) 
 V subcortical  limbic lobe (cm 3 ) 0.008  6  0.031 0.003  6  0.007 0.009  6  0.036 -0.136 (0.446) 
 N subcortical  insula 0.16  6  0.54 0.50  6  0.96 0.05  6  0.22 -2.051 (0.020) 
 V subcortical  insula (cm 3 ) 0.006  6  0.021 0.020  6  0.038 0.001  6  0.005 -2.094 (0.018)  
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