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Abstract

Wind can and often does significantly affect impact-point prediction (IPP) performance for thrusting/ ballistic endoatmospheric
projectiles. Wind exacerbates the estimation ambiguity between drag and thrust in the dynamic model and induces additional
uncertainty in the IPP procedure. A tracker accounting for the wind effect is presented and simulation study shows that it can be
fully compensated if the wind information is available. An N-point adaptive initialization based on a goodness-of-fit test and a
statistical significance test is introduced. Based on the multiple interacting multiple model (MIMM) approach developed recently,
the IPP performance is investigated with respect to the total observation time and the sensor accuracy in various wind scenarios.

In each Monte Carlo (MC) run of the simulation study, under the same sensor accuracy and the same observation time, the
same set of random numbers has been used (but different in different MC runs) for the same caliber projectile in various wind
scenarios to examine how much the wind affects the IPP performance with/without the exact knowledge of the wind information.
The final conclusion is that with the wind effect accounted for, the IPP performance in the presence of wind is practically the

same as in its absence.
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I. INTRODUCTION

Impact point prediction (IPP) of a thrusting/ballistic projectile is significantly affected by wind. The wind effect, in addition
to the short available observation time and the limited sensor accuracy, is an issue of high importance and concern.

The wind effect causes the moving projectile to turn into the “apparent” wind, i.e., wind causes the nose of the moving
projectile to be pointed into the wind as observed from the projectile’s (moving) frame of reference [6] [18]. A tail- or head-
wind, if unaccounted for, would cause the IPP to give under- or over-prediction for the projectile’s range (hence the term range
wind effect); a cross wind would lead to left- or right-deviation. The vertical wind is ignored in this study, as it is typically
not present. Consequently, the projectile’s dynamic model is modified from [14] [15] to incorporate the wind effect. Based on
the modified model, the sensitivity of the IPP performance with respect to the wind effect is studied.

The available observation time is a key factor that significantly affects the IPP performance and becomes even more critical in
the presence of wind [6] [13]. For the IPP problem, using a state model with a drag coefficient and thrust estimated as separated
components, there is an important observation-time tradeoff between accuracy and implementation of countermeasures. Before
the prediction procedure starts, the collected measurements are used to initialize the estimator, attack the estimation ambiguity
between the drag coefficient and the thrust components, and detect the probability of the correct mode converge close to unity
[15]. The wind effect could impact each of these and evidently deteriorate the overall IPP performance.

Due to the nonlinear nature of the dynamics of the thrusting/ballistic projectiles, linearization and discretization of the
nonlinear system is an approximation of reality. For a fixed sampling rate, the approximation quality is determined by the
sensor accuracy. The observation uncertainty caused by the sensor errors (in range and azimuth/elevation angles) affects the
estimation result, as well as the prediction procedure that follows, and hence the final IPP performance. Wind uncertainty
exacerbates the observation uncertainty.

The present paper aims to offer an extensive analysis of the wind effect on the recently developed IPP system using a
multiple interacting multiple model (MIMM) estimator (with different initial drag coefficient estimates and using unbiased
mixing') [15]. As an important practical issue, in many practical situations the wind information is not available. To examine
how much effect this has on the IPP performance, three situations are considered, i.e., given perfect knowledge of the wind
information (denoted concisely as “g.w.i.” for later use), given no knowledge of the wind information (“n.w.i.”’), given the
wind information with certain deterministic error (“e.w.i.”). In order to provide a comprehensive insight, the IPP performance

is investigated with respect to the total observation time and the sensor accuracy under various wind scenarios. It is worth

I'The unbiased mixing of IMM estimator is the key for correct estimation of the extra components when the mode-matched filters of IMM estimator are of

unequal dimensions, e.g., the thrust is the extra component in the present discussion.



noting that, for simplicity, we assume a constant wind during the estimation and prediction procedure (i.e., the whole trajectory
period). Altitude/location-dependent wind can be easily dealt with in the same manner.

An N-point adaptive initialization based on a goodness-of-fit test and a statistical significance test is introduced. For each
IMM estimator (associated with a selected drag coefficient) from the MIMM estimator, the initialization of the thrust component
is of special importance when only a very short total observation time is available. A good initialization will alleviate the
estimation ambiguity between the drag coefficient and the thrust. The N-point adaptive initialization particularly provides an
early and reasonably accurate estimate between the drag coefficient and thrust (as well as the kinematic components) and leads
to a quick identification of the correct mode of the IMM estimator.

The paper is organized in following manner. In Section II, the wind effect is presented and under a flat-Earth assumption
(suitable for short range projectiles), the dynamic model in the presence of wind is modified from [15]. The corresponding
discretized form of the modified dynamic model and the discrete-time measurement equations are also presented here. The
MIMM estimator and the IPP procedure are described in Section III. The parameter setting, design of the MIMM estimator
and the N-point adaptive initialization approach are presented in Section IV. Then in the presence of different wind (strength
and direction) conditions, the IPP performance is investigated in various total observation time and sensor accuracy scenarios

by simulation in Section V. Conclusions are presented in Section VI.

II. DYNAMIC MODEL AND MEASUREMENT MODEL IN THE PRESENCE OF WIND

The wind effect, which worsens the estimation ambiguity between the drag coefficient and thrust [15] and thus presents
an additional challenge to the IPP, must be carefully accounted for [3]. The sensitivity of the IPP performance to the drag
coefficient estimate, which is significantly affected by the relative velocity of the projectile (even one with known shape) with
respect to air, necessitates the quantification of the wind effect for the purpose of IPP.

The contribution of the wind comprises the range wind, cross wind and vertical wind effects. We ignore the last, since it is
generally small; but the techniques we present could be augmented to account for it. A range (head/tail) wind will push back
or forward the moving object and a cross wind causes the moving object deviate to the side. These wind components together
are considered as the true wind velocity and are combined with the target velocity with respect to the ground to yield the
so-called “apparent wind”. The moving target turns into the apparent wind, i.e., its nose is pointed into the wind (or “upwind”)

while its tail pointing “downwind” [6] [18]. With the wind effect shown in Fig. I, we have

Vg =Vy —V (D

where v is the target velocity with respect to the ground, v,, is the wind velocity and v, is the apparent wind velocity.
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Fig. 1: The wind effect (v is the target’s ground velocity, v,, is the wind velocity and v, is the apparent wind velocity).

Thus, the drag and the thrust in the following dynamic model should be aligned with the direction of the projectile, which is
aligned with the apparent wind. In the absence of information about how fast the projectiles align themselves with the apparent
wind following launch, it is assumed that this happens instantaneously. During thrusting phase this is especially important, as
due to wind thrust may thus not be aligned with the direction of travel.

For simplicity of analysis, we assume a constant wind during the estimation and prediction procedure (i.e., the whole
trajectory period). The wind environment where the instantaneous projectile alignment hypothesis is reasonable and acceptable
(e.g., altitude/location-dependent wind with slow variation or time-variant wind that is piecewise constant with respect to
altitude) can be dealt with in the same manner.

In the presence/absence of wind, the trajectory of a thrusting projectile, from launch to impact, can be divided into two
phases: thrusting and ballistic. It is a natural choice that we use an IMM estimator with a thrust mode (TM) and a ballistic

mode (BM) to match these phases. The state vector for the corresponding TM is

x(t) = [2(t) y(t) =(t) @(t) 9(t) 2(t) a(t) 7(1)] 2

where «(t) is the drag coefficient and 7(¢) is the thrust. The state vector of the BM is the same as above but excludes the
thrust component. The time arguments will be omitted where no ambiguity is caused.
Under flat-Earth assumption, the dynamic model in the presence of wind modified from [15] (the corresponding modifications

are indicated by the sub-script “a”, which implies the use of “apparent” wind information) can be written as follows

T Tq Tq
T . . ~
] :v Yo | taamDy | Yo | +8+11 3)
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&= Dy @)

T =3 (5)



where

o The target velocities with respect to air are @, 2 T — Ty Ya 2 Y — Y and 2z, 2 2 — Z-

o The first term on the right side of (3) is the specific thrust in the z, y, and z directions with accounting for the wind
effect. For the ballistic phase, the thrust is zero.

o The second term is the drag part, which is related to the altitude and target velocity with respect to air.

o V, is the magnitude of the velocity [ 2, ¥o 24 ], i.e., the speed (in m/s).

o « is the drag coefficient (in m? /kg) at subsonic speed and 7 is the thrust (in m/s?). It is known that the drag coefficient
varies significantly with the Mach number regime: subsonic, transonic and supersonic. This will be accounted for by the
a,y, as below.

e Quy, is the (dimensionless) Mach number-dependent drag coefficient multiplier, which is approximated by a cubic spline
curve shown in Fig.2. The cubic spline curve is obtained by an interpolation process shown in detail in Appendix A.

e« D, = —%, where p(z) = ppe ™ is the air density (in kg/m?) at altitude z (in m) and c is the air density constant
(in m~1) [12].

o g 2 [0 0 —g] is the standard gravity vector. g is the standard acceleration due to gravity at sea level, assumed to be
the same throughout the trajectory, with value 9.812 m/s2.

e 11, 5, and U3 are assumed to be continuous-time zero-mean white Gaussian noises. The drag coefficient and thrust
acceleration are thus modeled as Wiener processes with slow variation [1].

Combining the dynamic equations (3)—(5), we have the following compact form (accounting for the wind effect)

X(t) = fulx(t), xuw(t)] + (1) (6)

where

y(t)
£(t)

7(t) Za(t) + a(t) (1) Dy (t) g (1)

Fulx(t), ()] = o ™
T(t.) VZ(t) + O‘(t)O‘M(t)Da(t)ya(t)
() f/ ((?) + () () Da(t)3a(t) — g
0
L 0 _

with the wind effect compensation vector

X (t) = [0 0 0 dy(t) Gu(t) 2u(t) 0 0] 8)
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Fig. 2: The cubic spline approximation of the Mach number-dependent drag coefficient multiplier (for a “sharp nose”

projectile [17]).

and the Wiener process vector
o(t) = [ (t) Da(t) D3(t)] ©)

Note that f,(-) and f,(-) are both equal to zero, as we assume the drag coefficient and thrust are Wiener processes.

The state vector equation is discretized by a second order Taylor expansion® [7]. Using the discrete time notation x(k) =
X(t)|t=kr and x(k+1) = x(t + T)|t=rr (the same for x,,(t)), we have the following discretized continuous-time expression
[15]

2

(4 1) = x(8) + fu[x(k), %o ()T + Aw (k) fuo[x(E), xw(k)]T7 (k) (10)

where A, (k) is the Jacobian of (7) evaluated at x(k) (with known wind information x,,(k)) and v(k) is the discretized
continuous-time (white Gaussian) process noise for the sampling interval 7. Based on the assumption that « is nearly constant
and D, is related to both z and V, the detailed form of A, here is obtained by replacing in the Jacobian in [15] the target

velocities (with respect to ground) with the corresponding target velocities with respect to air.
2It has been reported that for a short range ballistic projectile the first order Taylor expansion is sufficient. However, for the thrusting projectile with
unknown drag coefficient and unknown thrust — as in the present study — the second order Taylor expansion is used to compensate for the nonlinearity made

obscure by the unknowns. The methodology can be used for long range scenario, in which case a second order Taylor expansion is necessary to avoid bias

[2].



The corresponding covariance matrix of the discretized process noise is
s i
ERCIRL
v O6x1 Opx1

T2
_ I3 T3
= 2 11
@ 01x6 Tqo O (1)
O1x6 0 Tgr

where I3 is the 3 x 3 identity matrix and the continuous time process noise “intensities” g,, g, and ¢, are the corresponding
power spectral densities (PSD).

Assuming the sensor is located at (x5 ys 2zs ), the measurements in spherical coordinates are

Tm:r+wT:\/($—$S>2+(y—y5)2+(2—25)2+wr 12)
O =6 + wy = tan"! (y_ys) + wy (13)
T — T
z—z
€m = €+ w, = tan"? s + we (14)
(\/(.13 - xs)Q + (y - ys)2 + (Z - Zs)2>

where r, 0 and € are the independent true range, azimuth and elevation components, respectively. w,., wy and w, denote the
corresponding zero-mean white Gaussian measurement noises with standard deviations (SD) o, 0p and o, respectively.
An unbiased measurement conversion from spherical to Cartesian coordinates was presented [2], so that the IPP problem

can be described entirely in Cartesian coordinates:
z2(k) 2 Hx(k) + w(k) (15)

where H = [I3 0], w(k) is the equivalent measurement noise vector in Cartesian coordinates obtained from the unbiased

measurement conversion and R(k) is the corresponding equivalent state-dependent covariance matrix.

IIT. MULTIPLE-IMM ESTIMATOR FOR IPP

During the thrust mode (TM), the drag parameter (drag coefficient) and thrust parameter are separate state components as
shown in (2). However, the drag force and thrust force are acting simultaneously (see equation (3)) and the IMM estimator
has difficulty distinguishing between them if the initial uncertainty in the drag coefficient is large. A sudden decrease in the
drag coefficient estimate may trigger an increase in the thrust estimate. In the presence of wind, the wind-induced motion
makes correctly unsnarling these important components (drag coefficient and thrust) increasingly obdurate. The sensitivity of
the estimation to the initial drag coefficient estimate necessitates the use of an MIMM estimator to overcome this “marginal
observability” problem [1].

The procedure starts by establishing a set of the . IMM estimators, each with an appropriate set of modes (TM and BM

in present case) to describe the system behavior. Each IMM estimator will be initialized with a different value of the drag



coefficient estimate with a suitable initial SD. The initial SD is taken equal to 25% of the initial estimate of the drag coefficient.
The filtering parameter setting is discussed in Section IV.
In order to select the best initial drag coefficient estimate, we need to determine the most likely among L IMM estimators,

during the observation period. The likelihood function of IMM estimator [ for the time interval [ko, K] is

K
APE =TT A (k) I1=1,..., L (16)
k=ko

where A; (k) is the likelihood function of Ith IMM estimator, with  modes, at time &, given by [2]

Ac(k) 2 ST A (k) (kK — 1) (17)

where A!(k) is the likelihood function of mode i of IMM estimator [ at time k and i} (k|k—1) is the predicted mode probability

for mode i of IMM estimator [. The mode likelihood is [1]
Aj(k) = p [2(k)|M] (k) x}" (k — 1]k — 1), P (k — 1]k — 1)]
=N [2(k); 2;(k[k — 1), S} (k)] (18)

where N [-] is the Gaussian probability density function, 2! is the predicted measurement and S; is the innovation covariance

in mode i of IMM estimator [. The predicted mode probability can be written as

ui(klk —1) = ZP{Mz )M (= 1), 251} P {0 (= 1) 25

A .
= ijiuf(k —1) (19)
where ,u{ (k—1) is the mode probability of mode j of IMM estimator [ at time k£ — 1 and pj; is the transition probability from

mode j to mode ¢ over one time interval.

Using (18) and (19), one can rewrite (17) as

Ai(k) = QN [2(k); 21 (k[ = 1), 5 (k)] >y (k = 1) (20)
j=1 j=1
Then
I* = arg max AfO’K = arg mlin [— In AfO’K} (21)

selects the best IMM estimator. This yields the best initial estimate of the drag coefficient.
Based on the MIMM estimator, we can choose at the end of the observation period the most likely initial drag coefficient

of the most probable mode from the best IMM estimator (21).* Then a numerical open-loop nonlinear predictor (we use the

3In practice, the thrusting period is relatively short and by the end of the observation period the BM should be the dominant one in the IMM. Otherwise,

unless one were clairvoyantly to know the burnout time, one cannot make a meaningful IPP.



4t order Runge-Kutta (RK) method# [11], incorporating the wind effect if the wind information is available) is employed to
predict the trajectory down to its impact point. At the same time, the corresponding covariance is also predicted to the impact
point using a zero-gain (open loop) EKF covariance equation. Then the 99% chi-square probability region ellipse for the true
impact point is [1]
xip — .i‘pd
[@ip — Tpd Yip — Upa) Py’ | =x3(99%) (22)
Zip — Ypd

where (2, ip) is the true impact point, (£,q ¥pq) is the predicted impact point, P, is the corresponding predicted covariance
matrix, and x3 (99%) denotes the 99% point on the chi-square cumulative distribution function with two degrees of freedom
[1]. This can be used as the “warning zone” in practical situations.

In practical situations the ellipse is centered at the predicted impact point and one can check whether the true impact point
(if available) is within the 99% probability ellipse [15]. In Monte Carlo simulations, as in present study, we evaluate the
(equivalent) converse: whether the predicted impact point falls into the ellipse centered at the true impact point [12].

The IPP procedure based on the MIMM estimator is shown in Fig. 3.

Data

A A
IMM: e IMM.
Likelihood 1 Likelihood L
A 4 A 4

Likelihood Comparison

v

Selection of
the best IMM

Observation end?

! -

IPP Zero-Gain EKF
(Runge-Kutta) (for covariance)
Performance
Evaluation

Fig. 3: The IPP procedure based on the MIMM estimator.

4Using the second-order open-loop EKF directly with a small iteration time interval (0.1 s) for the prediction shows IPP performance practically the same

as the RK method.



IV. MIMM DESIGN PARAMETER SELECTION

The MIMM estimator using unbiased mixing with different initial drag coefficient estimates is used [15]. The unbiased

mixing is necessary because of the unequal dimension state vectors in the two modes (TM and BM).

A. MIMM for selection of the best initial drag coefficient estimates

The MIMM estimator is chosen to consist of L = 4 IMM estimators with initial drag coefficient estimates 4*(0), i =
1,2,3,4 as 0.18, 0.13, 0.065 and 0.03 (m?/kg), respectively.’ The initial SD of each drag coefficient estimate is 25% of the
corresponding initial estimate of the drag coefficient.

If the projectile library with the truth of the corresponding drag coefficient information is provided, the selection of the best
initial estimate of the drag coefficient actually indicates the projectile identification [4] [12]. However, the wind effect could

blur the identification.

B. N-point adaptive initialization

The initialization is crucial to the accuracy of the state estimates. Due to the sensitivity of the estimation on the drag
coefficient, which is velocity (Mach number)-dependent and “marginally distinguishable” from the thrust estimate, an /N-point
adaptive initialization method is used here (the number NV is discussed later). This method is based on the polynomial fitting of a
set of noisy position measurements [1], with the polynomial order adaptively chosen based on the corresponding goodness-of-fit
error. Particularly, it can give a good guideline for how to initialize the key thrust component.

The N-point fitting of a polynomial of order n is done as follows. The position measurements for the three Cartesian

coordinates are

1>

0 h(k) 0 ||a|+uwk) (23)

where Kk =1,2,..., N and

h(k) = [1 _— (tz)"]/ (24)

with ¢ is the sampling time and the parameter vectors

/

a; =[Gio a1 " Qin | i=x, Y, z (25)
SThis grid of values was chosen based on the tracking results in the absence of wind. It seems that the 60 mm projectile has a somewhat different drag

coefficient in the presence of wind (it turns somewhat slowly into the wind, perhaps the result of a larger moment of inertia).



contain the coefficients of the polynomials (one for each coordinate).

For the time covered by N points, we get the estimate for the parameter vector a (of dimension n, = 3(n + 1)) as
7 — -1 7 —
a= Y (RY) Y| HY (RY) 2N (26)

with the corresponding covariance matrix

, _ -1
Py = [H;V (M) H;V] 27)
here
" (1)
zN = : (28)
z(N)
is the stacked vector of measurements (of dimension 3N x 1),
Ha(1)
HY = : (29)
Ha(N)
is the stacked measurement matrix (of dimension 3N x 3(n + 1)), and
R(1) -~ 0
RN=1| + . (30)
0 --- R(N)

is the block diagonal covariance matrix of measurement noise (of dimension 3N x 3N) for the fitting interval.

The goodness-of-fit error has the following chi-square distribution [1]

1>

Iy £ [N —HYa) (RY) 7 [V — HYa] ~ xix o, (31)

Using as acceptance region for (31) its 95% probability region (one-sided) and a component statistical significance test (a
Gaussian test for the absolute value with 95% probability region, i.e., two-sided), we can adaptively choose the best order
n*, which avoids both “over-parameterizations” and “‘under-parameterizations” [1]. This is done by starting with n = 1 and
increasing it until: (i) the test statistic (31) falls below the 95% probability threshold and (ii) the magnitude of at least one of
the components (z, y and z) is statistically significant with the threshold G(97.5%), which amounts to cutting the upper and
lower tails of 2.5%.

The N-point adaptive initialization used N = 12 (about 1s of data). As an illustrative example, Table I shows the results
of the polynomial fitting of an observation sequence of the trajectory 60C7H7° with constant velocity (CV, n = 1), constant

acceleration (CA, n = 2) and constant jerk (CJ, n = 3) models in one of the MC runs. For this particular case, the CA

This stands for caliber 60 mm projectile in the presence of 7m/s crosswind and 7 m/s headwind.



(n* = 2) model is chosen: the fitting error is J} = 44.0 < x3y_,,. (95%) = 50.7 and the z-component estimate magnitude is

statistically significant: 2.3 > G(97.5%) = 1.96. The test statistics that yielded the choice n* = 2 are in boldface.

Remarks: Initialization of Thrust

In the present simulation study, the CV (n = 1) model and the CA (n = 2) model may be selected. For n* = 2, the
acceleration estimate is used (after subtracting the gravity acceleration and drag vector) to obtain the initial estimate of the

thrust, 7(0); for n* =1 (low thrust case), then 7(0) = g with SD g/4.

TABLE I: Fitting of CV, CA and CJ models for trajectory 60C7H7 (with 0, = 10 m and oy = o = 5 mrad)

Model CV(n=1) CA (n=2) CI (n=3)
Component X y z X y z X y z
a0 0.9 5.6 7.8 58  -172  -144 103 209  -119
Pio 6.8 8.3 104 | 93 11.3 142 11.0 13.3 16.7
laiol /v Pio 0.1 0.7 0.8 0.6 1.5 1.0 0.9 1.6 0.7
a1 1199 1172 1559 | 914 1872 2892 | 293 2386  253.1
P 104 126 158 | 39.1 474 59.4 902 1089  136.7
lai|/v/Pir 115 93 9.8 2.3 4.0 49 0.3 22 1.9
Qo 512 -127.4 2422 | 3446 -369.4  -69.0
P2 683 827 1037 | 3894 4718  591.3
lai2| /v Pz 0.8 1.5 23 0.9 0.8 0.1
a3 5319 4377 -3169
Pi3 694.7 8429 10556
|aizl/v/Piz 0.8 0.5 0.3
JN 52.9 44.0 433
X3N o (95%) 52.0 50.7 49.5

C. Selection of Process Noise Intensities

In the dynamic equations, we actually assume a nearly constant velocity model (continuous time white noise acceleration

— CWNA [1]) for the kinematic components and a Wiener process with slow variation for the drag coefficient and thrust. In



order to satisfy this model’s assumptions, we choose small process noise “intensities” (power spectral densities — PSD) g,
G, and g, as follows.

The process noise induced root mean square (RMS) rate of change in velocity over an interval A is

:

WA
A

dy [(m/s)/s] (32)

For the drag coefficient the rate of change is

:

(TN
A

do [(m*/kg)/s] (33)

For the thrust the rate of change is

3

A VG A

d. £ X

[(m/s%)/s] (34)

Then we have the following estimator design procedure for selection of the process noise PSD based on the corresponding

RMS rates of change

g = diA (m’/s%) (35)
Ga = dZA (m'/(kg*s)) (36)
¢ = d*A (m?/sY) (37

The process noise intensities are chosen based on the process noise induced RMS change (in velocity/ drag coefficient/ thrust)
over an interval of A = 1s as shown in Table II. Note that d,, is chosen differently for the four initial drag coefficient estimates

a4(0), i =1,2,3,4.

TABLE II: The RMS change rate due to the process noise

dy [(m/s)/s]
Filter de [(m2/kg)/s] | dr [(m/s?)s]

al(0) | &*(0) | &%(0) | a*(0)

IMM (TM) | 3.5 2.5 2 1 0.124(0)/s 0.257(0)/s

IMM (BM) 1.6 1.4 1.2 0.9 0.104%(0)/s N/A

D. IMM Mode Transition Probability Matrix

The Markov chain probability transition matrix for the two-mode IMM is

pi1 1—pu
T = [ 1 (38)

1—pa p2



where the elements of the matrix are obtained based on the mean sojourn time (MST) [1], s; and so, for the TM (¢ = 1) and
the BM (¢ = 2) respectively
T
pii=1—— 1=1,2 (39)

Si
and T' = 0.1s is the (fixed) sampling interval. Setting the MST as s; = 2s and sy = 50s for TM and BM respectively, we
get the mode transition probability matrix

0.950 0.050
™= [ 1 (40)

0.002 0.998

with initial mode probability vector [0.90 0.10].

V. SIMULATION RESULTS

Three categories of thrusting/ballistic projectiles of different calibers are considered: 60 mm, 81 mm and 120 mm. In all,
21 trajectories were generated using [16]” with a flat-Earth model with quadrant elevation 45° (i.e., aimpoint is NE). The
thrusting/ballistic projectiles are actually rocket-assisted with initial velocity around 250 m/s (which varies across different
calibers). For each category, there are trajectories with no wind present, labeled as “W0”; with 5m/s crosswind only, labeled
as “C5”; with 10 m/s crosswind only, labeled as “C10”; with 5m/s crosswind and 5 m/s headwind, labeled as “C5HS5”; with
7m/s crosswind and 7m/s headwind, labeled as “C7H7”’; with 5m/s crosswind and 5 m/s tailwind, labeled as “C5T5”’; with
7m/s crosswind and 7m/s tailwind, labeled as “C7T7”. Note that the headwind blows against the motion of the projectiles
while the tailwind blows in the travel direction of the projectiles [18]. Measurements were obtained with no missed detections
and no false alarms.

The parameters of the trajectories of the different caliber projectiles considered, namely, the projectile range to impact (R2?),
the impact time (Tfp), the sampling interval (7'), the maximum ground speed (V%

), the ground speed at impact point (V;;) and

ax

the apogee altitude (H., ), are summarized in Table III. The launch point of each projectile was at the origin of coordinates.

pg
The sensor location was (5000 4000 0) m.

As shown in Table IV, four different sensor accuracy settings are used and labeled as C'ase 1 (good sensor accuracy), Case
2 (poor angle accuracy), Case 3 (poor range accuracy) and Case 4 (the best sensor accuracy).

With 100 Monte Carlo (MC) runs for each sensor accuracy, we examine the IPP performance with given wind information

(g.w.i.) and with no wind information provided (n.w.i.) for various total observation time percentages of the whole trajectory

(denoted as “OT” for conciseness): 15%, 20%, 25%, 30%, 40% and 50%. In particular, under the same sensor accuracy and
TThis is a high fidelity simulation for rocket-assisted projectiles, i.e., with initial “catapulted” velocity. The trajectories were generated based on models we

cannot control and do not know.



TABLE III: The parameters of the trajectories of the different caliber projectiles considered

Caliber Rt (m) TH, ) | T | Viao mls) | VE(mls) | HEpg(m)

60 mm 3600 £100 | 30+1 0.1 240+ 3 155+ 3 1085 £ 5

81 mm 5700 £150 | 37+1 0.1 295+ 3 200+ 3 1680 £ 10

120mm | 7000 £250 | 41+1 0.1 315+ 5 230+ 5 2055 £ 10

TABLE IV: Sensor accuracy settings

Or g9 Oe

Case 1 10m 5 mrad 5 mrad

Case 2 10m 10 mrad 10 mrad

Case 3 25m 5 mrad 5 mrad

Case 4 5m 3 mrad 3 mrad

the same OT setting, in each MC run, the same random number set (but different in different MC runs, of course) has been
used for different trajectories (WO/C5/C10/ C5H5/CT7H7/C5T5/C7T7) to examine how significantly the wind affects the IPP
performance.

Three different situations concerning the knowledge of the wind information are considered: the “g.w.i.” (perfect knowledge),
the “n.w.i” (no knowledge) and the “e.w.i” (an inaccurate knowledge of 30% positive deterministic error, i.e., vy, + Vp £
vy +0.3v,,, where vy, is a deterministic bias). Note that all the IPP results are by default obtained with “g.w.i.” unless “n.w.i”
or “e.w.i” is indicated. The indicating term “g.w.i.” is omitted in Figures, Tables and discussions if there is no ambiguity.

A sample estimated trajectory, indicating the portions corresponding to the MIMM filtering and to the IPP, including the

estimated burnout point (BoP) and the uncertainty ellipse centered at the true impact point, is presented in Fig. 4.

A. IPP RMS Error

The IPP root mean square (RMS) errors of the trajectories of caliber 60 mm, 81 mm and 120 mm (in various scenarios) are
shown in Tables V, VI and VII, respectively. The g.w.i., n.w.i. and e.w.i. IPP RMS errors for various OTs and various sensor
accuracies are evaluated and compared.

From Tables V-VII, it can be seen that, generally, as the wind becomes stronger, the difference between the g.w.i. IPP
RMS error and the n.w.i. IPP RMS error will increase, especially for smaller OTs; as the OT increases, the influence of the

wind on the IPP performance becomes smaller. As the sensor accuracy becomes worse, the IPP performance is gradually
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Fig. 4: A sample estimated trajectory with IPP uncertainty ellipse centered at true impact point.

degraded. Particularly, a sensor error that causes more uncertainty along the travel direction of the projectiles, compared with
the sensor error that causes more uncertainty perpendicular to travel direction of the projectiles, has more influence on the IPP
performance. In the presence of a weak wind (CS5), the IPP RMS error (g.w.i.) is practically the same as the IPP RMS error
(e.w.i.). The knowledge of the wind information with a small deterministic bias has small effect on the IPP performance.

We can get an IPP RMS error of more than 500 m for the 60 mm projectile (Table V: Case 2, OT=15%), more than 650 m
for the 81 mm (Table VI: Case 3, OT=15%) and more than 750 m (even 900 m) for the 120 mm (Table VII: Case 2 and Case
3, OT=15%). These are unacceptable errors.® A strong wind effect, combined with a poor sensor accuracy, can lead to an
unacceptable IPP RMS error when only a very short total observation time is available. On the other hand, a good sensor
accuracy in the presence of known wind (even with a small bias) always yields a good IPP performance.

In Tables V-VII, the columns with the wind information provided (g.w.i.) show that, given a sufficient observation time (say,
OT= 25%—-50%) to correctly select the best IMM from the MIMM estimator (i.e., to overcome the “marginal observability”
problem between the drag coefficient and thrust), the IPP RMS errors are practically the same as without wind.’ This implies

that the wind effect can be fully compensated if the wind information is correctly provided.

8In practical situations, a minimum acceptable IPP RMS error is expected to be within 10% of the projectile range. The IPP RMS errors larger than 10%

of the projectile range are in italic font in Tables V-VII .

9This is highlighted by the IPP RMS errors shown in bold font in Tables V-VII .



TABLE V: IPP RMS errors (in m, 100 MC runs) for various OTs (shown in the first column) and various sensor accuracies,

caliber 60 mm: italic, see footnote 8; bold, see footnote 9.

60C5 60C10 60C5HS 60C7H7 60C5TS 60C7T7
Case 1 60W0
g.w.i. n.w.i. e.w.i. gW.i. n.w.i. e.w.i. 2w nw.i. e.w.i. g.w.i. n.w.i. e.w.i. g.w.i. nw.i. e.w.i. gW.i. n.w.i. e.w.i.
15% 417.4 419.5 4207 | 4198 4414 426.7 440.1 4525 461 459.6 458.4 464.3 465.3 417.2 426.8 4185 408.8 409.6 | 4109
20% 152.1 150.8 154.7 1513 150.4 169 157.3 145.6 129.5 138.7 142.1 136.4 130.2 158.2 182 180.1 157.7 191.5 195.2
25% 127 127.1 132.8 127.5 126.9 145.2 125.8 122.6 1118 97.4 120.7 119 912 127.7 142.2 158.6 120.2 155.9 166.5
30% 106 105.6 1112 107.1 108.5 124.1 108.5 9% 85.2 75.6 94.3 94.9 70.9 108.8 1214 133.9 1015 129.7 137.9
40% 60.4 60.2 65.3 59.9 595 78.8 60.2 59.2 55.4 463 59.9 59.1 45.4 60.3 723 80 59 82.9 88.2
50% 40 40 44.8 40 39.3 56.1 40.8 40.2 39.5 30.2 40.5 423 29.7 40.2 50.4 53.7 394 559 59.9
60C5 60C10 60CSHS 60CTH7 60C5TS 60C7T7
Case 2 60W0
gw.i. n.w.i. e.w.d. gwi. nw.i. e.w.i. gwi. nw.i. e.w.i. gwi. n.w.i. e.w.i. gwi. nw.i. e.w.i. gwi. nw.i. e.w.i.
15% 537.7 533.3 539.4 534.5 532.3 537.3 | 5365 535.6 5354 | 5448 538.6 546.1 552.6 530 523.7 516.8 505.1 5194 | 508.1
20% 209.1 207.1 207.3 207.3 203.7 2182 206 197.9 194.4 190 197.4 192.6 185.4 199.1 216.4 224.7 205 216.6 236.9
25% 149.2 149.1 154.8 150.4 148.9 167.1 154.6 147.1 135.9 122.1 143.9 133.2 115.5 155.8 173.7 187.1 155.2 184 205.4
30% 1143 114 119.6 114.2 114.5 130.9 1163 117 104.3 89.7 1.2 104.4 84.1 119.3 138.2 147.4 117.4 145.3 160
40% 65.6 65.4 709 65.5 653 83.2 67 67 633 523 66.1 65.3 478 66.4 80.4 853 65.9 88.2 953
50% 47.6 474 526 472 47.3 64.9 479 47.1 463 35.9 454 49.8 326 49.5 59.3 62.4 49 65.1 69.2
60Cs 60C10 60C5HS 60CTHT 60C5TS 60C7T7
Case 3 60W0
2w nwi. ew.i. gwi. nwi. ew.i. awi. nwi. ewi. 2w nwi. ew.i. 2w nwi. ew.. gwi. nwi. ewi.
15% 3732 3725 376.2 374.3 369.4 383.5 391.7 379.1 3474 378.8 380 336.3 381.7 363.7 385.5 384 361.1 393.4 3926
20% 3377 339.8 3374 349.8 353.6 345 3727 368 369.3 398.5 370.1 384.1 404.3 3329 350 336.8 3423 353 346
25% 175.7 176.2 179.7 178.3 176.6 193.2 1822 180.8 170.4 168.3 174.3 168.7 167.6 182.6 207.4 203.8 181.4 219.2 2132
30% 140.2 138.6 141.2 138.8 140.2 162 149.4 143.4 138.3 1353 142.6 138.8 136.3 155.4 169.3 170.9 144.2 181.8 162.3
40% 110.7 1114 115.8 115.2 116.2 126 113.8 103.4 98.6 98.2 104.6 104.4 97.6 115 122.8 127 113.6 122.1 128.9
50% 54.9 554 59.2 57 55.8 69.5 58.7 63 65.6 61.1 62.2 68.6 60.8 57.5 63.7 62.6 58.4 68 66.3
60C5 60C10 60C5HS 60CTHT 60C5TS 60C7T7
Case 4 60W0
g.W.i. nw.i. e.w.i. g.w.i. n.w.i. e.w.i. gW.i. nw.i. e.w.i. gwi nw.i. e.w.d g.W.i. nw.i. e.w.i. gwi. nw.i. e.w.i.
15% 2429 2428 248.2 245 239.8 262 260.3 239 233.6 2447 2417 235.1 256.7 249.5 259.6 263.6 247.6 2725 265.4
20% 137.4 139.4 143.1 140.8 1383 159.6 147.7 137 132.8 116.5 136.6 1333 116.8 140.6 166.4 1783 140.6 173.6 189.3
25% 1143 114 122.3 112 109.9 137.6 118.3 113.2 115.6 89.3 112.4 118.1 82.1 107.6 132.8 148.6 109.1 141.1 161.8
30% 88.7 89 96.7 90.1 88.3 1122 96.2 89.4 88.1 71.1 89.1 91.9 702 86.5 102.7 1183 84.5 109.9 127.4
40% 53.7 53.7 61.4 537 526 75 572 533 52.1 39.2 53 56.2 38.9 515 66.3 73.5 523 73.2 83
50% 38.8 38.9 425 38.6 38.2 52 40.7 36.7 36.4 26.6 36.6 39 25.6 37.8 46.8 522 37.8 52 58.3

From Tables V-VII, an interesting observation is that for the situations with headwind and very short observation time,
e.g., C5HS and C7H7 with small OTs (e.g., OT=15% or 20%), the g.w.i. IPP RMS performance is counter-intuitively worse
than the n.w.i. IPP RMS performance. This is because of the imperfect selection of which is the best IMM in the MIMM

estimator when it is based on a very short observation time. More clearly, as shown in Fig.5 (the trajectory 60C7H7 in Case



TABLE VI: IPP RMS errors (in m, 100 MC runs) for various OTs (shown in the first column) and various sensor accuracies,

caliber 81 mm: italic, see footnote 8; bold, see footnote 9.

81C5 81C10 81CSHS 81C7H7 81C5TS 81C7T7
Case 1 81W0
g.wi. nw.i. e.w.i. gwi nw.i. e.w.i. 2w n.w.i. e.w.i. gW.i. n.w.i. e.w.i. gwi. n.w.i. e.w.i. gW.i. n.w.i. e.w.i.
15% 420.8 420.1 424.1 4222 420 438.7 4274 401.8 4233 428.6 389.3 4362 399.1 421.1 382.8 4143 4203 384.9 415
20% 4324 4284 438.6 429 428 4459 430.9 4234 401.8 384.1 418.6 393.2 361.2 428.7 456.5 481.9 430.1 4755 497.6
25% 288.9 294.4 294.5 2923 292.7 300.6 296.3 2923 260.8 254.7 291.1 257.4 2403 282.7 323.6 333 285.2 343.8 352.6
30% 188 186 193.3 186.8 185 204.1 190 190.2 181.2 158 196.6 183.3 148.5 189.3 206 230.1 191.5 2213 246
40% 101.1 100.5 104.8 101 100.8 118.5 103.4 99.4 96.7 80.4 99 96.8 727 99.3 114.2 127.1 101 122.4 141.6
50% 48.7 48.8 51.8 48.6 49.7 622 51.6 48.5 479 40.1 47.7 49.7 36.8 48.5 58.6 637 49.5 64.5 719
81C5 81C10 81C5HS 81CTH7 81C5TS 81C717
Case 2 81W0
gwi. nw.i. ewi gwi. nw.i. e.w.i. gwi. nw.i. e.w.i. gwi nw.i. e.w.i. gw.i. nw.i. e.w.i. gwi nw.i. e.w.i.
15% 497.5 492 4922 491.4 482.9 501.6 484.2 490.5 520.3 500.4 511.8 504.4 528.4 491.9 526.6 494.1 486.7 534.8 500.7
20% 450.5 449.6 4517 448.9 448.9 459.7 448.8 4517 416.9 398.2 441.6 401.2 383 4443 467.6 486.7 449.9 495.5 510.2
25% 315.7 313.6 320 317 313.1 3284 3184 318.8 295.6 283 3178 285.9 269.3 317.1 354.3 359.6 320 376.9 3772
30% 209.5 209 217.1 209.8 208.4 230.2 2116 209.3 204.6 175.3 217.2 214.8 174.7 2125 239.6 251.8 2137 257.8 267.3
40% 133.8 135.2 140 1354 134.9 151.3 137.1 135.3 130 115 134.9 130.9 103.3 131 150.9 157.7 129.3 159.9 166.4
50% 68.9 69.1 73 68.6 72.7 87.5 73.6 72.1 69.7 579 71.8 71.7 53.1 69.1 80.1 86.1 69.6 87.7 94.7
81C5 81C10 81CSHS 81C7H7 81CSTS 81C7T7
Case 3 81W0
awi nwi. ewi. 2w nwi. ew.i. awi nwi. ew.i. gwi. nwi. ewi. Wi nwi. ew.i. gwi. nwi. ew.i.
15% 665.2 665 667.1 665.9 652.6 675.7 659.2 664.8 661.7 | 643.9 690.8 7037 | 6682 646.5 673.5 667.4 651.7 687.6 667.4
20% 479.9 479.6 480.9 479.7 485 490.7 490.9 4783 4734 456 472.8 4717 4453 476.8 4732 504.8 476.6 501.9 516.7
25% 344.9 345.1 3493 346.4 348.2 362.3 3523 3514 3279 331 3483 3209 3255 3474 375.1 365.2 346.9 372.1 376
30% 2135 213.7 216.9 212 2175 229.5 218.2 2127 2015 190.4 2234 203.3 208.9 217.9 240.9 2384 219.1 248.8 252.2
40% 131.2 127.2 136.6 126.9 126.9 144.4 131.7 1314 130.7 124.4 1284 134.1 129.7 131.6 145.5 139.4 129.9 143 145.2
50% 66.7 67 70.4 67 63.9 74.8 67.1 62.5 63 60.4 64 65.3 60 66.8 711 76.4 67.7 77.8 83
81C5 81C10 81CSHS 81C7H7 81C5TS 81C7T7
Case 4 81W0
Wi nwi. ewi. 2w nwi. ew.. Wi nw.i. ew.i. gWi. nwi. ew.. 2w nwi. ew.i. gWi. nwi. ew.i.
15% 465.4 465 468.2 465.2 464.9 479.5 467.3 464.9 444.7 395.7 445.1 4514 375.8 464.7 469.2 520.1 463 483 549.7
20% 3224 322 3329 3223 3215 3427 3236 324.1 294.5 268 3232 286.4 256.3 317.9 362.1 368.7 301.1 367.5 375.8
25% 199.8 202.1 208.2 203.1 202 2234 206.9 200.4 176.8 165 198.5 174.7 154 201.8 235 2425 205.2 2525 261.4
30% 123.9 1224 129.1 1232 1213 145.6 130.2 121.1 120.6 95.8 1243 138 94.3 122.6 140.2 166.6 121.2 151.4 184.8
40% 67.7 67.7 735 68.8 67.7 85.2 726 67.4 65.6 527 675 68.2 50.9 67.8 80.8 91.8 65.7 87.7 101.6
50% 335 33.2 373 34.7 36.2 48.6 40.8 36.2 355 28.1 359 376 283 33.8 427 492 34 482 58.1

3 and OT=15%), because of this imperfect decision of the best IMM, each MC IPP “cloud of points” (for g.w.i. and n.w.i.)

is approximately separated into 3 different clusters, designated as the “cluster A”, “cluster B” and “cluster C”. It can be seen,

compared with the g.w.i. clusters, that the n.w.i. clusters have a clear drift caused by the wind effect. By coincidence, this

drift happens to drive “cluster A (n.w.i.)” that contains the most points of the MC IPP closer to the true impact point. This



TABLE VII: IPP RMS errors (in m, 100 MC runs) for various OTs (shown in the first column) and various sensor

accuracies, caliber 120 mm: italic, see footnote 8; bold, see footnote 9.

120C5 120C10 120C5H5 120C7H7 120C5T5 120C7T7
Case 1 120W0
gW.i. nw.i. e.w.i. gWi. nw.i. e.w.i. g.W.i. nw.i. e.w.i. g.W.i. n.w.i. e.w.i. gWi. n.w.i. e.w.i. gwWi. n.w.i. e.w.i.
15% 718.2 718.2 720 718.1 717.8 714.7 718.8 749.5 653.1 714.2 753.2 652.5 698.9 684.6 760.6 723.1 681.3 779.5 745.6
20% 547.4 546.7 548.5 547.4 539.6 555.6 544.5 576.7 562.3 534.9 5724 5756 | 477.1 581.2 5715 651.9 591.7 585.5 699.5
25% 488.9 492.6 492 492.9 491.9 4974 | 4979 488.5 474 4163 484.2 465.9 391.2 502.9 5217 5524 494.8 513.7 578
30% 308.6 308.4 3155 308.4 307.8 3304 308.9 306.4 292.7 261.8 302 284.7 2435 313 334 354.3 316 3378 368.4
40% 117.5 115 122.6 115.8 114.8 132.6 117 114.6 116.6 100.4 1154 18 94.9 1215 130.1 142.2 118.2 128.7 150.7
50% 55.1 54.9 58.8 56.6 56 672 59.8 524 55.4 529 514 57.5 54 56 60.6 62.6 56.7 64.1 66.8
120C5 120C10 120C5H5 120C7H7 120C5T5 120C7T7
Case 2 120W0
gwi. nw.i. e.w.i. gwi. nw.i. e.w.i. gwi. nw.i. e.w.i. gwi. n.w.i. e.w.i. gwi. nw.i. e.w.i. gwi. nw.i. e.w.d.
15% 779.2 776.3 790.9 775.8 782.2 789 777.1 769.3 748.9 766.6 786 725.8 756.8 761.2 797.5 773.3 744.9 788.3 795.7
20% 613.3 6133 618 6123 616 6226 | 6148 597.5 593.1 535.7 607.2 571.8 509.9 624.1 631.1 693.5 621.4 653.9 725
25% 489.8 494.1 492.5 493.5 493.6 497.9 492.9 4932 480.9 450 497.5 4737 | 4193 493.9 500.7 557.1 475.7 486.2 551.6
30% 346.7 348.2 349.8 347.7 347.9 354.3 345.2 362 346.4 3175 359.7 3445 299.6 345.9 368.2 387.8 342 381.2 4143
40% 144.5 142.9 148.8 143.5 1423 158.3 144.4 144.9 148.7 126.7 144.9 149.1 119.6 1523 159.1 179.4 156.4 174.1 197.2
50% 63 61.5 66.7 62 61.1 757 63.4 61.6 63.4 53.7 59.8 64.8 50.4 64.7 69.1 79.6 63.1 73.8 84.9
120C5 120C10 120C5HS 120C7H7 120C5TS 120C7T7
Case 3 120W0
gwi. nwi. ewi. gwi. nwi. ewi. 2w nwi. ew.i. 2w nwi. ew.i. gwi. nw.i. ew.i. gwi. nwi. ew.i.
15% 887.6 879.9 885.9 | 8796 879.2 889 879.3 874.7 859.6 833.7 870.8 867.2 817.1 883.2 894.5 9185 878.7 901.2 936.4
20% 650.1 651.2 654.4 652.9 648.6 659.1 643.8 634.1 611.4 612.4 642.2 608.4 607.2 639.8 686.1 673.8 642.7 697.9 685.1
25% 446.3 446.4 4437 433.6 4317 445 4313 449.1 397.7 433.1 437.6 3959 | 4254 426.6 4654 | 4509 398.9 4222 4526
30% 279.3 2714 281.5 2725 270.1 3024 275.9 284.4 277.7 273.1 285.7 275.8 265.9 2725 284.1 294.4 2724 286.6 3143
40% 130.5 130.8 135.6 131 127.1 146.5 133 136.7 135.4 1323 1343 138.6 131.7 129.1 139.5 1324 1333 151.4 144
50% 64.9 65.1 68.1 67.7 64.4 75 71 64.3 67.3 65.5 64.1 70.2 66.6 66.7 70.3 68.1 62.6 68.1 715
120C5 120C10 120C5H5 120C7H7 120C5T5 120C7T7
Case 4 120W0
gWi. nwi. ew.. Wi nwi. ewi. 2w nwi. ew.. 2w nwi. ew.. Wi nw.i. ew.i. gWi. nwi. ew.i.
15% 462.7 4624 462.2 4713 476.6 468.3 482.2 480.2 445.6 4264 464.8 4568 | 453.1 464.1 5343 533.8 4747 528.1 590.9
20% 433.9 4333 433.8 434.1 4302 448.5 434.6 4133 420.6 350.8 413.8 445.6 306.8 444 430.8 506 456 437.5 543.7
25% 3374 336.6 340.7 336.9 3355 353.1 339.8 3239 3187 276 3218 3212 260 350.1 360.3 394.8 329.5 368.2 398.2
30% 198.1 198 206.4 196.7 196 213.1 200.7 177.9 170.4 151.8 178.9 1722 143.1 207.9 214 246.6 211 235.1 268.4
40% 62.2 62 65.1 62.9 61.4 76 67.6 61.8 65.8 59.7 59.9 69.2 64.2 64.5 68.9 80.2 67.7 77.8 93
50% 29.5 294 324 309 294 407 35 30.5 33 325 29.8 362 349 30.2 34.6 386 29.7 37.9 432

results in the g.w.i. IPP RMS errors being worse than the corresponding n.w.i. IPP RMS errors in some cases in Tables V-VII.
However, as the observation time increases, the MIMM estimator can gradually make the correct decision to find the best
IMM estimator (the one with the most suitable initial drag coefficient estimate) and then, as we expect, the g.w.i. IPP results

are better than the corresponding n.w.i. IPP results. Given a very short OT in a strong wind environment (e.w.i. vs. g.w.i.), the
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bias in the erroneous wind information sometimes exacerbates and sometimes improves the IPP results. Generally, the e.w.i.

IPP performance is between the g.w.i. and n.w.i. cases when the MIMM-selected drag coefficient estimate matches the truth.

Caliber60C7H7(Case 3), OT=15%, 100-MC runs, clusters of MC IPP
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Fig. 5: The clusters of MC IPP “clould of points” caused by imperfect decision of the best IMM in MIMM estimator.

B. IPP Uncertainty Ellipse

With various OTs and sensor accuracies, the IPP uncertainty ellipses using (22), centered at the true impact point, with the
corresponding MC IPP “cloud of points” (for both g.w.i. and n.w.i.) for various trajectories in the presence of wind are shown
in Figs. 6-8.

From Fig. 6, it can be seen that as the OT increases, more IPP points fall in the corresponding uncertainty ellipses and the
sizes of the uncertainly ellipses gradually shrink. The total observation time is crucial for the evaluation: given the OT is large
enough (50%), most of the MC IPP points fall within the uncertainty ellipses with acceptable IPP RMS errors. The outliers
are due to the forced early decision when the OT is small.

From Fig.7, it can be seen that as the sensor accuracy worsens, the corresponding IPP uncertainty ellipses become wider
because of the poor angle accuracy or become longer because of the poor range accuracy, and fewer MC IPP points fall into
them. Particularly, the larger sensor errors in angles (which cause more uncertainty along the minor axis of the uncertainty
ellipse in the case considered) result in the MC IPP points being more scattered along the minor axis of the corresponding

IPP uncertainty ellipse; the larger sensor errors in range (which cause more uncertainty along the major axis of the uncertainty
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ellipse in the case considered) result in the MC IPP points being more scattered along the major axis of the corresponding IPP
uncertainty ellipse. Overall, the sensor errors along the projectile travel direction have more impact on the IPP performance.

From Fig. 8, comparing the n.w.i. IPP clouds with smaller wind (“C5”/“C5H5”/“C5T5”) to those n.w.i. IPP clouds with
stronger wind (“C107”/“CTHT”/“CTTT7”), respectively, it is obvious that the stronger the wind is, the more significant the
deviations of the n.w.i. IPP clouds are. When both the cross wind and the range wind were present, the wind-induced drift
of the n.w.i. IPP clouds is compounded: without accounting for the cross wind, the n.w.i. IPP cloud deviates to one side
(the right side in the cases discussed) of the major axis of the uncertainty ellipses (obtained by properly accounting for the
wind effect in the dynamic model) while the lack of accounting for the range wind causes the n.w.i. IPP cloud to be “pushed

backward/forward” causing range under-/over- prediction.

C. Consistency Evaluation

The consistency of the MIMM estimator is very important in the IPP application. It is always desired that the predicted
impact point falls into the uncertainty ellipse centered at the true impact point (or the equivalent converse). This can be achieved
by increasing the process noise intensities, which results in an ellipse with its major- and minor- axes large enough to include
the predicted impact point. However, this solution is undesirable. A consistency test will help to find the process noise setting
that gives the uncertainty ellipse compatible with the actual errors [1].

The consistency of the MIMM estimator is examined using both the normalized estimation error squared (NEES), which
is preferable for Monte Carlo runs when the truth is available (off-line simulations), and the normalized innovation squared
(NIS). The latter is the only one that can be used in real time testing [1].

Fig.9 shows, for the best IMM estimator selected from the MIMM estimator with OT=50% and various sensor accuracies,
the NEES consistency in position and velocity and the NIS. Note that the NIS is evaluated for TM before the estimated
BoP and for BM afterward [15]. It can be seen that as the sensor errors increase, the IMM estimator selected becomes less
consistent. In particular, the larger the sensor’s range error (which causes more uncertainty along the travel direction of the

projectiles in present cases), the more significant is the inconsistency.

VI. SUMMARY AND CONCLUSIONS

The MIMM estimator developed in [15] has been extended to account for the wind effect. The IPP performance for various
total observation times and sensor accuracies have been investigated in detail. The wind effect can be fully compensated if
the wind information is available; it also can be mitigated by increasing the total observation time if no wind information is

provided. The total observation time is key for IPP performance: for example, given the observations all the way up to the
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apogee one can always expect a very good IPP performance, but this is clearly not desirable if countermeasures are to be taken
against the projectile. The N-point initialization, designed for initializing the key thrust component as well as the kinematic
components, is considered a good method to quicken the correct mode convergence in each IMM estimator and alleviate the
estimation ambiguity between the drag coefficient and the thrust components. In the cases studied here, an OT of 20% or
more and sensor accuracies under 10m in range and 5mrad in angles are required to overcome the marginal observability
(ambiguity) of the drag and thrust and then achieve an acceptable IPP performance, with the IPP RMS error no more than
10% of the projectile range. The sensor errors that cause more uncertainty along the travel direction of the projectiles have
more impact on the IPP performance. In the presence of wind, the short observation time and the limited sensor accuracy are
more critical since they could cause confusion in selecting the “correct” best IMM estimator (which should be the one with
the most suitable initial drag coefficient estimate, closest to truth) from the MIMM estimator, and then lead to a degraded IPP

performance.

APPENDIX A

CUBIC SPLINE INTERPOLATION

As shown in Fig. 10, the cubic spline curve of the Mach number-dependent drag coefficient multiplier is obtained by

interpolating the selected representative points shown in Table VIII.

TABLE VIII: Selected representative points for cubic spline interpolation

Speed (m/s) 1 50 100 150 190 230 280 | 285 | 295 310 350

Normalized drag coefficient 1 1.01 | 1.015 | 1.02 | 1.03 | 1.035 1.1 1.2 1.3 1.4 1.59

Speed (m/s) 400 | 440 500 550 | 590 650 750 | 800 | 850 | 1000 | 1000+

Normalized drag coefficient 1.69 | 1.71 1.68 1.55 14 1.35 1.33 | 1.32 | 1.31 1.3 1.3
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Fig. 10: The cubic spline approximation (for a “sharp nose” projectile [17]).
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