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ABSTRACT

Understanding, measuring, and debugging IP networks, particularly across administrative
domains, is challenging. One aspect of the challenge are transparent middleboxes, which
are now common in today’s Internet. In-path middleboxes that modify packet headers are
typically transparent to a TCP, yet can impact the end-to-end performance of its connec-
tions. Of equal importance, middleboxes cause architectural ossification that hinders net-
work protocol evolution—new options or redefined header fields are often misconstrued,
modified, or disabled. We develop TCP HICCUPS to reveal packet header manipulation to
both endpoints of a TCP connection. HICCUPS adds a lightweight tamper-evident seal to
TCP that is incrementally deployable and introduces no new options. HICCUPS provides
an optional feature, AppSalt, that allows applications to request added protection for their
connection’s integrity, making it more difficult for middleboxes to falsify integrity values.
HICCUPS is implemented in both an operating system patch to the Linux TCP stack as
well as a set of cross-platform user-space tools. To evaluate HICCUPS, we deploy it to
a diverse set of Internet nodes spread across 197 networks and 48 countries, measuring
packet header manipulations on over 26 thousand directed port/path pairs. We discover
over 11 thousand instances of unique non-NAT in-path packet header modifications across
those flows, all with the potential to negatively affect TCP performance.
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Executive Summary

Picture a scenario where two endpoints, Alice and Bob, communicate across the Internet.
Traffic sent between Alice and Bob transit a variety of links, as well as through a diverse ar-
ray of switches, routers, and intermediate network devices known as middleboxes. Alice’s
TCP stack is responsible for utilizing this path to accomplish the reliable reassembly of her
data stream at Bob’s end of the connection in as an efficient manner as possible. Prior to
the connection, Alice’s TCP knows absolutely nothing about the conditions of the path to
which her data will transit. In other words, Alice’s TCP has no idea a priori how to properly
answer many critical decisions that must be made over the course of every connection:

• How fast can I send?
• How many segments should I send at once?
• Did Bob receive my data intact?
• Was a piece missing?
• Was the data stream in the right order?
• Was it free of transmission errors?

Various techniques have been integrated into TCP so that as the connection progresses,
Alice’s TCP can infer the state of the path and then apply a strategy to best answer the
above questions. Instrumentation such as congestion control, sequence numbers, duplicate
acknowledgments, selective acknowledgments, and checksums all provide actionable end-
to-end path information that contributes to the robustness and effective performance of TCP
on the modern (and often messy) Internet.

In this dissertation, we posit that TCP must provide an answer to another critical question
about the transit path in order to maximize performance: “Am I being misinterpreted?”

As middleboxes become increasingly commonplace throughout the Internet, more and
more data plane intelligence is added to the network resulting in a less flexible environ-
ment that is subject to behaviors that ossify packet header semantics and options fields
designed for extensibility. Such behaviors make it difficult for protocol designers to inno-
vate within TCP. Furthermore, even small occurrences of misconfigurations, non-standard
implementations, and legacy deployments can negatively impact protocol interactions. In
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addition to the directly resulting cases of degraded performance and connectivity issues,
the impact of even a small number of cases across the Internet deters large providers from
deploying new extensions designed to increase security and performance.

Such interactions are an under-appreciated issue that can have a widespread impact on the
Internet and the evolutionary trajectories of the protocols that define it. For instance, we
examine several real-world examples in this dissertation:

• ISN translation and SACK: A “security-enhancing” feature of a firewall at our in-
stitution was randomizing TCP initial sequence numbers, but not updating the corre-
sponding selective acknowledgment blocks. The out-of-window SACK blocks con-
fused TCP, resulting in poor performance.
• ECN: A network switch was assuming older semantics for the second byte of the

IP header, overwriting ECN congestion status. The loss of feedback could result in
congestion being inferred when there is none.
• Window Scaling: A middlebox operating on ports 80 and 443 was adding a window

scaling option to SYNs that did not contain one, causing the remote TCP to assume
the flow control was much smaller than it really was.
• Multipath TCP: A number of middleboxes stripped the initial MPCAPABLE op-

tion, inhibiting deployment of Multipath TCP.

Currently, TCP lacks the necessary instrumentation to ensure that it is being properly in-
terpreted by the remote endpoint (i.e., that its packet headers have not been altered while
in transit). The current state-of-the-art is an array of underused methods—all with some
combination of deployment, incentive, or consistency issues that preclude integration into
TCP. In contrast, our solution provides the methodology and tools for an automated and
generally usable platform within TCP to expose such changes to packet header fields. The
TCP Handshake-based Integrity Check of Critical Underlying Protocol Semantics (TCP
HICCUPS) would allow TCP to infer in-path alteration of packet header fields, contribut-
ing to the body of end-to-end path information at its disposal and helping to answer the
question of correct interpretation by the remote TCP.

HICCUPS is cooperative with currently deployed middleboxes, applying a tamper-evident
seal to packet headers that allows devices to continue modifying packet headers as desired,
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but revealing that modification to a connection’s endpoints. HICCUPS is incrementally
deployable and introduces no new options. HICCUPS benefits TCP by making it possible
to reason about the correctness of how a path handles a specific protocol extension, let-
ting TCP make more informed decisions about when it is safe to enable a new protocol
extension, or disable one that is disrupted by a middlebox along a path.

HICCUPS also benefits users and network operators by enabling a new path diagnostic that
can be generally used with any remote TCP that is HICCUPS-enabled. Such a diagnostic
would not require any prior setup or cooperation and could be used in a manner similar to
how ping and traceroute are used in unpremeditated debugging today.

The operation of HICCUPS is summarized by the following sequence of events:

1. The TCP initiating the active open computes an integrity value over a selection of
header fields in its SYN packet using a publicly-defined integrity function.

2. The TCP overloads three fields within the IP and TCP headers:

• the initial TCP sequence number
• the initial IP identification
• the initial TCP receive window size

with the computed integrity value and a code to denote which fields were included in
the integrity calculation.

3. The HICCUPS-enabled SYN is sent to a remote TCP.
4. A remote HICCUPS-enabled TCP recomputes the integrity calculation over the re-

ceived SYN, using the set of fields specified by the sender.
5. The remote TCP compares the recomputed integrity with the integrity received in the

three overloaded header fields. If two or more fields match, then it is inferred that the
SYN’s headers were unmodified.

6. After constructing the SYN-ACK, the remote TCP overloads the same three fields
with an integrity check of the SYN-ACK, as well as a status code indicating whether
the SYN’s integrity matched.

7. The HICCUPS-enabled SYN-ACK is sent to the initiating TCP.
8. The initiating TCP recomputes integrity over the SYN-ACK and compares the val-

ues, returning the bi-directional header integrity status to the user.
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At a high level, HICCUPS is specifically designed to be cooperative with middleboxes in
order to minimize path traversal issues. We also readily allow middleboxes to continue
their behavior modifying packet headers as they wish, but now inform each TCP of those
changes. Our hope is that, by giving middleboxes no specific reason to disrupt HICCUPS,
they will not try to alter its integrity values. However, middleboxes have a history of enforc-
ing overly conservative security policies that block simple diagnostic traffic (e.g., ICMP),
so we must take a realistic approach. We develop AppSalt as an additional layer of pro-
tection for the integrity values sent by HICCUPS, making it more difficult for a middlebox
to introduce packet header modifications and then falsify the integrity values to hide the
modification.

HICCUPS is implemented in both an operating system patch to the Linux TCP stack as
well as a suite of cross-platform user-space tools. To evaluate HICCUPS, we deploy it to
a diverse set of Internet nodes spread across 197 networks and 48 countries, measuring
packet header manipulations over 26 thousand directed port/path pairs. We discover over
11 thousand instances of unique non-NAT in-path packet header modifications across those
flows, all with the potential to negatively affect TCP performance. Of particular notability,
we discover and analyze a new instance of window scaling detected on a real Internet path.
Using results from HICCUPS, we are able to ignore window scaling on that path and find
that bulk transfer performance more than doubles.

xxiv



Acknowledgements

I would like to acknowledge and thank everyone that helped me along in my path to com-
pleting this dissertation. For everyone that contributed to this work, helped me solve a
problem in my research, served as a sounding board for my ideas, or even just shared in
mutual camaraderie with me over a beer at the Trident Room, I am profoundly grateful and
sincerely appreciate your support.

First and foremost, I would like to thank my advisor, Dr. Robert Beverly. These last three
years have been a challenging yet deeply rewarding experience and I can undoubtedly see
that not only have I greatly improved as a researcher, but that your guidance and teaching
have always been in my best interest. When I look back I notice tangible improvements
in reading papers, writing, explaining my work and the works of others, and formulating
good research ideas. All in all, I accomplished more with this work and gained more from
the experience than I had ever thought I could—the sign of having had a truly great mentor.

Professionally, a great deal of gratitude is owed to all of the members of my dissertation
committee: Drs. Geoffrey Xie, Mark Gondree, Preetha Thulasiraman, and Steve Bauer.
Every one of you has taken time away from your own work to help me and I am fortunate
to have such a great committee. I would additionally like to thank Steve for allocating us a
measurement server and assisting with the PlanetLab measurements.

Many thanks to kc claffy and Young Hyun of CAIDA for helping us run measurements on
Ark and offering their comments and support for our research idea. The additional dataset
afforded by the Ark measurements greatly enriched the breadth of results and afforded us
another level of insight to middlebox modifications.

I would also like to give a tip of the cap to Mark Allman and Nick Weaver at ICSI, and Justin
Rohrer at NPS. The input from their experience and clever ideas not only strengthened this
work it helped form parts of the basis for what made it a success.

My personal thanks go out to all of the other Ph.D. students during my time here at NPS:
Jeff, James, Mike B., Mike C., Andrew, Brian, Alan, Donna, and Travis. Specifically, all
the study sessions preparing for quals, the support through all the hurdles, that first trip to

xxv



Tahoe, the BBQs, and all the other words of advice and sanity along the way. To Ricky
Gaylard and Bruce Carter at SPAWAR, Drs. Brooks and Berg at Clemson, and all of my
friends and family, I am truly appreciative of all the encouragement you gave me to pursue
my doctorate and to get where I am today. To Heather, I could write an entire library and it
would not be enough to recognize everything you do for me. Love you always.

Finally, none of this would have been possible without the support provided to me by the
DOD SMART scholarship program and by my home agency, SPAWAR Systems Center
Atlantic in Charleston, SC. I am genuinely humbled by their belief in me and willingness
to help support me in this endeavor.

This work was supported in part by SPAWAR System Center Atlantic TIKIBAR project
number 2013-TIKI-030 and NSF contract number CNS-1213155. Portions of this disser-
tation also appear in [1, 2].

xxvi



CHAPTER 1:

Introduction

Why is it that when one man builds a wall, the next man

immediately needs to know what’s on the other side?

George R.R. Martin, A Game of Thrones

Packet switching is one of the fundamental ideas behind the Internet. Any type of message
that is to be sent from one application to another is broken down (i.e., packetized) into
smaller chunks known as packets. Each packet that transits the Internet contains both data
and one or more layers of control information known as headers. In the most basic sense,
a packet’s headers provide routing and control information that tell intermediate network
devices where the data needs to go.

In addition to routing information, higher level transport headers carry a great deal of addi-
tional control information for connection-oriented protocols like the Transmission Control
Protocol (TCP). In the case of TCP, the header provides for a number of extra features,
such as connection negotiation, reliable stream reassembly, and flow control [3]. Each of
these features was originally designed to operate on an end-to-end basis without assistance
from the network. Traditionally, intermediate transit nodes were expected to ignore this
information and simply focus on the transiting and routing portions of the headers [4].

In the modern Internet, packet transit is complicated [5] by a diverse abundance of network
devices that violate this end-to-end principle—that intermediate network devices should not
attempt to implement any functions that can be implemented “completely and correctly”
by the endpoints [6]. We describe such devices in greater detail in Section 1.1, but for
now note that they are able to introduce modifications to more than just the routing-related
portions of a packet’s headers. These modifications are possible because, aside from a few
exceptions that will be discussed later, packet header information is rarely encrypted or
authenticated [7] and thus transits the network unprotected.

Figure 1.1 illustrates a scenario where Alice wishes to send a packet to Bob through the

1



Internet. In the figure, Alice and Bob are endpoints. Alice is connected to the Internet
through a series of devices on her network, connected to Bob’s network through a path
of routers in the Internet (designated by a cloud), and finally to Bob by the infrastructure
in Bob’s network. Any device along the path taken by her packets can view or alter her
packets’ headers as it deems fit.

As we will show, packet headers may experience a variety of changes to their fields while
in transit, both intentional and unintentional. Intentional changes, such as network address
translation desired by a network administrator, are an acknowledged fact of life on the Inter-
net. Unintentional packet modifications, however, can be the result of misconfigurations or
legacy devices and are an often under-appreciated issue that can have a widespread impact
on the Internet and the evolutionary trajectories of the protocols that define it.

Through numerous examples documented by related measurement studies, we review in
Chapter 2 exactly how such inadvertent packet header modifications have led to cases of
performance issues, unintended protocol interactions, and blackholes where misunderstood
packets simply get discarded by a network device. Unintended interactions can occur when
a device misinterprets the meaning of a field, incorrectly alters it, and interferes with the
correct operation of that protocol.

The primary motivation behind this dissertation is to develop the methodology and tools
needed to have the most automated and generally usable platform as possible to further
expose such problematic changes to critical packet header fields. The development of such
a platform would impact a wide cross-section of Internet stakeholders, as discussed in
Section 1.4.

Prior to this work, such a platform did not exist. The current state-of-the-art (described in
Chapter 3) is an array of underused methods—all with some combination of deployment,
incentive, or consistency issues that keep it from being used in the general case and preclude
integration into TCP. Since TCP does not know anything about the networks it is going
to traverse, it must make inferences about the end-to-end network state. Methods exist for
inferring information such as congestion [8] and transmission errors [9], but none have yet
been applied to detect when connection control information gets modified. If a platform
could be developed that did not suffer from the same types of previously mentioned issues

2



Figure 1.1: Simpli�ed scenario of two hosts communicating over the Internet

(such as the solution advocated by this dissertation), it could fill that void and become
another network state inference tool used by TCP.

1.1 Middleboxes
Finding the cause of inadvertent packet header modifications is difficult, since many differ-
ent types of devices, in many different administrative domains, interact with a packet as it
traverses the Internet. Traditionally, the primary objective of these devices was only packet
forwarding (i.e., determining the next best hop to send the packet to based on information in
a forwarding table). It is increasingly common, however, for packets to encounter devices
whose primary task is something other than just the forwarding or routing of packets. re-
quest for comments (RFC) 3234 defines a term for these types of devices, middleboxes, and
gives a taxonomy of the various types that existed at the time of publishing in 2002 [10].
The prevalence and diversity of middleboxes have only continued to grow since.

1.1.1 Types of Middleboxes
Some examples of well-known and commonly deployed middleboxes include: firewalls,
network address translation (NAT) devices, performance-enhancing proxies, and transcoders
that modify image files to reduce their size. Systems such as these are prevalent on the net-
work, with each one having the ability to modify packets for its own purposes. A recent
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study in 2012 showed that in networks of all sizes, the number of middleboxes is on par
with the number of routers [11].

NAT devices, in particular, are extremely prevalent. Recent statistics from the network
diagnostic tool Netalyzr show that about 90 percent of its sessions came from behind a
NAT device [12]. Although Netalyzr’s results likely suffer from a population bias, NAT
has become nearly ubiquitous on home and corporate networks in large part due to the
decreasing availability of globally-routable IPv4 addresses.

Also in use on the Internet are a myriad of other more specialized “security-enhancing”
devices like sequence number randomizers [13], fingerprint scrubbers [14], active war-
dens [15, 16], and traffic normalizers [17]. Because these devices act as a man-in-the-
middle (MITM), they can alter any bits within the entire packet header. NAT devices, for
example, are expected to alter certain fields such as Internet Protocol (IP) addresses and
TCP or User Datagram Protocol (UDP) port numbers, but nothing stops the same device
from changing more header fields than that, such as sequence numbers and IP or TCP
options. Any device acting as a MITM could also change payload data, but changes to pay-
load data are already protected by other well-established solutions (e.g., Transport Layer
Security (TLS)).

1.2 Problem Description
Middleboxes are difficult to manage and maintain. Networks of all sizes employ a diverse
set of middleboxes that serve a variety of purposes. Even within the same network, the
middleboxes are often from various vendors, usually run on separate physical hardware,
and require configuration by a well-trained administrator. As a result, they can require a
large support staff, which greatly adds to the already expensive cost of purchasing, licens-
ing, and upgrading middlebox deployments [11]. In reality, the overly simplified commu-
nication scenario between Alice and Bob from Figure 1.1 looks more like the situation
in Figure 1.2, where a variety of middleboxes permeate each network. And, on any given
end-to-end path, problematic middleboxes may reside in an external administrative domain,
complicating both efforts to debug and fix connection issues.

All of the previously mentioned issues with maintaining middlebox deployments contribute
to the introduction of misconfigured, nonstandard, or out-of-date legacy behaviors in mid-
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Figure 1.2: More realistic scenario of two hosts communicating over the Internet

dleboxes. In a survey of 57 network administrators, the majority overwhelmingly cited
misconfiguration as the most common cause of middlebox failure, most likely due to the
management and upgrade complexity involved [11]. As a result, the situation illustrated in
Figure 1.2 appears much more daunting as the potential that Alice and Bob experience any
performance or connectivity issues increases.

With their prevalence and how much power they have to alter packets and their semantics,
it is a problem when middleboxes operate incorrectly or make unintended changes. As we
will show in Chapter 2, such changes can result in unexpected protocol interactions and
end-to-end performance issues. Furthermore, even just the threat of encountering such is-
sues can negatively influence protocol innovation, forcing designers to scale back improve-
ments and take overly conservative deployment strategies [18–22]. Examples can be seen
in the designs of modern up-and-coming protocol extensions such as TCP Fast Open [23],
Tcpcrypt [24], SPDY [25], and Multipath TCP [21] as their documentation discusses neg-
ative interactions with middleboxes. As we show in Chapter 2 and confirm in Chapter 8,
such end-to-end traversal issues still occur and are a real problem on the Internet.

The existing solution space for this problem can be broken down into three primary cate-
gories of approaches: prevention, avoidance, or detection. Prevention involves using strong
cryptography to stop middleboxes from tampering with packet headers. Avoidance tries to
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fix the middleboxes themselves before issues arise. The final category, detection, includes
solutions that check to see whether any modifications were made to the packet headers in-
flight. Chapter 3 describes examples of related work that fall under each category and the
limitations they have.

In this dissertation, we advocate a strategy of detection. We feel that this strategy is the
most flexible, most cooperative with current middleboxes, and will be the most likely type
of approach to achieve widespread adoption. Achieving widespread adoption is critical
to any type of new protocol enhancement so that it is usable between a larger number of
endpoint pairs. Since our design ultimately hinges upon adoption, we take steps throughout
to make adoption-friendly design choices.

1.3 Summary of Contributions
The following list summarizes the primary contributions in this thesis:

1. Design of a novel methodology for the end-to-end detection of TCP/IP packet header
manipulation: TCP-HICCUPS. The Handshake-based Integrity Check of Critical
Underlying Protocol Semantics (HICCUPS) is an incrementally deployable exten-
sion to TCP that seeks to automate the question, “Did my packets arrive at their des-

tination with the same headers as they were sent with?” As we will show throughout
this dissertation, HICCUPS encompasses a unique set of design features, due to its
specially tailored security model, that allow it to outperform the current state-of-the-
art in areas such as general usability, efficiency, and in its ability to improve TCP:

• HICCUPS is cooperative with currently deployed middleboxes, applying a tamper-
evident seal to packet headers that allows devices to continue modifying packet
headers as desired, but revealing that modification to a connection’s endpoints.
• HICCUPS is lightweight, requiring only a very small amount of processing

overhead in our unoptimized kernel implementation that is on par with the over-
head used for other packet processing functions in the Linux kernel.
• HICCUPS operates in-band within TCP, requiring no out-of-band protocols

such as Internet Control Message Protocol (ICMP). Not using any additional
protocols helps improve the consistency of HICCUPS over current state-of-the-
art approaches. As such, the inferences gathered by HICCUPS can be more
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effectively used by TCP to maximize its performance in the presence of mis-
configured or non-standard middleboxes.

2. Real-world implementation and testing of HICCUPS in a modern version of the
Linux TCP networking stack. We have also provided a user space tool set that mimics
the kernel behavior to allow for widespread and immediate testing.

3. Design and implementation of AppSalt HICCUPS, an optional extension that uti-
lizes a novel cross-layer integrity protection scheme to discourage HICCUPS’s in-
tegrity values from being modified in transit by certain middleboxes, even after the
HICCUPS integrity algorithm becomes public knowledge.

4. Deployment of, and measurements from, HICCUPS across 26,304 diverse directed
port/path pairs on the live Internet.

5. Documented instances of degenerate middlebox behavior and the ways in which
HICCUPS cooperation could improve transfer performance.

1.4 Impact on Relevant Stakeholders
The significance of this work is the impact it could have on our understanding of the global
Internet architecture. Successful adoption of this technology would not only make debug-
ging and troubleshooting easier, but yield new insights about the integrity of packet transit
across a large portion of the network. It would also enable interesting future measurement
studies that could clarify the impact of middleboxes and allow network administrators to
implement new protocols more safely, without alienating a small set of users behind a
faulty middlebox. This could accelerate the deployment of new protocols that enhance
robustness, reliability, or offer new functionality.

Several incentives exist to promote adoption of our proposed solution. We envision HIC-
CUPS benefiting all groups of key Internet stakeholders:

• End users and content providers want to know that their traffic is treated fairly by
their transit providers (e.g., in the context of network neutrality [26]).
• Protocol designers want to know how their new designs will be affected by network

middleboxes.
• Large Internet companies want to take advantage of new protocol extensions de-

signed to increase performance, but do not have a means to tell if the extension
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would be safe to use.
• System and network administrators would have access to a new diagnostic tool to

troubleshoot more complex connectivity issues.
• The networking community would be able to draw upon a wealth of new information

for measurement studies to better understand the global Internet.
• Any end host enabled with our detection code could instantly become a cooper-

ating end point in a path integrity test. This would be similar to how ping and
traceroute are used today to enable network tests with a large number of hosts
without requiring prior coordination with the system administrators.

1.5 Document Structure
The remainder of this dissertation is organized as follows:

Chapter 2 provides background information to fully explain the various network mecha-
nisms discussed in this work, as well as related research on middleboxes and
the issues they can cause.

Chapter 3 begins with a survey of the various existing solutions introduced in Section 1.2
and then synthesizes their shortcomings into a set of well-defined architectural
design principles. These goals are then used to evaluate our methodology in
the context of various relevant works.

Chapter 4 discusses methods for transmitting integrity information and the implications
of various design considerations.

Chapter 5 presents our design for HICCUPS and describes its methodology in detail.
Chapter 6 considers what can happen when a middlebox attempts to fake the integrity

information and details AppSalt, an optional extension that adds protection to
the integrity values transmitted by HICCUPS.

Chapter 7 details our implementation in the Linux kernel and related design choices.
Chapter 8 presents the results from experiments using our protocol on the Internet.
Chapter 9 concludes our work by summarizing key points and discussing opportunities

for future work.
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CHAPTER 2:

Background and Impact of Middleboxes

Intermediaries make the web a hostile place for protocol changes.

Mike Belshe, designer of the SPDY protocol

In this chapter, we analyze the impact of misconfigurations and legacy behavior in mid-
dleboxes on both the performance and evolutionary trajectory of the Internet. Prior to dis-
cussing such issues with middleboxes, Section 2.1 covers relevant background information
to help setup and more thoroughly understand how the affected protocols operate. Then,
building upon the issues introduced in Section 1.2, we more closely examine the breadth of
disruptions that can arise from misconfigured middleboxes (Section 2.2), going into depth
on several selected issues (Sections 2.3–2.4). Finally, we conclude with a discussion of the
impact that these disruptions have on overall network security (Section 2.5) and on protocol
innovation going forward (Section 2.6).

2.1 TCP/IP Background
TCP/IP is the primary suite of protocols on which the Internet operates. The various ele-
ments of communication on the network are broken out into four layers which make up the
full protocol suite. In order from highest to lowest, the layers are: application, transport,
network, and data link [27]. Each layer is responsible for a different aspect of communi-
cation and has its own set of associated protocols. Figure 2.1 graphically represents the
ordering of the layers for the TCP/IP model along with some exemplary protocols.

The application layer is the most flexible with respect to what bit structure the network will
tolerate and transmit. The TCP/IP model treats any contents in the application layer portion
of a packet as application data. Other popular network models such as the Open Systems
Interconnection (OSI) model [28] further subdivide this layer, but we do not describe them
here since the additional elements are out of scope; the work covered in this dissertation
does not deal with any application layer elements. Traditional end-to-end philosophy holds
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Figure 2.1: The four layers of the TCP/IP protocol suite (from [27])

that the network should completely ignore this layer and let end hosts handle any processing
of the application layer [6].

The transport layer provides port-based multiplexing services, as well as an optional set
of end-to-end services that can help improve an application’s performance (e.g., flow con-
trol and reliable stream reassembly—ordering and loss correction). Both UDP [29] and
TCP [3] are provided by the TCP/IP protocol suite, with TCP being the one that provides
the optional services just mentioned. We describe TCP in more detail in Section 2.1.3.

The network and data link layers help network devices get a packet from one end host
to another. These lower layers have considerably less context that is maintained end-to-
end. Figure 2.2 shows an example of how a packet may look as it crosses the wire. This
particular packet is a Hypertext Transfer Protocol (HTTP) GET request. Web browsers send
this type of request in order to fetch a webpage from a remote webserver [30]. In the figure,
each byte of the packet is shown as a pair of hexadecimal digits. Note the construction how
each header is layered over the original application data (the GET request).

In the remainder of this section, we describe selected protocols and features that are relevant
to the background middlebox work presented in the remaining sections of this chapter.

2.1.1 IP
The structure of an IPv4 header is shown in Figure 2.3. Working from the top line down,
IP defines some control information about each packet, a pair of 32-bit addresses that rep-
resent an interface on a particular end host, and an options block. The control information
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Figure 2.2: Example of what a packet looks like on the wire (this speci�c packet is an HTTP
request to get a webpage from a webserver)

held within the first 12 bytes include a version number, the length of the IP header, the
differentiated services code point (DSCP), Explicit Congestion Notification (ECN), length
of the total packet, fragmentation-related information, a hop expiration counter, the type of
transport protocol being carried, and a 16-bit checksum of the header.

It is important for later to note the history with the DSCP and ECN fields. Before DSCP
and ECN were standardized in 1998 and 2001, respectively, the entire second byte of the IP
header (shown in the top row of Figure 2.3) was defined as the type of service (ToS) field.
RFC 791, the specification for IP since 1981, shows the ToS field being used by gateways
to hold indicators marking service and priority requirements for packets. When ECN was
created, the semantics of the highest two bits in that second byte were redefined. No longer
were they “reserved for future use” and to always be set to zero, but now possess meaning.
ECN is described further in Section 2.1.3.

The field redefinition issues experienced with ECN were not a singular event. Other pro-
posals are currently under consideration by the Internet Engineering Task Force (IETF)
to reclaim other bits of the headers. Some features that were useful in the early years of
TCP/IP design are rarely used in the modern Internet and may be subject to reuse. Some
examples are fields related to fragmentation [34] or the TCP urgent pointer [35].
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Figure 2.3: Structure of an IPv4 header (after [31�33])

2.1.2 ICMP
ICMP [36] is primarily used to transmit status and error messages between systems on the
Internet. For example, when a UDP datagram is sent to a port that is closed, the receiving
host will respond with an ICMP destination port unreachable message to let the sender
know that the port was closed. There are many different types of ICMP messages, which
all use the base format shown in Figure 2.4. The format of the latter portion of the ICMP
header depends on which type of message it is. Each message is defined by a type and a
subtype, also called a code. For example, the destination port unreachable message is type
three, code three. We next discuss two specific messages that will be referenced later in
this document.

Figure 2.4: Base structure of an ICMP header (after [36])

TTL exceeded in transit
The time-to-live (TTL) exceeded in transit message is a subtype of the time exceeded mes-
sage (type 11, code zero). This message is an error code sent by a router when it receives
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a packet with a TTL value of one. After the router performs its decrement, the TTL is
zero and the packet is considered to be expired. This particular message provides the ba-
sis for a number of path diagnostic tools (e.g., traceroute [37], Paris Traceroute [38],
Tracebox [39], etc.).

traceroute was originally developed by Van Jacobson in 1987. Its intuition is simple:
starting with a TTL value of one, send a succession of packets with singly increasing TTL
values. The packet will expire at each successive hop along a path and the sender will be
able to enumerate the routers along the path by the ICMP TTL exceeded messages that
come back in response.

Fragmentation needed and DF set

The fragmentation needed and don’t fragment (DF) set message is a special subtype of the
destination unreachable type (type three, code four). This message is an error response to
a packet that is too large to traverse a link and cannot be fragmented because it has the
DF flag set in its IP header, indicating that it is “not to be internet fragmented under any
circumstances” [31]. Since the packet cannot be fragmented by the router, the router drops
the packet and sends the resulting ICMP error message back to the packet’s sender.

This message is used by a technique to automatically discover the largest acceptable packet
size that a path will accept: path maximum transmission unit discovery (PMTUD). PMTUD
was developed as a means of being able to eliminate the act of transparent in-flight frag-
mentation, which by 1987 was widely considered to be too inefficient, too complex, and too
much of a performance hit to be worth supporting [40]. By the mid 2000s, transmission
rates had largely exceeded the capacity allowed by the 16-bit IPID field to differentiate
between fragments, further condemning the practice of transparent in-flight fragmenta-
tion [41].

PMTUD works best when routers implement an accompanying change to their type three,
code four messages introduced by RFC 1191: the definition and population of the Next-
Hop MTU field. When it is the case that the MTU-restricting routers along a path imple-
ment this improvement, the process of PMTUD is as shown in Figure 2.5. If a router does
not provide such feedback, it is left up to the host to “search” the MTU space.
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Figure 2.5: Example Path MTU Discovery scenario

In practice, a sizable number of occurrences of firewalls blocking the return of the ICMP
feedback messages prevents PMTUD from operating properly. In a 2004 measurement
study, Medina et al. found a mere 41 percent success rate of PMTUD where blocked
ICMP messages were pinpointed as the presumable cause of failure for 18 percent of the
servers tested [42, 43]. Luckie and Stasiewicz revisited the issue in 2010 to find a higher
PMTUD success rate of 78–80 percent, nearly double that of the the 2004 result, but found
other causes of PMTUD failure, such as a software bug where the DF flag was still being
set for very small MTU values [44].

Ultimately, however, ICMP blocking and issues integrating with TCP [45] were so prob-
lematic that PMTUD was rewritten to use TCP instead of ICMP [46]. The issues that
PMTUD experienced with ICMP blocking are a notable example of issues with out-of-band
feedback mechanisms, and as such, have highly influenced the design of our methodology.
We elaborate more on this in Section 4.4.
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2.1.3 TCP
The structure of a TCP header is shown in Figure 2.6. Working from the top line down, TCP
defines: port numbers used for connection multiplexing, sequence and acknowledgment
numbers used for stream ordering and reassembly, flags used for connection negotiation
and teardown, a window size used for flow control, a 16-bit checksum and urgent pointer,
and an options block that designers included so that the protocol could be expanded later.
We explain each of these features in more detail in the following subsections.
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Figure 2.6: Structure of a TCP header (after [3])

Connection negotiation
TCP is a connection-oriented protocol: all data is transmitted within the context of a con-
nection between a pair of endpoints. New TCP connections are created by a process known
as the three-way handshake (3WHS) which is illustrated in Figure 2.7. In the figure, Alice
is the endpoint that wishes to initiate the connection. To do so, she sends Bob an empty TCP
segment with the synchronize (SYN) flag set. This action triggers the start of the 3WHS. If
Bob has an application socket listening on the destination port, he responds with a SYN of
his own with the acknowledgment (ACK) flag also set. To complete the handshake, Alice
ACKs Bob’s SYN/ACK. Connections can be closed gracefully via the finish (FIN) flag, or
abruptly via the reset (RST) flag.

Sequence numbers
In TCP, all application data is sequenced by byte so that it can be reliably transferred from
one end host to another. TCP ensures that all data is both complete and in the proper order
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Figure 2.7: Example of connection negotiation in TCP using a three-way handshake between two
endpoints, Alice and Bob)

before handing it up to the application layer. One TCP informs another about the portion of
the data stream that it has cumulatively intact by acknowledging the next byte that it needs
in the acknowledgment number field.

Figure 2.8 illustrated an example TCP session with simplified sequence and acknowledg-
ment numbers. When Alice initiates the connection, she chooses an initial sequence num-
ber (ISN) for her SYN. Bob acknowledges her ISN by setting his acknowledgment number
to the number of the next byte he expects to receive from Alice. Since TCP is bidirectional,
Bob also chooses an ISN to represent the flow of bytes from him to Alice.

In the example in the figure, one of Alice’s data segments gets lost on its way to Bob.
TCP’s usage of sequence numbers informs Bob of the lost data when the next packet he
gets from Alice contains data beyond what he was expecting to receive next. Since Bob is
missing a portion of the data stream, he must send a duplicate acknowledgment to Alice.
One can already see how this can be inefficient if only one packet is lost and none of the
successively received bytes can be acknowledged. This problem is solved by selective
acknowledgment (SACK) which is discussed later with the TCP options.

16



Figure 2.8: Example of sequence number usage in a TCP connection between two endpoints,
Alice and Bob)

Flow Control

Each TCP implementation maintains a receiver buffer that acts as a temporary hand-off area
between TCP and an application. As new data arrives, it is queued in the buffer until the
application makes a system call to retrieve it. TCP will only allow completely reassembled
stream content to be read by an application, holding in the receive buffer any content that
is not in the correct order or is missing a piece of data [3, 47].

The flow control window in TCP is used to keep a sending TCP from overwhelming a re-
ceiver’s buffer capacity. The flow control window, also called a receive window, represents
the maximum number of bytes that a TCP is willing to accept at a given time. The field is
16 bits in length, but can support larger window values through the scaling option discussed
later in this section.

Consumption of the data in the receive buffer can be limited by an application, the system’s
CPU usage, or by TCP’s stream reassembly behavior when data loss is experienced [47].
For the last cause, the worst case scenario is that a full window of data is sent from one
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TCP to another, but the first packet of the window is dropped. Since TCP must reliably
reassemble the data stream, the buffer on the remote TCP is left mostly full and there
may not be enough buffer capacity to accept new packets, resulting in wasted bandwidth
and retransmissions. If a TCP flow is throttled back due to the flow control window, it is
considered to be receive window-limited.

ECN
Traditionally, a TCP sender must rely solely on timeouts or lost segments in order to in-
fer when a path is congested. ECN [33] is an improvement that allows routers to more
actively assist in congestion control by marking packets as local buffer pressure increases.
Indications from routers signal the receiver to alert the sender to reduce his rate before
the router will be forced to drop packets, which is more inefficient than having the sender
preemptively slow down.

At the bit level, the ECN semantics are transmitted via several fields within the IP and TCP
headers. The congestion mark is made by setting a pair of bits in the IP header, shown
in the middle of the top row of Figure 2.3. The two-bit field can take on three different
meanings as shown in Table 2.1. When a router wants to mark congestion, and the packet
is ECN-capable, the router changes the ECN-capable transport (ECT) code point in the
IP header to the congestion encountered (CE) code point. A receiver that gets a packet
with the CE code point set knows that congestion occurred and should tell the sender to
reduce its rate. Feedback notification from the receiver to the sender is done by setting
the ECN echo (ECE) flag in the TCP header of returning acknowledgment packets until the
sender gets the message and reduces its congestion window. The sender can then inform the
receiver that it has indeed reduced its window by setting the congestion window reduced
(CWR) flag of the TCP header. Both flags are shown on the left side of the fourth row in
Figure 2.6.

It is important to note that all of the bits occupied by these ECN flags had other meanings
before ECN was standardized in 2001. The DiffServ and ECN code points fields shown
in the top row of Figure 2.3 were originally a single byte known as the ToS field. The
TCP flag bits shown on the left side of the fourth row of Figure 2.6 were listed as reserved
and expected to always be zero. An experimental enhancement to ECN adds semantics to
another bit in the TCP header, the nonce sum (NS) bit [48].
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Bits Code Point Meaning
00 Non-ECT Not ECN-capable
10

ECT ECN-capable, no congestion
01
11 CE Congestion encountered

Table 2.1: ECN code points in the IP header

Options
The original designers of IP and TCP wanted to allocate space within the headers to allow
for future expansion and features. As a result, both IP and TCP allow their headers to
be extended up to 40 additional bytes in length for placement of consistently formatted
options. Since then, many enhancements that use this space have been proposed and several
have become standards. Some of the more well-known standardized TCP options include:

• Maximum Segment Size: sent in the options block of the SYN; defines the largest
sized segment that should be sent as part of that unidirectional flow [49, 50].
• Selective Acknowledgment: if its use is negotiated in the 3WHS, receivers can ad-

ditionally acknowledge blocks of data received beyond the cumulative stream bound-
ary [51]. An example of SACK operation is shown in Figure 2.9.
• Window Scaling: sent in the options block of the SYN; defines a power of two

scaling factor to be applied to that unidirectional flow’s receive window [52].
• Timestamps: contain two four-byte long timestamp values and can be attached to

any packet of a TCP connection to help stacks measure round trip times (RTTs). One
of the timestamps is simply an echo of what was received from a remote TCP in an
ACK [52].
• Multipath TCP: allows TCP to utilize multiple paths as part of a single connection

in order to maximize efficiency of resource usage or swap between different types of
networks such as Wi-Fi and cellular data networks [21].

2.2 General Measurement Studies
Architectural issues with middleboxes and their unintended consequences have long been
documented [18,19,42,43]. In 2004, Medina et al. detailed several issues caused by unex-
pected interactions on the part of a middlebox [42,43]. In addition the issues with PMTUD
previously described in Section 2.1.2, middleboxes were found to disrupt a number of other
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Figure 2.9: Scenario showing how SACK helps improve performance

protocol features. For example, the usage of a non-standard IP option resulted in failure
of over 70 percent of connections, with mixed results even for common options. The con-
cern of such behavior is not just that the options were not propagated, but even worse that
the entire packet was dropped at some point along the path (i.e., the “blackhole” problem).
The authors also found that ECN was a problem area as well, where middleboxes overwrite
flags, causing failures with negotiation and congestion notification. We look at ECN issues
more closely in Section 2.3.

Honda et al. used measurements taken by their tool, TCPExposure, to examine how TCP
options are treated by middleboxes [19]. They found instances of TCP options, both known
and unknown, being stripped from packets, sequence numbers being translated, and even
some port-specific behaviors where options were stripped on a random high port, but not on
port 80. Middleboxes along some paths were also found to be very fragile dealing with out-
of-order data. Ultimately, they found that at least 25 percent of the paths seen in the study
had a middlebox whose behavior depended on the transport-layer (e.g., TCP) of packets
that passed through the middlebox. Not only is this interference detrimental to the validity
of the protocol interactions, but it is also difficult to diagnose and makes troubleshooting a
complex endeavor.
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2.3 Explicit Congestion Notification
ECN [33] is an interesting TCP/IP enhancement worth closer examination as experiences
with ECN distill the essence of the middlebox problem. Recall from Section 2.1.3 that
ECN relies on a delicate series of cross-layer interactions to function properly:

1. Routers must be able to mark packets (at the IP layer)
2. The receiver must echo the congestion mark back to the sender (at the TCP layer)
3. The sender must properly acknowledge and slow down

There are many opportunities for the above series of interactions to be disrupted. Not only
must the three parties involved (sender, receiver, and routers) properly follow the protocol,
but any middleboxes along the path must retain all of the ECN semantics. For example,
suppose a middlebox inadvertently clears the CWR flag, keeping the sender from acknowl-
edging the receiver’s ECE and letting it know that the sender has reduced its congestion
window. The sender would continue to see the ECE flag set on acknowledgments returning
from the receiver and not realize that the receiver never saw the sender’s CWR acknowl-
edgment. As such, the sender would infer that congestion was still occurring on the path
and continue to reduce the size of its congestion window.

2.3.1 Issues with legacy devices and ECN
In addition to the complex series of interactions, issues with ECN are further exacerbated by
the fact that every one of the header fields used by ECN has held other meaning. At least
over 30 years went by between the first documentation of TCP and IP before ECN was
devised and standardized in 2001. Each of the fields redefined by ECN is an opportunity
for a legacy middlebox to misinterpret packet header bits and potentially disrupt the ECN
interactions.

While the study by Medina et al. found occurrences of ECN-blocking middleboxes, it
was performed in 2004 when ECN was fairly new and had not yet achieved widespread
implementation. For example, 93 percent of the servers they tested did not even support
ECN. Seven years later, in 2011, Bauer et al. revisited ECN readiness in Internet hosts and
found that even though many servers were capable of using ECN, a non-trivial number of
problems with middleboxes disrupting the ECN fields still existed [20]. The most common
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problem involved treating the 6-bit DSCP field and the 2-bit ECN field as the old 8-bit ToS
field. Attempts to overwrite or clear what the network device thought was the ToS field
resulted in accidentally overwriting the ECN information.

Such overwriting can also impact connection performance. For instance, if any of the con-
gestion signaling bits are inadvertently set when there was not any congestion to begin
with, performance will suffer. As stated before in Section 2.3, ECN relies on a delicate se-
ries of cross-layer interactions to properly communicate when congestion was experienced
and when that communication was acted upon. Any spurious overwriting of its fields can
corrupt the state between the two endpoints, confusing ECN and impacting performance.

It is important to note that all of these issues are unintentional. None of the disruptive issues
noted above and in the studies by Medina et al. and Bauer et al. were due to an active
adversary attempting to harm the performance of connections. They were due to poorly
configured switches or routers that have not been updated in years. In the case of Bauer et

al., when the authors notified the network operator for one of the issues they detected, the
operator was unaware of the issue [20]. Examples such as with ECN serve to strengthen
the argument that the model of the inadvertent adversary, even though under-appreciated
when compared with an actively malicious adversary, can still be a greatly disruptive force
on the Internet and a threat to overall network stability.

2.4 ISN translation and SACK
Another example of an Internet protocol being manipulated by a middlebox is found in the
manner in which some firewalls implement TCP ISN randomization. ISN randomization
is done by some firewalls to protect hosts behind them that insufficiently randomize their
ISNs, leaving the values predictable and making the connection vulnerable to spoofing at-
tacks and off-path resets (see Section 4.7.6 for more). Once an initial sequence number
is changed, all sequence numbers must continue to be translated throughout the life of the
TCP connection. However, in many cases this feature does not properly translate SACK
values and passes the untranslated SACK blocks with translated ISNs (see Figure 2.10). En-
abling this feature harms both performance and overall throughput since the out-of-window
SACK blocks only confuse TCP and do not reduce any retransmissions. Documentation
from one leading vendor now recommends disabling the module in their firewall [13].
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Figure 2.10: Scenario showing how SACK can be disrupted by poor implementation of ISN
translation

Problems such as a mismatch between SACK blocks and overwritten sequence numbers
can be very difficult and time consuming to identify and fix. We encountered this very
issue ourselves on our own organization’s network. In order to diagnose it, we required a
cooperating endpoint remotely located outside our network to perform low-level compari-
son between traffic sent and traffic received. In addition to requiring resources outside one’s
administrative control to troubleshoot a problem within their own network, this problem is
very subtle and requires the keen eye of a trained administrator to recognize and understand
the issue. With the methodology we present in this work, the detection logic we build into
TCP would alert both the user and the network stack itself to such issues, eliminated the
need for a skilled administrator to troubleshoot.

Instances of SACK mismatches due to middleboxes are found in the academic literature
as well. Honda et al. gives a general warning about sequence numbers being included
in various TCP options due to the fact that they are often inconsistently overwritten by
middleboxes [19]. Honda also notes that this issue could even become worse if any of the
various proposals to expand the TCP options space [35] are ever adopted. Extending the
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options across multiple packets could make copies of the sequence numbers even harder for
a middlebox to locate and translate. Hesmans et al. further discuss the issues with SACK
and suggest a change to how out-of-window SACK blocks are interpreted [53].

2.5 Negative impact on overall network security
As seen with ECN and other extensions, misconfigurations and legacy behavior in middle-
boxes can stifle innovations that were designed to add features and make the network more
robust. Table 2.2 summarizes some of these examples.

In the case of ECN, for example, it was designed to enhance congestion control in TCP/IP.
By integrating state from routers, the network can provide added functionality such as
early congestion detection to increase network efficiency and fairness. When middleboxes
inadvertently disrupt the interactions of the ECN fields, those gains can be lost and the
potential is there to completely break congestion control itself as shown by example in
Section 2.3. In addition, on paths where congestion marks or echoes are always falsely set,
performance will be severely degraded. Such scenarios can function almost like a denial of
service (DoS) attack in the sense that an end host’s performance can be severely degraded
by the inadvertent modifications.

In general, the IETF and various network administrators, especially those with large user
bases, are far more reluctant to enable these new extensions when unexpected protocol
manipulations are taking place and causing connections to fail. With respect to ECN in
particular, the feedback we received from one large content provider was that “we want to
enable ECN, but do not because enabling ECN may adversely affect some of our users.”
[58]

This reluctance, induced by a small number of bad paths, can negatively impact the overall
security and stability of the Internet as usage and needs evolve, bringing with them the
need for new extensions to core network protocols. In this sense, middleboxes and other
systems that cause these problems are inadvertently adversarial. This differs from the
typical adversarial model in that while a system is not intentionally malicious, it can and
does cause unforeseen problems through its modifications of packet fields.
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Protocol
Feature

Reason
for Disruption

Issue Impact Source(s)

Path MTU
Discovery

Legacy, Policy ICMP blocking Degraded
performance

[43, 44]

IP Options Legacy,
Performance

Blocking, option
stripping

Blackholes,
poor
extensibility

[18, 43]

TCP Options Legacy, Policy Option stripping Poor
extensibility

[19]

ECN Legacy,
Misconfiguration

Blackholes, mark
concealment,
improper
congestion
signals

Degraded
performance,
attack
congestion
control

[20]

SACK Misconfiguration Out-of-context
SACK numbers

Degraded
performance

[19, 53]

Receive Window Policy Artificially-
limited window
size

Net neutrality [54–56]

Window Scaling Misconfiguration Option
modification

Degraded
performance

[25, 57]

Table 2.2: Examples of Middlebox Interference

2.6 Impact on Protocol Innovation
A more complex and broader impact of protocol interaction issues described in this chapter
is their impact on the design of new protocol extensions. Fear of compatibility issues with
middleboxes is a constant source of stress for protocol designers. Constantly in fear of their
design working incorrectly for a small number of paths, designers are forced to specifically
account for these issues in their designs.

Numerous examples of middlebox impact can be found in the literature of modern up-
and-coming protocol extensions such as TCP Fast Open [23], Tcpcrypt [24], SPDY [25],
Multipath TCP [21], and Gentle Aggression TCP [59]. In each work, the authors describe
specific considerations taken in their designs to be compatible with both known and un-
foreseen issues with middleboxes. Often, a note about their efforts is even included in the
abstracts of their works, and in the case of RFC 6824 for Multipath TCP, an entire section
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covers “Interactions with Middleboxes [21].”

Protocol designers’ frustration with middlebox compatibility issues is growing and research
towards understanding and/or solving these issues has been very active since 2010, when
many of the newest generation of protocol innovations started appearing. The growing
frustration is even apparent in the publication trends of many of the contributors to these
new protocols, as they alternate between designing their protocol, and understanding and
solving issues with failed middlebox interactions. Specifically of note, many of the design-
ers involved with Multipath TCP (e.g., Raiciu, Handley, Bonaventure, Honda, Paasch, and
Detal) have also become involved with various middlebox-related initiatives [19,39,53,60].

Perhaps the best summation of the current environment toward protocol innovation on the
Internet is a note given in a presentation by Mike Belshe, designer of the SPDY protocol,
in 2011: “intermediaries make the web a hostile place for protocol changes” [25]. The
situation is not completely grim, however. In the following chapter, we will discuss various
solutions that can be applied to help understand, mitigate, solve, or prevent broken middle-
boxes from inadvertently interfering with new protocol extensions, as well as introduce our
novel solution to the field, TCP HICCUPS.
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CHAPTER 3:

Solutions for Middlebox Issues

If I have seen further it is by standing on the shoulders of giants.

Sir Issac Newton

Surveying the possible solution space for the middlebox-related issues described in Chap-
ter 2, we find that the current applicable state-of-the-art falls under one of the three cate-
gories of approaches mentioned in Section 1.2: prevention, avoidance, and detection. As
we will show in this chapter, each currently available solution suffers from some key limi-
tations that reduce its efficacy within the context of our problem domain.

Beginning in Section 3.1, we examine network traffic integrity mechanisms that can prevent
successful packet header tampering. Such mechanisms treat middleboxes as simply another
MITM adversary and make it so that if a middlebox does modify a packet it will not be
accepted and processed by the remote endpoint. We also discuss the complications involved
in applying the necessary cryptographically-strong integrity (i.e., using computationally
secure encryption and hashing algorithms such as AES [61] and SHA [62], respectively) to
packet headers, emphasizing that application of traditional integrity mechanisms to packet
headers is not a problem with a simple, straightforward solution. Middlebox traversal and
key distribution issues commonly plague such cryptographically-strong approaches.

Next, in Section 3.2 we discuss works that approach middlebox coordination from a unique
and novel angle by attempting to overhaul the middlebox architecture using elements of
software-defined networking (SDN). Concluding our coverage of the solution space, in
Section 3.3 we take a closer look at various detection-based solutions. One such detection-
based solution that is particularly applicable to our domain and merits closer inspection is
an out-of-band diagnostic tool known as Tracebox [39]. Tracebox is designed to detect in-
path middlebox modifications in a cooperative environment, but its lack of integration into
TCP leads to several limitations that we further describe in Section 3.3.3. A summary of all
three categories, along with pointers to their corresponding sections, is shown in Table 3.1.
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Section Paradigm Description Examples
3.1 Prevention Stop middleboxes from successful

tampering
IPsec, tcpcrypt

3.2 Avoidance Overhaul and streamline middlebox
architecture to eliminate issues

SIMPLE, APLOMB

3.3 Detection Detect and, if possible, workaround
middlebox tampering

checksums, Tracebox

Table 3.1: Categorized breakdown of the current solution space for inadvertently adversarial
middlebox packet header tampering

After cataloging the space of applicable solutions, we construct a set of architectural design
requirements in Section 3.4 based in part on the shortcomings and limitations of current so-
lutions. We hypothesize that a solution adhering to these requirements could detect packet
header modifications and provide a way for TCP to deal with issues caused by middleboxes.
By addressing a different point in the design continuum, our solution can advance the state-
of-the-art and actively help improve TCP. Finally, we provide a comparative overview of
our solution’s high-level properties as compared to the range of existing possible solutions.

3.1 Tamper Prevention
Tamper prevention schemes use cryptography to prevent a packet header from being mod-
ified and then accepted by an endpoint. If a host receives a packet that does not match the
corresponding scheme’s integrity checks, it discards the packet and forces TCP to retrans-
mit. The security model used in the designs of these schemes assumes the following:

• An in-line device, M, that can see all traffic between two endpoints, A and B

• M can arbitrarily inject new packets and make them appear to originate from either
A or B [63]
• M can modify packets or their headers and recompute any public-knowledge check-

sums
• M can reorder packets
• M can discard certain packets
• M can usually see and affect all of either A’s or B’s traffic

Due to their location within the network, middleboxes have all of the capabilities of M in the
above security model. As a result, the tamper prevention schemes discussed in this section
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will prevent a network device middlebox from successfully modifying packet headers, and
could be applied to our problem of stopping inadvertent header modifications resulting
from misconfiguration and legacy behaviors. However, as we will show at the conclusion
of this section (in Section 3.1.3), many of these schemes are overpowered when it comes to
addressing the issues discussed in Chapter 2 due to the strength of the assumptions in their
security models. A more targeted approach would be more efficient and not as cumbersome
to deploy and use.

3.1.1 Pre-shared keys and PKI
In addition to utilizing computationally secure encryption and hashing algorithms, the most
secure of the tamper prevention schemes perform trusted key distribution for protected
authentication. The threat in not using authentic keys (i.e., either cryptographically signed
or distributed out-of-band) is that a particularly aggressive middlebox can perform a MITM
attack on the conversation by inserting itself between the two parties’ communications as
keys are negotiated. The MITM could negotiate keys with each endpoint individually and
act as a proxy between them, gaining full read and write access to the conversation. In
this section, we discuss such solutions that provide the strongest levels of security: Internet
Protocol Security (IPsec), TCP MD5, TCP Authentication Option (TCP-AO), and Secure
Sockets Layer (SSL)/TLS.

IPSec
IPsec is a suite of security enhancement protocols that operate on top of the IP layer [64].
Two major components of IPsec are the Encapsulating Security Payload (ESP) [65] and
Authentication Header (AH) [66], which can be applied alone or in combination. Both
technologies guarantee connectionless integrity and data origin authentication of packets
through the use of computationally secure cryptography and digitally signed keys. ESP
additionally can provide payload confidentiality.

Each ESP and AH can operate in one of two possible modes: transport or tunneled. In
transport mode, the corresponding IPsec headers are simply layered in between IP and the
header for whatever transport layer protocol is in use. In tunneled mode, the packet to pro-
tect is encapsulated within a new IP and IPsec packet. ESP only protects itself and the IP
payload, so it can only protect IP header fields when operating in tunneled mode—the use
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of AH would be required to protect the outermost layer of IP header fields. Figure 3.1 illus-
trates what a packet may look like once it has been applied with the AH in both transport
and tunneled modes.

Figure 3.1: Before and after illustrations of the IPsec Authentication Header being applied in
either transport or tunneled mode (after [66])

AH, as shown in Figure 3.2, carries a field known as the integrity check value (ICV) that
is a variable-length field used to hold an integrity check over certain fields from the IP
header, the AH itself, and the IP payload, which contains transport and application layer
content. In order to provide protection coverage for the IP header while not being disrupted
by typical and expected changes to fields such as TTL decrements, the AH specification
defines each IP field as either mutable or immutable. The mutable fields are DSCP, ECN,
flags, fragment offset, TTL, and the checksum. The immutable fields are everything else:
version, Internet header length (IHL), total length, IP identification (IPID), protocol, and
IP addresses. All mutable fields are zeroed out in order to compute the integrity check.

Unfortunately, ease of traversal and key exchange can be debilitating issues when dealing
with IPsec. Regarding traversal, IPsec acts as an additional layer on top of IP (it even has its
own protocol numbers) so all systems along a path must be able to properly support it. Also,
a number of complex and subtle issues arise when trying to traverse increasingly common
NAT gateways [67]. Key exchange issues largely prevent IPsec from being securely applied
to general Internet paths (e.g., between a user at a coffee shop and each of the servers of
websites they may choose to visit). Anonymous clients of a website would have to be able
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Figure 3.2: Fields that de�ne the IPsec Authentication Header (after [66])

to coordinate in advance to share the same key or trust the same set of certification key
signing authorities as the server and to date no such public key infrastructure (PKI) has
been widely standardized.

TCP MD5 Signature Option

Developed as a more end-to-end alternative to IPsec, the TCP MD5 Signature option was
standardized in 1998 [68]. The designers wanted a more lightweight solution that would
not suffer from the same traversal issues as IPsec, but would still be effective at preventing
the arbitrary injection of packets (e.g., TCP RSTs) within a stream. To accomplish this
protection, a 16-byte message authentication codes (MACs) is calculated using the MD5
hashing algorithm [69] and placed in the options space of every TCP packet of a connection,
enabling packet authentication and integrity.

The primary motivation behind this new option was the noticeable increase in IP spoof-
ing attacks in the mid-1990s [70]. In particular, long-lived flows whose sequence numbers
grew beyond the allocated 32-bit space and wrapped back around were at great risk since
it made guessing a valid number much easier. Border Gateway Protocol (BGP) connec-
tions between BGP peering routers are one such scenario with TCP MD5 being the recom-
mended solution [68, 71]. TCP MD5 works for BGP peering routers since the requirement
to manually install pre-shared keys can be coupled with the process of establishing trust
relationships between routers.
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TCP Authentication Option
The TCP MD5 standard later evolved into, and was obsoleted by, the more generalized
TCP-AO described in RFC 5925 [72]. TCP-AO is a new TCP option that enhances the
strength and flexibility of the MACs over that of TCP MD5 by allowing for the use of
stronger algorithms (e.g., AES and SHA [73]). However, TCP-AO still requires that keys
and certain session parameters, such as which MAC algorithm to use and whether TCP op-
tions are covered, be established manually or by an out-of-band mechanism. It is primarily
used for the same purpose as TCP MD5—long-lived BGP connections.

SSL and TLS
SSL, and later TLS, use public key cryptography to authenticate one application to another
and establish a session key for data encryption [74]. It can be used to encrypt traffic from a
variety of applications, but each program that desires encryption must be modified to use it.
Since SSL operates above TCP, it only protects application layer messages and not IP and
TCP packet header fields, meaning that it cannot be used to protect packet headers from
middlebox modifications.

Summary
Tamper prevention schemes that require trusted keys for authentication tend to be cumber-
some and require some type of advanced coordination between servers and clients (i.e.,
key distribution). This requirement makes these mechanisms difficult to use as a general
integrity mechanism that can protect open services with anonymous clients. If the protected
key distribution requirements are relaxed, encryption can be more easily engaged as seen
in the following section.

3.1.2 Opportunistic encryption
Difficulties with key distribution and infrastructure have led to various opportunistic ap-
proaches to encryption. With opportunistic encryption, the authentication requirements are
weakened meaning that establishing an encrypted session is easy, but no guarantee is made
that the session is to the correct party vice some MITM. Figure 3.3 illustrates an example
of a middlebox, Mallory, fooling two endpoints, Alice and Bob, into thinking they have
just exchanged keys with each other. Instead, Alice and Bob each performed a separate
key exchange with Mallory, who now proxies data between the two connections. Note that
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Mallory now has read and write access to Alice and Bob’s otherwise encrypted communica-
tions. We discuss two opportunistic encryption approaches that successfully protect infor-
mation from passive but not active adversaries: IPsec Better-than-nothing-security (BTNS)
and Tcpcrypt.

Figure 3.3: Example of a Di�e-Hellman key exchange between two endpoints, Alice and Bob. A
third system, Mallory, acts as the MITM and intercepts their tra�c (from [75]).

IPsec Better-than-nothing-security
BTNS is an unauthenticated mode of IPsec [76]. BTNS uses self-signed keys to avoid
the step of having to verify identities. Due to its easy vulnerability to MITM attacks,
the authors recommend combining it with a higher-level authentication mechanism that
cooperates with IPsec. An advantage of BTNS is that it is effective against off-path attacks
where the adversary does not hold a MITM position, but instead uses spoofed IP addresses
to attempt to inject packets in the communications. A disadvantage is that BTNS still
comes with all of the traversal issues inherent in IPsec.

Ultimately, even if IPsec could be deployed between anonymous clients using BTNS, it
would still have trouble protecting all packet headers in every situation. For instance, ESP
in transport mode does not protect IP headers at all. In tunneled mode, the IP header that is
encapsulated is protected, but the outer IP header is not. Further, if ESP gets unwrapped at
a gateway—as is common for remote teleworkers using corporate virtual private network
(VPN) clients—all of the packet headers traverse the remainder of the path unprotected.
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ESP in tunneled mode is widely assumed to be the most method of IPsec operation [77],
but no measurement studies were found to confirm this. The claim is sensible, however,
since tunneled-mode ESP has the least issues with traversing NATs, leaving most VPN
solutions to use that approach.

Tcpcrypt
Langley proposes widespread encryption of Internet traffic in order to limit trivial eaves-
dropping on public networks and click stream monitoring by unfriendly ISPs [78]. The
suggested strategy is to fit a Diffie-Hellman exchange into the TCP options space to boot-
strap a session key. The work did not provide an implementation of this suggestion, but
the idea evolved into the extension Tcpcrypt, which has hashed out the particulars behind
putting a key exchange into the TCP options space and has an actively maintained imple-
mented.

Tcpcrypt is an extension to TCP that was released in 2010 to perform opportunistic encryp-
tion of TCP connections [24]. The protocol defines new key exchange primitives called
CRYPT options for the TCP option space that enable encryption keys to be negotiated di-
rectly within TCP. Once a shared session key is negotiated, TCP enters the ENCRYPTING
state where all TCP payload data is encrypted. Also in the ENCRYPTING state, all seg-
ments include a MAC TCP option that authenticates the ciphertext payload along with most
fields from the TCP header. Port numbers are specifically omitted and relative offsets from
the ISNs are used instead of the nominal values. These fields are left unauthenticated since
middleboxes commonly change them and would otherwise cause a packet to fail authenti-
cation and be discarded.

3.1.3 Summary of Tamper Prevention Limitations
Many of these protocols that provide strong security guarantees share a common theme:
strategies that require the network to understand a new protocol or extension exhibit in-
teroperability issues [19]. Tcpcrypt, at least, is incrementally deployable due to its use of
the options space. If an endpoint does not support Tcpcrypt, it simply ignores the option.
A problem with this approach, however, is that options may be dropped or mishandled by
any system in-line. Unfortunately, paths that would mishandle the Tcpcrypt option are pre-
cisely the same paths where TCP needs information about packet header modifications the
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most. In reality, Tcpcrypt is another in a long line of extensions that need to be checked for
correctness rather than it being a viable solution to the problem.

Tamper prevention solutions are also uncooperative with middleboxes that make desirable
changes to packet headers (e.g., IPsec and NAT [67]). Network administrators must still be
able to enforce their corporate policies and, as a result, a solution that leaves packet headers
unencrypted and adjustable when needed would gain much wider acceptance. Implement-
ing a solution that simply adds integrity information to packets rather than complete header
encryption would allow for a higher level of interoperability and acceptance. We maintain
that interoperability with current network devices could be achieved while still being able
to successfully detect modifications and improve performance in the presence of disruptive
middleboxes.

3.2 Avoidance
Recently, the research community has paid significant attention to various means of explic-
itly accommodating middleboxes and thoughtful redesigns of middlebox architectures. The
community is well-aware of network administrators’ increasing reliance on middleboxes in
their networks [79], a market estimated to reach more than $10 billion by 2016 [80]. This
figure alone is evidence that middleboxes are here to stay, and of the value that they provide
to networks and their customers.

An early proposal by Walfish et al. from 2004 introduced a new architecture that gives
all entities globally unique identifiers in a flat namespace while allowing for explicit inter-
mediate packet processing [81]. The idea behind this approach is that sender and receiver
endpoints explicitly delegate their packets to be subject to a middlebox’s services, such
as address translation by a NAT device or filtering for security by a firewall. One major
drawback to the approach is that it assumes a cooperative middlebox delopyement; no mit-
igation is made to stop in-line middleboxes from violating transport and application layer
packet contents. Ultimately, this ambitious proposal was never used by the community, nor
would it have truly addressed the full range of broken middlebox issues end-to-end which
are discussed further in Section 3.2.3.

In the time since, vendors of wide area network (WAN) optimizers have also recognized
the problem of middlebox cooperation in traffic modifications and have begun adding their
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own TCP options. For example, the IETF is currently drafting a new TCP Middlebox
Option, which requests voluntary detection of other middleboxes along a path [82]. The
option only helps specific devices from certain vendors that support it; legacy devices will
not only not support it but will likely strip it as well. The option also has no end-to-end
meaning and is commonly removed from a packet before it reaches its destination.

3.2.1 Software-defined middleboxes
Beginning in 2011, many in the community began to advocate for the application of prin-
ciples from SDN to middlebox architectures [22,83]. SDN is a new and emerging network
architectural design strategy that decouples the intelligence and traffic processing logic
from the physical forwarding components in network devices [84]. The goal of SDN is
to be able to centralize all of the decoupled intelligence components, making them more
easily managed and enabling new open and standardized interfaces to the network con-
trol plane. The advantage of applying SDN to middleboxes is that the centralization can
reduce the sprawl of standalone, non-cohesive middleboxes and unify control over middle-
box operations. Since then, a variety of solutions employing these principles have been
developed [11, 85–88].

xOMB (pronounced “zombie”) [85] is a modular software-defined middlebox architecture
that utilizes commodity hardware and operating systems to implement a middleboxes ser-
vices framework. While debugging the modules is easier than a standalone middlebox,
the framework does not implement any checks for packet modification correctness, so hav-
ing correctly operating and up-to-date xOMB middleboxes still depends on the skill and
attention of the local network administrators.

CoMb [87] is a top-down redesign of middlebox infrastructure that seeks to develop a more
open and extensible middlebox platform that will allow for the consolidation of the mid-
dleboxes on a network, reducing device sprawl. With a minimal performance overhead,
CoMb reduces the number of different devices and different platforms by consolidating
middlebox functionality within a single logical controller that can be more centrally man-
aged. A prototype built using the Click modular router [89] showed benefits to the cost of
provisioning a new middlebox and reducing the maximum load across the network as the
middlebox deployment is adjusted to changing traffic workloads.
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Software-defIned Middlebox PoLicy Enforcement (SIMPLE) [88] is an effort to restruc-
ture middlebox processing within the network. Designed to work within the constraints
of pre-existing middleboxes and SDN interfaces, SIMPLE requires no changes to a net-
work’s current middlebox deployment—only configuration of SDN-enabled switches is
required. SIMPLE uses a controller made up of three key modules (ResMgr, DynHandler,
and RuleGen) to apply a high-level middlebox policy to a network. Middleboxes are treated
as non-adversarial blackboxes and rules for their input-output behaviors are automatically
learned by the controller. The authors achieve close to 95 percent accuracy in matching
original middlebox capability using their protocol-agnostic approach. SIMPLE’s primary
benefits are to deployment flexibility and load-balancing efforts. For example, they were
able to achieve the same maximum load benefits as CoMB without having to modify or
consolidate the middleboxes.

3.2.2 Outsourcing middleboxes
Jingling [86] is a prototype outsourcing architecture where the network forwards data out
to external “Feature Providers” that can dynamically adjust to changing traffic loads. The
feature providers apply equivalent middlebox functionality to the network’s traffic so that
the network can eliminate their own local middleboxes, thereby reducing cost and man-
agement complexity. This technique allows consolidation of middleboxes from multiple
networks under one authority that can, theoretically, do a better job of configuring and
updating the middlebox deployment. The relation to our problem is that Jingling could
help proactively address broken and inadvertent middlebox behaviors, depending on the
administrative dedication of the network’s operator.

APLOMB [11] is a service to outsource certain types of middlebox processing to the cloud
for ease of management. An APLOMB gateway device is installed so that it is logically
co-located with an enterprise’s gateway router and replaces all of that enterprise’s mid-
dleboxes. The APLOMB gateway securely tunnels all applicable traffic out to a selected
datacenter cloud presence where the middlebox processing is applied to the traffic. An
effort is made to reduce the latency and bandwidth inflation penalties involved while still
achieving the equivalent functionality of a traditional middlebox.
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3.2.3 Summary of limitations with SDN approaches

While the schemes presented in this section make it easier to manage middlebox deploy-
ments and keep them up-to-date, they depend on deployment and use. The authors of
SIMPLE note in their review of prior work that most SDN-based middlebox schemes ex-
hibit significant barriers to adoption and lack the necessary incentives for a network op-
erator to overhaul their entire middlebox deployment. Lack of deployment inertia is the
reason the authors tailored the design of SIMPLE to work within the constraints of legacy
middleboxes and existing SDN interfaces—to reduce the impact of adoption and make for
easier deployment.

Even if wider deployment is achieved, there is still no guarantee with any of these schemes
that the problems mentioned in Section 2.2 would be fully eliminated. Each of these
schemes only makes debugging easier by consolidating middleboxes where they can be
more easily managed than traditional standalone middleboxes with closed interfaces. There
is also no way to expose to TCP within the end-to-end environment that it operates how it
should adapt to broken middlebox behaviors in the instances which they still occur. Since
the frameworks themselves do not implement any validation for protocol correctness on
packet modifications, misconfigurations and non-standard behaviors will still be possible.

There is an even more fundamental inhibitor to the efficacy of these schemes in solving
the broken middlebox problem: incentives and (lack of) policy. All of these software-
defined management approaches are confined to single administrative domains—domains
which may or may not have the incentive or policy to convert its middlebox deployment
to a SDN-based approach. Also, the Internet is made up of a large number of these sep-
arate administrative domains; a reasonable analog is somewhere between the number of
autonomous systems making IPv4 and IPv6 address announcements (over 56 thousand as
of May 2014 [90]) and the number of domains observed in DNS (over 168 million as of
Jan 2014 [90]).

Due to the fractured nature of the Internet, TCPs in the wild must still contend with a wide
variety of middleboxes, both the advanced SDN-based ones and the legacy standalone de-
vices. Furthermore, even if many subnetworks began to adopt and implement one or more
of these SDN schemes, we would still be left with a fractured control environment. The
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entire Internet would have to go to a single logical controller to truly ensure that misconfig-
uration and legacy issues could always be addressed. Last, there is the currently unresolved
issue of how to implement a validity checker on top of these modernized software middle-
boxes. No matter the ultimate trajectory of the current SDN middlebox movement, there is
still great value to be had in an end-to-end solution that will work over all paths, particularly
ones with remaining pockets of legacy middlebox deployments.

3.3 Detection
The networking community has paid a great deal of attention to detecting modifications to
packets, but traditionally the assumed cause of modification has been simple transmission
errors. Only recently have middleboxes been considered a source of packet modification.

3.3.1 Simple checksums
Protection against transmission errors was considered during the design of the Internet
protocol suite, and is built into the stack via various link-layer mechanisms and network
and transport layer checksums.

Two of the most commonly used link-layer protocols both employ a cyclic redundancy
check (CRC) to detect corrupted frames: Institute of Electrical and Electronics Engi-
neers (IEEE) 802.3 (Ethernet) [91] and IEEE 802.11 (WiFi) [92]. Also, not only does
the 802.11 protocol family include a check sequence in each frame, but ACK frames are
used to confirm a receiver’s proper receipt of a frame. The absence of one after a certain
period of time is the signal for the other end to retransmit [92]. The extra precautions are
taken with WiFi due to its inherently higher error and loss rates. Ultimately, these checks
can detect modifications on a single link, but they have no end-to-end significance.

The IP, TCP, and UDP protocols all include a checksum as well that is 16-bits in length.
The Internet checksum algorithm that is used is weaker than a CRC, but can be efficiently
implemented with very fast binary operations. The algorithm computes a one’s complement
sum of 16-bit chunks of data that are to be included in the checksum [9]. The IP checksum
only covers the IP header, while the TCP and UDP checksums cover a pseudo-header that
includes some IP header fields, the TCP/UDP header fields, and the packet data.

The IP checksum does not apply well to the solution we seek because it does not cover
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any transport layer fields. Furthermore, IP checksums are not end-to-end as they cover
fields that change in transit such as the TTL field. This fact forces the checksum to be
rewritten at each hop, meaning that errors occurring within those intermediate systems, the
middleboxes that introduce the errors, will not be detected. Even if the IP checksum could
be changed so that it does not cover any mutable fields, it would still not work because
correct checksums are required for packet acceptance and so all middleboxes must, by
necessity, recompute the checksum even if they change an immutable field. Another point
to note is that IPv6, the anticipated eventual replacement for IPv4, does not even include a
checksum.

Transport-layer checksums do have end-to-end significance, but they must be overwritten
any time a middlebox needs to modify a transport layer field. Since a correct checksum is
required for an endpoint to accept a segment, middleboxes must recompute the checksum
anytime they make a change. There is then no way for either endpoint to know whether the
checksum received is the same as the original checksum. There is also no way for a sender
to know if the received checksum was even correct, let alone the same as the original.

Stone and Partridge note this deficiency of a feedback mechanism and suggest the addition
of a new ICMP parameter to alert the sender of a failed checksum [93]. A problem with
this out-of-band method is the reliance on the availability of a secondary communications
channel, ICMP, which is commonly blocked by middleboxes as noted in Section 2.2. Rely-
ing on ICMP may therefore inhibit the ability to communicate integrity, especially on those
networks and paths most likely to modify packets and fail integrity. Furthermore, should
a new ICMP type be defined to carry feedback of a failed checksum, it could take a long
time before networks begin to permit it (e.g., some networks filter different types of ICMP
messages at the firewall).

Another problem with checksums in general is the lack of granularity down to individual
header fields. All of the checksums discussed in this section only provide a binary answer
as to whether the header as a whole has been modified. A change in any single field will
cause the whole checksum to fail to match, which will not give a TCP the full information
it needs to reason about the correctness of a path.
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3.3.2 Application layer approaches

Several approaches also exist at the application layer: Switzerland [94] by the Electronic
Frontier Foundation (EFF), Netalyzr [12] by the International Computer Science Insti-
tute (ICSI), and the “Echo Mode” in nping by the makers of the popular network re-
connaissance tool nmap [95]. All of these tools have some ability to check if packets are
being altered by middleboxes.

Switzerland was primarily developed as a network neutrality analysis tool to detect when
internet service providers (ISPs) were interfering with traffic. The tool is marketed by the
EFF as software to “test your ISP.” Switzerland works by having a pair of communicating
end hosts run software that compares packets sent against packets received at the other end
by cataloging mini-hashes on a third-party server. This approach can be used to detect
in-network modifications to network packets, and even ones that have been completely
forged and injected by an ISP. Unfortunately, the software is not very widely used, and
usually only installed when users notice something wrong. It is not integrated into TCP,
both parties must be running the Switzerland client, and the service requires availability of
a third-party server.

Netalyzr is a Java-based applet that performs a multitude of checks between the Java client
and a set of back-end servers to aid in network diagnostics. The tool can only spot traffic
modifications if they occur on paths between the client host and one of the maintainers’
back-end servers. Another limitation is that the Java security restrictions severely limit the
lower-level networking tasks that can be performed. For example, the maintainers of the
tool cannot view sent or received TCP sequence numbers at the client within the limits of
their implementation. As a result, it is largely used to test a connection for more high-level
types of ISP interference such as for the injection of forged web content.

The nping tool is a much more flexible and powerful version of the typical ping tool found
in most operating systems. It has the ability to send packets of many different protocols and
offers the user a variety of customization options. nping was originally designed to revive
the venerable but no longer maintained packet generation and analysis tool hping [96],
which has not been updated since 2005. One of the many enhancements added in nping
is its Echo Mode.
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Echo Mode functions similarly to Switzerland, but without the third party server. Two
cooperating endpoints run the nping software in “Echo Server” and “Echo Client” modes,
respectively. When the two endpoints want to test a path, the client connects to the server
and performs an application-layer handshake in its own Echo Protocol to let the server know
it needs to start listening for the packets that are to be examined and echoed. Essentially,
a raw socket or other packet capturing device is spawned by the server to capture the next
packet from the Echo Client along all of that packet’s headers. The packet is echoed back
to the client where comparisons and analysis take place. Any number of sends and echoes
can then occur until the session is closed.

A key limiting factor to all of these options is that both ends of a connection must be run-
ning the program, which leads to low rates of adoption. This also means that only certain
paths, such as the one between a host and the tool’s servers, can be tested for modifications.
We believe that by extending down into the network stack, a TCP-based technique could
lead to more pervasive adoption and the ability to test for modifications with any system
on the Internet or application running on that system. The provision of such automatic and
continuous debugging information would also have a large impact on the Internet measure-
ment community, as any application running on any Internet host could be considered a
cooperating endpoint for testing.

3.3.3 Tracebox
Tracebox [39] is a tool that can detect in-path packet header modifications under certain
conditions. It is described as an extension to traceroute [37,97] that works by sending
TTL-limited TCP probes and examining ICMP quotations from the ICMP TTL-exceeded
messages that come back when the packet expires.

A simplified example of a Tracebox probing session is shown in Figure 3.4. The source
system executes the probes by sending packets with increasingly larger TTL values, starting
from a TTL of one hop. If the packet has passed through any middleboxes that have made
modifications to that packet’s headers, it will show up in the quote within the ICMP TTL-
exceeded message. This situation occurs in our example when the packet transits through
the middlebox along the path between hops B and C. Now, when the source receives the
TTL-exceeded message from Router C, the quote will reveal that a middlebox is altering
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the IPID values from 123 to 456.

A critical issue omitted by this example is the differences in which portions of the original
packet are quoted by a router when that packet’s TTL expires. The RFC that defines the
ICMP protocol says that TTL-exceeded messages must include a quote of the IP header
and the first eight bytes of the IP payload of the packet when it expired [36] (28 bytes in
total, assuming no IP options). The purpose behind quoting the first eight bytes is so that
ICMP messages could be matched back to their applicable process on an endpoint. A side
effect is that it allows the sender of the TTL-limited packet to obtain feedback on the state
of that packet’s IP headers along a path. For TCP segments, however, these routers would
only give visibility into the ports and sequence number since only the first eight bytes of the
IP payload are quoted. This restriction makes it impossible to spot changes to other fields
of the TCP header, and in particular the TCP options space (which is important because of
our desire to protect the extensibility of TCP).

The creators of Tracebox noticed that RFC 1812 [98] recommends a new quoting behavior
for ICMP TTL-exceeded messages. The new recommended behavior is to quote as much
of the expired IP packet as possible back to the sender. Routers adhering to the newer RFC
allow the sender to observe the full packet headers of each TTL-exceeded message and
find differences from how the packet looked at origination. The authors found that many
newer routers actually implement this RFC 1812 behavior and wrote Tracebox as a means
of automating the probing and differencing of the IP and TCP headers.

The benefits of the methodology used by Tracebox are that information is learned not only
about what fields were changed, but also the new values of the fields and where along
the path the change occurred. Determining which hop along a path is responsible for a
modification is going to be difficult for any purely end-to-end-centric strategy. There are
also fewer restrictions on which types of packets can be checked; use of the tool is not
limited to SYN packets as any packet can have its TTL artificially lowered by the sender.
The benefit of Tracebox is likely to increase as so-called “full-quote” routers (i.e., routers
that follow the quoting behavior recommended by RFC 1812) are becoming more and more
common on the Internet. In May 2005, Malone and Luckie measured ICMP quote lengths
from over 84,000 webservers and found that almost 11 percent of quoters returned the full
IP packet [99]. In April 2013, the Tracebox authors measured paths to the Alexa top 5,000
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Figure 3.4: Detecting modi�cations with Tracebox

websites from 72 PlanetLab nodes and found that 80 percent of the 360,000 paths contained
at least one full-quote router.

While Tracebox is useful, it does have certain limitations. For one, Tracebox assumes a
completely cooperative environment:

• routers have to be trusted to properly quote the packet
• middleboxes and routers must be trusted to not tamper with quotes in other ICMP

TTL-exceeded messages being forwarded through them
• policy restrictions have to allow the ICMP messages to make it back to the sender

As seen with PMTUD, neither an open policy for ICMP nor even being properly configured
to forward ICMP can be taken for granted [43, 44]. Furthermore, if a client is stuck using
an unfriendly ISP, it is trivial for that provider to limit the effectiveness of the technique
or induce false readings. The quotes are even subject to misconfigurations themselves [99,
100]. Other issues include:
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• lack of visibility to changes occurring in the penultimate hop (because the final hop
does not expire and quote the packet)
• a reduction in location accuracy as fewer hops along the path provide full-length

quotes
• only forward path modifications are revealed, yet TCP is bidirectional
• requires hop-by-hop iterative querying to most closely approximate full end-to-end

information

3.3.4 Summary of Limitations
A common issue among detection-based techniques is that they do not work with TCP
so that it would be able to dynamically adapt to middlebox behaviors. Checksums are
recognized by TCP, but do not provide the type of information we need. Application-layer
or out-of-band solutions are not integrated with TCP and do not have a way to provide
the information to TCP. Furthermore, any attempt to integrate them with TCP would only
result in a partial solution: the reliance on availability of an application or out-of-band
mechanism severely restricts the number of paths for which TCP would have the additional
information. In order to be fully cooperative with middleboxes, TCP must have information
about changes to packet headers so that it can reason about protocol correctness on its own
and adjust its behavior to best match the header modification conditions along a path.

3.4 Advancing the State-of-the-Art
In order to solve our problem as described in Section 1.2, we propose the development
of an in-band TCP-based integrity check to detect packet header modifications that occur
along a path. The detection solution should endow a pair of endpoints with the ability
for each to determine whether their packet headers were modified in transit. Our solution
should be incrementally deployable and require no support from transit devices to ensure
interoperability.

Through this work, we aim to address an important class of problems due to misconfigured,
non-standards conforming, or legacy in-path network elements and endow endpoints with
the necessary awareness so they can take some appropriate action, such as disabling an
incompatible option or extension.
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3.4.1 Security model
In our security model, we operate under the assumption that in-path network elements
are not actively malicious. In other words, we shall make no guarantees of protection
from strong adversaries and the range of attacks they pose (e.g., man-in-the-middle attacks,
cryptanalysis, or side-channel attacks). We also do not strive to provide the endpoints
with a means of confidentiality from these devices. Not only would the provision of these
guarantees further constrain our solution space, but, as stated in Section 3.1.3, would make
our solution less cooperative with properly functioning middleboxes and hurt our likelihood
of achieving wide deployment and acceptance within the community.

Therefore, we assume the presence of an inadvertent adversary, a network element some-
where along a path that is not actively malicious but is inadvertently corrupting critical
packet semantics. By using this adversarial model, we hope to achieve more desirable
interoperability properties in our solution, namely greater flexibility and incremental de-
ployability. As shown in Section 3.1, traits such as these are typically sacrificed when
strong cryptography is used. Striking a balance here is often difficult, but we believe our
tailored security model will allow our solution to excel in this problem space. Even though
our tailored security model does not protect against the powerful list of adversarial middle-
box capabilities, we still provide value in the solution space because the issue we are trying
to solve is only the detection of inadvertently broken middlebox behaviors (e.g., one’s cor-
porate network firewall may be misconfigured but there is no strong reason to treat it as an
adversary that performs the actions in the list from Section 3.1 for malicious gain).

3.5 Design Requirements
The preceding survey of the solution space and the current state-of-the-art, reveals many
limitations with existing middlebox integrity approaches that we hope to overcome in our
design. In order to capture these limitations and highlight our unique approach, we define
the following set of design requirements:

• In-band: The solution should not require an additional communications channel
over the original traffic. Many paths block out-of-band traffic (e.g., ICMP) or treat
it differently. By having both the detection and feedback mechanisms in-band, we
hope to maximize the detection rate.
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• Minimal overhead: The design should be efficient and lightweight, resulting in a
limited amount of overhead in terms of computation, communication, and RTTs.
• Symmetric feedback: It is important that hosts at each end of a connection know

whether and how their packets were modified in flight.
• Incrementally deployable: The solution should be incrementally deployable and

not require updates to in-network elements. The design should also not interfere
with end hosts that have not yet been upgraded (i.e., if a connection completes when
neither end is using our solution, it should still do so if either or both ends are using
our solution).
• Improves TCP: The design should endow endpoints with the necessary awareness

so that they can take some appropriate action, such as disabling a non-compatible
option or extension in order to improve performance. To maximize utility, it should
be easily integrated into host protocol stacks.
• Middlebox cooperative: The solution should not impede properly functioning mid-

dleboxes from making expected and desired changes to packet headers. It should
also not be blocked or stop working in the presence of broken middleboxes.
• End-to-end: Paths exhibiting modifications are often the same paths most likely to

block or strip any new diagnostic functionality. The diagnostic should be properly
communicated end-to-end.
• Granular: Endpoints should be able to determine which packet header fields were

changed.
• Secure: The solution should not also enable any new attacks on a system such as

amplification, spoofing, or flooding.

One key to developing a novel solution that improves upon those currently available is the
fresh point-of-view provided by our security model. Much of the prior network research has
focused on the edges of the spectrum: protecting integrity from either transmission errors
(Section 3.3.1) or from strong adversaries (Section 3.1). When operating under the model
of the inadvertent adversary, the solutions developed by those works are either too weak
to be useful or make too many sacrifices in pursuit of strong cryptographic assurances.
Our approach admits new possible solutions that have the advantage of interoperability
with current devices, while still being able to reliably detect common middlebox-induced
modifications.
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3.6 Comparison with Solution Space
Before detailing our methodology, we place our solution in the context of the integrity
and middlebox cooperation schemes described in Sections 3.1–3.3. Table 3.2 informally
evaluates the degree to which these relevant prior works meet the corresponding design ob-
jectives outlined in Section 3.5. Checksums are featured in the table due to their widespread
use within the current protocols. The other three items in the table were chosen as the best
exemplar from each of the three groupings under which we categorized the solutions space.

Scheme In-band Minimal
overhead

Symm.
feedback

Incrm.
depl.

Impr.
TCP

Mdl.
coop.

End-
to-end

Granu-
lar

Checksums
Tcpcrypt
Tracebox
SIMPLE
HICCUPS

Table 3.2: Summary of Related Work

In Table 3.2, Harvey Balls [101] are used to represent the degree to which each integrity or
middlebox cooperation scheme meets each of our design criteria. A full ball, , means the
scheme fully met that criterion. An empty ball, , means that the scheme failed to meet
that criterion. Other levels imply partial meeting of the criterion with possible caveats.
Figure 3.5 presents the same information using graphical overlays. The following lists
explain our informal reasoning behind each quantification:

Checksums:

• In-band: They are carried within both TCP and IP.
• Minimal overhead: The algorithm is lightweight, and only requires extra transmis-

sions when it fails to match.
• Symmetric feedback: There is no feedback mechanism.
• Incrementally deployable: They are already deployed and boxes understand them.
• Improves TCP: Does not help improve TCP under the presence of disruptive packet

header modifications.
• Middlebox cooperative: Middleboxes can make any changes as long as they recom-

pute the checksum.
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Figure 3.5: Visual representation of properties of related work. This �gure depicts the same
information as Table 3.2, and is included only to provide an additional means of perspective
about the solution space.

• End-to-end: Must be overwritten if any packet header modifications are made.
• Granular: No granularity to individual fields.

Tcpcrypt:

• In-band: Operates fully within TCP.
• Minimal overhead: Encrypts opportunistically but uses strong cryptography and

uses a large portion of the options space.
• Symmetric feedback: Communicates through TCP options, but fails to give status

in certain situations.
• Incrementally deployable: Hosts that do not understand tcpcrypt just ignore the

option, but ossified network architecture must allow transmission of new TCP option
type.
• Improves TCP: Prevents changes, but cannot help two endpoints optimize parame-

ters for a disruptive path.
• Middlebox cooperative: Middleboxes cannot change packet headers once the con-
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nection is encrypted.
• End-to-end: Will not work on all paths because it is susceptible to having its options

stripped.
• Granular: No granularity to individual header fields.

Tracebox:

• In-band: Relies heavily on ICMP messages.
• Minimal overhead: Requires successively fractional RTTs similar to traceroute.
• Symmetric feedback: Host being probed does not learn any information.
• Incrementally deployable: To function, routers need to support RFC 1812-style

packet quoting.
• Improves TCP: Does not give any information to the TCP stack.
• Middlebox cooperative: Middleboxes can still make any changes, but only checks

one path.
• End-to-end: Cannot determine modifications made by penultimate hop.
• Granular: Gives granularity when router quotes full length of headers.

SIMPLE:

• In-band: Requires SDN infrastructure along the path in question, which may span
multiple providers and networks.
• Minimal overhead: Requires testing for correctness of protocol behavior.
• Symmetric feedback: Information is retained by the network operator.
• Incrementally deployable: All middleboxes along a path must be upgraded in order

to realize benefits.
• Improves TCP: Correctness-testing in the SIMPLE architecture would help avoid

problems.
• Middlebox cooperative: Uses dynamic learning module to work with any middle-

boxes.
• End-to-end: Has no effect on middleboxes outside the owner’s administrative do-

main.
• Granular: Learns individual field modifications.
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TCP HICCUPS:

• In-band: Tests TCP and operates completely with TCP.
• Minimal overhead: Does not use computationally expensive cryptography.
• Symmetric feedback: Each endpoint receives information about the path.
• Incrementally deployable: Uses no new options or redefined field semantics that

would confuse inflexible middleboxes.
• Improves TCP: Can check protocol extensions for correctness and inform TCP.
• Middlebox cooperative: Permits middleboxes to continue normal and expected op-

eration, but now endpoint TCP are informed of any packet header changes.
• End-to-end: Works on paths that do not modify two of: IPID, ISN, and TCP receive

window. Detects any changes that happen anywhere along the path.
• Granular: Uses coverage sets to learn individual field modifications.

In the context of these existing and proposed integrity and middlebox cooperation schemes,
we endeavor to demonstrate in the following chapters that our design meets our design
criteria and represents a unique point in the design space.
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CHAPTER 4:

Methods for transmitting integrity

Strive not to be a success, but rather to be of value.

Albert Einstein

In order to endow endpoints with the power to detect in-path modifications to their traffic,
we must first address the fundamental design decision of how to communicate an integrity
check of the packet header fields and any related status information. This chapter exam-
ines various methods for transmitting integrity information and analyzes the implications
involved with using each method. After targeting in-band TCP for our integrity transmis-
sions, we examine issues and precedent for using various TCP header fields.

4.1 Integrity Properties
To implement an integrity check over the TCP and IP packet headers, based integrity check,
the two systems communicating in a TCP session need to transmit to each other a represen-
tation of the packet header states as each side sees them. To achieve symmetric notification,
they must then be able to compare the state representation as they see it upon receipt with
the representation seen by the sender. A primary issue will be to find which fields can be
used to carry the integrity check.

4.2 Protocol Layer Overview
The available methods for transmitting integrity are constrained by the current use of pro-
tocols in the TCP/IP suite, per our interoperability design requirement. Based on our ex-
amination of related work in Chapter 3, protocols from the network layer or above could
potentially be used to address detection of in-path packet header modifications. This leaves
our range of practical choices with one, or some combination, of: IP, ICMP, UDP, TCP,
or an application layer protocol.

Figure 4.1 illustrates the relationships in choosing between each of the protocols to use for
integrity transmission. As we go higher up the stack, we achieve better end-to-end prop-
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erties (i.e., less interference from middleboxes), but we also decrease in breadth and scope
of what types of modifications we can detect. For example, using a separate application
protocol may cause us to miss modifications made just to web traffic on port 80. There is
also the risk of availability of feedback when any out-of-band protocols are used. In other
words, if the modification we would like to detect happen against the TCP header, rely-
ing on another protocol (e.g., ICMP) for feedback introduces another variable and another
communications channel that may not always be available. More details are included in the
sections that follow.

4.3 Application layer
An application layer methodology is the least restrictive and least intrusive to implement
and use. Since any application protocol can transit a TCP/IP network1, we are not lim-
ited by the size restrictions of operating within the headers of a pre-defined protocol such
as TCP. Not being limited in data capacity could allow the use cryptographically-strong
hashing functions and echo entire packets while encrypting them for added protection to
facilitate easy and reliable comparison. This methodology is what is currently done by
nping and Switzerland as described in Section 3.3.2.

There are many opportunities at the application-layer to take advantage of these freedoms
and create a new and ideal design, but a critical impediment is the ability to test what
we want to test and the low rates of adoption. Each of these issues is easily seen in the
discussion of nping, Switzerland, and Netalyzr as covered in Section 3.3.2. Ultimately,
we desire a technique that can become a natural extension to one of the lower-layer pro-
tocols and gain widespread use. Furthermore, we do not want to confine the benefits of
inferring path knowledge to a particular application, but rather make them available to all
applications. Problematic middleboxes can be found on a multitude of paths within the
Internet and in order to properly address the issue, users need a solution that works on a
path whether or not their destination is running a specific application layer server program.

1speaking ideally, of course—in reality there are a number of exceptions with protocol-aware application
layer proxies or gateways [12, 102]
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Figure 4.1: Trade-o�s to balance when choosing a protocol for our design

4.4 ICMP
Upon initial observation, ICMP is a natural vehicle for the integrity information we need
to communicate. The protocol itself is designed to facilitate diagnostics and transmit error
and control information about IP packets [36]. In giving initial consideration to using new
types of ICMP packets to carry integrity, we generated the following scheme ideas:

ICMP trigger
When a sender is concerned about tampering by a middlebox, the system sends an ICMP
message to the destination host to trigger an echo. After receipt of the trigger, the destina-
tion echoes back the next packet that it receives from that source host. When the sender
receives the echoed packet, a one-to-one comparison can be performed between the two
versions of the packet. Since this scheme requires the receiver to maintain state, a thorough
security analysis would be required before choosing this method.

ICMP error
As an extension to one of the pre-existing tamper detection solutions from Section 3.3, add
a feedback component that echoes any packets back to the sender that fail integrity checks.

ICMP hybrid 1
The same as the “ICMP error” method, but only echo the failed packet if an ICMP trigger
message has been received from the source. This scheme would likely cause confusion
between the cases where the trigger was never received or a packet was just not modified.
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ICMP hybrid 2

The same as “ICMP error”, but only include the byte offset where the error occurred in the
original ICMP error notice. Then, listen for a trigger message from the source to see if that
system wants the full packet echoed back.

An issue shared by all of these approaches is that they all require the availability of an out-
of-band mechanism. Given the issues with PMTUD previously discussed in Section 2.1.2,
we would expect to encounter a sizable portion of paths where our ICMP messages would
be blocked. Therefore, the number of paths that support detection with ICMP would be a
subset of the in-transport results. Since our targets for detection are paths that experience
issues due to misconfigured and non-standard middleboxes, it is disadvantageous to rely
on ICMP since the likelihood of missing results on these problematic paths is increased.
While most would likely agree with the notion that getting feedback sometimes is better
than never getting feedback, the very same times one gets nothing are precisely the times
when feedback would be the most useful and desired. As a result, we determine there is
no additional benefit to ICMP over an in-band method with respect to having widespread
ability to test paths.

4.5 TCP/IP
A benefit of working within TCP and IP is that TCP is also the packet header that contains
the vast majority of the fields we would like to examine for in-path modification (e.g., based
on our analysis in Chapter 2). Operating within TCP and IP would mean that integrity
transmissions could occur in-band. The result is that if a TCP port is open and a connection
taking place, we should be able to successfully transmit our integrity bits since we would
have access to a readily available communications channel.

After deciding to leverage TCP, the next question is how to do so. As mentioned in Sec-
tion 2.1, both TCP and IP each contain a number of fixed-length fields and up to 40 bytes
in the options block. The fixed-length fields all have currently defined semantics associated
with them, with the options space being somewhat more flexible. The options space is a
natural field to be used by extensions, but it also has issues that we will expand upon in the
following section.
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4.6 TCP/IP Options

An examination of previously proposed protocol extensions suggests places to avoid as
well as many opportunities. The obvious place to begin looking for space in the headers
is the options fields. The consensus here is mixed. While TCP options may be acceptable
and commonly used, IP options, as Fonseca et al. put it, are “not an option” [18]. This is
due to IP options not being well supported in the Internet. Many devices aim to minimize
processing time when routing and forwarding IP packets by ignoring or stripping IP options
and only examine the first twenty bytes of the header. Even in cases where IP options are
processed, they have to be done so on what is commonly referred to as the “slow path.”

TCP options, in contrast, tend to have much more flexibility, do not impose a packet for-
warding performance penalty, and carry with them fewer traversal issues. Prior measure-
ment studies found that TCP options, even non-standard ones, are often (but not always)
maintained by middleboxes during transit—Honda et al. found that in the worst case, 80
percent of paths maintained unknown options [19] for both SYN and data packets. Use of
the options are common; the two TCP-based security schemes described in Section 3.1 use
their own non-standard TCP options for extra space to carry key exchanges and integrity
values. With that fact in mind, a couple of alternatives could exist using TCP options.

One alternative could be to allow for the sender of any TCP packet to include an echo
trigger within the TCP options of that packet. Upon receipt of a packet with the trigger in
the options, an ACK message would be generated for that packet with a quote of as much
of the headers as possible in the options of the ACK message. Such a mechanism would
allow the sender to perform a comparison of the two versions of the headers, however some
type of compression strategy may be needed since there would be more headers than could
fit within the remaining space for TCP options.

A second, more practical, alternative would be to create a hash of the packet headers and
include that within the options. Each end of the connection could include a hash with each
packet they send and perhaps some status information to try to determine specifically which
fields were modified. Unfortunately, while this idea sounds both sensible and practical, it
encounters the same issue as the ICMP-based methods: instances of broken middlebox
behaviors would make feedback unavailable in precisely the same times it is most desired.

57



Even if the majority of paths maintain unknown options, it still only takes a small fraction
of paths that remove or modify the options in order to prevent or demotivate a new protocol
from being deployed. In addition to problems with options being stripped, the space for
them is becoming overcrowded. Ramaiah takes note of the various proposed extensions
competing for TCP option space and finds that the originally designated 40 bytes of op-
tions are no longer able to meet current demands [35]. When the various proposals are
considered, the options space is already overused while demand continues to grow.

4.7 TCP/IP Fixed-length Fields
Returning to the fixed-length fields, opportunities for transmitting an integrity value exist
if it can be placed in a field that is re-purposed from its current use today, or overloaded

onto a field that has a loose set of constraints on its values. For example, if a field is used
to transmit any non-specific number (e.g., IPID), then we can replace it with an integrity
value we constructed and no set of rules would exist that middleboxes could use to block
our integrity. Re-purposing a field is a delicate task and would require great care to ensure
middlebox compatibility. We next examine a variety of specific possible uses within the
fixed-length fields.

4.7.1 URG pointer
Some of the workarounds described by Ramaiah [35] suggest more possibilities such as
re-purposing of the TCP urgent pointer. The work suggests that use of the urgent pointer
field has largely declined, but re-purposing it is likely suboptimal for our needs given that it
has prior semantics attached to it, and re-purposing it may cause odd behavior with legacy
devices – exactly those we wish to interoperate with cleanly. We note this possibility so
that the assumption can be examined in later work.

4.7.2 Offset checksums
Another workaround suggested in the work by Ramaiah [35] is the interesting notion of a
type of deliberately incorrect checksum—here termed “offset checksums.” The idea is to
send multiple segments covering the same sequence number space, with all but one copy
having an incorrect checksum by design. The additional segments will be dropped by a
traditional TCP due to the incorrect checksums, but could give special meaning to the addi-
tional packets in a revised TCP. This solution has nice interoperability properties because
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any receiver that does not understand the messages will just think they are corrupt and
gracefully drop them. Downsides to this option include the excess bandwidth consumed,
and the fact that this type of behavior may likely trigger intrusion detection system (IDS)
alerts. This idea also relies on the proper behavior of endpoints and in-network elements
with respect to bad checksums—that they will gracefully ignore them instead of dropping
them early or worse, fixing the checksums.

4.7.3 TTL
Generally, the uppermost one or two bits from the TTL IP packet header field could rea-
sonably be expected to be maintained across a path traversing the Internet. The field is
eight bits long, meaning that a packet sent with the maximum TTL value would be able to
transit 255 hops before expiring. This value is often more than enough needed to reach the
destination, and router decrements would only likely occur up to the third most significant
bit (63 hops). It is unclear though whether these expectations would hold in the future or
even in all cases today. The best approach here would be to act conservatively and wait
until after a session has been established and we observe the incoming TTL to approximate
the path length.

4.7.4 Flow control window
As described in Section 2.1.3, the flow control window should have a specific setting based
on system resource availability and an estimate of a path’s capacity—the product of end-
to-end bandwidth and delay [47]. In general, this field cannot be overloaded but we note
that its latest value is updated with every single TCP packet sent in the connection. If we
overload the window on a single packet, for instance, the SYN packet, it will be updated
with the next ACK or data packet, replacing our overloaded value with the true value de-
sired by the host. As a result, we can consider reusing the initial flow control window field
for transmitting some bits.

4.7.5 IPID
Another area of promise are fields that are expected to be able to hold any random number.
There are two such fields in the IP and TCP headers: the IPID and the ISNs, respectively.
The IPID field is a 16-bit field in the IP header that, in the event of fragmentation, is used
to differentiate fragments of one packet from another [31]. It does not matter what the
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value is as long as it is unique to each packet when fragmentation occurs. When there is no
fragmentation, the value of the field is of no use since reassembly is not required. Despite
this, all IP packets, regardless of whether they are fragmented or not, carry an IPID in their
fixed-length headers.

The IPID field is particularly safe to re-purpose when another field in the IP header is
enabled: the DF flag. The DF flag tells downstream devices along a packet’s path that
fragmentation of that packet is “NOT permitted” [31]. In other words, when the DF flag is
enabled, IPID has no direct purpose and can safely be reused, even if multiple packets have
the same identification value. RFC 6864 [103] defines such packets as atomic, meaning
they have not yet been fragmented and any in-network fragmentation is prohibited. The
conditions for an atomic packet are defined in Equation (4.1).

(DF = 1)∧ (MF = 0)∧ ( f rag_o f f set = 0)→ atomic (4.1)

When a packet has been marked as an atomic packet, RFC 6864 allows for reuse of the
IPID field. Specifically, the RFC states that “originating sources MAY set the IPv4 ID field
of atomic datagrams to any value” [103]. As an example that IPID reuse is viable, note that
the IETF is currently discussing a proposal by Briscoe that would redefine semantics for
the IPID field on atomic packets that also have the reserved bit set [34].

We were able to initially verify the notion that fragmentation is uncommon in today’s In-
ternet by examining a 30 minute Internet backbone capture provided by the Cooperative
Association for Internet Data Analysis (CAIDA) [104]. The capture was taken from direc-
tion A of the 10 Gbps equinix-sanjose link on 18 April 2012 from 1300 to 1330 UTC. We
found that of the over 900 million packets in the trace, 99.99 percent were IPv4 packets
and only 0.14 percent of those were fragments of some kind. These results are encouraging
for reuse of the IPID field since such little fragmentation occurred and the vast majority
of packets, about 91 percent, were atomic (i.e., the DF flag was set). While our analysis
is limited to a small window of time on one link, it is a large Internet vantage point and
provides a general idea of what to expect when examining IPID use in greater depth.
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4.7.6 Initial sequence numbers
Another field that can be overloaded is the TCP ISN. While sequence numbers are impor-
tant for reliable stream reassembly, the initial value used in a connection is not critical to
the process. As a result, ISNs provide a single opportunity for each endpoint to send 32
bits of information to the other at the time a connection is opened.

However, one area where the ISN value is critical is in how it affects the predictability of
the stream. As long as the ISN retains a sufficient amount of unpredictability to prevent
spoofing and injection attacks, hosts can choose any number they would like as the first
sequence number of a connection.

One final concern is to maintain compatibility with features that currently overload the
value of an ISN. The only widely used scheme that does this is SYN cookies [105]. SYN
cookies are used to mitigate half-open connection flooding where an attacker sends as many
SYN packets as possible, forcing a server to open sockets for the application listening on
that port, allocating a block of memory for each. SYN cookies allow the server to encode a
cryptographic secret in the ISN it chooses for the SYN/ACK and safely allocate state once
the remote TCP completes the 3WHS with the final ACK. A limitation of SYN cookies
is that the limited space does not allow for the server to remember many of the options
included with the original SYN packet. Due to this limitation, the Linux kernel does not
use them for all connections, only resorting to them when it believes it is under a SYN
flooding attack [106]. In overloading the ISN, we can maintain compatibility with SYN
cookies by simply continuing to employ this logic.

4.7.7 Summary
While overloading and attempting to reuse the fixed-length fields in the TCP and IP headers
limits us to a small transmission capacity for our information, they yield many other nice
properties:

• good interoperability with middleboxes
• easy testing due to tight integration into TCP
• no additional RTTs or bandwidth consumed
• easy symmetric feedback since the concept of a connection is already well-defined

61



Table 4.1 summarizes our exploration of the fixed-length fields and presents our findings
with respect to how many bits are available for reuse, whether they can be reused through-
out the connection, and how many issues we anticipate in using them. We represent the
final item qualitatively using Harvey Balls as in Table 3.2.

Field Name Total
bits

Reusable
bits

Throughout
Connection

Anticipated
reuse safety

TCP urgent pointer 16 16 Yes
IP TTL 8 1–2 Yes
TCP flow control window 16 16 No
IP identification 16 16 Yes
TCP initial sequence number 32 32 (less

randomness)
No

Table 4.1: Summary of �xed-length TCP/IP �elds that can support overloading or re-purposing

4.8 Possibilities from Network Steganography
We find it may also be of use to more closely examine the field of network steganography.
The goal of network steganography is to locate covert channels within the protocol headers
or timing mechanisms to transmit hidden data. Usually these steganographic techniques
are developed under the assumption that two end hosts and their network stacks are in col-
lusion and discretely pass data between each other without systems in-between noticing or
modifying their data. It is an interesting connection to our work because the goal somewhat
parallels our own. We wish to pass the integrity check data through a side channel as well,
but do not necessarily bear the requirement that it be covert even though it might be useful
to prevent middleboxes from touching it.

An examination of some steganography literature validates our field ideas. Cole uses the
IPID field as well as ISNs to pass data [107], Bennet makes use of deliberately erroneous
checksums [108], and Luo et al. encode hidden data by partially acknowledging smaller
pieces of data at a time and having the other end track the amount of bytes acknowledged
with each response [109].

While there may be overlap in field usage ideas between our work and that of network
steganography, we emphasize that our goals are fundamentally different. We aim to locate
fields that will be most compatible with middleboxes. We are not trying to evade detection
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or design covert communication channels. Our intent is for the HICCUPS protocols and
integrity computation algorithms to be publicly documented.

4.9 Summary
In this chapter, we examined a number of approaches to find a best fit integrity transmission
channel for our design. Selection of the right method is critical for meeting the architectural
requirements we listed in Section 3.5. Were we to fail to fully consider all implications
involved with each choice, we could subject our method to the same limitations as the
other approaches in the solution space we describe in Chapter 3.

After surveying the space of possible transmission channels, we design a novel approach
to packet integrity and feedback using fixed-length fields from the TCP and IP headers,
known as HICCUPS. Our design for HICCUPS is described in-depth in the next chapter.
For completeness and documentation for perpetuity, we also include descriptions of other
viable methods we designed, but chose not to implement, in Appendix 9.2.
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CHAPTER 5:

Transmitting Integrity with HICCUPS

Information is the resolution of uncertainty

Claude Shannon

Following the discussion of the transmission methods explored in Chapter 4, this chapter
describes our solution to detect broken middlebox behaviors, TCP HICCUPS. Section 5.1
gives the high-level intuition of our design along with forward pointers to the most salient
features of HICCUPS. The intuition of HICCUPS is simple: we overload existing packet
header fields (Section 5.2) in the TCP 3WHS to encode bidirectional integrity checks (Sec-
tion 5.3). The integrity checks can cover different header fields, allowing a HICCUPS-
enabled host to infer which fields of its packets were modified (Section 5.5) enroute to a
particular destination. By intelligently querying for different field sets, the field coverage
flexibility enables an efficient process by which complete path knowledge of all packet
header modifications can be inferred (Section 5.6).

As a real-world instantiation of our architectural design requirements outlined in Sec-
tion 3.5, we develop the Handshake-based Integrity Check of Critical Underlying Protocol
Semantics (HICCUPS), an enhancement to TCP. HICCUPS can assist a TCP in determin-
ing the most appropriate set of end-to-end parameters that best fit the middleboxes present
on a given path. In particular, HICCUPS would allow a TCP to reason about how the
options and extensions it employs are interpreted by a remote endpoint, and subsequently
make inferences about when it is safe to make use of new extensions.

HICCUPS benefits TCP in two primary ways:

1. Equips TCP with the capability to infer the state of end-to-end packet header mod-
ifications on a bidirectional path, similar in a sense to how TCP currently infers
the end-to-end congestion state of a path. Having full availability of such critical
path information would allow TCP to more safely increase the use of performance-
enhancing extensions relative to ultra conservative approaches where new extensions
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are disabled by default or left to run in “server-mode” à la ECN as deployed and
configured in modern operating systems2.

2. Provides early warning of potential middlebox-induced issues with an extension that
is enabled by default. TCP could proactively disable or ignore the extension to im-
prove performance over the case where a path is incompatible with the extension.

Our solution helps enable these performance benefits by monitoring the state of packet
headers through an in-path integrity exchange, essentially creating a lightweight tamper-

evident seal across the headers. The results of the exchange allow end hosts to work within
the current path conditions to tailor the set of extensions they use to the middleboxes in the
path between them. When a broken or misbehaving middlebox is disrupting usage of an
option or protocol extension, HICCUPS can not only inform TCP so that it can be disabled
on future connections, but can also assist users or network operators in debugging the issue.

HICCUPS benefits network operators in the following ways:

1. Enables a new network debugging tool that can be used to troubleshoot packet header
modifications on networks outside their administrative control to any open TCP port
on HICCUPS-enabled hosts.

2. Makes it possible for operators to proactively debug network devices and fix subtle
configuration issues before having to field related support calls.

5.1 Overview
Working within TCP to enable detection of in-path header modifications while maintaining
interoperability with current network infrastructure and end hosts is a difficult systems
problem. We first provide an overview of the distinguishing features of HICCUPS:

1. HICCUPS transmits packet header integrity information by overloading three header
fields of the TCP 3WHS that can contain a flexible value: initial sequence numbers,
initial IPIDs, and initial flow control windows. As we showed in Chapter 4, doing
so yields the highest degree of interoperability with the widest number of paths, but
places tight constraints on the amount of information that can be transmitted. See
Section 5.2 for more.

2In server-mode ECN, a TCP will not initiate ECN, but will negotiate ECN if initiated by the client.
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2. When HICCUPS places integrity information in the TCP sequence number, random-
ness is added for spoofing protection. See Section 5.2 for more.

3. The integrity information transmitted by HICCUPS includes three 12-bit hash frag-

ments, each communicated through one of the overloaded fields in item 5.1. Spread-
ing integrity across multiple fields provides resilience to a single modification affect-
ing any one of the three fields (e.g., sequence number translation). See Section 5.3
for more.

4. Reverse path integrity includes status flags that enable a HICCUPS host initiating an
active open to discover when modifications occur to just the forward path, just the
reverse path, or to both paths. See Section 5.3 for more.

5. HICCUPS supports field-level granularity in its integrity checks. A set of coverage
types allows end hosts to dynamically specify subsets of fields to be protected by
HICCUPS. See Section 5.5 for more.

6. As an added protection (e.g., against middleboxes that might, in the future, actively
attempt evasion), HICCUPS enables applications to optionally protect the integrity
with an ephemeral secret. This secret limits false inferences of integrity in the event
that a change is made and the integrity is recomputed by a middlebox. See Chap-
ter 6 for more, and for a discussion of how we extend the Linux socket application
programming interface (API) to provide this feature in a compatible fashion, see
Section 7.2.

5.2 Overloading Header Fields
To minimize interference from legacy and non-standard middleboxes, we overload three
specific fields in the headers that are allowed a certain degree of flexibility: the TCP initial
sequence number (ISN), the initial IP Identification field (IPID), and the initial TCP flow
control window (RCVWIN). Each end of the connection chooses its own 32-bit ISN, 16-bit
IPID, and 16-bit RCVWIN resulting in a total of 64 bits at each end of the connection to
be used by HICCUPS.

As discussed in Section 4.7.6, if we want to add meaning to the ISN, the ISN must remain
unpredictable to thwart spoofing and off-path packet injection attacks. We therefore add
randomness to our ISN integrity function. The bits of randomness, or salt, are sent in the
clear to allow the remote host to verify the integrity. We place the random salt value in the
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lower half of the ISN and exclusive or (XOR)-encode the integrity information in the upper
half of the ISN with the same salt value.

Since the new ISN is created using a function of packet data, it will not be fully random
(i.e., the probability of an off-path attacker being able to correctly guess the ISN is greater
than 2−32). In the extreme worst case, the probability is 2−16, but that requires an attacker
know:

• The flow tuple including the ephemeral port [110]
• The coverage type used (see Section 5.5)
• The exact contents of any packet header fields covered by that type

In practical use, an off-path adversary will not know the coverage type—two of which also
cover the ephemeral port.

5.3 Integrity Exchange
Fundamental to HICCUPS is exchanging integrity and communication of the check results.
Given a safe and reliable transmission mechanism (Section 5.2), we are able to exchange
integrity, coverage, and status. Our objective is to utilize the 64 bits at our disposal in
such a way as to be robust against paths that corrupt any of the three integrity exchange
fields. In order to withstand a change to any single overloaded field, we place a portion of
the integrity information, along with a copy of the coverage or status, in each of the three
fields.

Figure 5.1 presents a simplified timing diagram illustrating the exchange of integrity be-
tween two HICCUPS-enabled hosts, A and B. Unless otherwise noted, HICCUPS follows
the TCP standard and uses standard congestion control algorithms. For example, our Linux
implementation retains its default TCP CUBIC behavior, SYN cookie activation threshold,
and default use of various TCP options (e.g., SACK, maximum segment size (MSS), win-
dow scaling, etc.). Host A initiates the active open with B. Both SYNs of the 3WHS utilize
the ISN, IPID, and RCVWIN fields to transmit up to 16 bits each of integrity informa-
tion, denoted in the figure as An and Bn where n = 1...3 and represents the ISN, IPID,
and RCVWIN, respectively. Note that A1 and B1 are encoded with their respective 16-bit
random salts.
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Figure 5.1: HICCUPS integrity exchange: A's SYN overloads random �elds with integrity and
coverage �ags. B's SYN-ACK encodes reverse path integrity and forward path status.

The internal structure of each 16-bit integrity field An and Bn is shown below the timing
diagram in Figure 5.1. Integrity values in the forward path from A each contain a 12-bit
hash “fragment” and a 4-bit coverage type (cvr). The coverage type communicates which
portions of the packet header are to be tested. The source populates each An with the same

coverage value to make a best effort that the remote TCP sees a valid coverage type, which
reduces the amount of testing it will have to do to verify the hash. Coverage and coverage
selection is detailed later in Section 5.5.

Similarly, integrity values sent from B each contain a 12-bit hash fragment over packet
header fields in the SYN-ACK, and three bits to return the forward path integrity results to
A. A examines these status bits in the received SYN-ACK to infer how its SYN arrived at
B. To minimally impact the initial flow control window, the highest order bit of B3 can be
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set to correspond to the true receive window.

In this chapter, we abstract the integrity functions used to compute each 12-bit hash frag-
ment as fn(·). Thus fn(SY N,cvr) is the n’th integrity over the cvr fields in the SYN packet.
The integrity function must be public, allowing the host at the other end of the connection,
B, to check the integrity value it receives. Our experimentally validated (see Chapter 7) im-
plementation in Linux uses a combination of truncated CRC32 and Murmur3 [111]. How-
ever, HICCUPS could be ultimately standardized to use different functions in the future,
based on diffusion and collision resistance requirements.

Tables 5.1 and 5.2 list possible inferences A and B can make during connection establish-
ment. When B receives the SYN from A, it recomputes each A′n using the SYN header fields
as received for each of the specified coverage types. The received integrity A′n matches the
sent integrity if A′n = An. If at least two of the three recalculated hashes match the received
hashes, B infers that the covered fields in A’s packet header were unmodified in transit.

Next, B generates its own (different) salt and integrity values for the return SYN-ACK
packet. B’s results from verifying each A′n are echoed back to A by the inclusion of boolean
flags for each of ISN, IPID, and RCVWIN in the SYN-ACK integrity Bn. When A receives
the SYN-ACK reply from B, it can also check the integrity values. A examines the forward
path status bits to determine whether the SYN experienced manipulations.

Using n = 3 integrity fields, and a combination of hash functions is crucial given the size
limits (12 bits each). HICCUPS infers a packet as HICCUPS-capable when any two in-
tegrity values match the locally computed integrity (A′n = An). Thus, the probability of a
pre-image other than the original generating the same hash with two different hash func-
tions is 2−24, or approximately one in 16 million. While this rate is non-negligible, it is
low enough for practical use. Measurement instances requiring higher precision can run a
HICCUPS integrity test multiple times to further reduce the probability of a false inference.

5.4 Which fields to protect
In order to determine which fields should be protected by the HICCUPS integrity check,
we adapted the list of immutable fields from the RFC for IPsec AH [66]. As noted in Sec-
tion 3.1.1, the AH specifies the following fields as immutable (i.e., fields that middleboxes
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Table 5.1: Possible knowledge gained by host B in performing the integrity check
At B after receiving SYN Inference
‖A′n = An‖ ≥ 2 ∀n covered SYN fields unmodified
else SYN modified

or A not capable

Table 5.2: Possible knowledge gained by host A in performing the integrity check
At A after SYN-ACK received Inference
‖B′n = Bn‖ ≥ 2 ∀n SYN-ACK unmodified
∑statusi ≥ 2 ∀status ∈ Bn SYN unmodified
Both cases above SYN & SYN-ACK unmodified
else SYN & SYN-ACK modified; or B

not capable

should not modify): version, IHL, total length, IPID, protocol, and IP addresses. Since we
utilize the IPID for our integrity transmission channel, we leave that field off the list. We
also additionally cover some fields that the AH did not list: the DF flag, the reserved bit,
the IP options, and the IP ECN bits.

For the TCP header, none of its fields should be considered mutable (as TCP is end-to-end),
but we leave several fields out from our integrity coverages. The sequence numbers and
receive window size fields are used to transmit integrity so they are left out. Also, since the
checksum will only ever be different when another field was changed (or if a transmission
error occurred meaning the packet will be dropped), we leave that field out as well since
covering it provides no additional value. Table 5.3 lists all of the fields from the IP and
TCP headers that can be protected by HICCUPS.

5.5 What Header Field Was Modified
HICCUPS allows the connection initiator to specify which packet header field or subset
of fields the handshake should check. For instance, a HICCUPS-enabled host opening a
new connection could choose to only check the TCP MSS option, or it could focus on
just the ECN flags. Each individual connection enabled with HICCUPS specifies which
fields to check from a pre-defined list. HICCUPS currently supports the 16 coverage types
shown in Table 5.4. A type that covers both the IP and TCP options blocks can be used
to check other options. Our primary reasoning behind these design choices is directed by
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IP Fields Protected TCP Fields Protected

• version
• IHL
• ECN codepoint
• total length
• reserved bit
• DF flag
• protocol
• source IP address
• destination IP address
• IP options

• source TCP port
• destination TCP port
• offset
• reserved bits
• TCP flags
• urgent pointer
• TCP options

Table 5.3: List of all header �elds protected by HICCUPS

the highly constrained amount of space (we require the upper bits of Bn for forward path
status) and the initiator being the party that typically chooses which options to negotiate
for the connection. The set of coverage types could be extended to explicitly accommodate
future extensions if both end hosts are updated with the new list.

The HFULL type covers the broadest set of header fields. This type covers all header fields
except for those that are expected to change in transit (e.g., TTL) or fields used to carry
integrity. The full set of fields covered by this type are shown with a solid gray background
in Figure 5.2. The remainder of the coverage types we have implemented are proper subsets
of these fields.

In order to check multiple types, a progression of HICCUPS connections can be performed
between two endpoints. In this progression, each individual connection uses one of the
pre-defined coverage sets. The simplest approach is to check all possible coverages in
order. Such an approach would require a separate connection for each, but could be done
in parallel to reduce the latency of multiple RTTs waiting for results. Alternatively, the
inferences might occur during the natural interaction and multiple connections between
hosts. A smarter algorithm that could reduce the total number of connections required is
described in Section 5.6.

Selection of a coverage type for a given connection can be done manually by an applica-
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Table 5.4: Pre-de�ned coverage sets
Coverage
Type

Header fields that are covered

0 HNONAT Everything, minus IPs and ports
1 HFULL Everything
2 HNAT IPs and ports
3 HNOOPT HNONAT minus any IP or TCP options
4 HONLYOPT IP and TCP options
5 HECNIP ECN IP codepoint
6 HECNTCP ECE and CWR TCP flags
7 HLEN Length fields
8 HMSS TCP MSS option
9 HWINSCL TCP Window Scaling option

10 HTSTAMP TCP Timestamp option
11 HMPTCP TCP Multipath option
12 HEXOPT An unused TCP option (kind = 99)
13 HFLAGS IP_DF, non-ECN TCP flags, and TCP SACK_Permitted option
14 HSAFE Reserved fields, protocol, and version
15 HNULL Nothing (compatibility check)

tion (Section 7.2) or automatically by the TCP stack. Once a type has been selected, we
concatenate the covered packet header fields as input to the HICCUPS integrity functions
fn(·). The only exception is the two bits in the IP header that represent an ECN codepoint.
For these two bits, we include their bitwise OR as input. Routers are allowed to modify this
field, but only by turning an ECT0,1 codepoint into a CE codepoint. Nothing should set
both bits to zero if either one was originally set high by an endpoint (an aberration observed
in [20]).

Because a field carrying the integrity, An, could be modified, the endpoint analyzing the
SYN must test all of the coverage types it sees in the received A′n. Ideally, none of An will
have been overwritten, meaning that all three coverage values are the same and only one
check must be done. The worst case is that three checks must be done in the event that
one or more of An were overwritten. If the receiving endpoint finds a match, it must use
the same coverage type when calculating Bn for the SYN/ACK. Should the receiver fail to
find a match (meaning part of the SYN was modified), a majority rule is used on the three
coverage types listed in A′n to determine the coverage to use for Bn. If a majority is not
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found, a special coverage type is used in Bn to indicate to host A that at least two of An

were modified.

5.6 Complete Path Knowledge
Given that only one coverage set from Section 5.5 is used per TCP 3WHS, a pair of TCPs
must develop fully granular knowledge of all header modifications over the course of mul-
tiple exchanges. When integrity matches for a coverage type that is a superset of other
types (e.g., HFULL), no further information is gained from additional probing. However, if
the integrity fails to match, more specific types can be used next to narrow down the source
of the modification.

If integrity using HNULL does not match, then either one of two cases is occurring:

1. Two or more of our three integrity fields are being modified.
2. The host with which we are interacting does not understand HICCUPS.

Since HNULL is a diagnostic type that does not cover other header fields, it should not fail
unless the hash fragments are not present or have been overwritten.

Leveraging this information, we design a path interrogation strategy for HICCUPS. Using
HICCUPS to determine the fully granular set of modifications along a path is similar in
nature to a search problem. Our informed strategy is shown in Figure 5.3. We begin by
checking coverages that are more comprehensive and then narrow the search, eventually
checking a smaller sequence of types. Upon our first interaction with a new TCP, we choose
the HNONAT coverage type since it avoids fields modified by NATs, which are prevalent
on the Internet [12]. If we find a match, we conclude the search. Subsequent connection
attempts can periodically retest with HNONAT in case the path conditions change.

Given that we expect frequent interaction with non-HICCUPS TCP, our strategy employs
the HNULL type at the next opportunity. By doing so, we can terminate the search in the
event that either the other endpoint (due to lack of capability) or middleboxes along the path
(due to downgrading the integrity) prevent HICCUPS from being used. The remainder of
the strategy searches for header modifications in either the options space or fixed-length
fields, iterating through a series of more granular coverage types as needed.
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Figure 5.2: Breakdown of IP and TCP header �elds in relation to using HICCUPS. The �elds in
light gray are protected by HICCUPS while the �elds in dark gray are used to transmit integrity
values.

Figure 5.3: HICCUPS Search Strategy
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CHAPTER 6:

Protecting Integrity with AppSalt HICCUPS

Good news, everyone!

Prof. Hubert J. Farnsworth

At a high level, HICCUPS is designed to be cooperative with middleboxes. Unlike with
checksums, packets will not be rejected by a host due to incorrect HICCUPS integrity.
Neither will middleboxes be prevented from making any changes to the packet header. We
simply use HICCUPS to inform each TCP of such changes with the intention that TCP
will benefit from that knowledge. Our hope is that, by not providing middleboxes with
a specific reason to disrupt HICCUPS, that they will not try to alter its integrity values.
Further, we expect that most middleboxes will actually support our traffic explicitly when
they know about it (e.g., note the work that the IETF has done with the new TCP Mid-
dlebox option [82]). However, middlebox administrators have a long history of adopting
overly conservative security policies that block simple diagnostic traffic such as ICMP (see
Section 2.1.2), so we must take a realistic approach.

This chapter describes an optional enhanced mode of HICCUPS, termed “AppSalt.” In
our design for AppSalt mode we operate under the assumption that some future middle-
boxes, when armed with full knowledge of our diagnostic protocol, may willfully tamper
with HICCUPS. We therefore wish to increase the effort required of future middleboxes
when attempting to circumvent HICCUPS, all while retaining adherence to each of the
design requirements of Section 3.5. Ultimately, we created AppSalt to allow applications
to optionally add additional protection for their connections, making it more expensive for
middleboxes to falsify integrity values.

The strategy described in Chapter 5 is effective at detecting packet header manipulation by
devices that are not engineered to evade detection; packet header modifications made by
today’s middleboxes that are unaware and unable to recognize a connection with HICCUPS
integrity will be readily exposed. However, as we previously noted, this may not automat-
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ically be the case with all future middleboxes. Engineering HICCUPS to be resistant to
strong MITM adversaries, without using authenticity and keyed cryptographic hash func-
tions, is a challenging problem.

While tampering is still possible, AppSalt aims to make undetectable packet header manip-
ulation expensive. Thus, a middlebox must either:

1. Bear the cost of circumventing our protocol
2. Reveal the modifications it makes to the connection endpoints
3. Simply stop meddling in the communication

The value proposition of such a protocol is that item one presents a high enough cost that
the middlebox naturally chooses approach items two or three.

A middlebox, M, could disguise a packet header modification by rewriting the integrity
values on SYNs from an initiating host, A. Should M also want to modify the SYN-ACK
response, it would perform its changes and then recalculate new integrity for the SYN-
ACK sent by a responding host, B. Such recalculation of HICCUPS fields could lead to
the reduced effectiveness of HICCUPS at detecting potential extension compatibility issues
as middleboxes adjust to evade HICCUPS, but then either fail to properly support newer
extensions or suffer from a future misconfiguration.

6.1 An Ephemeral Secret
Since our design constraints preclude the use of a stronger construction (e.g., a keyed-
HMAC) we cannot outright prevent M from taking a stance similar to that of the middle-
box Mallory in Figure 3.3. In that position, a middlebox could split the connection and
recalculate valid integrity values for arbitrary packet header manipulations.

In order to make it more difficult for a middlebox to recalculate hashes to hide its modifi-
cations from HICCUPS, we need to include a secret into the hash that only the endpoints
know. However, with no out-of-band channel between the two endpoints and no crypto-
graphically signed key pairs with mutually agreed certificate trust lists, coming up with
such a shared secret to deter overwriting of the integrity values is difficult. Instead, we look
for pieces of information that would be difficult for a middlebox to know, but much easier
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for one or both of the endpoints to know.

As long as one of the endpoints in a connection has such a secret, the integrity value can be
encoded with that secret and a middlebox will not be able to replace it with another valid
value. Although a true shared secret may not exist, we can still protect the integrity as long
as the secret stays hidden from the middlebox long enough to force it to forward the initial
packet. If we reveal the secret after the middlebox has already forwarded the packet for
us, it will no longer be able to change the integrity and the other end host can decode the
integrity value.

In AppSalt mode, HICCUPS protects integrity values by encoding them with a property
of the connection that is only revealed after the 3WHS is complete. Such an “ephemeral
secret” could be any property of a connection known only to the sender at the start of the
connection. This protection technique seeks to increase the level of difficulty for M to make
undetectable modifications.

From the perspective of the middlebox and receiving TCP endpoint, the encoded integrity
values in the three HICCUPS fields remain indistinguishable from random numbers until
the ephemeral secret is revealed later in the connection. Indeed, neither the receiver nor any
devices along the path can determine whether or not the fields are overloaded with integrity.
Thus, we are able to force a middlebox seeking to recompute our hashes to commit to a
strategy before it even knows if the connection is HICCUPS-enabled. Since a HICCUPS-
enabled TCP need not necessarily perform HICCUPS with every connection request, it is
difficult for a middlebox to know when it should try to recompute new hashes. We thus
add protection to the integrity while imposing as little of the increased burden as possible
on the end hosts. The sending host only has to encode the integrity value and the receiving
host only has to store the received integrity until the ephemeral secret is revealed.

Several different connection properties could serve as ephemeral secrets. Some possibilities
include:

• A time representation of when a conversation might start
• The parties involved (IPs, ports, etc.)
• Length of a connection (time, bytes, number of packets)
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• Future timing of individual packets
• Residual TTL
• Proof-of-work
• Application data

Some of these properties, such as the future timing of packets or the number of packets
in a flow, are difficult to reliably control. Our HICCUPS implementation instead protects
the SYN integrity values with future application-layer content from a data packet yet to be

sent—an ephemeral secret that is difficult for a middlebox to reliably determine a priori,
yet readily available for the end host wishing to initiate a new TCP connection. As in
Section 5.3, the integrity values are placed in the ISN, IPID, and RCVWIN of the SYN, but
now the receiving end host, as well as any middleboxes, must know the contents of future
application data in order to interpret the integrity.

For the ephemeral application-layer secret, we desire to use a small portion of the data
contained in the payload of the first data packet to make it simple for the receiver to lo-
cate and extract the AppSalt secret. We therefore examined the uniqueness of the initial
application payload of each flow in a full day of border traffic from our organization to
determine a reasonable size to use. Among application data payloads of 6,742,466 flows,
we find 5,377,440 (approximately 80 percent) where the first 40 bytes are unique. The
99th percentile of the distribution is that payloads appear twice, implying that 40 bytes of
ephemeral secret is a reasonable lower-bound to prevent trivial guessing. Figure 6.1 shows
the distributions for various lengths across a 30 minute capture.

6.2 AppSalt Operation
To illustrate AppSalt operation, we present a common scenario where a web client connects
to a web server. The client connects by performing the 3WHS and then issues an HTTP
GET request for a specific resource. Neither the remote server nor any in-path middleboxes
can reliably determine the application data at the time the SYN is observed. Only the client
knows with certainty the initial HTTP application data that will be sent. In this example, the
application layer data might contain such items as the GET uniform resource locator (URL),
the host parameter, and the user agent string as shown in the example of Figure 6.2.

Since the application data needed to properly decode the SYN’s integrity is not available to
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Figure 6.1: Cumulative fraction of application-layer payloads (�AppSalts�) of di�erent lengths
versus number of �ows in which the AppSalt appears

M at the time the SYN is received, it is difficult for M to make an undetectable header modi-
fication or even just to check whether the connection is HICCUPS-enabled. The ephemeral
secret forces M to process the SYN packet before it can observe the application data. Oth-
erwise, M has two remaining options if its goal is to modify the packet headers and evade
detection: make a best guess of the application data, or perform a MITM attack and fake a
SYN-ACK response, inducing A to expose the application data secret. In particular:

• M may attempt to guess the unseen application data (e.g., by using a profile of prior
connections from A to B). However, M is unlikely to guess correctly for every con-
nection between all pairs of hosts. If M guesses incorrectly, integrity values will not
validate and the manipulations can be detected. Of course, M could later change
the actual application data to match its guess, but doing so fundamentally alters the
application-layer behavior of the connection and would most likely be readily de-
tected since it directly impacts the user experience.
• In order to know the application data with certainty, M must act as a TCP-terminating

proxy, a behavior that is detectable based on timing or by issuing connections to
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Figure 6.2: HICCUPS AppSalt protection: the integrity values in the SYN are encoded with
application-layer data yet to be sent, forming an ephemeral secret that increases the level of
di�culty for middleboxes attempting to evade HICCUPS diagnostics.

known unreachable hosts (as shown in [12]). Here, M falsely claims to be B, spoofs
the SYN-ACK, and intercepts the resulting traffic. This MITM behavior permits M

to rebuild the original SYN with an updated integrity value and forward it along to
the true destination. The non-spoofed SYN-ACK from B must then be intercepted
(assuming symmetric traffic flow, which cannot be guaranteed) and the cached data
from A could be sent. This situation is more complicated than just rebuilding the
integrity values; the middlebox has broken a connection and now has to marshal data
between them, in addition to sending spoofed packets and buffering data. Further, the
middlebox must do this for all connections, potentially representing many endpoints.
More importantly, this MITM behavior to evade HICCUPS is detectable itself.

AppSalt represents our proactive approach to ensuring the continued effectiveness of HICCUPS
once its algorithms and protocol become widely known. Another possible disruption tech-
nique is to perform a downgrade attack by arbitrarily overwriting all fields used by HICCUPS
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for integrity. This overwriting does not circumvent the tamper-evidence, however, and the
downgrade fails when there is outside a priori knowledge that the remote end is performing
HICCUPS.

6.3 API Changes
A limitation of AppSalt is that its implementation and use requires some minor changes:

• The operating system’s sockets API must allow for an application to provide data
before initiating the TCP 3WHS.
• Depending on how the operating system’s socket calls were modified, any applica-

tions that wish to use AppSalt must adjust their TCP connection system calls.

Traditionally, in most operating systems a client TCP issues a series of socket calls: socket(),
connect(), and then send(). However, with AppSalt, connect() cannot be called
first as it will initiate the 3WHS and send the SYN before the kernel has the necessary
application data over which to calculate integrity.

In Chapter 7, we discuss the details of how we implemented AppSalt in the Linux kernel.
Our AppSalt implementation requires that applications specifically request its protections
by passing a special flag to the operating system in its socket calls. Our TCP still enables
standard HICCUPS for all TCP connections, however, by default and without any applica-
tion changes.
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CHAPTER 7:

Implementation and Validation

If you hold a cat by the tail you learn

things you cannot learn any other way.

Mark Twain

We have implemented HICCUPS along with our integrity protection scheme, AppSalt, as
a patch for Linux kernel version 3.9.4 [112]. We selected this version for implementation
simply because it was the latest stable version at the time we began our work, but any
necessary changes to be able to apply the patch to a newer version should be minimal. We
have archived a copy of our patch as it was when we conducted the experiments in this
dissertation [113]. The most recent version can be found online [114].

7.1 Implementation overview
Our implementation of HICCUPS modifies the existing TCP/IP stack of the Linux kernel
to augment outgoing packets with integrity and perform special processing of incoming
packets to perform the necessary integrity checks. Once a kernel has been patched with
HICCUPS, it can perform integrity checks with other HICCUPS-capable hosts around the
Internet and process the results within TCP. Our desired end goal is for HICCUPS to one
day be brought into the mainline Linux kernel so no patching would be needed in order to
make a system HICCUPS-enabled.

In order to give an idea of the size of our kernel patch implementation, we cataloged the
lines of code used and note that the core integrity transmission and protection protocols
require just over 700 lines, including changes to both source and header files. Table 7.1
shows the complete breakdown of the lines in our patch by their associated component
functionality.

Core HICCUPS refers to the integrity transmission and validation components. AppSalt is
the protection mechanism. In our implementation, we chose to leverage both the CRC32
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Blank lines Comments Code
Core HICCUPS 111 245 560

Debugging 52 72 299
Faking options 4 6 43

AppSalt 33 41 164
Murmur3 51 92 151

Total 251 456 1217

Table 7.1: Lines of code broken down by component functionality

and Murmur3 [111] hashes within HICCUPS. Since Murmur3 was not already in Linux,
we added it, which took about 150 lines of code. The options faking code is only used by
our evaluation measurements to imitate the Multipath TCP MPCAPABLE [21] response in
SYN-ACK packets.

7.2 HICCUPS Linux API
User-space applications can request that a specific HICCUPS coverage type be used for
their connection by issuing a setsockopt() call prior to opening the connection. List-
ing 7.1 shows an example connection attempt where an application specifies its desired
HICCUPS coverage type (see Section 5.5 for a list of coverages to which cvr can be set).

Listing 7.1: Requesting a coverage type

sockfd = socket(...);

setsockopt(sockfd, SOL_TCP, TCP_HICCUPS_COVERAGE, &cvr,

sizeof (cvr));

connect(sockfd, ...);

write(sockfd, msg, msglen);

close(sockfd);

Similarly, once a connection has been established an application can read the results of the
HICCUPS integrity checks by issuing some calls to getsockopt(). A total of three
calls to getsockopt() are required in order to retrieve all status values: the overall
HICCUPS match status, the SYN match bits, and the SYN-ACK match bits. Listing 7.2
shows some example connection code.
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Listing 7.2: Retrieving the HICCUPS status of a connection

sockfd = socket(...);

connect(sockfd, ...);

write(sockfd, msg, msglen);

getsockopt(sockfd, SOL_TCP, TCP_HICCUPS_STATUS, &result1,

&result1_len);

getsockopt(sockfd, SOL_TCP, TCP_HICCUPS_SYN_MATCH, &result2,

&result2_len);

getsockopt(sockfd, SOL_TCP, TCP_HICCUPS_SYNACK_MATCH, &result3,

&result3_len);

close(sockfd);

AppSalt
As we detailed in Chapter 6, AppSalt is an optional layer of protection that requires the ker-
nel to know the initial byte range of data that an application wishes to send in a connection
before the TCP 3WHS is initiated. This situation is incompatible with the traditional order-
ing of Linux socket calls as shown in Listing 7.3. In that sequence of calls, the TCP 3WHS
is initiated by the connect() call, and the SYN is sent before the kernel is presented
with any application data.

Fortunately, this problem has already been approached in Linux and a good parallel exists
for requiring data at the time of connection initiation, TCP Fast Open (TFO). TFO [23] is
a TCP enhancement that allows follow-up connections between two endpoints to not have
to wait for the full 3WHS to complete. If two TFO-enabled TCPs have communicated
previously, they shared a TFO cookie (a cryptographic token sent in a new TCP option kind)
that can be sent with subsequent connections to authorize immediate data transmission and
save the latency cost of the additional RTT spent waiting for the SYN-ACK to be received.
Programs that use TFO initiate all connections using sendto() or sendmsg() with the
MSG_FASTOPEN flag, as opposed to the typical connect() and send() sequence. In
this way, the kernel can embed data in the SYN for connections with a valid TFO cookie.

We therefore leverage the same socket API changes as TFO to allow a client program
to request AppSalt-mode HICCUPS. Primarily, we add a new message flag within the
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framework established by TFO that can be used by the sendto() call: “MSG_HICCUPS.”
Listing 7.4 shows the new sequence of calls that applications use in order to request AppSalt
protection. Note that now there is no connect() call required for socket setup. As soon
as an application wants to send data it issues the sendto() and all of the AppSalt logic
along with TCP connection setup happens behind the scenes in the kernel.

Listing 7.3: Old socket call order

s = s o c k e t ( . . . ) ;
c o n n e c t ( s , add r ) ;
send ( s , msg ) ;

Listing 7.4: New socket call order

s = s o c k e t ( . . . ) ;
s e n d t o ( s , msg ,

MSG_HICCUPS , add r ) ;

As an added benefit of the TFO-style approach, the addition of HICCUPS support is trivial
for applications that already support TFO (e.g., Google Chrome [115]). Since we use the
same calling method as TFO with just a different flag name, it is trivial for applications
that already use TFO to also use AppSalt protection with HICCUPS. The application need
only OR the MSG_HICCUPS flag with the MSG_FASTOPEN flag in its sendto() calls,
as shown in Listing 7.5. Any time that application data cannot be used (i.e., a program
does not use the new socket API or it is a TFO connection with data in the SYN) the ISN
contains an integrity value without the application-layer obfuscation (as in Figure 5.1).

Listing 7.5: TCP Fast Open with HICCUPS

s = s o c k e t ( . . . ) ;
s e n d t o ( s , msg , MSG_FASTOPEN | MSG_HICCUPS , add r ) ;

An alternate strategy that could be used to implement AppSalt would be to instead modify
the kernel API logic behind the connect() call so that the 3WHS is not initiated until
the first send() call. This change would have the positive property of automatically en-
gaging AppSalt protection for all applications without having to update them, but concerns
about compatibility and decreased acceptance by the community led us to opt for the more
gradual approach. We also desire the approach that gives the application designer more ex-
plicit control in case there is some unforeseen problem with delaying connection initiation.
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Given the firmly established history and wide understanding of socket calls, we believe the
best method of implementing AppSalt is the TFO-style approach.

Finally, we feel it is important to reiterate that normal HICCUPS as presented in Chap-
ter 5 works fine for all connections in Linux without any of the previously described API
changes. All of these changes are to enable the AppSalt enhanced protection mode as de-
scribed in Chapter 6. When an application does not support the MSG_HICCUPS flag, we
emphasize that nothing breaks, the only result is that that application’s connections use the
regular HICCUPS without the additional ephemeral secret protection.

7.3 HICCUPS Details
In order to implement HICCUPS in the kernel, we add hooks at key places where SYN
and SYN-ACK packets are processed on both the incoming and outgoing paths. Table 7.2
lists our HICCUPS functions and hook placements corresponding to each type of SYN or
SYN-ACK related event. Locations for the hooks were chosen through a combination of
code analysis, debugging, and trial and error. The hook locations describe files under the
net/ipv4 subdirectory of the Linux kernel source tree, and the line numbers represent
the locations within each file prior to editing [112, 113].

Event HICCUPS function Hook location
SYN sent tcp_hiccups_syn_out ip_output.c:403

tcp_hiccups_after_syn_out tcp_output.c:3029
SYN received tcp_hiccups_syn_in tcp_ipv4.c:1515
SYN-ACK sent tcp_hiccups_synack_out ip_output.c:161

tcp_hiccups_after_synack_out tcp_ipv4.c:863,1652
SYN-ACK received tcp_hiccups_synack_in tcp_input.c:5724

Table 7.2: HICCUPS functions and hooks, by TCP event

A major challenge working within the Linux kernel is that sequence numbers and IPID
values are selected before much of the final packet is built. In particular, since the TCP
initial sequence number does not originally depend on the full packet or any information at
the IP layer, it can be calculated early on. However, with HICCUPS, we change this design
and make the sequence number a function of other fields in the packet header. Therefore,
we must postpone calculation of the ISN until the full packet has been created by the kernel
and we know the values of all fields we wish to cover. Once the SYN packet has been sent,
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we go back into the socket structures and change the originally stored initial sequence
number to a HICCUPS-enabled sequence number. This changeback need only occur once
in the connection, immediately after sending the SYN packet and returning up through the
layers to TCP.

The two “after” hooks listed in Table 7.2 are also due to the challenge of the kernel needing
and using the sequence number before we have the full packet available for hashing. At
the point in the code flow at which the full packet is available, we are often working with
clones of the socket buffer and need to wait until we come back up the transport layer to
update the rest of the sequence number fields.

7.3.1 Server-side overhead
We quantified the server-side overhead associated with HICCUPS using the Linux kernel’s
ftrace facility [116]. ftrace contains a function graph tracer that is able to observe entrance
and exit events of functions. To track the exiting of functions, the tracer overwrites the
assembly-level return address of each function with its own custom return code. After it
processes the function return event, it returns execution to the original return address of the
function.

Table 7.3 shows the results from tracing the full function graph with ftrace associated
with an incoming SYN/ACK. The table shows the full ordering of kernel function calls
leading up to the primary call to tcp_v4_conn_request. Table 7.4 shows the order-
ing of calls within tcp_v4_conn_request, along with their associated run times for
our HICCUPS-enabled system. Important to note in the table is the fact that our primary
function call, tcp_hiccups_syn_in, is similar in run time to other sub-functions of
the connection request call. For example, security_inet_conn_request handles
SELinux processing for the incoming SYN and takes about 30 percent longer to run.

In order to get a true value for the total overhead involved in running HICCUPS, we com-
pare the run times of the lowest link layer function shown in Table 7.3, net_rx_action.
We must take this approach because, as noted in the caption of Table 7.4, ftrace results can
be inaccurate for functions that contain many sub-functions that give execution back to the
function tracer. By configuring ftrace to filter only for function calls to net_rx_action,
we should obtain the most accurate run time measurements as possible.
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Layer Function name
TCP layer tcp_v4_conn_request

tcp_rcv_state_process
tcp_v4_do_rcv
tcp_v4_rcv

IP layer ip_local_deliver_finish
ip_local_deliver
ip_rcv_finish
ip_rcv

Link layer __netif_receive_skb_core
__netif_receive_skb
netif_receive_skb
napi_gro_receive
e1000_clean_rx_irq
e1000_clean
net_rx_action

Non-network __do_softirq
specific irq_exit

do_IRQ
common_interrupt
default_idle
cpu_idle
rest_init
start_kernel
i386_start_kernel

Table 7.3: The function call graph generated by ftrace upon receipt of a SYN. The graph is
shown up to tcp_v4_conn_request, which handles processing of a new connection.

Taking the average over 1,000 connection attempts, we compared the total time spent
processing a SYN/ACK between the HICCUPS-patched kernel and an unmodified, or
“vanilla”, kernel. Table 7.5 shows the statistics we computed across the 1,000 connec-
tions. We found that the average overhead added by our unoptimized implementation is
about 8.5 percent of the compute time in the vanilla kernel.

7.3.2 SYN cookies
As discussed in Section 4.7.6, the Linux kernel implements SYN cookies but does not use
them under normal non-attack conditions. For all connections, Linux only resorts to SYN
cookies when it believes it is under a SYN flooding attack [106].
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Latency Function name
tcp_v4_conn_request() {

2.214 us kmem_cache_alloc();
5.864 us tcp_hiccups_syn_in();
2.284 us tcp_parse_options();
7.579 us security_inet_conn_request();
4.353 us inet_csk_route_req();
4.000 us tcp_make_synack();
1.777 us __tcp_v4_send_check();

+ 41.680 us ip_build_and_send_pkt();
1.815 us tcp_hiccups_after_synack_out();
2.640 us inet_csk_reqsk_queue_hash_add();

+ 133.828 us }

Table 7.4: The durations of sub-functions within the call to tcp_v4_conn_request, which han-
dles processing of a new connection. The + sign indicates that the latency is inaccurate due to
additional overhead from repeated calls to the ftrace probing code.

HICCUPS Linux w/ AppSalt enabled Vanilla Linux
min 84.446 µs min 84.075 µs
max 635.666 µs max 490.836 µs

median 119.634 µs median 110.533 µs
mean 124.037 µs mean 114.254 µs

var 903.493 µs var 697.618 µs
std 30.058 µs std 26.412 µs

Table 7.5: Comparison of run times for the net_rx_action function call between a HICCUPS-
enabled kernel with AppSalt enabled and an unmodi�ed kernel. The table shows statistics across
1000 incoming connections.

With our implementation of HICCUPS, we maintain this behavior and allow the kernel to
switch over to SYN cookies as system resources become strained due to a possible SYN
flood attack. The failover method is very appealing since, under normal conditions, a
system would rather not use SYN cookies due to the limits on what options it can support,
and under attack conditions, a TCP would likely rather not be doing HICCUPS with its
small but additional hash overheads. Continuing to use the same failover method for SYN
cookies is most advantageous to the server.

7.4 Testing in a Controlled Environment
Before beginning the measurements described in Chapter 8 using HICCUPS, we first per-
formed a series of experiments to empirically vet our implementation and ensure that both
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the methodology and coding were correct. We deployed HICCUPS-enabled hosts to a
virtualized testing environment for initial validation purposes.

Using virtual hosts running inside Virtualbox, we model a situation where two end hosts
are connected with a third system along the path between them. The layout is shown in
Figure 7.1. Each of the two end hosts are running the HICCUPS Linux kernel and the third
system acts as a transparent middlebox in their communications.

Figure 7.1: Diagram of Virtualbox testing

In order to imitate some of the possible modifications that middleboxes make, we use
an iptables rule to redirect each forwarded packet up to user-space via the nfqueue-
bindings software [117]. A Scapy [118] script written in Python receives the packet, mod-
ifies it, recalculates the network checksum, and then forwards the packet on to its destina-
tion. We have written the Scapy script so that it can make an array of common modifications
to packets as shown in Table 7.6.

Using the middlebox script, we tested the effectiveness of the HICCUPS Linux kernel
to detect each of the packet header modifications introduced by our synthetic middlebox.
Virtual machines running the HICCUPS kernel performed 50,000 trials that established 3.2
million total TCP connections, with each of these connections traversing the middlebox
simulator. A total of four different modification configurations were tested within the 3.2
million connection probes. Automated verification found that HICCUPS properly inferred
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Field modified Description of modification
IP ECN codepoint If an ECN-capable codepoint is set, zero it out.

If a congestion-experienced codepoint is set, set one of the
bits to zero.

IP DF flag Complement the Don’t Fragment bit
TCP ECN flags Set both flag bits to zero
TCP ECN flags Complement each ECN flag bit
IP ID Set value to zero
TCP ISN Translate values during the handshake
TCP MSS If no MSS is set, set a random one between 1 and 1460 bytes

If an MSS is set, lower it to a specified value
TCP Window Scale If no window scale is set, set one at a factor of 7

If a window scale is set, change it to a factor of 7
Reserved fields Turn reserved bits in TCP and IP headers to 1
TCP Receive Window Offset the receive window by a specified value
All All of the above modifications enabled at once

Table 7.6: List of modi�cations made by middlebox simulator

the path behavior for 100 percent of the connections, meaning that a change was properly
detected when it was made, and the hosts did not detect any changes when no header
modifications were introduced by the simulator.

7.5 Demonstration of Debugging with HICCUPS
For the purposes of showing how HICCUPS can be used in debugging, we will walk
through an example scenario to detect a blocked ECN negotiation. In this scenario, both
hosts A and B of Figure 7.1 are ECN-enabled and request ECN during TCP connection
negotiation. The middlebox script described in Section 7.4 is programmed to set both ECN
flags in the TCP header to zero on any packets it sees (i.e., to improperly clear these ECN
bits). As we will see later in Section 8.3.2, this behavior occurs in the wild on the actual
Internet. The modification has the effect of preventing both end hosts from using ECN,
even when they both support it.

Working from the point of view of Host A, we have reason to believe that ECN is not
working properly. For example, if we run a packet capture during a connection attempt
to Host B, we notice that SYN-ACKs returning from Host B do not have ECN enabled,
as shown in Figure 7.2. The SYN leaves Host A with the ECE and CWR TCP flags set
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(to indicate a desire to enable ECN for this connection), but the SYN-ACK returns from
B with neither flag set, even though they should be set. If we have administrative access
to Host B, we can verify this claim using traditional debugging methods (i.e., run a packet
capture at both ends and compare the headers). However, with HICCUPS, we can verify
this behavior without needing access to Host B at all.

Figure 7.2: Screenshot of packet capture from Host A

Using HICCUPS, we confirm that a middlebox is disabling our ECN flags in transit be-
tween A and B. Shown in Figure 7.3 is the output from running our user-space HICCUPS
test client on Host A. The user-space HICCUPS client mirrors the same logic used in the
Linux kernel patch implementation.

Figure 7.3: Screenshot of HICCUPS test client probing from Host A to B with ECN enabled

First, HICCUPS probes (i.e., standard TCP connection attempts) are sent from Host A to
B. The failed integrity checks reveal to A that a modification is occurring on its SYN,
but not the SYN-ACK. Specifically, that the modification is to one of the bits covered by
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the HECNTCP probe type. Second, assuming we have no knowledge of what changes the
middlebox simulator is making, we can try disabling ECN to further test if a middlebox is
targeting ECN in particular. We disable ECN negotiation on Host A and try testing with the
HICCUPS client again. Now, as we see in Figure 7.4, no modifications were detected by
HICCUPS implying that the middlebox was specifically configured to target ECN flags.

Figure 7.4: Screenshot of HICCUPS test client probing from Host A to B without ECN enabled
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CHAPTER 8:

Surveying Internet Paths with HICCUPS

If you cannot measure it, you cannot improve it.

Lord Kelvin

This chapter details results from running HICCUPS in the wild. We examine the types,
frequencies, and symmetry of HICCUPS-inferred modifications and give examples of how
a HICCUPS-enabled TCP can adjust its behavior based on path inference to improve per-
formance. Last, we discuss HICCUPS overhead, including the empirical number of RTTs
for full-path characterization.

While previous research [12, 19, 20, 39, 43] examined real Internet paths to catalog various
forms of packet header modifications, these efforts required some degree of interaction ex-
ternal to the operating systems. To our knowledge, HICCUPS is the first solution to both
capture measurements of packet header modifications within TCP and expose the results
directly through the operating system itself. For example, the servers in our measurement
infrastructure do not run any specialized server application. Instead, we simply start a stan-
dard HTTP daemon that listens on the desired port(s). With a HICCUPS-enabled kernel, no
extra support is required to perform HICCUPS and expose path behaviors to the operating
system and applications.

8.1 Experimental Infrastructure
Using HICCUPS-enabled hosts, we survey a diverse set of real Internet paths. We employ
218 Planetlab [119] nodes, 56 Archipelago (Ark) [120] nodes, and 12 distributed HICCUPS
servers; the autonomous system (AS) and geographic distribution of our infrastructure is
given in Tables 8.1 and 8.2. This infrastructure enables us to run HICCUPS between 3,288
pairs of distinct hosts, testing 26,304 directed path/port pairs.

Our HICCUPS-enabled Linux kernel runs on 12 systems: one at MIT, one at Virgina Tech,
one at ICSI, one on Comcast Business, and one at each of the eight Amazon EC2 infras-
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Table 8.1: Top ASNs represented
Servers PlanetLab Ark

AS16509 6 AS680 13 AS22773 3
. . . 1 ea. AS2200 6 AS1213 2

AS766 6 . . . 1 ea.
. . . <6 ea.

Total 7 Total 154 Total 53

Table 8.2: Geographic distribution
Location PlanetLab Ark Servers
Europe 101 18 1
N. America 75 25 7
Asia 26 9 2
S. America 10 1 1
Oceania 6 0 1
Africa 0 3 0
Total 218 56 12

tructure sites. To run HICCUPS from PlanetLab (where installing a custom Linux kernel
is not possible), we duplicate the connection initiation portion of TCP with HICCUPS into
a user-space client that employs raw sockets to craft HICCUPS-enabled SYNs.

In selecting PlanetLab nodes, we used PlanetLab’s management API to use a single node
per site. Thus, all 218 Planetlab nodes we use represent distinct sites. The PlanetLab nodes
were distributed both geographically and logically around the Internet. The Planetlab and
Ark nodes reside in 207 distinct ASes. Geographically, our Planetlab nodes are situated
in five continents and 37 different countries, while the Ark nodes are spread across 28
countries.

8.2 Experimental Parameters
From each PlanetLab and Ark vantage point, we execute SYN exchanges with each server
on four different TCP ports to capture port-specific behavior: 22, 80, 443, and 34343.
The first three are common service ports; port 34343 is used for consistency with Honda
et al. [19]. We send 16 SYNs to each of the four ports, with each SYN covering one
of the different coverage types listed in Table 5.4. Note that not all paths require all 16
connections to fully ascertain the path conditions from HICCUPS; about 90 percent of
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paths can be fully characterized in two RTTs. We examine this aspect further in Section 8.4.

To make middlebox modification behaviors visible, we must enable different TCP and
IP extensions (such as those discussed in Section 2.1.3) during the connection setup. Ta-
ble 8.3 lists the sets of options we use in our experiments, including MSS, SACK permitted,
Window Scale, Timestamp [52], Multipath TCP MPCAPABLE [21], and a non-standard
experimental option with a kind value of 99.

Table 8.3: Experimental parameters for each trial
SACK Win Time MP- Exp

Trial MSS ECN Permit Scale stamp TCP
1 1460 Y 7 Y Y
2 1460 Y 7 Y Y
3 1460 Y 7 Y
4 1460 Y
5 480
6 1460
7 1600
8 None

8.3 Detected Modifications
Following the inference procedure in Section 5.3 and Tables 5.1 and 5.2, we use HICCUPS
to detect a variety of packet header manipulations. If a probe passes integrity checks at
the receiver and the forward path status bits return intact, the TCP initiator infers that its
packets (on the forward path) arrive without modification. Similarly, if the integrity checks
on the SYN-ACK match, the initiator infers that the reverse path does not modify headers.
All data we present in this chapter comes from the clients on PlanetLab and Ark.

Figure 8.1 displays the cumulative fraction of probes per host with passing integrity versus
the fraction of nodes (PlanetLab and Ark nodes combined with NAT results excluded). The
common case is that both the forward and reverse paths experience no modifications. For
approximately half of the nodes, all probes match integrity, while approximately 80 percent
of the nodes have 99 percent or their probes match integrity. The distributions for the two
asymmetrical integrity results are visible in the lower-right of the figure. Approximately
80 percent of nodes never experience this case.
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Figure 8.1: Distribution of matching probes, by direction. NAT modi�cations have been excluded.

Table 8.4 summarizes the probe results according to coverage type. The most common
modification is paths that add or change MSS values. The HNAT—and consequently the
inclusive HFULL probe—fails for the large majority of paths. This is unsurprising as ad-
dress translation is performed near the server for nine of our 12 servers. We verified that
while our Amazon EC2 servers experienced NAT, they made no other header modifica-
tions. Tables Table 8.5 and Table 8.6 show the results of running our detection logic on the
path, with each modification broken out by line. A modification is marked as an addition
if the change occurred when we did not request the option in the probe. In the following
subsections, we more closely examine specific modifications.

8.3.1 ISN translation
We find incidences of sequence number translation in tests from 24 of 218 Planetlab nodes
(11.0 percent). The ISNs are translated in both directions on 20 nodes, while for four nodes,
just the forward path translates sequence numbers. Only one of the Ark nodes is subject to
ISN translation that occurs on forward path only.
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Table 8.4: Summary of results by coverage type
Integrity Match

Coverage Both Fwd Rev Neither Timeout
HFULL 21867 597 985 80931 836
HNAT 25286 2 0 79129 799

HNONAT 91214 2397 2459 8329 817
HNOOPT 100535 71 2050 1732 828

HONLYOPT 92948 2542 1162 7736 828
HECNIP 102066 69 1693 572 816
HECNTCP 103777 10 47 585 797

HLEN 103451 17 359 574 815
HMSS 93365 2545 855 7632 819

HWINSCL 103685 16 5 690 820
HTSTAMP 103834 27 7 539 809
HMPTCP 103023 20 837 551 785
HEXOPT 102907 12 888 564 845
HFLAGS 102591 18 76 1719 812
HSAFE 103824 16 0 551 825
HNULL 103752 21 0 563 880

Total 1458125 8380 11423 192397 13131

The frequent occurrence of sequence number translation motivates in part our choice to
use three hash fragments, as detailed in Section 5.3. If, for instance, the ISN alone carried
integrity, HICCUPS would not work for 25 of our 274 nodes and we would be unable
to detect any header modifications beyond ISN translation. In contrast, HICCUPS can
withstand a single modification to any one of the three integrity-carrying fields (i.e., ISN,
IPID, and receive window).

However, should any pair of the three fields be modified, HICCUPS loses the capability
to detect specific field modifications, only noting that a change occurred to at least one
pair of the three integrity fields. Tables 8.5 and 8.6 list paths where this behavior occurs
under the heading “HICCUPS not capable.” 68 flows from PlanetLab (0.7 percent) and
four flows from Ark (0.2 percent) saw two or more integrity fields overwritten. Since
we control all of the nodes, we performed post-mortem analysis of packet captures taken
during the measurements and see that the TCP receive window is artificially lowered in-
path. In practical use, however, HICCUPS cannot obtain any fine-grained information for
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Table 8.5: Summary of HICCUPS-inferred header modi�cations on PlanetLab. Detection of
ISN, IPID, and receive window modi�cations are mutually exclusive to HICCUPS. If two or three
occurred, it registered as �HICCUPS not capable� instead.

Change Both Fwd Rev Flows Affected
HICCUPS not capable 68 0 2 10360 0.68%
NAT 7704 0 0 10281 74.93%
ISN translation 924 178 0 10290 10.71%
IPID change 0 0 0 10290 0.00%
RCVWIN change 0 0 0 10290 0.00%
ECN IP add 26 0 0 10270 0.25%
ECN IP change 16 1342 48 10283 13.67%
ECN TCP add 16 0 0 10261 0.16%
ECN TCP change 19 46 0 10285 0.63%
MSS add 119 47 1036 10258 11.72%
MSS480 change 21 0 1132 10281 11.21%
MSS1460 change 1113 0 0 10275 10.83%
MSS1600 change 1105 157 0 10294 12.26%
SACK Permit changed 1 24 0 10123 0.25%
Timestamps add 12 0 0 10267 0.12%
Timestamps change 26 2 0 10279 0.27%
Window Scaling add 45 0 0 10265 0.44%
Window Scaling change 24 0 0 10279 0.23%
MPCAPABLE change 24 837 0 10267 8.39%
Exp. option change 20 884 0 10266 8.81%

such paths.

8.3.2 ECN
We monitor behavior of the ECN fields in both the IP and TCP headers. Figure 8.2 shows
the results of each probe arranged by host in the combined PlanetLab and Ark datasets.
Each of the three plots in the figure represents the results from probing each of the 48
server ports from each of the 274 nodes. Each plot is sorted so that primary result types
are grouped together. The first plot shows the behavior when ECN was disabled, while the
lower two show behavior after ECN has been enabled. While ECE and CWR TCP flags are
rarely affected (we only saw such mods on paths from one PlanetLab node), modifications
to the IP codepoint are more common. We observed about 13 percent of paths on both
PlanetLab and Ark would zero the codepoint if it were enabled. None of the Ark nodes
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Table 8.6: Summary of HICCUPS-inferred header modi�cations on Ark. Detection of ISN, IPID,
and receive window modi�cations are mutually exclusive to HICCUPS. If two or three occurred,
it registered as �HICCUPS not capable� instead.

Change Both Fwd Rev Flows Affected
HICCUPS not capable 4 0 0 2684 0.15%
NAT 2114 0 0 2677 78.97%
ISN translation 0 48 0 2680 1.79%
IPID change 0 0 0 2680 0.00%
RCVWIN change 0 0 0 2680 0.00%
ECN IP add 2 0 0 2664 0.08%
ECN IP change 11 342 0 2675 13.20%
ECN TCP add 6 0 0 2670 0.22%
ECN TCP change 16 0 0 2675 0.60%
MSS add 10 96 140 2668 9.22%
MSS480 change 5 0 139 2674 5.39%
MSS1460 change 134 12 12 2678 5.90%
MSS1600 change 140 154 12 2672 11.45%
SACK Permit changed 0 0 0 2667 0.00%
Timestamps add 9 0 0 2669 0.34%
Timestamps change 10 0 0 2672 0.37%
Window Scaling add 9 0 0 2665 0.34%
Window Scaling change 5 0 0 2669 0.19%
MPCAPABLE change 8 0 0 2673 0.30%
Exp. option change 13 0 0 2676 0.49%

were found to exhibit changes.

8.3.3 Application Performance
An important consequence of HICCUPS is that knowledge of the end-to-end header modi-
fication state of a path can improve the performance of applications that depend on TCP.

For instance, in the case of sequence number translation that is SACK-naïve, performance
suffers in proportion to loss rate [53]. For ECN, performance suffers when false con-
gestion signals are inadvertently marked, experiencing dramatic performance impact if a
congestion codepoint is added, or a TCP-layer congestion echo is added [20]. To highlight
the potential impact on TCP performance, we examine a particular effect, observed in the
wild, in detail.
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Figure 8.2: Distribution of HICCUPS-inferred ECN path properties. For the IP codepoint,
HICCUPS only notes a change to the OR of the bits (Section 5.5).

We find a PlanetLab node (planetlab2.mta.ac.il) where the forward communication trans-
parently adds a TCP window scale value of seven to the SYN, but the reverse path strips
the window scale by replacing it with four NOP options in the returned SYN-ACK. The
behavior is destination port-specific: it did not occur on connection attempts to ports 22 or
34343, only to 80 and 443. Ultimately, one end of the communication believes that window
scaling negotiation has occurred, while the other does not.

We perform bulk transfer to the node performing window scaling and observe that the
traffic is flow controlled—the receiver is sending scaled values in the receive window, but
the sender interprets those values as unscaled. HICCUPS informs us of the option mangling
and we disable window scaling. Our performance tests reveal a dramatic difference where
the throughput more than doubles without window scaling since the congestion window
can open more than one or two MSS. We alerted the operator of the node and they were
unaware of the behavior. Further investigation revealed the issue was with a system in their
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provider’s network.

8.4 Expected Interactions Required
Across real paths in our PlanetLab and Ark datasets, we calculated the number of TCP
interactions it would take for two HICCUPS hosts to fully ascertain the path header mod-
ification state. For PlanetLab, our dataset contained 83,712 flows with 261,185 total SYN
exchanges were required to fully explore the space of header modifications with HICCUPS.
This amounts to an average of 3.1 SYN exchanges per flow. For Ark, we required 58,083
SYN exchanges across a total of 21,504 flows, for an average of 2.7 exchanges per flow.

Figure 8.3 shows that about 85 percent of flows were able to fully determine the modifi-
cations of their paths after checking just HNONAT and HFULL. Should NAT detection not
be desired, the check for HFULL could be omitted from the strategy shown in Section 5.6,
further reducing the required number of probes.
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Figure 8.3: Empirical HICCUPS RTTs required for complete path properties inference
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CHAPTER 9:

Conclusions and Future Work

The best time to plant a tree was 20 years ago.

The second best time is now.

Chinese Proverb

Detecting issues with protocol interactions that impact network performance is a difficult
process, complicated by a heterogeneous collection of standalone, opaque, and difficult-
to-configure middleboxes. As we have shown in previous chapters, such issues are often
subtle and—until now—required a manual debugging process by a trained administrator in
order to identify and correct problematic middleboxes. In the meantime, TCP performance
can needlessly suffer when using an extension that is disrupted along a path.

In this dissertation, we present TCP HICCUPS, a backward-compatible and incrementally
deployable extension to TCP that automates the question of how a TCP is being interpreted
at the remote endpoint. To do so, HICCUPS applies a tamper-evident seal to the packet
headers of the TCP 3WHS, revealing header manipulation to both sides of a TCP.

The information provided by HICCUPS allows TCP endpoints to infer when specific op-
tions and extensions are unsafe for use along a path, and gracefully fallback to legacy
TCP. In other words, a TCP can use the information from HICCUPS to selectively toggle
protocol extensions that best fit a given path, maximizing application performance in the
presence of misconfigured, non-standard, or legacy network middleboxes. In this fashion,
we take a step toward enhancing the cooperation between end hosts and middleboxes that
may exist along a path across different administrative boundaries. For example, we show
how HICCUPS actively helped detect a subtle, performance-impacting condition with win-
dow scaling on a real Internet path of which the operator was unaware. HICCUPS helped
the system in this case achieve twice the throughput over a TCP naïve to paths that modify
window scaling.

HICCUPS helps advance the state-of-the-art in the field of detecting Internet packet header

107



modifications—currently an array of underused or impractical methods, all with some com-
bination of deployment, incentive, or consistency issues that preclude integration into TCP.
In doing so, HICCUPS satisfies a set of key design points that enable it to become part of
TCP and answer the question of remote endpoint misinterpretation. As a demonstration
of its capabilities, HICCUPS acted as the first known solution to capture measurements of
packet header modifications within TCP and expose the results directly through the oper-
ating system itself. For example, the servers in our measurement infrastructure did not run
any specialized server applications and instead ran standard HTTP daemons.

Beyond improving TCP performance, widespread HICCUPS deployment would provide
invaluable data to researchers, policy makers, and protocol designers. Such data could help
influence new protocol designs and facilitate the safe deployment of new and experimental
protocol options. Measurements from running HICCUPS across a distributed and diverse
set of paths discover a wide variety of (sometimes asymmetric) behaviors, including paths
that modify, delete, or insert: sequence numbers, IPID or receive window, ECN, MSS,
SACK permitted, timestamps, window scaling, Multipath TCP, and experimental options.
Crucially, header modification behaviors are discovered by a HICCUPS-enabled TCP with-
out prior application-layer coordination from the remote endpoint. Such a usage model also
enables new diagnostic capabilities for network operators to help troubleshoot middlebox
configurations on both the forward and reverse data planes.

9.1 Future Work: HICCUPS Protocol
Our promising initial work suggests several avenues in which the HICCUPS protocol itself
could be extended or improved:

• Deeper integration with TCP: HICCUPS is the first solution to provide TCP with
the ability to reason about the manner in which it is being interpreted by a remote
endpoint. HICCUPS enables performance gains by selectively toggling certain op-
tions and extensions that are problematic due to a misinterpretation by a middlebox
along a path. In its current state, however, our HICCUPS implementation does not
automate those performance gains. For instance, we have not yet implemented the
logic to automate the disabling of window scaling when a modification is detected.
Further experimentation is required to fully characterize the path conditions where
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TCP would be best suited by adjusting its default behavior.
• Examination of other protocols beyond TCP: Modifications to control information

of other protocols such as UDP and IPv6 may help improve the inferences HICCUPS
provides to TCP or help a system’s networking stack improve performance for those
protocols. UDP is extremely limited in terms of flexibility. A future design could
leverage the only controllable value available within UDP, the ephemeral port. IPv6
is significantly more flexible due to its inclusion of extension headers enabled by
the “Next Header” field, but further measurement would be required to determine
if middleboxes generally support unknown extension headers. Use of a new exten-
sion header or the overloading of a current header could enable a stronger and more
feature-rich version of HICCUPS for TCP over IPv6.
• More coverage types: Our current HICCUPS implementation provides 16 possible

sets of fields that can be examined in a single connection. While no more bits are
available in the 4-bit coverage transmission sections of the forward path HICCUPS
integrity fields, it is possible to redefine the 4-bit value to reference a group of cov-
erage types rather than a single coverage type. For instance, a coverage value of
0b0000 currently tells HICCUPS systems to use the HNONAT type, but it could
instead point to a group of four different types. The receiving endpoint would then
brute-force the four possible types to find the correct one, pending the presence of
middlebox modifications. With 24 coverage type transmission space, and bins of size
n = 4, HICCUPS could leverage 64 possible coverages. Not only could types be
reserved for future extensions, current field granularity could be increased and new
search strategies could be created.
• Pluggable search strategies: Since the efficient search strategies discussed in Sec-

tion 5.6 do not need to be standardized to use HICCUPS, a system could poten-
tially switch between different strategies, depending on which is best for a given
path. A hot-swappable, modularized facility (similar to that of congestion control in
Linux [112]) could be created for HICCUPS state maintenance and coverage selec-
tion algorithms.
• Protect the entire connection: Protection of the TCP 3WHS represents an important

first step toward answering the question of misinterpretation since many extensions
are negotiated there that affect the remainder of the connection. However, some
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header modifications may only take place at later points during the connection (e.g.,
if congestion occurs and a packet is marked with the ECN CE codepoint). A design
is presented in Appendix A.4 that has the potential to be used to protect all packets
of a connection. If the initial HICCUPS check over the 3WHS determines that IPID
and IP DF are maintained along the path, then an integrity value could be written into
the IPID of each packet of the remainder of a connection. The hash values would be
much smaller, perhaps requiring a probabilistic approach to deal with collisions.
• Ability to leverage pre-shared secrets: With HICCUPS, we assume the general

(and more practical and useful) case of a pair of anonymous hosts communicating
across the Internet. If a pair of hosts has some pre-shared secret at their disposal,
usage of the ephemeral secret is not required to protect HICCUPS integrity and the
pre-shared secret could be used instead. The integrity could be encoded and decoded
by the endpoints immediately from the start of the connection. Further, the entropy
of the TCP ISN would be fully maximized since it would also be encoded with the
pre-shared secret. Such scenarios where a pre-shared secret might exist include: an
IPsec environment, a pair of hosts that already use TCP-AO, or a coordinated debug-
ging task. The implementation of HICCUPS would need to be altered (possibly by
creating a new setsockopt() call) to allow applications, users, or key distribution
systems to provide a key to protect HICCUPS integrity values.
• Forward error correction: Our idealized vision of HICCUPS (which would per-

haps require a clean-slate approach to accomplish) is that a pair of TCP endpoints
be able to automatically recover from a disruptive middlebox header modification
without requiring any additional packet transit. Provision of the data necessary for
such forward error correction (FEC) of header modifications is currently not possi-
ble within the small set of fields used by HICCUPS. In the event that HICCUPS
no longer needs to operate under such tightly constrained space requirements (e.g.,
if other protocols are used), it is worth investigating coding techniques that would
allow for FEC of packet control-plane information.

9.2 Future Work: Applying HICCUPS
We present the following areas in which HICCUPS inspires an avenue worth exploration
in future application and usage scenarios:
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• Continued measurement studies: We wish to continue our survey of Internet paths,
analyzing header modifications in the wild and their impact on performance. While
our measurements surveyed paths across a diverse set of countries and ASes, many
were over university networks intended for networks research. We would like to
broaden the collection of measurements to include users of residential and small
business networks. To accomplish this work, we further plan to make our implemen-
tations available on our website [114] and to invite the community to make use of
both the kernel and user-space versions of HICCUPS. We have already completed
efforts to make the user-space version operate on all common platforms (i.e., Win-
dows, Mac OS, Linux, and BSD). Greater variety in our measurements would further
help to refine the implementations and the design of the HICCUPS protocol itself.
• Usage by applications: By providing an interface to user-space in the kernel imple-

mentation (Section 7.2), we make it possible for applications to control and process
information from HICCUPS. In making this design decision, we envision a multi-
tude of possible usage scenarios, including: use by network debugging suites such as
Netalyzr [12], use by network scanning tools such as Nmap and nping [95] to attempt
to model middlebox behaviors and fingerprint devices based on those behaviors (e.g.,
TCP NOP options that are not required for alignment), or use by a peer-to-peer appli-
cation concerned about privacy or network neutrality issues.
• Path influence: We envision that, in the future, information resulting from HICCUPS

checks could be used in a variety of ways to influence the path taken by traffic. Hosts
and segments capable of source routing [31] could try to avoid paths containing a
problematic middlebox. Other methods such as Multipath TCP could also be used
to swap a connection over to a path that is more friendly to a new option or proto-
col extension. Also, networks themselves (e.g., content delivery networks (CDNs))
could incorporate HICCUPS results into their routing decisions. Routing decisions of
CDNs are often proprietary, but it is well-known that they strive to find high-quality
paths for traffic [121]. Existence or lack of existence of certain header modifications
could be used to direct traffic through various network paths. Since most CDN rout-
ing is based on UDP traffic, more investigation into other protocols (as discussed in
Section 9.1) would be necessary.
• Deployment in other domains: Military and industrial networks often operate un-
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der a much different set of guidelines than typical Internet-connected subnets. In
particular, some standalone or “airgapped” networks may operate in complete auton-
omy or even be connected externally at specific times (e.g., when a ship is at port).
Future work should explore the potential for HICCUPS to aid in quickly debugging
and understanding the impact of opaque middlebox deployments on such networks.
Portable network “test kits” including HICCUPS capabilities could be deployed to
operators of these networks to examine path properties both internally or when they
route through a new interconnection. Such an exploration would likely provide op-
portunities for technology transfer of HICCUPS beyond the effort to integrate it into
networked operating system stacks.
• Root cause of issues: While HICCUPS can provide information about which header

fields are modified along which paths, it does not provide any insight as to the rea-
son for that modification. For instance, HICCUPS cannot differentiate between ac-
cidental modifications to window scaling due to a misconfiguration or purposeful
efforts to artificially flow control a connection. In order to better understand and
characterize these differences, HICCUPS measurements could be accompanied by a
range of other probing techniques that detect more high-level devices such as TCP-
terminating proxies and load balancers. The measurements should be synthesized to
extract high-level information that the research community can use to reason about
typical causes for performance-penalizing middlebox behaviors.
• Is the path changing?: Another interesting question to ask about the asymmetric

path behaviors we detected in the measurements in Chapter 8 is: to what degree are

those asymmetric paths versus asymmetric modification behaviors by a middlebox?

In other words, are we actually measuring two different paths during a single 3WHS
exchange. In order to better answer such a question, advanced traceroute [38] data
needs to be captured in parallel with HICCUPS measurements and examined for path
differences. A tool such as Tracebox [39] could also be used to correlate HICCUPS
results.
• HICCUPS-enabled middleboxes: Under plain HICCUPS (Chapter 5), middleboxes

and intermediary devices would be able to extract and analyze the integrity informa-
tion if they desire. This prospect begs the question: how can they do so safely?

Suppose that a middlebox close to the client wishes to add HICCUPS integrity to
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outgoing connections before they traverse the Internet, that system would first need
to ensure that integrity is not already present or overwritten. Otherwise, overwrit-
ing the values to add HICCUPS would induce a false inference. Perhaps HICCUPS
state could be combined with an optional middlebox discovery option [82] for safe
deployment. In particular, mobile networks have a high presence of intermediate
devices to assist the network, and the range of low-powered devices it hosts [122],
which could attempt to make use of HICCUPS integrity information.
• Middlebox behaviors over time: HICCUPS could play an integral role in measure-

ment studies designed to determine whether middleboxes are improving or harming
network performance overall. As shown in this dissertation, numerous performance-
impacting issues can and have occurred due to the addition of intelligence to the
network. Often, the intelligence is added in an effort to aid either security or per-
formance. Such a measurement study could correlate HICCUPS-detected header
modifications with overall end host performance and help to answer the question, is

the increased presence of middleboxes helping or hurting performance?
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APPENDIX: Design Catalog

In the process of arriving at our final design for HICCUPS detailed in Chapters 5 and 6, we
created an array of potential designs for both the transmitting and protecting of integrity
values. In this appendix, we document each of those designs so that they will be available
for reference in the event they are needed by future work. For instance, the variant listed
in Section A.4 may one day be applied as an extension to HICCUPS that could be used to
protect the entire connection after the 3WHS. Each variant comprises a separate section
within this appendix and is closed with a page break to aid readability.

A.1 TCP design variants
For each subsequent variant section, we define the following key properties:

Throughout connection
We can either protect just the 3-way handshake or the entire connection. Detecting some
modifications requires examining a full connection. For example:

• A middlebox, M, modifies initial TCP sequence numbers, but fails to also update
SACK blocks into new sequence number window. The SACK blocks will not appear
until after the handshake.
• M shrinks the TCP receive window in order to throttle the connection between A and

B. This could happen at any point during the connection.

Diagnostic mode
Some of the variants are not able to coincide with a connection for an application (e.g.,
www, ssh, etc.). If so, they will be marked as “diagnostic only,” meaning that no application
data should be sent through the connections used by that variant. It can still operate with
any open TCP port on a server, but the connection that is created only serves the purpose
of checking packet header integrity, after which it is closed.

The ability for a pair of endpoints to create a diagnostic connection creates further issues:

• How does each endpoint detect that a given connection is diagnostic?
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• How do you prevent M from determining the same thing? If M knows which con-
nections are diagnostic, it can adjust its behavior for only those connections.

Fields used
This item lists the fields within the TCP or IP headers that each variant uses in the trans-
mission of integrity or status information.

Raises bar on M

At this point we are only focused on communicating integrity information. Chapter 6 takes
a deeper look at protecting the integrity and what can be done to stop or at least discourage
the information from being modified by the middleboxes we target. For purposes of com-
parison with the design variants in that chapter, we include a quantification of the level of
protection afforded by each variant.

A.1.1 Notation
The diagrams of each variant within this document will show information passing between
two hosts, A and B. The information itself will be consistently described in the format
shown in Figure 1.

what where

when

who

A B

Ah1 = f(...)

Ah1' == f(...)?

Bh1 = f(...)

Bh1' == f(...)?

Ah2 = f(...)

h
A 1

'

Figure 1: Standard notation for variant diagrams

What: The type of information (e.g., salt, h, etc.)
Who: The party that originated the information (either A or B)
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Where: A prime symbol (′) here indicates that this is the value of the information
after having transited the network. In other words, this information may
have been modified by M.

When: A number n to indicate that this is the nth piece of information of similar
type from the same origin. If not present, then it means the information is
only sent once from that origin.

Also discussed is f (), a publicly known hashing function that converts field state represen-
tations to hash values.
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A.2 Variant 1: Opportunistic HICCUPS
In this variant, A and B each embed a hash and salt value in their SYN and SYN-ACK,
respectively.

Throughout Connection: No, handshake only
Diagnostic Mode: None
Fields Used: Initial Sequence Number (ISN)

IPID (on first packet)
Raises Bar on M: Not really. M must recalculate two hash values and at

most store one packet header for up to half of an RTT.

A.2.1 Detailed Description
The opportunistic variant of HICCUPS has the ability to inform both parties in a TCP con-
nection if their packets were unmodified, without requiring a special diagnostic connection
or an extra RTT. This is important for high-performance applications that cannot afford any
added delays. The packets exchanged as part of this check look no different to the network
than any other similar packets, the only difference is that they have an ISN and IPID that
have special meaning. The opportunistic check was designed to operate as part of a normal
connection between two hosts that may or may not be using HICCUPS.

An example timeline of the opportunistic check between two hosts A and B is shown in
Figure 2, where A initiates the TCP active open. When A sends the first packet, it must
include a random string (the salt) and the result of the function of that packet’s fields and
salt value. The salt value is placed in the IPID field and the output from the function is
placed in the ISN.

We define the following:

Asalt ← rand()

Ah = f ( f ieldsSYN,Asalt)

The function f () is public (e.g., a known hash function). This allows the host at the other
end of the connection to compute Ah′ using the standardized function and the fields and salt
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A B

Asalt Ah

ipid seq ack

Bsalt Bh

ipid seq ack

A+1

seq ack

A+1

B+1

SYN

SYN-ACK

ACK

Asalt ← rand()

Ah = f(SYN, Asalt)

Bsalt ← rand()

Bh = f(SYN, SYN-ACK, Bsalt)

Figure 2: Timing diagram with no modi�cations

values of the packet from A as seen by B. If there were no modifications, then Ah′ == Ah.
Should they match, B can say that A’s packet was unmodified.

At this point, B generates its own salt and ISN value for the returning SYN-ACK packet.
If the checks by B pass, then it should incorporate a way for A to know that they passed
as well. This can be done by including something known to A in the function input. The
fields from the SYN packet can be combined with the fields from the SYN-ACK packet in
calculation of the sequence number used in the SYN-ACK:

Bsalt ← rand()

Bh = f ( f ieldsSYN, f ieldsSYNACK,Bsalt)

Should the check fail at B, it could inform A by leaving out the f ieldsSYN input from f ().
This would yield the following instead:

Bh = f ( f ieldsSYNACK,Bsalt)
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When A receives the SYN-ACK reply from B, it must check the packet’s sequence number
against both possibilities. The function must be computed using each of the two input
combinations B may have used above and determine whether either of them match the
sequence number it sees. Table 1 lists all possible outcomes at each end of the exchange.

At host B after receiving SYN:
Ah == f ( f ieldsSYN,Asalt) SYN unmodified
else SYN modified

or A not capable
At host A after receiving SYN-ACK:

Bh ==
f ( f ieldsSYN, f ieldsSYNACK,Bsalt)

SYN and SYN-ACK
unmodified

Bh == f ( f ieldsSYNACK,Bsalt) SYN modified
but SYN-ACK not

else SYN-ACK modified
or B not capable

Table 1: Possible outcomes of the opportunistic check

A.2.2 Faking Integrity
In order for M to fool A and B into thinking that no modifications were made, it must simply
recalculate Ah and Bh after performing its modifications. M does not need to regenerate salt
values; it can reuse the ones chosen by A and B. Finally, M must be able to store the SYN
fields until it can calculate Bh. At most, this will be until it sees the SYN-ACK return from
B. Figure 3 summarizes this process.

A.2.3 Pros
• Interoperable, incrementally deployable

A.2.4 Cons
• Does not protect the entire connection
• Can be disabled by overwriting initial sequence numbers
• Bob cannot distinguish between Alice not being HICCUPS-capable and a modified

field
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A B

SYN

SYN-ACK

ACK

M

store SYN,
be evil,
recalc Ah

Ah, Asalt

Bh, Bsalt

be evil,
recalc Bh

Figure 3: Necessary actions to fool A and B

A.2.5 Thoughts and Status
This variant is simple and easy to understand and implement. It represents a promising
approach to achieving good compatibility properties. Implementations of this variant cur-
rently exist as the basis for HICCUPS as presented in Chapter 5. Both a kernel and a
user-space version are available. See Chapter 7 for more details.
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A.3 Variant 2: Offset Sequence Numbers
In this variant, hash values are added to the sequence numbers in each direction.

Throughout Connection: Yes
Diagnostic Mode: Yes, diagnostic only

Mode Hidden? Reasonably so
Fields Used: SEQ and ACK
Raises Bar on M: Not really. M has to guess that the connection is in di-

agnostic mode, recalculate two hash values, and store a
sequence number for up to half of an RTT.

A.3.1 Detailed Description
This variant performs additive increases to the sequence number of each packet in the
connection, with that increase being expected by the other HICCUPS-capable end-host of
the connection. The result of the public function, f (), is added to the sequence number at
the completion of the handshake. This new sequence number will be outside the receive
window of the opposite host, forcing a duplicate ACK from a non-HICCUPS host.

A B

101 501

SYN

SYN-ACK

ACK

500 101

100

seq ack

860 501

f' = 860-101

or
RST

934 861

RST

or

f' = 934-501
861 935

RST

ACK

ACK

ACK

Figure 4: Two HICCUPS hosts (no mods)

A B

101 501

SYN

SYN-ACK

ACK

500 101

100

seq ack

860 501

501 101

ACK

ACK

RST

Figure 5: B not HICCUPS host

122



The example timeline in Figure 4 is a demonstration of the offset sequence number variant
as carried out between two HICCUPS-capable hosts. After A completes the handshake, it
immediately sends the next packet where the sequence number is f () more than before.
In this example, f () was 759. Upon receipt, B can recompute f () from the values of the
packet and check to see if it matches the difference in sequence numbers. If it does, B does
the same thing as A and sends a packet with an additively increased sequence number. If it
does not, then B can send a RST packet to end the connection. A then does a similar check
in response.

Figure 5 shows the timeline where B is not using HICCUPS. If B replies with a DupACK,
we know it must be plain TCP and does not understand our offset sequence number. Thus,
we cannot get an integrity check out of this host. Something to note here is that some
systems will not respond with a DupACK unless the difference in sequence number is
greater than the host’s receive window. This can be handled by adding a value to f ().

The primary benefit of this variant is that it enables each end of the connection to distin-
guish between a failed integrity check and a host not using HICCUPS. This eliminates the
ambiguity present in the opportunistic variant from Section A.2. In order to accomplish
this, the connection is completely used as a diagnostic connection that does not handle any
application data. It should be possible, however, to begin a connection using the oppor-
tunistic check and then switch to this variant if there was an issue with the results of the
first check.

A.3.2 Faking Integrity
In order for M to fool A and B into thinking that no modifications were made, it must
first recognize that a diagnostic connection is taking place and then overwrite the sequence
numbers with adjusted values.

Recognization of the mode is a tricky issue. The packets will appear to be out-of-order to
most systems, and the check must match up to detect the mode. Granted, M could match
up the check the same as B can, but either way, we introduce a little probability into M’s
decision.

Once M makes the decision that a given connection is performing the offset sequence num-
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bers check, it must perform the actions as shown in Figure 6 in order to fool A and B into
thinking that their connection has integrity. This includes saving a 32-bit sequence number
for up to half of an RTT and recalculating two hashes.

A B

101 501

SYN

SYN-ACK

ACK

500 101

100

seq ack

860 501

Ah' = 860-101

934 861

Bh' = 934-501
861 935

ACK

ACK

ACK

M

decide mode,
save seq+1,
be evil,
recalc Ah,
replace seq

be evil,
recalc Bh,
replace seq,
fix ack

Ah = 759

Bh = 433

Figure 6: Necessary actions to fool A and B

A.3.3 Pros
• Don’t change ISNs, so don’t need salt in IPID
• Should get through systems that securely randomize initial sequence numbers since

we only care about the deltas

A.3.4 Cons
• Essentially injecting junk into the network which may have unintended consequences
• Some systems may react poorly to the out-of-window sequence number
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A.3.5 Thoughts and Status
One troubling aspect of this variant is that we do not know what to expect from the net-
work as a whole in handling the offset sequence numbers. This variant essentially involves
injecting “junk” packets into the network and assuming (likely incorrectly) that they will
be transited properly by the network. This variant is probably not useful on its own.

However, a really large positive aspect of this design is that it provides a way of successfully
distinguishing between a HICCUPS host and a non-HICCUPS host without marking up the
packets in a manner that may introduce incompatibilities.
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A.4 Variant 3: Probabilistic Hashes
In this variant, smaller hashes bounce back and forth between A and B. The result is
probabilistic over many trials throughout the connection.

Throughout Connection: Yes
Diagnostic Mode: None
Fields Used: IPID
Raises Bar on M: No. Per packet it sees, M only has to recalculate one

hash and store one hash for up to half an RTT.

A.4.1 Detailed Description
If we allow the hashes to be really small (for instance a single byte), we can squeeze two
of them into the IPID fields of every packet in a connection. Obviously with such a small
range of outputs for f () we should expect a fair amount of collisions. However, if we do
these checks on each packet over the life of a connection, the probability of all of them
being collisions becomes very small. This is akin to the way the ECN nonce [48] works.

The timing diagram in Figure 7 shows the small hashes bouncing back and forth between A

and B. For the purposes of this example, imagine that the IPID field is split in two and the
upper byte is used for A’s hashes with the lower byte used for B’s hashes. The host sending
a packet includes a mini hash of its fields in its half of the IPID. Also, for all but the very
first packet, the other end host’s hash can be echoed back to them. This gives both ends of
a connection visibility into modifications in each direction.

Upon receipt of a packet, the receiving end host can perform two checks:

• Does the echoed hash equal what was sent?
• Does the hash from the other end equal a hash of the fields?

The results of these two checks give the host insight over modifications to packets sent and
received, respectively.

Due to the short length of the hashes, there is a larger chance of having collisions. This
means that there is a sizable chance our check may not work, even with M being nice and
not altering fields. We can tolerate this, though, because each packet is another trial and if
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h1

h1'

h2

h2'

h3

g1

g1'

g2

g2'

A B

h1' = f(Afields1')
h1 == h1'?
g1 = f(Bfields1)

h1 == h1'?
g1' = f(Bfields1')

g1 == g1'?
h2 = f(Afields2)

h1 = f(Afields1)

h2 == h2'?
g2' = f(Bfields2')

g2 == g2'?
h3 = f(Afields3)

g1 == g1'?
h2' = f(Afields2')
h2 == h2'?
g2 = f(Bfields2)

Figure 7: Timing diagram with no modi�cations

M is modifying fields (but not necessarily trying to fool us), we are bound to see it with the
majority of the packets.

Note that we make a small adjustment to the notation from Section A.1.1. We substitute h

for Ah and g for Bh.

A.4.2 Faking Integrity
In order for M to fool A and B into thinking that no modifications were made, it must replace
each of the mini hashes exchanged between them. For each packet that passes through M,
it must recalculate a hash and store the original for up to half an RTT.

A.4.3 Pros
• Simple, easy to understand
• Lightweight, relies on probabilities over multiple trials
• Hash is echoed back to you as the other end saw it

A.4.4 Cons
• Need to use on lengthier connections
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• Results may be fuzzy
• Easy for M to intercede

A.4.5 Thoughts and Status
This variant seems like it would work well, unless there is in-network fragmentation. Also,
similar to the opportunistic HICCUPS approach, once middleboxes become aware of the
technique, the integrity values may become less trustworthy as it will be very easy for a
middlebox to recompute the hashes. M has to do about half of the sum of the work A and
B must do in order to fool them.
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A.5 Variant 4: Hash Striping with Resets
This is an improved variant that transmits the integrity hashes in triplicate in order to with-
stand a modification to one of the integrity fields. Having three-way striping of the hash
gives reasonable proof that HICCUPS is used by the SYN initiator and allows for a TCP
RST to be sent when the hashes fail to match.

Throughout Connection: No, handshake only
Diagnostic Mode: None
Fields Used: Initial Sequence Number (ISN)

IPID (on first packet)
TCP Receive Window (on first packet)

Raises Bar on M: Not really. M must recalculate two hash values and at
most store one packet header for up to half of an RTT.

A.5.1 Detailed Description
The impetus for this variant came after performing initial tests on PlanetLab using the
standard opportunistic HICCUPS. The results are discussed in more detail in Chapter 8,
but about 13 percent of the nodes we tested experienced some combination of either ISN
translation or modification of the IPID field. While it was good that we were able to detect
that a packet header modification was taking place, we lose visibility to any other changes
made to the packet by M. This is because our integrity hash is overwritten and we lose
the ability to check the smaller subsets of header fields that do not contain the ISN or IPID
fields.

This variant solves the issue by copying the integrity hash into three separate fields of the
packet header. In addition to the fields we used before, ISN and IPID, we also use the
TCP receive window. It was realized that the value of this field is not important during
the three-way handshake and could be repurposed. A random salt value is still required in
order to ensure proper randomization of the ISN, so all hashes are set at 16 bits in length
and the 16-bit salt is placed in the upper half of the ISN with the hash going into the lower
half. The layout within the fields is shown below in Figure 8.

The host that receives the SYN will check to see if any two of the three hash bit ranges
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Figure 8: Hash and salt layout in header �elds

match. This will allow transmission of the integrity hash even if one of the three fields
were modified by M. A “majority rules” vote is taken from the three fields and that hash
is assumed by the receiver to be the HICCUPS hash sent by the SYN initiator. Obviously,
if any two of the fields are modified, we lose granularity and can only tell that the path
integrity has failed.

A key observation is that it is highly unlikely that any two of the 16-bit fields would be
exactly the same unless they were originally set that way by a HICCUPS-enabled SYN ini-
tiator. In the worst-case, a randomly set ISN will match either the IPID or receive window
value, causing the remote end to infer a HICCUPS capability and calculate path integrity,
which will fail. Because of this unlikelihood, we extend this variant with a TCP RST to
enable a feedback mechanism.

When the SYN receiver detects a HICCUPS hash (by finding two of the three hash fields
with the same value), and then determines that hash to fail the integrity check, it will
respond with a TCP Reset packet. This RST will act as feedback to the SYN initiator
that bits were modified while the SYN was in transit to the receiver. It can be differentiated
from a RST due to a closed TCP port by sending a SYN without any HICCUPS hashes.
In this case, the receiver will not find two of three fields with the same hash and must not
respond with a RST since the SYN initiator is assumed to be not HICCUPS-capable.

If the hashes both exist and pass integrity checks, a similar layout is used to transmit in-
tegrity in the SYN-ACK. An example transaction is shown in the timing diagram in Fig-
ure 9.
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Figure 9: Timing diagram with no modi�cations

All other aspects of this variant are similar to the Opportunistic variant in Section A.2. Both
parties are informed about the path integrity and it fits with the TCP handshake, so only
a single RTT is required for integrity status to be obtained. The only downside is that we
now use smaller hashes, 16 bits long instead of 32.

A.5.2 Faking Integrity
In order for M to fool A and B into thinking that no modifications were made, it must simply
recalculate Ah and Bh after performing its modifications. M does not need to regenerate salt
values; it can reuse the ones chosen by A and B. Finally, M must be able to store the SYN
fields until it can calculate Bh. At most, this will be until it sees the SYN-ACK return from
B. This is exactly the same as for the Opportunistic variant, but instead the hash has to be
written three times.

One possible weakness of this variant (depending on the viewpoint) is that, along with the
receiver, any middleboxes along the path of the packet can tell that the SYN initiator is
using HICCUPS. This saves a devious middlebox from having to overwrite hashes on all
SYNs it sees and instead just focus on ones where two out of the three fields have the same
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value.

A.5.3 Pros
• Interoperable, incrementally deployable
• Withstand modifications to any one of the three fields used to transmit integrity
• Gives status feedback through RST packet (stopping the connection before it starts

and allowing the initiator to retry with less features enabled)
• Can distinguish between HICCUPS-capable and a failed integrity check

A.5.4 Cons
• Does not protect the entire connection
• Still breaks if any two integrity transmission fields are modified
• Uses smaller length hashes and would be prone to more collisions

A.5.5 Thoughts and Status
This variant is fairly simple to understand, but implementing the RST work may be diffi-
cult in kernel. The variant’s key features of feedback and hash modification tolerance are
definitely needed after seeing PlanetLab results. RSTs can make things messy for non-
HICCUPS hosts, however, and if we do not do the RST we are unsure of how else we can
transmit the status feedback.
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A.6 Variant 5: Hash Rainbow
This variant is similar to the previous variant in Section A.5, except that the TCP RST is
not used as feedback response. Instead, four bits are taken from each hash and used to carry
the status. To avoid collisions while allowing for smaller hashes, a different hash function
is used for each of the three hashes.

Throughout Connection: No, handshake only
Diagnostic Mode: None
Fields Used: Initial Sequence Number (ISN)

IPID (on first packet)
TCP Receive Window (on first packet)

Raises Bar on M: Not really. M must recalculate six hash values and at
most store one packet header for up to half of an RTT.

A.6.1 Detailed Description
This variant transmits an integrity representation in three places, the ISN, IPID, and TCP
receive window. For each of the three fields, the integrity input is hashed using one of three
different hashing functions. For example, the hash we place in the ISN may use MD5,
while the hash we place in the IPID uses SHA-1 and the hash in the receive window uses
SHA-256. The layout is described in Figure 10.

Figure 10: Hash and salt layout in header �elds

The reason behind this “rainbow” of hashes is that the hash values themselves are only go-
ing to be 12 bits long. That means there is a 2−12, or 1

4096 , probability that a random number
would be misinterpreted as a valid hash showing correct integrity. Since this probability
is fairly high, the multiple hashing functions are used to reduce the chance of a false posi-
tive. The chance that the values placed in any two fields by a non-HICCUPS sender would
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match the expected outputs of two different hashing functions should be much lower.

Since the hashes have been reduced in length to 12 bits, that leaves four bits to be used for
transmitting status information. In the SYN, these four bits carry the coverage type that
the SYN initiator would like for the SYN receiver to use when it builds the integrity in the
SYN-ACK. On the returning SYN-ACK, the four bits carry the status of the SYN integrity.
The transaction is summarized in Figure 11.

For the status bits on the SYN-ACK, the lowest order bit is used to signify whether the
hash in the RCVWIN field of the SYN matched. The next lowest bit signifies a match in
the IPID hash, and the third bit signifies a match in the ISN hash. The highest of the four
status bits is always set to a value of one so that the TCP receive window value will not go
lower than 32,000.

Figure 11: Timing diagram with no modi�cations

A.6.2 Faking Integrity
The actions that need to be taken by a middlebox and the issues involved are the same
as with the variant in Section A.5. The only difference is that, due to the different hash
functions, middleboxes can no longer immediately tell that a packet is HICCUPS-enabled.
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This fact forces a devious middlebox to overwrite hashes on all packets if it wants to fake
integrity. The middlebox will also have to perform all three different hashing functions for
each packet it modifies.

A.6.3 Pros
• Interoperable, incrementally deployable
• Withstand modifications to any one of the three fields used to transmit integrity
• Gives status feedback
• Won’t disrupt any connection attempts due to RST

A.6.4 Cons
• Does not protect the entire connection
• Still breaks if any two integrity transmission fields are modified
• Uses smaller length hashes and would be prone to more collisions (but is helped out

by the three different hash functions)
• Can’t distinguish between non-HICCUPS capable and failed integrity check (but at

least the middlebox can’t either)

A.6.5 Thoughts and Status
This variant seems like the best option. Our primary concern with this strategy is the small
size of the hashes. Validation was required to quantify the performance of the rainbow of
hash functions at reducing collisions in the hashes.

This variant has many good qualities, listed above in the “Pros” section. The same combi-
nation of good qualities is not present in any of the other variants, making this variant very
enticing, but the concern of the small hash sizes must be must be managed. We took steps
to control this by the choice and combination of hashing algorithms in our implementation.
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A.7 Variant 6: CoinFlips
In this variant, a coin flip is added to the probabilistic variant from Section A.4 to try to
raise the bar on M.

Throughout Connection: Yes
Diagnostic Mode: None
Fields Used: IPID
Raises Bar on M: Yes. M must do at least as much work as either end-

point. Each RTT it must calculate five hashes and store
three for up to half an RTT.

A.7.1 Detailed Description
At its core, this variant is the same as the probabilistic variant described in Section A.4.
Except now, we have added a bit of randomness to how each side encodes the hash it
echoes. This forces M to do some calculations to determine the result of the coin flip so
that it knows how to encode the echo hash on the return packet.

In the conversation shown in Figure 12, A initiates the active open and B handles the coin
flips. It is A’s job to determine the value of the flip and use it to properly encode the hash it
is about to echo back to B. B then checks to ensure that the echoed hash was encoded with
the same side of the coin that it used.

For the notation, we make the same adjustment as the last section where we substitute h for

Ah and g for Bh. We use the pre-subscript to denote the value of the coin flip.

A.7.2 Faking Integrity
This variant includes lots of extra steps over the Passing Hashes variant, but it does raise the
bar more on M. In order to force more work upon M, we must do a little more ourselves
as well. The question is: did we make M do more extra work than we had to do? The
conversation where M tries to fool is shown in Figure 13.

In order for M to fool A and B into thinking that no modifications were made, it must
calculate five hashes per RTT and store three for up to half an RTT. This is a much greater
burden on M than the “calculate one, store one” requirements of the Passing Hashes variant.
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h1

Fh1'

h2

Fh2'

h3

g1

Fg1'

g2

Fg2'

A B
F = rand(H,T)

Fh1' = f(Afields1' | F)
g1, Hg1, Tg1

Match Fh1' to Hh1, Th1

Find out value of F

Fg1' = f(Bfields1' | F)
h2, Hh2, Th2

h1 = f(Afields1)

 Hh1 = f(Afields1 | H)

Th1 = f(Afields1 | T)

Match Fh2' to Hh2, Th2

Find out value of F

Fg2' = f(Bfields2' | F)
h3, Hh3, Th3

F = rand(H,T)

Fh2' = f(Afields2' | F)
g2, Hg2, Tg2

Figure 12: Timing diagram with no modi�cations

However, we have also increased the load on A and B. Per RTT, A and B must calculate
up to four hashes each and store up to two hashes. The good thing though, is that we have
raised the bar on M to just above the work required by either A or B. So in order for M to
fool us, it must work harder than either end point.

A.7.3 Pros
• Raised the bar a bit on M, but not up to the sum of the work of A and B

• Has many of the same pros of the probabilistic variant

A.7.4 Cons
• More expensive than the probabilistic variant
• Still needs many trials (packets) to get a good reading

A.7.5 Thoughts and Status
This variant shows much promise, but does not quite deliver all that we desired: where
M has to do as much work as A and B combined. We tested some other closely-related
variants, but none seemed to get the ratio of M’s work to A’s work as high as CoinFlips did.
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be evil,
recalc h1, Hh1, Th1

Match Fh1' to find F
be evil,

recalc g1, Fg1

be evil,
replace Fg1

recalc h2, Hh2, Th2

A B

Fh1', g1, Fg1

Fg1', h2, Hh2, Th2

h1,  Hh1, Th1 

Fh2', g2, Fg2

M

Figure 13: Necessary actions to fool A and B

A.8 Variant 7: HashCash
The goal of this variant is to stop a middlebox from easily overwriting fields by requiring
the hashes to have a specific property.

Throughout Connection: No, handshake only
Diagnostic Mode: Yes, diagnostic only

Mode Hidden? No, would be mostly detectable
Fields Used: Initial Sequence Number (ISN)

IPID
Raises Bar on M: Yes. After modifying a packet, M must spend CPU cy-

cles to find a good value of R if it intends to fool A and
B.

A.8.1 Detailed Description
In this variant, we require the hashes to show that some computation work was accom-
plished by the originator. One such way we could do this is to require that the hashes end
in a minimum number of zeros. In order to generate a hash that has this property, a system
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must essentially brute force different values to include with the input to reach the desired
property on the output. In our notation, we will call this special value R. When a valid R

is given as input to the hashing function along with the field state representation, it should
produce an output with at least the required number of zeros at the end.

A B

AR Ah
Find R such that

     Ah = f(Afields, AR)
        = xxxxxx000...

Ah' has property?

Ah' == f(Afields', AR')?

Bh = f(Bfields, BR)

Bg = Bh ⊕ Ah'

B precomputes a
pool of (h,R) pairs
using its source IP

BR Bg
Bh' = Bg' ⊕ Ah

Bh' has property?

Bh' == f(Bfields', BR')?

Figure 14: Timing diagram with no modi�cations

We then leverage the fact that M does not know when a given connection will start, nor
what parameters it will have. This means that M cannot start working on the puzzle until
it sees the SYN packet come through. The connection initiator, A, took some time to
solve the puzzle before it sent the SYN. This means that there was some lag in starting the
connection, but this is less of an issue if it is a diagnostic connection.

After A begins the connection by transmitting the (h,R) pair, B performs two checks on the
pair:

1. Does h have the property (end with enough zeros)?
2. Does h equal a rehash of the packet’s fields?

B then responds with an (h,R) pair of its own that it has precomputed with some common
values and its source IP. We will have to specially craft the set of fields for this check so
that B can perform this as precomputation.
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A.8.2 Faking Integrity
In order for M to fool A and B into thinking that no modifications were made, it must
quickly make its changes and calculate a new (h,R) pair as soon as it sees A initiate the
active open. Depending on how difficult we tweak the puzzle, this should take a detectably
long enough amount of time. M will have to delay the packet and we can look for the
abnormally long RTT.

A.8.3 Pros
• Good at discouraging a middlebox from interfering

A.8.4 Cons
• Forces the endpoints to spend CPU cycles solving hash puzzles
• Lag time from when A’s user requests a connection until it solves the puzzle and

builds the SYN

A.8.5 Thoughts and Status
This is a big step forward over the previously discussed variants at raising the bar on the
middlebox. Ultimately, we believe that the cons listed above would force this to be only
used in a diagnostic mode connection. This gets into a question of can M tell whether we
are in the diagnostic mode or not.

If M can easily detect when two hosts are in diagnostic mode, it can just play nice in those
cases and change packets in all the rest of cases. In this variant, there is nothing to disguise
the mode. If a middlebox sees hashes that do not satisfy the two checks, it can freely
modify packets. Variants in subsequent sections try to tackle this problem.
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A.9 Variant 8: Reverse Hash Chain
The salient feature of this variant is that it hides the existence of a check from M until the
full hash chain is revealed. All of the chain’s hashes look random until the salt is revealed.

Throughout Connection: Yes
Diagnostic Mode: Optional

Mode Hidden? Yes, until chain revealed
Fields Used: IPID
Raises Bar on M: Yes for detection, but M can still easily overwrite chain.

Can also make a strong argument using a random sam-
pling of checks.

A.9.1 Detailed Description
This variant employs a reverse hash chain to obscure whether the hashes are a check or just
random bits. Instead of directly embedding the hashes in the packet, we run it through the
hashing function several more times and embed the final output. This results in a chain of
values where it is really easy for a computer to determine a relationship in one direction,
but not the other. By starting off the connection with the end of a hash chain, we make
it very difficult for a middlebox (and the other endpoint) to trace the chain in reverse and
determine the original value.

Figure 15 shows an example conversation using the reverse hash chain check. For illus-
tration purposes, we fix the length of the chain at four packets, but it can be any preset
length. The length can be tuned according to how long you want to delay detection. The
final (in our case, fourth) packet of the chain reveals the information needed to reconstruct
the chain. We call this random value the salt. The salt is needed because it prevents M from
reconstructing the chain on the first packet.

The following order of events occurs for the length 4 chain:

1. A chooses a random salt value, c0

2. A hashes (c0, f ields1) to get c1

3. A hashes c1 to get c2

4. A hashes c2 to get c3
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A B

h1

c0 = salt
c1 = f(Afields1, salt)
c2 = f(c1)
c3 = f(c2)

h2 = f(c2, Afields2)

h2

salt

h3

h3 = f(c1, Afields3)

Save Afields1'

Do all checks

Save Afields2'

Save Afields3'

Chain length: 4

h1 = c3

h4 = c0

Figure 15: Timing diagram with no modi�cations

5. A embeds c3 into first packet and sends it
6. A embeds the hash of (c2, f ields2) into the second packet
7. A embeds the hash of (c1, f ields3) into the third packet
8. A embeds the salt, c0, into the fourth and final packet

Now M and B can both reconstruct the chain and verify the fields hashes. The extra hashes
in steps five and six provide integrity over the middle packets of the chain. B can go back
and check these too once it gets the salt.

The key effect we have had is that M did not know until the end of the chain whether we

were actually doing a check. On the first packet, we force M to commit to either:

• overwriting the chain (which it can easily do), or
• leaving the hashes unmodified

If M always chooses to overwrite just to be safe, it will be doing more work than necessary
since some connections will not use a check. Therefore, the burden on M is much greater
than on the endpoints, since they only have to expend the hash chain computations when
they decide to do a check. If M fails to overwrite the chain beginning with the first packet,
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the connection will fail our checks and we can detect it.

A.9.2 Faking Integrity
As mentioned before, it is easy for M to overwrite the hashes and replace them with its
own. It only needs to do the recalculations. What this variant makes difficult is detecting
the check until the end of the connection, so we will discuss that here.

Suppose M sees the packet and wants to tell if a check is being used. Examination of the
field holding the hash looks like random bits. The only other option is to try to reconstruct
the chain. To do this, two things are needed:

1. the fields over which the hash chain is based
2. the salt

With the first packet, M has the first item. But it still needs the salt, which is not disclosed
until the last packet in the chain.

From here, M’s only option is to try to hang on to a group of packets in an attempt to capture
the salt from the last packet before it has to forward along the first packet. Depending on
how long the chain is and how the connection is being used, this can deadlock or wedge
the connection because responses (flow control updates, application messages, etc.) from
B may be needed to elicit the rest of the chain from A.

A.9.3 Pros
• M cannot detect if a connection is HICCUPS-enabled until the end of the chain
• Can make an over-zealous M do more computation than you, thus raising the bar

A.9.4 Cons
• M can blast over the chain and insert its own, faking integrity
• Endpoint do not get integrity feedback until the end of the chain

A.9.5 Thoughts and Status
This variant stands apart from the rest in its ability to prevent detection of the check until
the reveal is done.
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We make the “raising the bar” argument by employing randomness in our protection strat-
egy. The idea here is that we randomly protect some 1/N connections or 1/N packets.
Since the middlebox cannot easily guess which packets are protected, it must overwrite
hashes on all N of them if it wants a guarantee to fool us. This can be detected when we
start seeing valid hash chains for connections and packets which were never protected in
the first place.

Furthermore, since our solution is incrementally deployable, there may be connections that
never run a check, and M will have to sort through those as well (although it could keep a
history of hosts that never embed valid chains, but this is still extra work).

As we will show in the next two sections, this technique can also be combined with Hash-
Cash and AppSalt to make them stronger and further raise the bar on M.
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A.10 Variant 9: HashCash with Reverse Hash Chain
This variant is a combination of HashCash and reverse hash chains. It requires the original
hash of the chain be a special HashCash hash.

Throughout Connection: Yes
Diagnostic Mode: Yes, diagnostic only

Mode Hidden? Yes, until chain revealed
Fields Used: IPID
Raises Bar on M: Yes, stronger than HashCash and reverse hash chains.

A.10.1 Detailed Description
Similar to the HashCash variant, A and B can precompute a pair (h,R) where R is a value
that is added to the input of the hashing function. The value R causes the output h to have
a property which is easily checked. Such a property could be that the hash begins with a
minimum number of zeros.

In this variant, we now use the reverse hash cash to obscure the HashCash hash within a
chain. The setup is the same as described for the reverse hash chain variant. The only
differences are that the R value is used as the salt given by the REVEAL, and the original
hash of the chain has the HashCash property.

The variant is outlined in Figure 16. As with HashCash, A brute forces through different
salts to find a resulting h that meets the specified property. More specifically, the resultant
hash h must be an element of the set of all hashes that meet the property, or h ∈ P.

The following order of events occurs for a length 4 chain:

1. A brute force searches for a value that yields h such that h ∈ P. This value is c0.
2. A hashes (c0, f ields1) to get c1

3. A hashes c1 to get c2

4. A hashes c2 to get c3

5. A embeds c3 into first packet and sends it
6. A embeds the hash of (c2, f ields2) into the second packet
7. A embeds the hash of (c1, f ields3) into the third packet
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A B

h1
Find c0 s.t. c1 = xxx000
c1 = f(Afields1, c0)
c2 = f(c1)
c3 = f(c2)

h2 = f(c2, Afields2)

h2

$alt

h3

h3 = f(c1, Afields3)

Save Afields1'

Do all checks

Save Afields2'

Save Afields3'

Chain length: 4
h1 = c3

h4 = c0

Figure 16: Timing diagram with no modi�cations

8. A embeds c0 into the fourth and final packet

Basically it is exactly the same as the reverse hash chain variant, but we replace the random
salt value with one that requires computational cycles. This makes it difficult for any mid-
dlebox to overwrite the chain since it must start with a value that is valid for the HashCash
scheme.

A.10.2 Faking Integrity
In order for M to fool A and B into thinking that packets were not modified, it would have to
overwrite the entire hash chain while ensuring that the HashCash property still holds. All
by the time the full chain is sent, which should be very difficult. Also, if M adds a bunch
of delay to the final packet of a chain, we should be able to detect that.

A.10.3 Pros
• A good combination of the strengths of HashCash (raising the bar computationally)

and reverse hash chains (making mode detection difficult)

A.10.4 Cons
• Could only be used in a diagnostic connection
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A.10.5 Thoughts and Status
This variant is worth continuing to explore. It gives all the same benefits of the reverse hash
chain method with the added computational burden from the HashCashes. It can basically
be viewed as an add-on for the reverse hash chains. Perhaps it could be used as a stronger
assurance mode for more aggressively invasive middleboxes.

Coding the HashCash pool will be difficult if a CPU must precompute them in spare cycles.
Without precomputation, it will probably be unusable for anything other than a diagnostic
connection.
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A.11 Variant 10: AppSalt
Uses application data in the integrity hashes to make them hard to modify without affecting
the user experience.

Throughout Connection: Yes
Diagnostic Mode: No
Fields Used: ISN, IPID
Raises Bar on M: Yes. M would have to be a terminating proxy and cache

lots of packets.

A.11.1 Detailed Description
This variant builds on the opportunistic approach from Section A.2 and protects the SYN
integrity value with future application-layer content from a data packet yet to be sent. This
ephemeral secret is difficult for a middlebox to reliably determine a priori. As before, the
integrity value is encoded in the ISN of the SYN, but now the receiving end host, as well
as any middleboxes, must know the contents of future application data in order to interpret
the integrity.

For the ephemeral application-layer secret, the first data packet need not be a full MSS (e.g.,
in the case of an HTTP GET request). We therefore examined the initial application payload
of each flow in a full day of border traffic from our organization. Among application data
payloads of 6,742,466 flows, we find 5,377,440 (approximately 80 percent) where the first
40 bytes are unique. The 99th percentile of the distribution is that payloads appear twice,
implying that 40 bytes of ephemeral secret is a reasonable lower-bound to prevent trivial
guessing.

To illustrate the complete HICCUPS operation, we present a scenario where a web client
connects to a server by performing the 3WHS and then issues an HTTP GET request for
a specific resource. Neither the remote server nor any in-path middleboxes can reliably
ascertain what will be the application data at the time the SYN is observed. Only the
web client knows with certainty the initial HTTP application data that will be sent. In this
example, the application layer data might contain such items as the GET URL, the host
parameter, and the user agent string as shown in the example of Figure 17.

148



Figure 17: Timing diagram with no modi�cations

A.11.2 Faking Integrity
Since the application data needed to properly decode the SYN’s integrity is not available
to M at the time the SYN is received, it is difficult for M to check whether a connection
is HICCUPS-enabled. Encoding integrity with future application data also increases the
difficulty for a middlebox to tamper with a packet and evade detection. M cannot simply
recalculate a new valid integrity. The ephemeral secret forces M to process the SYN packet
before it can observe the application data. Otherwise, M has two remaining options to
modify the packet headers and evade detection: make a best guess of the application data,
or perform a man-in-the-middle (MITM) attack and fake a SYN-ACK response, inducing
A to expose the application data secret.

M may attempt to guess the unseen application data (e.g., by using a profile of prior con-
nections from A to B). However, M is unlikely to guess correctly for every connection
between all pairs of hosts. If M guesses incorrectly, integrity values will not validate and
the manipulations can be detected. Of course, M could change the actual application data
to match its guess, but doing so fundamentally alters the application-layer behavior of the
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connection.

In order to know the application data with certainty, M must act as a TCP-terminating
proxy, a behavior that is detectable based on timing and by issuing connections to known
unreachable hosts as shown in [12]. This MITM behavior, whereby M falsely claims to
be B, spoofs the SYN-ACK and intercepts the resulting traffic, permits M to rebuild the
original SYN with an updated integrity value and forward it along to the true destination.
The non-spoofed SYN-ACK from B would have to be intercepted and the cached data
from A could be sent. This situation is clearly more complicated than just the translat-
ing of sequence numbers; the middlebox has broken a connection and now has to marshal
data between them, in addition to sending spoofed packets, buffering data, and rebuild-
ing integrity values. Further, the middlebox must do this for all connections, potentially
representing many endpoints.

A.11.3 Pros
• Very strong against middleboxes intending to perform undetected tampering
• Ties attempted evasion by a middlebox to the user experience

A.11.4 Cons
• Further blurs lines between layers. Forces us to understand application data at the

TCP layer.
• Need to modify many applications to provide this data to the TCP stack at connection

time

A.11.5 Thoughts and Status
We took the step of verifying that the system call to connect() initiates the 3WHS. The
SYN is sent before any calls to send() are ever made.

Our current implementation of HICCUPS uses this variant as its protection scheme. We had
to modify the kernel’s socket API so that an application could specially request protection
via AppSalt if it desired it. For more details, see Section 7.2.
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