Damage-Sensitivity Correlations in Explosives

George Sunny
Thomas Krawietz
Chad G. Rumchik
Jennifer Jordan
John Cox

Air Force Research Laboratory
Munitions Directorate/Ordnance Division
Energetic Materials Branch (AFRL/RWME)
Eglin AFB, FL 32542-5910

July 2014

Interim Report

This presentation was given at the annual Air Force Office of Scientific Research (AFOSR) Program Review for Dynamic Materials and Interactions in Arlington, VA on October 15-16 2013. One or more of the authors is a U.S. Government employee working within the scope of their position; therefore, the U.S. Government is joint owner of the work and has the right to copy, distribute, and use the work. Any other form of use is subject to copyright restrictions.

This work has been submitted for publication in the interest of the scientific and technical exchange. Publication of this report does not constitute approval or disapproval of the ideas or findings.

Distribution A: Approved for public release; distribution unlimited. Approval Confirmation 96 ABW/PA # 96ABW-2013-0209, dated August 9, 2013
This page intentionally left blank
NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose other than Government procurement does not in any way obligate the U.S. Government. The fact that the Government formulated or supplied the drawings, specifications, or other data does not license the holder or any other person or corporation; or convey any rights or permission to manufacture, use, or sell any patented invention that may relate to them.

Qualified requestors may obtain copies of this report from the Defense Technical Information Center (DTIC) (http://www.dtic.mil).

AFRL-RW-EG-TP-2014-003 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE DIRECTOR:

DAVID E. LAMBERT, PhD
Ordnance Sciences Core
Technical Competency Lead
Ordnance Division

C. MICHAEL LINDSAY, PhD
Technical Advisor
Energetic Materials Branch

SUNNY GEORGE P. SUNNY, PhD
Project Manager
Energetic Materials Branch

This report is published in the interest of scientific and technical information exchange, and its publication does not constitute the Government’s approval or disapproval of its ideas or findings.
This page intentionally left blank
ABSTRACT

As energetic materials are subjected to increasingly extreme environments, the effects of damage on changes in sensitivity at a fundamental level need to be better understood. To that end, a variety of experiments have been conducted on a plastic-bonded explosive. Shock Wave Apparatus (SWA) and Modified Gap Tests (MGT) were conducted based on similar tests performed at Gesellschaft für verteidigungstechnische Wirksysteme (TDW). X-Ray Computed Tomography (XCMT) was conducted on the damaged explosive and the results analyzed using a MATLAB routine which quantified damage in the samples. In addition, a series of confined Split-Hopkinson Pressure Bar (SHPB) tests have been performed on an explosive simulant to understand the effects of confinement on the polymer binder and simulant, as the polymer binder exhibits substantial pressure sensitivity. SWA and MGT results suggest that damage increases sensitivity for initiation pressures below 3.5 GPa, while for pressures above 3.5 GPa the sensitivity of the explosive remains largely unchanged. Results from quantification of the XCMT images show that the distribution of void size appears to be the primary difference between the damaged and pristine explosive. Results from the confined SHPB tests show an increase in the true stress from about 3 MPa (unconfined) to 50-80 MPa (aluminum confinement) on the simulator at strain rates of about 500/s; aluminum confinement of the binder increases the stresses achieved from approximately 1 MPa (unconfined) to in excess of 80 MPa. The increase in stress is accompanied by the introduction of axial cracking (similar to ceramics) as a failure mechanism.

SUBJECT TERMS

Damage, pressure-sensitivity, strain rate-sensitivity, Split-Hopkinson Pressure Bar, explosive sensitivity

SUPPLEMENTARY NOTES

DISTRIBUTION STATEMENT INDICATING AUTHORIZED ACCESS IS ON THE COVER PAGE AND BLOCK 12 OF THIS FORM.
This page intentionally left blank
Damage-Sensitivity Correlations in Explosives

15 October 2013

George Sunny, Thomas Krawietz, Chad Rumchik, Jennifer Jordan, John Cox

Energetic Materials Branch
Air Force Research Laboratory
Overview

• Basic Principles: Damage in Explosives
• Experiments
 • Split-Hopkinson Pressure Bar
 • Shock Wave Apparatus
 • Modified Gap Test
• Non-destructive Imaging of Explosive
• Damage Quantification Methods
• Future Work
Composite Explosive

- Experimental Observations (Field)
 - “Adiabatic compression of trapped gas spaces”
 - “Other mechanisms involving cavity collapse such as viscous or plastic heating of the surrounding matrix material”
 - “Friction between sliding or impacting surfaces, or between explosive crystals and/or grit particles in an explosive”
 - “Localized adiabatic shear of the material during mechanical failure”
- Mesoscale Simulations (Barua)
 - Strong dependence on volume fraction of particulates
 - Viscoelastic dissipation in binder → temperature rise
 - Grain-matrix debonding, binder tearing → damage
 - Grain-grain contact → fracture and frictional dissipation

Split-Hopkinson Pressure Bar

- Use of confining ring to apply pressure
 - PMMA (1/8” thick)
 - Aluminum (1/4” thick)
Split-Hopkinson Pressure Bar

• Use of confining ring to apply pressure
 – PMMA, aluminum
 – Mandates the use of samples with same diameter as bars (19 mm)
Strain-rate of all samples about 750/s, except for unconfined (black), at 1250/s.

Estimated radial stresses:
- Al: 20 MPa
- PMMA: 2 MPa
Stress-strain profiles for HTPB/sugar simulant

- 74-HO - No confinement, 700/s
- 74-H3 - No confinement, 620/s
- 74-H4 - PMMA confinement, 600/s
- 74-H5 - Al confinement, 580/s
- 74-H6 - Al confinement, 570/s
- 7-A+ confinement, 800/s
Samples after testing
- Largely go back to their original cylindrical shape
- Some damage previously seen in binder at highest strain-rates (3000/s)
- Strong rate and pressure sensitivity
Ideal Testing Process

Pristine HE sample → Single batch → Damaged HE sample

Pristine HE sample

Density → XCMT

Baseline HE

Modified Gap Test → Pristine sensitivity

Damaged HE sample

Density → XCMT

Damage Wave Apparatus

Density, XCMT → Modified Gap Test

Damaged sensitivity
Shock Wave Apparatus

Shock pressures: 0.5 GPa

- Donor explosive
- Steel plates
- Explosive of interest
- Steel confining ring
Modified Gap Test

• Assumption
 – Run-to-detonation (RTD) on outside is representative of RTD in interior of charge
Modified Gap Test

• Calibration

Errors in calibration are about 10% for normal PMMA gaps (38-64 mm)
Sensitivity of Explosive

[Graph showing the relationship between run-to-detonation (mm) and gap pressure (GPa) for different conditions of explosives.]

- Green diamonds: Current HE, PRISTINE
- Red squares: Former HE, PRISTINE
- Pink squares: Former HE, DAMAGED

2 experiments

Less sensitive

Sensitivity of Explosive

– Current HE appears to be less sensitive
– Differences most prominent at lower pressures
 • Negligible differences between pristine and damaged at higher pressures
 • Uncertainty of 2 mm in RTD
– Some scatter in the data
XCMT Imaging

- Pristine PBX for current study, relatively free of voids (grey circles)
Damage of Explosive

As Processed Explosive

- 0.5-inch diameter core
- Target: Al 50kV, 178 μA
- 0.5 fps, 5 frames/view
- 720 views

Damaged Explosive

- 0.5-inch diameter core
- Target: W/diamond 45kV, 300 μA
- 1 fps, 2 frames/view
- 1440 views

Explosive loading at ~0.5 GPa

Test sample is 2” in diameter. XCMT sample is cored from test sample.
Analysis of XCMT Images

Original Microstructure

Filtered Image

Select center of image, apply filters

Particle Statistics

Convert to Binary

Key particle statistics

- Particle size distribution
- Spacing between grains
- Void volume fraction
- Void size distribution
- Convexity by perimeter/area

Mean Free Distance

- Distance between particle boundaries through matrix
- Captures distance between particles indicative of regions of friction or sliding and hot spot generation
- Particles in new batch of explosive and damaged explosive are closer together than in original batch

Void Size Distribution

- Pristine II-018
- Damaged II-018
- Pristine II-122

Void size (µm)
Future Work

• Compare pristine, damaged simulant samples
• Confined SHPB experiments on HE
 – Determine change in microstructural metrics
• Complete Modified Gap Tests on new HE
 – Shock Wave Apparatus experiments completed
Acknowledgments

• AFOSR
 – Dr. David Stargel, Dr. Jennifer Jordan

• AFRL
 – Dr. Eric Welle, Dr. Martin Schmidt, Mr. Didier Montaigne

• TDW (Germany)
 – Dr. Werner Arnold
*Defense Technical Info Center
8725 John J. Kingman Rd Ste 0944
Fort Belvoir VA 22060-6218

AFRL/RWME (6)
AFRL/RWOC-1 (STINFO Office)