
 

NAVAL 
POSTGRADUATE 

SCHOOL 
 

MONTEREY, CALIFORNIA 
 

 
 

THESIS 
 
 

Approved for public release; distribution is unlimited 

IMPROVING OPERATIONAL EFFECTIVENESS OF 
TACTICAL LONG ENDURANCE UNMANNED AERIAL 
SYSTEMS (TALEUAS) BY UTILIZING SOLAR POWER      

 
by 
 

Nahum Camacho 
 

June 2014 
 

Thesis Advisor:  Vladimir N. Dobrokhodov 
Co-Advisor: Kevin D. Jones 
Second Reader: Isaac Kaminer 

 



THIS PAGE INTENTIONALLY LEFT BLANK 



REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing 
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection 
of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including 
suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 
Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction 
Project (0704-0188) Washington DC 20503. 
1. AGENCY USE ONLY (Leave blank) 
 

2. REPORT DATE   
June 2014 

3. REPORT TYPE AND DATES COVERED 
Engineer’s Thesis 

4. TITLE AND SUBTITLE   
IMPROVING OPERATIONAL EFFECTIVENESS OF TACTICAL LONG 
ENDURANCE UNMANNED AERIAL SYSTEMS (TALEUAS) BY UTILIZING 
SOLAR POWER      

5. FUNDING NUMBERS 
 

6. AUTHOR(S)  Nahum Camacho  
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

Naval Postgraduate School 
Monterey, CA  93943-5000 

8. PERFORMING ORGANIZATION 
REPORT NUMBER     

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
E2O-MARINE CORPS 
CRUSER 
ARL 
ONR 

10. SPONSORING/MONITORING 
    AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES  The views expressed in this thesis are those of the author and do not reflect the 
official policy or position of the Department of Defense or the U.S. Government.  IRB Protocol number ____N/A____.  

12a. DISTRIBUTION / AVAILABILITY STATEMENT   
Approved for public release; distribution is unlimited 

12b. DISTRIBUTION CODE 
 

13. ABSTRACT (maximum 200 words)  
 
This thesis develops, implements, and validates a hybrid energy-harvesting technique that enables 
extracting energy from the environment by utilizing convective thermals as a source of potential energy, 
and exploiting solar radiation for photovoltaic (PV) energy to achieve long endurance flight of an 
autonomous glider. The dynamic behavior of convective thermals, as well as their mathematical models, 
are studied to determine their motion, while the navigation task is simultaneously solved using a Bayesian 
search approach that is based on the prior knowledge of the 3D elevation. This study advances an existing 
technique for detection of thermals by implementing the online identification of the airplane sink rate polar. 
The glider’s climb rate is optimized by implementing a modified thermalling controller, and its performance 
is compared to an existing method of centering in thermals. The integration of the energy extracted from 
the solar radiation is accomplished by the design of an Electrical Energy Management System (EEMS) that 
safely collects and distributes the energy onboard. The electrical energy is supplied by the semi-rigid mono 
crystalline silicon solar cells, which are embedded into the skin of the glider’s wings without distorting the 
airfoil. 

To validate and verify the algorithms developed in MATLAB/Simulink, an interface to a high-fidelity 
pilot’s training flight simulator was designed. Furthermore, the numerical algorithms were integrated 
onboard a prototype SB-XC glider equipped with solar cells to enable the desired energy-harvesting 
technique. Flight test results verify the feasibility of the developed algorithms. 
14. SUBJECT TERMS: convective thermals, thermalling control, system identification, 
photovoltaics, Bayesian search, guidance, navigation, path planning, Electrical Energy 
Management System, MATLAB/Simulink, mathematical modeling and simulation. 

15. NUMBER OF 
PAGES  

185 
16. PRICE CODE 

17. SECURITY 
CLASSIFICATION OF 
REPORT 

Unclassified 

18. SECURITY 
CLASSIFICATION OF THIS 
PAGE 

Unclassified 

19. SECURITY 
CLASSIFICATION OF 
ABSTRACT 

Unclassified 

20. LIMITATION OF 
ABSTRACT 
 

UU 
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)  
 Prescribed by ANSI Std. 239-18 

 i 



THIS PAGE INTENTIONALLY LEFT BLANK 

 ii 



Approved for public release; distribution is unlimited 
 
 

IMPROVING OPERATIONAL EFFECTIVENESS OF TACTICAL LONG 
ENDURANCE UNMANNED AERIAL SYSTEMS (TALEUAS) BY UTILIZING 

SOLAR POWER      
 
 

Nahum Camacho 
Lieutenant, Mexican Navy 

B.S., School of Engineering of the Mexican Navy, 2007  
 
 

Submitted in partial fulfillment of the 
requirements for the degree of 

 
MECHANICAL ENGINEER 

 
and 

 
MASTER OF SCIENCE IN MECHANICAL ENGINEERING 

 
from the 

 
NAVAL POSTGRADUATE SCHOOL 

June 2014 
 

 
 
Author:  Nahum Camacho  

 
 

Approved by:  Vladimir N. Dobrokhodov  
Thesis Advisor 

 
 

Kevin D. Jones  
Co-Advisor 
 
 
Isaac Kaminer 
Second Reader 

 
 

Knox T. Millsaps 
Chair, Department of Mechanical & Aerospace Engineering 

 iii 



THIS PAGE INTENTIONALLY LEFT BLANK 

  

 iv 



ABSTRACT 

This thesis develops, implements, and validates a hybrid energy-harvesting 

technique that enables extracting energy from the environment by utilizing 

convective thermals as a source of potential energy, and exploiting solar 

radiation for photovoltaic (PV) energy to achieve long endurance flight of an 

autonomous glider. The dynamic behavior of convective thermals, as well as 

their mathematical models, are studied to determine their motion, while the 

navigation task is simultaneously solved using a Bayesian search approach that 

is based on the prior knowledge of the 3D elevation. This study advances an 

existing technique for detection of thermals by implementing the online 

identification of the airplane sink rate polar. The glider’s climb rate is optimized by 

implementing a modified thermalling controller, and its performance is compared 

to an existing method of centering in thermals. The integration of the energy 

extracted from the solar radiation is accomplished by the design of an Electrical 

Energy Management System (EEMS) that safely collects and distributes the 

energy onboard. The electrical energy is supplied by the semi-rigid mono 

crystalline silicon solar cells, which are embedded into the skin of the glider’s 

wings without distorting the airfoil. 

To validate and verify the algorithms developed in MATLAB/Simulink, an 

interface to a high-fidelity pilot’s training flight simulator was designed. 

Furthermore, the numerical algorithms were integrated onboard a prototype SB-

XC glider equipped with solar cells to enable the desired energy-harvesting 

technique. Flight test results verify the feasibility of the developed algorithms. 
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I. INTRODUCTION 

Flight endurance is one of the most important characteristics of an airplane 

when planning the tactical missions that an Unmanned Air Vehicle (UAV) is able to 

carry out. 

This thesis develops and implements an energy-harvesting technique using 

solar radiation in two ways: convective thermals, i.e., soaring, and photovoltaic 

energy. The combination of these two phenomena will enable 24/7 flying 

capabilities. 

Technological advances in electronics are merged with state-of-the-art 

control algorithms to achieve the integration of a fully autonomous glider capable of 

using the previously mentioned solar radiation, and apply it in a multiday mission. 

Some articles and papers have shown the feasibility of implementing 

separately the use of the two phenomena produced by solar radiation; however, 

the combination of both has the potential to achieve 24/7 flights. Validation and 

verification of this combination is provided by the software in the loop simulations 

(SIL) and real flight tests conducted in this study.  

A. ENVISIONED MISSION OF MULTIPLE AUTONOMOUSLY SOARING 
GLIDERS 

Imagine a conflict taking place behind enemy lines. To provide 

reconnaissance over the area, a squad of autonomous cooperative gliders is 

deployed from a remote location. Each glider carries a specific sensor/weapon to 

give air support to friendly forces. At the same time, a communication network is 

established automatically by the squad, and encrypted video/data of the conflict is 

sent to the command center miles away in a safe area. The gliders will remain 

airborne day and night in multiday missions as required, without any power supply 

or human close supervision. 

The energy required to support the long endurance mission is provided by 

the sun to the aircraft in two ways: first by autonomous soaring in the columns of 
 1 



convective air that are usually called “thermals”, and second by storing electrical 

energy produced by the photovoltaic cells covering the wings in the onboard 

batteries. 

The flock of gliders operates as a neural network wherein each element 

communicates with the neighboring gliders. Information gained by the gliders 

during their mission is shared among them and also concentrated in a remote, 

centralized, intelligent ground-control station. 

The squad can be thought of as a set of low-altitude satellites with the 

potential for performing a number of useful missions; transition to a different 

mission can be done either by installing different sensors and payloads onboard or 

by employing a set of heterogeneous gliders carrying various sensors/payloads. 

After the squad is assigned a mission, all its component gliders distribute 

their sensing and payload capabilities automatically; this is done to accomplish that 

mission over an extended period of time, and to harvest the maximum solar energy 

available to enable that extended operational endurance. The autonomous gliders 

might be assigned a wide variety of missions: 

• persistent Intelligence, Surveillance, and Reconnaissance (ISR) 

• encrypted network with video and communication coverage 

• high-resolution terrain mapping 

• target search with geolocation and designation capabilities 

• target tracking 

• convoy protection 

• jamming and deception  

• early warning of approaching enemy to protect friendly ground forces 

B. THESIS OBJECTIVES 

The key objective of this thesis is to develop an extended endurance 

capability of a single autonomous glider by enabling its onboard systems to harvest 

thermal and solar energy. 
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As a logical extension, the thesis explores the technological solutions of 

integrating multiple autonomous thermal-soaring solar-powered gliders in a 

cooperative mission to: 

• significantly increase their capability of rapidly finding the convective 
thermals  

• complement their operational capabilities in persistent ISR missions 

C. FORMULATION OF THE PROBLEM 

In order to accomplish these objectives it is necessary to integrate in a 

single platform multiple complementary capabilities: 

• thermal searching 

• thermal detection 

• autonomous soaring 

• photovoltaic energy harvesting 
When these capabilities are developed and integrated onboard a single 

platform, the automatic formation of a team of fully autonomous gliders capable of 

staying airborne in a multiday flight becomes a reality. 

D. PREVIOUS STUDIES AND APPLIED RESEARCH 

Achieving success in this project requires systematic development and 

integration of knowledge from several adjacent areas of expertise, with all of them 

contributing to the same goal; that is, a design of an aerodynamically efficient 

airplane that is capable of autonomously harvesting energy from the sun. The 

expected contributions from the various engineering disciplines are as follows: 

• Airframe optimization. Any reduction in drag increases endurance on 
an airplane; i.e., with the same amount of energy the UAV will travel 
a larger distance or will stay airborne longer. Another characteristic 
desired in such an optimized platform is a high lift with low induced 
drag at the cruise speed. 

• High efficiency photovoltaic cells and high-specific energy batteries. 
One of the energy sources to be exploited by the aircraft is the solar 
radiation that is collected onboard through the photovoltaic energy 
extraction. During the day, this energy is used to power the avionics 
onboard, while excess energy is stored in a set of onboard batteries. 

 3 



During the night, the stored energy powers avionics onboard and is 
used for propulsion as required. 

• Convective thermal search and detection. Autonomous soaring relies 
on the existence of convective air that first needs to be sought and 
detected. Utilizing convective thermals allows significant gain of 
potential energy through altitude while not using any energy for 
propulsion. Utilizing the typically present INS/GPS sensing 
capabilities onboard as well as the algorithms of energy estimation, it 
is possible to find thermals and determine their potential utility. 

• Identification of convective thermals. Knowledge of the convective air 
characteristics determines a number of utility parameters; among 
them are the intensity of the updraft, the maximum achievable ceiling, 
the geographic location and its motion. All these characteristics are 
essential when planning and executing a single glider mission. They 
are even more important in planning and executing the multiple 
cooperative glider missions. 

• Autonomous soaring. This capability allows the glider to gain altitude 
without spending energy for propulsion. In thermal soaring approach, 
the columns of rising air (i.e., thermal updrafts) are used as energy 
sources. 

• Cooperative flight. Since the columns of rising air are invisible, finding 
their location is crucial for the extended flight operation. Assuming 
that every airplane has the same mobility and sensing 
characteristics, the greater the number of gliders, the quicker the 
search and more reliable detection, and identification of updrafts will 
be.  

1. Airframe Optimization 

Airframe optimization is typically done by minimizing the parasitic drag 

induced by the air passing the airframe, and maximizing the lift produced primarily 

by the wings and fuselage. Throughout the years, research has been done on 

these two components in order to produce high-efficiency airframes. 

Back in 1968, Galvao [1] studied a methodology to get low drag three-

dimensional bodies; it was based on the principle that a majority of glider fuselages 

have plan and side forms similar to low drag airfoils. Galvao applied potential flow 

and boundary layer theories for developing geometries that favor laminar flow 

downstream by creating prescribed negative pressure gradients. In theory, glider 

fuselages obey these design criteria. 
 4 



Further studies carried in 1984 by Dodbele and Van Dam [2] had as their 

main objective the design of bodies with a large region of Natural Laminar Flow 

(NLF). Feasibility of this objective was motivated by technological advances in 

material sciences which allowed for creation of surfaces with minimal roughness. 

As a result, a computational design procedure was developed to obtain a low-drag 

body shape. However, the comparison of computed and experimental boundary 

layer transition points showed a mismatch in the results. One of the reasons for 

this mismatch was attributed to the inappropriately measured experimental data; 

and as solution, it was suggested that a full-scale high-Reynolds number wind 

tunnel experiment be conducted to obtain qualitatively and quantitatively better 

transition data. Nowadays, new technological advances in material sciences 

together with novel manufacturing process produce lighter and more resistant 

airframes with large regions of NLF as in Tactical Long Endurance Unmanned 

Aerial Systems (TaLEUAS). 

Research in the optimization of airfoils has been done by Boermans and 

Garrel [3], where the airfoils were designed, and the effect of wings made with 

them was analyzed for multiple plan-form fuselages. The results achieved several 

goals, such as a low drag for prescribed ranges of lift coefficients and Reynolds 

numbers, improved climbing characteristics, graceful and predictable stall 

characteristics, laminar flow extended in some cases up to 95% of the chord length 

(Figure 1). 

 5 



 

 
Figure 1.  Laminar flow over fuselage of an optimized glider airframe, from [3].  

Selig, Guglielmo, Broerer and Giguère published in 1995 the first edition of 

the Summary of Low Speed Airfoil Data [4], which later would become a series of 

volumes that document the experimental results of tests performed on the low 

Reynolds number airfoils at the University of Illinois at Urbana-Champaign. This 

kind of airfoils is used nowadays in several aircrafts including the gliders like 

TaLEUAS. 

In 1997 Boermans and Nicolosi [5] investigated the effect of modifying 

fuselage geometry dimensions on the produced drag; the work utilized a three-

dimensional panel code. This research demonstrated that increase of length of the 

cockpit (to allow for additional instrumentation) within a certain range has no 

impact on the resulting drag, while an increase of height of about 10% will increase 

the fuselage drag by about 13%. 
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A design methodology used to create high-lift low-Reynolds number airfoils 

was established back in 1997 by Selig and Guglielmo [6]. The development of 

these airfoils represented great potential advantages for military applications such 

as: carrying heavy payloads, shortening takeoff and landing distances, and 

lowering stall speed. The main idea in the airfoil design was the use of concave 

pressure recovery with aft loading. For example, the new airfoil S1223 for a 

Reynolds number of 2 x 105 was created and validated with wind tunnel tests 

getting a maximum lift coefficient of 2.2. This coefficient was higher than the one 

obtained for similar airfoils, such as the FX 63-137, with a maximum lift coefficient 

of 1.7 for the same Reynolds number. 

Another design methodology based on inverse airfoil design was applied by 

Gopalarathnam and Selig [7] in 2001. The main goal this time was to ensure NLF 

over the airfoil. The developed multipoint inverse airfoil design method allows 

specifying the velocity and boundary layer properties over different portions of the 

airfoil. Further adjustment of the described parameters results in families of airfoils 

with desired different lift, drag, and pitching moment properties. 

2. Autonomous Soaring 

Thermal soaring is a technique that involves the use of columns of rising air 

to gain altitude without using propulsion; it has always been used by some bird 

species, and lately by human pilots. One of the first attempts to replicate this 

technique in UAVs was developed by Allen [8]; in 2005, he developed and ran a 

computer simulation of autonomous soaring based on real data. The goal of this 

simulation was to determine the improvement in flight endurance gained by a small 

UAV as a result of utilizing the thermal soaring technique. Allen took atmospheric 

data from the Desert Rock area of Nevada; it was used to simulate the 

characteristics of the thermals in a parametric mathematical model. Variable 

characteristics of thermals in this model were size, strength, spacing, shape, and 

maximum height. Allen’s results showed that UAV endurance could be improved 

by up to 12 hours of flight just by using thermal soaring. The major contributions of 
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this work are the development and implementation of mathematical models of 

thermals in simulations and the quantitative prediction of the extended endurance. 

In 2007 Allen and Lin [9] designed and implemented onboard UAV, and 

flight tested a guidance and control method for autonomous soaring. The 

algorithms were based on the concept of total energy, where potential and kinetic 

energies were combined. The total energy was used to estimate position, radius, 

drift, and strength of thermals; later, these parameters were used to guide the 

glider in a circular path to enable autonomous thermal soaring. 

Edwards [10] designed and implemented onboard a glider UAV a thermal 

locating and guidance algorithm based on the rate of change of the vehicle energy 

and the glider speed polar. Numerical techniques like adaptive grids and nonlinear 

regressions and correlations were applied in this research to get a better 

estimation of the thermal location. Also the author implemented the optimization of 

commanded speed based on the MacCready Speed-to-Fly theory, which is widely 

used in competition of cross-country glider flights. 

In 2010, Akthar [11] explored the potential effect of integrating of several 

sensors to detect thermals; the effort led to the design and onboard integration of a 

Total Energy-compensated variometer and an infrared (IR) camera. These sensors 

were combined with weather information, and guidance and navigation algorithms. 

The objectives of this work were in the localization of hot areas on the ground 

using the IR camera, and generation of real-time trajectories for dynamic soaring 

utilizing the Inverse Dynamics Virtual Domain technique. 

Andersson et al. [12] in 2012 analyzed the stability properties of the thermal 

centering control algorithm that was based on the total energy concept [9] and its 

first two time derivatives. Such a controller captured Reichmann’s climbing 

technique [13], where bank angle is actively adjusted to enable the glider to 

automatically soar around the center of the thermal at an optimal turning radius. 

Flight tests proved the reliability and high utility characteristics of the controller 

when tracking stationary and moving thermals. 
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3. Cooperative Flight 

In 2008, Hanson [14] performed a study to demonstrate that cooperative 

behaviors found in flocks of birds could be applied to flocks of UAVs. These 

cooperative behaviors were implemented in UAVs by adopting the concept of 

potential fields that represent the mission objectives and environmental obstacles 

as attractive and repulsive forces. Despite the simplicity of the approach, these 

forces were able to deliver good robust navigation solutions and produce suitable 

spacing among the UAVs to guarantee the desired collision avoidance. In the 

application to the soaring flight, when a thermal is detected and identified all the 

members of the flock are attracted to it. Even though the result was based on real 

flocks’ behaviors applied to UAVs, it was not tested onboard real glider platforms. 

The algorithms that enable cooperation of multiple UAVs in thermal search, 

detection, and collaborative exploitation were developed, simulated, and tested in 

real flight by Andersson et al. in their research [15] that was first published in 2009. 

The objective was to determine the benefits of cooperative search for thermals by 

using two gliders flying over a bounded area of operation. Final flight test results 

confirmed that the likelihood of finding thermals is significantly increased; hence 

the UAVs’ extended autonomy by minimizing time spent to find at least one 

thermal. 

Antal et al. [16] in 2010 published results of numerical study where he 

developed and simulated an algorithm capable of identifying the center of a 

thermal. This algorithm was based on the Simultaneous Perturbation Stochastic 

Approximation approach and used gradients of the vertical speed to determine the 

optimal estimating solution for the center of the thermal. This algorithm was verified 

in a numerical simulation of a group of UAVs flying simultaneously and providing 

synchronous measurements of the same physical event. The mathematical model 

of a thermal adapted in [16] is the one previously developed by Allen in [8], who 

was the first applying the parametric models of thermals in the tasks of 

autonomous soaring. The work of Antal [16] modified Allen’s approach by 

accounting for a decaying strength of updrafts over time. Results of this work 
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showed in simulation the performance of a group of UAVs cooperating to find the 

center of a thermal. 

In 2013, Cobano et al. in their work [17] applied a Bounded Recursive 

Search Algorithm to extend the endurance of a glider by gaining altitude using 

thermals located in known positions. The flight path of the glider was continuously 

updated onboard; such flight path was based on a series of waypoints 

corresponding to points of interest and the location of known thermals. As a result, 

the glider visited the points of interest while it used the thermals that were closest 

to its path. This demonstrates a mission application of an UAV that can harness 

energy from thermals while at the same time visit points of interest. 

4. Parameter Estimation of Single Thermal Updraft 

All the studies related to autonomous soaring are based on formal 

mathematical representation of physical characteristics of thermals; most often the 

model was an algebraic function parameterized by a finite set of values which 

represented the most significant physical features of an updraft. In order to better 

represent a real thermal, the mathematical models must be complex enough to 

capture all those characteristics. 

Several approaches in estimation of the parameters of thermals have been 

used, including the Kalman Filter and its numerous modifications. In 2010,  

Hazard [18] utilized the Unscented Kalman Filter (UKF) to determine position, size 

and strength of a simulated thermal. Even though this type of filter assumes the 

same Gaussian characteristics of noise distribution as other Kalman Filters (KF), it 

is more accurate and can manage highly complex nonlinear equations relating the 

measurements and the states of the system without the computationally 

demanding efforts of calculating the underlying Jacobian as in the extended KF 

(EKF) version. Even though the UKF might handle highly complex nonlinear 

mathematical models, Hazard’s implementation was based on a simple model, 

which could be changed for a more complex model that better captures the 
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behavior of thermals and still have an accurate estimation of its characteristics by 

using the UKF. 

5. Combination of Energy Harvesting Methods 

Anton in 2008 [19] proposed a combination of energy harvesting methods 

using two sources. The objective of this project was to demonstrate that energy 

could be harvested using several methods. The first source was vibrational energy 

collected with piezoelectric patches placed at the roots of the glider’s wings and a 

cantilevered piezoelectric beam allocated in the fuselage. In this way, vibrations 

coming from the wings and fuselage could be used to generate electricity for 

onboard consumption. The second source was solar radiation captured by thin-film 

photovoltaic (PV) cells. The result of this combination showed that reasonable 

amounts of energy can be gained and stored onboard separately. Anton’s purpose 

was not to achieve a long endurance flight, but to demonstrate that more than one 

alternative energy source can be harnessed at the same time. 

In 2011, Barnes et al. [20] proposed an approach to harvest energy using 

three different methods. The first method assumed capturing energy from solar 

radiation. The second method required the use of autonomous thermalling 

algorithms to gain altitude, hence increasing the potential energy. The third method 

was the implementation of a technique called regenerative soaring, where the 

motor of the UAV was used to generate electrical energy when the airplane was 

thermalling. Barnes’ approach was a good proposal, but has not been 

implemented yet. 

TaLEUAS will implement two powerful sources of energy that separately 

have been demonstrated to extend the endurance of the UAVs where they have 

been implemented. Future improvements to TaLEUAS might be the addition of 

devices and algorithms to include more energy sources such as piezoelectric and 

regenerative soaring. 
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6. Historical Review of Battery Technology 

Batteries onboard provide the backup electrical energy for powering the 

avionics, payload, and propeller. Their specific energy—capacity/weight ratio—is 

one of the most important parameters for selecting a battery and has been 

increasing its value throughout the years since the creation of the early batteries. 

The chemistry used on the batteries determines the specific energy among other 

performance characteristics; therefore, an analysis of the creation and evolution of 

the battery technology (Table 1) as well as the improvements in the specific energy 

(Figure 2) are worth a section of this chapter. 

 

Date Fact 
1800 Alessandro Volta invented the first electrical battery capable to 

provide a continuous current supply to a system. The battery was 
made of pairs of copper and zinc discs separated by a layer of 
cardboard soaked in brine, used as electrolyte. 

1836 John Frederic Daniel invented the Daniel cell as a solution to 
some problems found in Volta’s battery. One of them was the 
hydrogen bubble generation that caused short battery life. The 
solution was to add a second electrolyte to consume the 
hydrogen. 

1837‒1860s Improvements to Daniel’s cell made by a number of scientists led 
to highly reliable batteries such that were implemented for 
supplying electrical energy in the American and British telegraph 
networks. 

1859 Gaston Planté invented the first rechargeable battery, named 
lead-acid. This battery was built of a lead anode and a lead-
dioxide cathode immersed in sulphuric acid. 

1886 Carl Gassner patented the first known dry cell. It was known as a 
dry cell because it did not have a free liquid electrolyte; rather this 
liquid was combined with plaster of Paris to create a paste. 

1896 Mass production of Gassner’s dry cell by the National Carbon 
Company with a variation in the solid electrolyte. This type of cell 
is known as the zinc-carbon battery. 

1899 Waldemar Jungner invented the rechargeable nickel-cadmium 
battery; it is better known as the alkaline battery because it used 
an alkaline electrolyte. 

1903 Thomas Edison patented a rechargeable nickel-iron battery 
designed by Jungner. 

1970 Assembly of non-rechargeable lithium cells used in watches, 
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calculators and implantable medical devices. 
1972‒early 

1990s 
Development of suitable/safe combinations of anode, cathode 
and electrolyte to get rechargeable Lithium-ion batteries. 

1989 Nickel-metal hydride batteries were introduced to the market. 
They are more environmental friendly than cadmium based 
batteries. 

June 1991 Sony Corporation commercializes the recently discovered 
rechargeable lithium-ion battery with a nominal specific energy of 
120-150 Wh/kg 

1997 Lithium-ion polymer battery was developed. The electrolyte is a 
solid polymer composite instead of a liquid solvent. Another 
feature is that the electrodes and separators are laminated. 

1997-2014 Lithium based batteries keep evolving and their specific energies 
getting higher.  

 
Table 1.   Historical evolution of battery technology, from [21], [22]. 

As can be seen from the analysis of Table 1, the current state of the art 

belongs to the lithium-based batteries. Current trends in research and development 

recognize this technology as the most promising as stated by published results of 

experiments done by several companies. 

One of these published results was announced on February 27, 2012, by 

Envia systems; this company put under test a rechargeable lithium-ion battery cell 

obtaining a specific energy of 400 Wh/kg. The evaluation was performed by the 

Electrochemical Power Systems Department at the Naval Surface Warfare Center, 

sponsored by Advanced Research Projects Agency – Energy (ARPA-E). Even 

though this technology is fully tested and can supply an “enormous” amount of 

energy, it is not available in the market yet because is still transitioning to become 

an off the shelf product. 

An example of how the specific energy of lithium-based batteries is growing 

rapidly is the fact that in October, 2013, A123 Venture Technologies started 

collaborating with Solid Energy Systems Corp. to integrate new lithium-ion battery 

technologies that could potentially deliver specific energies at levels up to 800 

Wh/kg. These batteries are meant to operate safely in a temperature range of -40 
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to 250 degrees Celsius. Experimental results from prototypes are expected to be 

available by the end of 2014. 

Battery technology is a field of science and technology that is constantly 

evolving, and it does not seem to have an ending in the near future. Many 

companies are expecting batteries with high specific energies that will enable 

greater capabilities of their products, such as portable devices or transportation 

vehicles. Figure 2 shows how specific energies have changed throughout the 

years of development and what the expectations for upcoming years are. 

 
Figure 2.  Evolution of specific energy for different battery chemistries, after [23].  

7. Historical Review on Photovoltaic Cell Technology 

As well as battery technology, PV cell technology has been evolving rapidly 

through the years. The main parameter to be improved in the PV cells is their 

efficiency, which is the percentage of the energy available from the solar radiation 

that can be transformed into electricity; however, there are also some other 
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important parameters related to PV cells, such as their weight and rigidity. These 

parameters are inherited by the PV cells according to their chemical composition 

and manufacturing process; therefore, analyzing the evolution of the composition 

with their corresponding improvement in efficiency will give us a sense of the trend 

in developing new PV cells. Table 2 shows a historical timeline that represents the 

creation and evolution of photovoltaic solar energy conversion technologies. Within 

the table, note the difference between the thin film PV cell technology and the 

conventional PV cell. 

 
Date Fact 
1839 Alexandre Edmond Becquerel discovers the photovoltaic effect. His 

experiment was done by illuminating two electrodes with different types 
of light. Electrodes were coated with light-sensitive materials and the 
experiment was performed in a black box surrounded with an acid 
solution. It is observed that the electrical current increases with the 
intensity of the light. 

1873 Willoughby Smith discovered the photo conductivity of the selenium. 
1876 William Grylls Adams and Richard Day discovered that a selenium cell 

exposed to light produces electricity. 
1894 Charles Fritts built a solar cell made of selenium and gold. The solar cell 

had an efficiency of 1%. 
1905 Albert Einstein published a paper about the photoelectric effect. In this 

work, he treated the light energy as being transported in discrete 
quantized packets. 

1918 Jan Czochralski found a method to grow mono crystalline silicon, which 
increased the efficiency of the solar cell, being higher than the 1% of its 
predecessors. 

1954 Calvin Fuller, Gerald Pearson, and Daryl Chapin at Bell Labs discovered 
a new silicon cell. This cell was more efficient than the selenium cell and 
could supply electrical energy for small devices. The efficiency achieved 
was ~4%. 

1956 Solar cells became available in the market, but the prices are too high 
for their wide spread. 

1958 The Vanguard I satellite was launched. This was the first PV-powered 
satellite. The cells were specially developed for the U.S. Army and had 
an efficiency of 14%. 

1959 Hoffman electronics developed and commercialized 10% efficiency 
photovoltaic cells. 

1960 Hoffman electronics achieved 14% efficiency photovoltaic cells. 
1980 First thin-film solar cell was made, it had 10% efficiency. 
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1981 Paul MacCready built The Solar Challenger aircraft. This was the first 
solar-powered airplane. It had 16,000 solar cells supplying ~ 3 kW of 
power. 

1985 The University of South Wales achieved 20% efficiency in silicon cells. 
1992 University of South Florida developed a 15.9% efficient thin-film 

photovoltaic cell. 
1994 The National Renewable Energy Lab (NREL) built a conventional solar 

cell with 30% efficiency. The cell was made of gallium indium phosphide 
and gallium arsenide. 

1999 NREL tested an 18.8% efficient thin-film photovoltaic cell. 
2007 The University of Delaware obtained 42.8% efficiency in a conventional 

solar cell. 
 

Table 2.   Historical evolution of photovoltaic cell technology, from [24] [25]. 

 
Figure 3 shows the evolution of different types of PV cells and the most 

advanced stage in every design. 

 

 
 

Figure 3.  Evolution of photovoltaic (PV) cell technology, from [26]. 
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8. Lithium-Ion/Polymer Battery Handling and PV Cell Behavior 

After analyzing the state of the art in batteries and PV cells, it was decided 

that TaLEUAS will use lithium-based batteries. These batteries were chosen for 

their high specific energy and mono crystalline silicon thin-film PV cells due to their 

high efficiency and flexibility. There are safety considerations for handling the 

lithium-based battery cells given their unstable behavior when subjected to 

abnormal charging/discharging conditions. This behavior could lead to permanent 

damage to the batteries and the equipment where they are installed. Regarding the 

PV cells, the type of array—series or parallel—defines the behavior of the output 

power when the PV cells are shaded. 

Most of the causes that could result in the failure of a lithium-ion/polymer 

battery are related to excessive heat generated during the charge/discharge 

working cycle. Heat released in the battery when in the charging/discharging 

condition is produced by the flow of electrons and the internal resistance. 

Therefore, temperature control is important to avoid reaching a temperature at 

which decomposition reactions in the electrode and electrolytes occur. This 

decomposition is seen as exothermic reactions; i.e., the higher the temperature, 

the stronger the reaction. On the other hand, the higher the charge/discharge rate, 

the higher the temperature generated. 

Motivated by the safety considerations in handling of lithium-ion batteries, in 

2012, Doughty and Roth [27] performed a study on safety in handling and 

operating lithium-Ion batteries. Outcomes of this study resulted in the design of a 

number of protective devices, including the shutdown separators, cell vent tabs, 

current interrupters, temperature protectors, current limiters, diodes, and advanced 

battery management systems. All these protective devices prevent temperatures 

from reaching the point where decomposition reactions begin. Batteries managed 

in accordance with the devised rules and conditions do not show failure modes, 

such as physical damage, thermal abuse due to excess of current, over 

charge/over discharge, and short circuit. 
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In addition to the use of protective devices, knowing in advance how a 

battery behaves by means of mathematical models allows the prediction of 

performance/failure of existing cells. Such mathematical models are based in 

physics, as well as electrochemical and thermodynamic phenomena that take 

place, and describe the behavior of the battery components during the charging 

and discharging processes. The mathematical model is also based on the 

properties of the specific feedstock (chemical materials) used to build the battery. 

A very important parameter to be modeled is the variation of specific energy 

over time and charging cycles. The decrement in specific energy is due to a loss in 

capacity and an increment in the internal resistance of the battery. This is crucial 

because it determines the lifetime of a battery. This decrement in specific energy 

can be described as an aging phenomenon and depends mainly on the 

charging/discharging conditions. As most of the phenomena that occur in a battery, 

the process of decreasing in specific energy is also temperature dependent and is 

accelerated by high temperatures. 

Early mathematical models were made by Sudoh and Newman [28] in 1990 

for a sodium/iron chloride battery containing a molten AlCl3-NaCl electrolyte. The 

outcomes of this research were the basis to predict some performance parameters 

in batteries, such as state of charge, cell temperature, and current-voltage relation 

during the charging/discharging cycles. 

Even though the use of the most efficient photovoltaic cell is a critical 

mission defining parameter, the amount of light absorbed by the cell and the 

connecting architecture (series or parallel) are the most fundamental design 

parameters that define the efficiency of the PV array. Based on this, Ramabadran 

and Mathur in their work [29] in 2009 tested the effects produced on the delivered 

power by shading of series- and parallel-connected solar photovoltaic cells. Series 

connections are made to get the desired voltage out of the solar cells, and parallel 

connections are made to obtain a certain power. Results determined that parallel 

connections are less susceptible to shading than the connection in series. 
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E. CURRENT TECHNOLOGY 

Potential advantages found nowadays in batteries and PV solutions will 

enable the technological and operational objectives of this thesis. Components are 

selected based on an assumption that keeping the maximum energy level onboard 

allows for more autonomy. The overall architecture (Figure 4) of the integrated 

design contains the following technological components that need to be neatly 

integrated onboard of a prototype glider platform: 

• battery cells 

• protection circuitry 

• PV cells and maximum power point tracking (MPPT) unit 

• low-power advanced autopilot, onboard computing unit and 
communication. 

• composite materials and light weight structural components 

 
Figure 4.  Key hardware components integrated onboard TaLEUAS. 
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1. Battery Cell Technology 

High specific energy storage technologies are rapidly evolving; thus 

producing more and more novel solutions every day. The objectives of this study 

will be accomplished using only available off-the-shelf components that are freely 

available on the market. 

Rechargeable lithium-polymer battery cell technology will be the core of the 

Electrical Energy Management System (EEMS) of the UAV. Li-Po technology 

brings the following advantages: 

• allow storing a significant amount of energy in a relatively small 
volume/mass – high specific energy 

• offer a longer battery life compared with other technologies, given the 
same continuous charging/discharging condition 

2. Protection Circuit Modules and Sensing Technology 

To enable safe handling of lithium-polymer batteries it is necessary to 

control numerous variables that affect the state of charge of the system. This 

control process protects the battery from reaching the safety critical temperatures 

at which unstable decomposition reactions occur. Benefits of using these 

protective technologies are the following: 

• Protection circuit modules prevent the batteries from failing by 
isolating them from the circuit when a malfunction occurs, such as: 
over charging, over discharging, high current, short circuit, and high 
temperature. This module also keeps the balance of charge among 
the battery cells in the same pack. 

• Sensing of the internal characteristics (temperature, current, voltage) 
of each cell of a given battery pack allows monitoring of the actual 
status of the entire battery, which is given by voltage, current passing 
from or to the batteries, energy stored/remaining. 

• When the batteries are integrated with the solar cells, the sensing 
capabilities should also be extended to account for the energy 
provided by the photovoltaic cells and the energy consumed by the 
onboard load. 
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3. Photovoltaic Cell and MPPT Technology 

Power that is produced by the photovoltaic cells depends on a number of 

factors, such as the angle of incidence of solar cells toward the sun, shading of 

cells by the aircraft structures, and the efficiency of the solar cells. To account for a 

wide range of lighting conditions of an onboard solar array, an additional device 

called the MPPT is integrated into the energy management system to allow for 

maximum power supplied by the photovoltaic cell. 

The core components of the solar powered glider include the high-

efficiency, thin-film, mono crystalline PV cells and the MPPT unit. The integration 

of these two components allows efficient harvesting of solar radiation and 

transforming it into electricity. Moreover, some degree of structural flexibility of the 

mono crystalline PV cells allows for integration of the cells into the “skin” of the 

wings. Integrating the flexible cells conformal to the airfoil, results in an 

aerodynamically clean surface and thus does not penalize the design by inducing 

parasitic drag.  

4. Low-Power Autopilots and Onboard Computer Technologies 

These components are required to enable flight of the autonomous glider, 

and to run additional algorithms implemented for specific tasks or capabilities. Most 

of the commercially available autopilots do not have a complete solution suitable 

for objectives of the thesis. The autopilot and onboard computing microprocessor 

are the consumers of electrical energy because they are in service during the 

entire flight. Therefore, the lower their power consumption, the more extended the 

autonomy is. 

5. Composite Materials and Manufacturing Technologies 

Recent developments in materials science have revealed lighter and 

stronger composites. These composites together with novel manufacturing 

techniques result in lightweight and high aerodynamic efficiency airframes. 

Envisioned benefits of the combining of these technologies are as follows: 
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• embedding of thin-film photovoltaic cells in the airframe and wings 
without adversely affecting the structural and aerodynamic 
characteristics of the airplane 

• less drag as a product of minimum roughness on the airframe’s 
surface 

F. THESIS OUTLINE 

The rest of the thesis offers a logical and detailed explanation of how the 

energy extracted from thermals and the PV energy are combined to provide the 

extended endurance of a glider; each chapter contains the statement of the task to 

be solved, the theoretical approach and the methodology used for that purpose, 

and the results obtained from numerical simulations and experimental trials.  

Chapter II discusses two approaches implemented in the detection of 

thermals. The first approach is based on online determination of the inherited sink 

rate of the glider, and the second one relies on the real-time estimation of the total 

energy with a Kalman Filter. The difference between the techniques and the 

benefits of both approaches are presented and discussed. 

Once the thermal is detected, the thermalling guidance algorithms enable 

the glider with an autonomous soaring capability, which makes the glider climb 

along a self-centering path around the thermal. An existing thermal centering 

controller is modified with a combination of heuristic techniques. This new 

controller and the thermalling guidance are discussed in Chapter III. 

The theory and mathematical apparatus describing the formation of 

thermals are explained in Chapter IV; some mathematical models are analyzed 

with respect to their fidelity in representing the characteristics of real thermals. 

Atmospheric and geographic conditions together with additional data are combined 

to determine the location of the thermals using Bayesian inference. This 

probabilistic approach is used by a team of autonomous gliders when they perform 

a cooperative search for thermals in a real operational scenario. 

Chapter V presents the overall process of integrating the photovoltaic 

energy onboard with their key components; this process includes: solar panel 
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embedding into the wings, Electrical Energy Management System (EEMS) design, 

and the contribution of the electric energy to the energy budget of the glider. 

Results of flight tests with a single glider enabled with the developed 

algorithms are presented in Chapter VI. These results are used to validate the 

feasibility of the “solar-soaring” concept and the achievable performance of the 

single glider system. At the same time, these results were used to confirm the 

utility of high fidelity simulations provided by the simulation environment based on 

integration of Condor-Simulink. 

Analysis of the experimental results and the corresponding conclusions are 

present in Chapter VII. Furthermore, some possible scenarios and applications 

feasible to the developed soaring UAVs are also presented here. A number of 

ideas and technologies that can be explored in future works conclude this chapter. 

A number of appendices provide supplemental information about the 

project. In Appendix A, a description of the Condor-Simulink communication 

protocol is given with emphasis on the development of the Simulink decoding-

encoding model that allows the MATLAB/Simulink development environment to 

communicate with the Condor soaring glider simulator. Some details highlighting 

the utility of the Condor high-fidelity soaring simulator are provided here for 

completeness. 

Appendix B describes the process of embedding the solar cells into the 

wings of the autonomous glider. 

Thorough details of the algorithms used on the EEMS developed to 

accurately measure the state of charge and the aging of the batteries are 

discussed in Appendix C. The EEMS primarily measures the amount of energy 

stored onboard the batteries, which determines the endurance of the autonomous 

glider. The code programmed to implement the complete algorithm running on the 

EEMS is presented in this appendix as well. 

 23 



Appendix D contains the implementations materials (C-codes, m-scripts and 

Simulink models) that were developed in the MATLAB-Simulink development 

environment. 

One paper resulting from this thesis has been published in the proceedings 

of the International Federation of Automatic Control (IFAC) conference. It is 

included into Appendix E. 
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II. DETECTION OF THERMALS 

The natural upward motion of convective air can be used by a glider to climb 

and gain altitude. The interaction between the glider and the surrounding air is 

measured by the onboard inertial sensors. Real-time processing of the onboard 

measurements enables the detection and identification of the convective air 

updrafts. Two approaches to detect thermals are presented. The first approach 

compares the nominal sink rate of the glider with the currently measured sink rate. 

A difference between the inherent sink rate and the currently estimated one 

enables detecting of thermal activity. The second approach computes the total 

mechanical energy rate of a glider that tends to remain nearly constant in no-

thermal conditions. Therefore, a variation of this total energy rate enables detection 

of the upward moving thermals by analyzing the sign of the energy derivative. Both 

approaches provide good results in detecting thermals in numerical simulations. 

Their performance is also tested in real flight tests with the results presented in 

Chapter VII. 

A. OVERVIEW 

In a piloted glider, an indication of the presence of a thermal in the 

atmosphere is first experienced by the pilot as a sudden force pushing the airframe 

upwards and therefore changing its sink rate. However, a better indicator is 

necessary to identify not only its presence, but its intensity. To accomplish these 

objectives, onboard variometers are used to help in the soaring task by giving 

audible or visual signals corresponding to the sink rate that the glider is 

experiencing. Among these devices, the Total Energy Compensated (TEK) 

variometer [30] gives the best measurement by also accounting for the changes in 

kinetic and potential energy. In a typical scenario, the pilot hears/watches what the 

change in sink rate is and then adjusts the glider bank angle to latch in the thermal 

and keep climbing by using the updraft flow of the thermal. Even though an 

audible-visual signal is useful in a piloted glider, translating this into a continuous-
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numerical signal—which is the type of signal that the autonomous glider requires—

is not always possible or accurate. 

B. METHODS 

This section describes the mechanism that enables the autonomous glider 

with the thermal detection capability. There are two techniques that solve the 

detection task. The first technique analyzes the behavior of the glider with respect 

to the moving air around it, and the second technique analyzes the full time 

derivative of the total energy—potential and kinetic. The results demonstrate that 

both techniques detect thermals reliably; therefore, their onboard implementation 

guarantees a very high probability of thermal detection. 

1. Sink Rate Polar 

This approach relies on the assumption that while in flight the glider has a 

nominal behavior that relates the descending speed  (sink rate) with its True Air 

Speed (VTAS)—for every VTAS measured in flight there is only one corresponding 

value of descending speed h . This sink rate is different and specific for every 

configuration of the glider mechanization; the mechanization includes the number 

and specific settings of the control surfaces. This inherent property of the glider in 

each configuration can be experimentally measured in wings-level flight and no-

wind condition. Since the  is so specific and can be known ahead of time, it is 

therefore possible to use the vertical velocity measured in flight to identify the sign 

of deviation from the expected inherent sink rate that in turn leads to the detection 

of the updraft. 

The Sink Rate Polar is a plot that depicts on the “x” axis VTAS, and on the “y” 

axis, the inherent sink rate h . Using the Sink Rate Polar, it is possible to compute 

the maximum distance that could be traveled and the total loss in altitude in an 

interval of time. Other additional information which can be extracted from the plot is 

the optimal commanded speed used to fly the maximum distance with the 

minimum sink rate. 
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Even though the Sink Rate Polar is obtained at the design phase of an 

airplane, any small change in the lift/drag ratio due to a different configuration of 

the airframe, surface roughness, or change in weight leads to a different Sink Rate 

Polar. Therefore, it is desired to “generate” or learn this function for any possible 

configuration of the glider without resorting to the time-consuming analysis of wind 

tunnel experimentation.  

Fundamental fluid dynamics of a typical aerodynamically clean airframe, 

such as a glider, suggests that the Sink Rate Polar can be represented by a 

second order polynomial; as described by Reichmann [13], the sink rate and the 

VTAS are related in accordance with Equation (2.1). 

 

 

where h  represents the sink rate, TASV  is the True Air Speed, and , ,A B C  are the 

coefficients of the second order polynomial that describes the inherent Sink Rate 

Polar of the glider. 

Parameters , ,A B C  in Equation (2.1) can be identified by applying a number 

of methods. The desire to have them identified during the real flight of a particular 

glider suggested the use of recursive linear least squares algorithm [31]. 

Therefore, a number of experiments have been performed to determine the Sink 

Rate Polar of gliders available at NPS; gliders have fixed but initially unknown 

characteristics of Sink Rate Polar. To verify the correctness of the online 

identification of the sink rate polar, a comparison of the obtained results was made 

with the results of Edwards [32] obtained in 2007 on the same glider airframe (SB-

XC). Performing those experiments requires a lot of time to get a good set of 

samples within a range of speeds that spans from just above the stall speed to a 

considerably higher speed that does not compromise the structural integrity of the 

glider. Furthermore, the experiments must be performed in the conditions that 

exclude the influence of wind that is very difficult to control in an open environment. 

Overall the constraints include: 

2
TAS TASh A V B V C= × + × + (2.1) 
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• airplane is in wings-level flight 

• zero wind condition 

• no thermals in the flight path 
Repeatability is crucial in any experimentation; however, in real flight tests it 

is not possible to completely reproduce the experimental conditions; therefore, 

following the same procedure could lead to variable outcomes. 

Consequently, this thesis considers the application of a recursive estimation 

algorithm that learns and identifies the Sink Rate Polar characteristics of the glider 

while in flight. The algorithm developed not only gives a fast converging response 

but also provides some extra benefits that include: 

• the best approximation based on statistical averaging that excludes 
the contribution of the long and short period dynamics, rejects 
measurement noise and erroneous samples (dropouts are treated as 
disturbances)  

• processes the data in real-time as the measurements come from the 
sensors, providing a continuous contribution of the new data 

• computationally feasible, i.e. saves computational resources while 
giving the best result 

The estimation algorithm selected is the Recursive Linear Least Squares 

(RLLS) algorithm. It is applied to identify the parameters of a system in real time. It 

gives the same curve fit polynomial as the least squares method (offline), but it 

“adapts” to the change in the inputs, thus adjusting the result at every instant of 

time as the new data comes. 

A necessary condition to implement such an estimator is the linear 

relationship between the underlying structure of the model and the uncertain 

parameters. As such, the Equation (2.1) is transformed in its vector form as shown 

in Equation (2.2). 

 
 

 

2 2 1TAS TAS TAS TAS

A
h A V B V C V V B

C

 
  = × + × + =    
  

 (2.2) 
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To produce the best estimate, the RLLS algorithm assumes that the 

measurements have an error with zero mean Gaussian distribution. The inputs to 

the RLLS estimator at every instant are given by the mathematical model 

expressed for the Equations (2.3) and (2.4). 

  

 

    

 

 

where y  is an observed (measured) variable or state ( h ), t  represents the time 

step, ( )T tϕ  are the known (also measured) functions ( TASV ) called regressors, and 

0θ  are the unknown parameters of the model to be determined. 

Using the relationship of the measurements as expressed in Equation (2.4), 

the RLLS algorithm (see Åström [31]) is computed recursively at every time step 

using Equations (2.5), (2.6), and (2.7). 

  
 

    
 

  

 
 

This recursive estimator is initialized with ( ) ( ) ( )( ) 1

0 0 0
TP t t tϕ ϕ

−
=  using the 

first set of measurements and also providing the best guess for the initial value of 

the parameters ( )0tθ  to be determined. 
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(2.3) 

(2.4) 

( ) ( ) ( ) ( ) ( ) ( )( )1 1Tt t K t y t t tθ θ ϕ θ= − + − −

( ) ( ) ( ) ( ) ( ) ( ) 11 ( 1 )TK t P t t I t P t tϕ ϕ ϕ −= − + −

( ) ( ) ( )( ) ( )1TP t I K t t P tϕ= − −

(2.5) 

(2.6) 

(2.7) 
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In the offline version of the least squares method, a sufficient condition to 

get the unique/best estimate of the parameters is that TΦ Φ  must be invertible. 

This condition is called the excitation condition. 

In a similar way, there is a condition that applies to the input signal u of the 

RLLS algorithm. This is called the persistence of excitation (PE) condition. The 

signal u is persistently excited if the matrix Cn in Equation (2.8) is positive definite 

and the limits of Equation (2.9) exist. 

  

 

 

where:  

The persistence of excitation condition gives the guideline to determine when the 

parameters estimated by the RLLS algorithm have converged to their true value. 

Experiment Setup for Software in the Loop (SIL) 

To verify the validity and the convergence properties of the RLLS algorithm 

before its onboard implementation, the algorithm in Equations (2.5), (2.6), and (2.7) 

is implemented in a Simulink model (Figure 5). The resulting code is used to 

identify the known Sink Rate Polar of an ASW27 glider given by the software 

simulation environment of the Condor simulator (see more details in Appendix A). 

The ASW-27 glider aerodynamics has been researched by Boermans et al. [3] by 

utilizing the wind tunnel data. 

Assuming that the Condor simulator provides a fully controlled environment 

in terms of flight conditions, allows one to perform the system identification 

experiment with no wind present—the ideal but never occurring conditions for a 

real flight experiment. Telemetry from Condor is read and processed by the RLLS 

algorithm. The output of the RLLS method is the set of A, B, and C coefficients for 

the second order polynomial, see Equation (2.4). 

(2.8) 
( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

0 1 1
1lim 1 0 2

1 2 0

T
n t

c c c n
C c c c n
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c n c n c

→∞

− 
 = Φ Φ = − 
 − − 

( ) ( ) ( )
1

1lim
t

t
i

c k u i u i k
t→∞

=

= −∑ (2.9) 
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Figure 5.  Simulink implementation of the RLLS algorithm. 

The RLLS algorithm runs with the airplane performing a stable propulsion-

free flight with no feedback control inputs present—open-loop experiment; the 

inherent longitudinal stability of the modeled glider and the long period diverging 

dynamics of lateral channel allow sufficient time for the data acquisition. The 

control surface that allows sampling the sink rate at different values of true 

airspeed is the elevator that is deflected in increments. Conceptually the 

experiment consists of the following. With the airplane in wings-level flight and 

traveling above stall speed, the elevator is moved in small increments allowing 

long enough time for the airplane to pass the short-period oscillations produced by 

its inherent motion, and finally, to settle down and recover the wings-level flight. 

After the transient is passed and a new set point of airspeed is achieved, a new 

sample of sink rate is taken. The experiment is repeated until the desired 

maximum true airspeed is achieved.  
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2. Total Energy Estimation 

The total energy approach estimates the complete mechanical energy and 

the rate of variations of an airplane. The mechanical energy is composed of the 

potential energy (energy due to the altitude), the kinetic energy (energy due to the 

motion of the airplane), the loss of energy caused by parasitic drag (this term 

includes the skin friction drag and the pressure drag), and the energy loss 

produced by induced drag due to the lift generated by the glider. Mathematically, 

the total energy is expressed in inertial frame as shown in Equation (2.10). 
2

2dragmec
mVE Kinetic Potential E mgh Dd= + + = + −

 
where m  is the mass of the glider, V  is the inertial speed, D  is the total drag force 

(parasitic plus induced), d  is the distance along which that the drag force has 

been applied, and g  is the gravity constant. 

Consider an ideal scenario where an airplane is gliding in no-wind 

conditions at a certain altitude and speed with the engine/propeller turned off (no 

propulsion); the mass of the aircraft is assumed constant. Naturally, the glider 

constantly loses altitude due to the effects of the drag forces; hence, it loses 

energy. In order to avoid dependency on the mass of the airplane, normalize 

Equation (2.10) by " "mg , which results in Equation (2.11). 

2

constant
2

drag
nor

m
m

ec Kinetic Potential EE V DdE h
mg mg g mg

+ +
= = = + − =

 
In reality, the cumulative drag “ D ” can hardly be measured. Consequently, 

even though the energy estimated will only be the sum of kinetic plus potential, the 

change in the total energy is directly proportional to the energy loss due to drag, 

which can be observed in Equation (2.11).  

According to the principle of conservation of energy, the sum of all sources 

and sinks of energy must be constant; hence, its variation (first derivative) over 

time is zero. To further illustrate the implications, let us obtain the first and second 

derivatives of equation (2.11) with respect to time. 

(2.10) 

(2.11) 
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Note, that statesV , , and  can be either directly measured or estimated; on the 

other hand, D  cannot be measured directly. At the same time, an aerodynamically 

clean glider with high glide ratio flying at constant speed ( ) is expected to 

have a very shallow drag versus airspeed dependency, which suggests . 

Therefore, the variation of energy of an aerodynamically efficient glider can be 

approximated by the following: 

 

 

The first equation allows for precise characterization of the total drag although it 

can hardly be accomplished by direct sampling of states in flight. Furthermore, in 

the idealistic descent a glider has negative; therefore, at constant speed  is 

negative and its variation depends primarily on the change of the altitude. Now the 

changes of sign of E  can be used to detect the thermal updraft. When there is a 

convective thermal that makes h  positive, the thermal exists.  

The total energy approach has been previously used by a number of 

researchers to detect convective thermals; see, for example, Allen and Lin [9] and 

also Andersson et al. [12]. Their heuristics-based approach and implementation of 

the energy-based detection algorithms feature a considerable lag time that can 

potentially lead to a failure of detecting a thermal. 

The approach adapted in this project is a classical Kalman Filter (KF) that is 

formulated to estimate V , h , and their two derivatives. As soon as these states 

become available, their values are used to calculate the total energy E  and its two 

derivatives , and . Linear KF is applied to linear dynamics of V  and h ; it 

provides the best estimates of those states in the presence of Gaussian noise in 

(2.12) 

(2.13) 

(2.14) 

(2.15) 
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measurements; the algorithm has fast speed of convergence thus significantly 

reducing the inherent delay in the energy estimation given by previous researches 

(see Allen and Lin [9] and Andersson et al. [12]). 

As stated before, the drag D is not measurable; therefore, energy equations 

will be constructed with the available inertial measurements from the onboard 

sensors, such as the speed V  and the altitude h ; these equations are expressed 

in (2.16). 
2

2
VE h

g
= +

 

 

 

These equations describe the normalized potential and kinetic energies and 

their derivatives with respect to time. From Equation (2.16) it can be observed that 

not only the speed V  and the altitude h  are required but also their first two time 

derivatives. 

It is common to find certain levels of noise in the measurements coming 

from sensors installed onboard; therefore, a KF is implemented to eliminate such 

noise, while estimating the values of the time derivatives of V  and h . The 

relationship among these variables is given by the Equation (2.17). 

 

 
 

 

 

(2.16) 

(2.17) 
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where t  represents time, t∆  is the sampling time, V  is the inertial speed, and h is 

the altitude measured in the inertial frame. Equation (2.17) describes the state 

transition model for the KF that will be implemented in Equations (2.18). 

 1ˆ ˆt t tx Ax Bu−
−= +  

1ˆ ˆ T
t t xA A σ−

−∈ = ∈ +  

( ) 1
ˆ ˆT T

t t t zK C C C σ
−− −=∈ ∈ +  

( )ˆ ˆ ˆt t t t tx x K z Cx+ − −= + −  

 ( )ˆ ˆt t tI K C+ −∈ = − ∈  

where t  represents the time steps, the - and + signs denote the estimates at the 

current time step before and after being updated respectively, A  and B determine 

the state transition model, C  is the measurements matrix, u  is the control input to 

the process (zero for our case), x̂  are the predicted states, xσ  is the variance 

matrix for the state prediction, ∈̂ is the predicted variance matrix, zσ  is the 

variance matrix in measurements, K  is the Kalman gain, and z  is the vector 

containing the sensor readings. Such readings are available coming from different 

sensors, which improves the convergence in estimating the states and eliminating 

the noise; V  and h  are taken from GPS measurements, while their derivatives are 

obtained by rotating the acceleration measured in body frame by the Euler angles-

based Direction Cosine Matrix (DCM). The content of every term shown in 

Equation (2.18) is expressed in Equation (2.19). 

(2.18.1) 

(2.18.2) 

(2.18.3) 

(2.18.4) 

(2.18.5) 
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The algorithm—the set of equations (2.18)—is initialized at 0t = with some 

previous knowledge of the state values ( 0x̂ ) and the predicted variance matrix  

( 0∈̂ ). These values will determine how fast the KF will converge to the estimated 

states after initialization is done. 

(2.19) 
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 or , 0ˆ xσ∈ =  

Notice that the process model is linear time-invariant; therefore, at some 

moment, the Kalman gain ( K ) converges under observability assumption; 

consequently, the algorithm described in Equation (2.18) is simplified without the 

need of computing this gain ( K ) in real-time; it is just necessary to compute it once 

off-line using the discrete time Riccatti Equation. 

Experiment Setup for SIL 

The KF is implemented in the Simulink (Figure 6) environment using 

MATLAB embedded functions (Appendix D). Even though it can be implemented 

using Simulink blocks, the use of functions gives the user a better understanding of 

how the algorithm works. 

(2.20) 
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Figure 6.  Simulink implementation of the Kalman Filter equations. 

In the Simulink model, the signal “Estimates” contains the state vector and 

the covariance matrix to be used in the next iteration. In order to test the KF, it is 

necessary to know the variances of the noise of the process and of the 

measurements, as well as some knowledge about the initial values of 0x̂  and 0∈̂ . 

Usually, the variances are the tuning knobs that tune the quality of noise rejection 

by calculating the optimal value of Kalman gain. Given that the Condor simulator 

provides relatively “clean” measurements with minimal noise, the values for the 

standard deviations of the process and measurements noise are assumed 

negligible. In a real flight test, however, these standard deviations will increase 

significantly due to the inaccuracy of real onboard sensors. 

The verification of the performance properties of the developed KF solution 

is based on the telemetry data provided by the Condor simulator for the ASW-27 

glider; the approach is similar to the one used in the identification of the sink rate 

polar. 
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C. RESULTS AND DISCUSSION 

The result of implementing the RLLS algorithm to identify the sink rate polar 

of an ASW-27 glider in SIL is presented in Figure 7. The comparison of the Sink 

Rate Polar obtained by the RLLS in the Condor simulator with the data reported by 

Boermans et al. [3] illustrates high degree of approximating the real sink rate 

characteristics. It is evident that the simulation environment captures quite well the 

aerodynamic characteristics of the glider and its interaction with the atmospheric 

phenomena; however, a minor difference still exists between the two Sink Rate 

Polars. This difference might be caused by the differences in the glider 

mechanization, and possibly by some numerical inaccuracies of the 

implementation of aerodynamics in Condor. 

Even though the small differences are present, the result gives a good 

sense of the performance and accuracy of the RLLS algorithm in identifying the 

Sink Rate Polar. The polar provides a set of characteristics that can be used at the 

mission planning phase. These characteristics include the speed for minimum sink 

“ minsV ”, the stall speed to be avoided, and the optimal gliding speed for maximum 

distance “ ccV .” The latter one gives the best ratio of the sink rate and the gliding 

speed that is used in cross-country maximum distance flight of gliders.  
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Figure 7.  Identification of Sink Rate Polar in SIL. 

Identified Sink Rate Polar provides direct detection mechanism of thermal 

updrafts; i.e., if the currently measured sink rate at a specific airspeed is smaller 

than the one predicted by the sink rate polar, then the updraft exists. Furthermore, 

if the sink rate is strong enough (that is, the difference between the actual 

measurement and the prediction is big) to allow the glider to gain altitude, then the 

effective thermal is present and the thermalling guidance law needs to be 

activated. The strength of the updraft is specified by a threshold corresponding to 

the minimum desired vertical rate that the glider needs to climb; for the software 

simulations of this study it was chosen at 1m/s. 

To illustrate the efficiency of the total energy estimation approach in 

detecting thermals, a scenario is chosen where a glider needs to fly through the 

core of a thermal in the Condor simulator. The thermal is detected based on the 

change in E . To verify both approaches in thermal detection, the outputs of the 

sink rate and the energy based algorithms are compared with an output of the TEK 
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variometer supplied by the Condor. The results of detecting of thermals provided 

by two algorithms are very similar; additional tuning of the thermal strength 

parameter in the sink rate approach has a potential of making the detection 

simultaneous by both algorithms. The details corresponding to the energy 

approach are provided in Figure 8. 

 

Figure 8.  Characterization of a thermal based on the energy variation E  and its 
comparison with a simulated TEK variometer. 

Figure 8 shows how the E  variable changes as the glider passes through 

the thermal; at the beginning and at the end of the thermal 1.8 /E m s≈ −  which is a 

result of sink zone that always accompanies an updraft; nominally the inherent 

energy loss rate 1 /E m s> −  which corresponds to the glider flying at 30 /m s . When 

the glider enters the thermal, a rapid increase in E  can be observed; the value of 

E  keeps increasing and reaches a peak value at the core of the thermal and then 

decreases. Depending on the characteristics of the glider, a threshold in the E  

value is chosen to determine the presence of a thermal. When the glider enters a 

thermal, the lift force is not uniformly distributed over the wingspan, that directly 
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affects the roll angle φ . Since the attitude of the glider is measured onboard, it can 

be used to detect the relative position of the glider with respect to the core of the 

thermal. Consequently, analyzing φ  and E  makes possible the determination not 

only of the presence of a thermal, but also the desired direction of turn towards the 

center of the thermal. 

In conclusion, the sink rate and the energy identification algorithms enable 

reliable detection of thermal updrafts, while also providing useful characterization 

of commanded airspeed essential in thermalling guidance and in cross-country 

flights. 
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III. THERMALLING GUIDANCE 

A glider’s climb rate when in thermalling mode has a direct relationship with 

the potential energy gained by the aircraft. Therefore, maximizing the climb rate 

optimizes the gain of potential energy. The best climb rate is determined by the 

thermalling guidance controller that runs onboard the glider. The thermalling 

controller must account for two basic criteria: stability of flight and performance of 

climb. This chapter analyzes the performance of an existing thermalling controller 

based on Reichmann’s soaring technique [13], which is commonly used by human 

pilots for centering in thermals. The material also compares the Reichmann 

technique with a newly developed thermalling controller that combines the benefits 

of Reichmann’s approach with the capability of climbing close to the core of the 

thermal—Jay’s soaring technique [33]. As a result, the new feedback controller 

gives better performance by maximizing the climb rate. 

A. OVERVIEW 

The process of extracting energy from a thermal can be divided into three 

steps. The first step is the detection either by the Sink Rate or by the Total Energy 

approaches. The second step is to locate or estimate the geometry of the thermal 

by utilizing the onboard measurements of the glider. Finally, the third step consists 

of climbing efficiently while “staying” in the thermal—called thermalling guidance. 

Human pilots have succeeded in thermalling guidance by implementing several 

techniques such as the ones used by Reichmann [13] and Jay [33], which were 

developed based on their experience in soaring flight. In order to implement this 

soaring capability onboard an autonomous glider, it is necessary to “emulate” 

those techniques and translate them into numerical algorithms that would provide 

the desired performance. Andersson et al. [12] successfully developed a feedback 

centering controller, which causes the glider to center at the thermal’s core; the 

approach that formalizes the heuristics of Reichmann’s technique is used 

throughout the chapter as the basis to compare the performance of new algorithms 
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designed in this chapter. One of the constraints of the controller is the use of 

tunable parameters, which, depending on the characteristics of different thermals, 

gives variable performance when compared to the performance of a human-piloted 

glider. Therefore, there is an obvious need to optimize the thermal centering 

guidance by designing new algorithms that will “learn” the best set of parameters 

corresponding to different shapes and strengths of the convective thermals. 

The purpose of this chapter is to design and implement onboard a 

thermalling feedback controller that gives the best climb rate in the presence of 

various thermals with different characteristics. 

B. METHODS 

There are two thermalling techniques that are widely known and commonly 

used by pilots. The first technique is called the “tighten on the surge.” The 

approach tracks the first derivative of the energy and evaluates when its value is 

the greatest. When it happens, the bank angle is increased to make a sharper 

turn—Jay’s technique [33]. The second technique states that the glider should 

widen out when finding the strongest lift, hence reducing the angle of attack—

Reichmann’s technique [13]. Even though both techniques may seem 

contradictory, they are both correct, with the caveat that they offer advantages in 

different situations. 

The “tighten on the surge” technique is applied right after a thermal is 

detected and it is desired to place the glider in the center of the thermal and to 

optimize its climb rate. The reasoning behind this technique relies on the fact that 

the closer the glider is to the core of the thermal, the better the climb rate will be. 

The Reichmann’s technique should be used when a new thermal is likely to 

develop near the current one and it is desired to get into that new thermal quickly. 

The signs that indicate the possibility of transition include a noticeable decrement 

in the rate of climb, or when one side of the thermal seems stronger than the other. 
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The formal translation of Reichmann’s technique into a mathematical model 

and further into a thermalling feedback control law is shown in Equation (3.1), 

which is adopted from Andersson’s paper [12]. 

 

where cψ  is the heading rate command, V  is the ground speed, dρ  is the desired 

turn radius around the thermal, 1 0k >  is a feedback gain, and E  is the second 

derivative of the total energy computed as presented in the previous chapter. 

The control law (3.1) contains two terms. The first term gives the heading 

rate command in steady state—when there is no variation on the E  term—for the 

glider to turn in a circle of constant radius; and the second term provides a 

dynamic feedback term that is proportional to the second derivative of the energy, 

E . It was explained in Chapter II that the strength of a thermal is characterized by 

E ; therefore, analyzing E  integrates the strength of the thermal as a feedback 

measurement. 

Andersson’s controller was proven in real flight and demonstrated a good 

performance in centering thermals, but the climb rate obtained was not compared 

with some other algorithms. Therefore, using the capabilities of the Condor 

simulator, I tested the performance of Andersson’s controller onboard an 

autonomous glider against a glider controlled by an experienced pilot. As a result 

of this, it was observed that the climb rate of the human-piloted glider was higher 

than that of the autonomous one. The main reason for this result is the human-

piloted glider tried to be at the core of the thermal for a longer time. 

As demonstrated by human pilots in cross-country competitions, Jay’s 

technique might provide better climbing results; therefore, it is worthwhile to 

implement it as a control law. Jay’s technique can be translated in a mathematical 

model as expressed in Equation (3.2). 

 

(3.1) 

(3.2) 
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where most of the terms are the same as in Equation (3.1) except 2 0k > , which is 

a tunable feedback gain, and  (energy rate) is the strength of the thermal. 

In contrast to Equation (3.1), Equation (3.2) guides the glider to the core of 

the thermal when a higher strength is detected, thus enabling the glider to stay 

there as long as possible; hence, it climbs faster. Furthermore, it is in fact possible 

to combine the core elements of both techniques. Reichmann’s technique self 

corrects the glider flying along a circular path around the core of the thermal. The 

Jay’s technique directs the glider to the core of the thermal. A control law that 

combines both techniques is given by the following equation: 

 

where the feedback control  gains 1k and 2k  are the same as before. 

C. EXPERIMENT SETUP FOR SIL 

In unmanned systems, it is common the implementation of states machines 

to determine the actions that such unmanned system will take under certain 

circumstances. Simulink allows implementing these state machines, which are the 

mathematical models of computation used to design sequential logic systems. 

Inside a state machine there are a finite number of states, and the machine can go 

through them when certain conditions are met, causing a transition between states. 

At every moment, the system can be in one of several states depending how the 

programmer designs the state machine. At every state it is possible to run any 

function or code from the MATLAB/Simulink environment. This allows for great 

versatility in controlling the states of a glider when in the thermalling guidance 

mode. In building the capabilities of the autonomous glider, the state machine is 

designed to accomplish several tasks: 

• determine when all conditions are met to detect a thermal 

• locate the thermal with respect to the glider 

• establish the direction of turning of the glider 

• keep the glider turning in that direction with the thermalling controller 
running 

(3.3) 
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• evaluate if the glider is ascending or descending 

• determine when there is no more energy available in the thermal 

• disable the use of the thermalling controller when the glider reaches 
the airspace ceiling, when there is no energy available in the thermal, 
or when there is a misdetection of a thermal. 

The state machine implemented in Simulink for the thermalling guidance is 

shown in Figure 9. In a nominal condition, the glider is in the state of 

“No_Thermal.” At every instant of time, the state machine analyzes the values of 

, , and the bank angle (φ ); when these variables reach certain values, the 

state machine detects a thermal and determines its position. As a result, the next 

state will be either “In_Left_Thermal” or “In_Right_Thermal.” To return to the 

“No_Thermal” state, the state machine checks whether the glider is descending, 

the strength of the thermal is too small, and the glider is flying over the ceiling of 

the airspace. 

 
Figure 9.  State machine for the thermalling guidance implemented in Simulink. 

Figure 10 outlines the implementation of Andersson’s centering controller in 

the Simulink environment.  
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Figure 10.  Andersson’s centering controller implementation in Simulink. 

There are two tunable parameters in Andersson’s controller, which are 

selected based in some specific criteria. The minimum dρ  is determined by the 

minimum operational turning radius of the glider. The control authority, that 𝐸̈ has 

over the guidance law, is dictated by 1k . Both parameters are bounded with upper 

and lower limits to guarantee stability of the controller as it was proven in [12]. 

Implementation of Equation (3.3), which combines the two thermalling 

techniques described previously, is outlined in Figure 11. 

 
Figure 11.  Implementation of thermalling controller of Equation (3.3). 
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I used the repeatability feature of the Condor simulator, which allowed me to 

generate the same atmospheric conditions—wind, location and strength of 

thermals, and sun incidence—every time the simulation was started. This feature 

was used to tune the gains of Andersson’s controller and the controller in (3.3) for 

a specific thermal. The parameters that provide the best climb rate for both 

controllers are as follows: for Andersson’s controller 110d metersρ = , 

30 / secV meters ond= , and 1 0.2k = ; and for the controller (3.3) 110d metersρ = , 

30 / secV meters ond= , 1 0.5k = , and 2 0.02k = . From the stability analysis, each gain 

value is selected to give a good performance without making the system unstable 

under typical flight conditions. After two controllers are properly tuned, a 

verification simulation is started with two identical ASW-27 gliders. Both gliders are 

set to fly to the same thermal that was used for tuning of their gains. The results 

are presented in the following section. 

D. RESULTS AND DISCUSSION 

The initial conditions for the encounter geometry—thermal and glider—are 

shown in Figure 12. Both gliders start the simulation at an altitude of 2000 m, both 

are equipped with the same state machine and different thermalling controllers; the 

simulation ran for 230 s, which is sufficient to compare their detection and climbing 

performance. When the thermal is detected, the thermalling guidance is activated 

to generate the best climb rate out of every controller. Figure 13 describes the 

paths of both gliders, from their initial position until the final altitude, when the 

simulation is stopped. It is observed that controller (3.3)—using the Reichmann 

and Jay techniques combined—converges faster at the center of the thermal and 

stays longer time in the core. On the other hand, Andersson’s controller—using 

only the Reichmann technique—converges more slowly to the center of the 

thermal and obtains a slower climb rate as well. 
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Figure 12.  Initial conditions for testing performance of Andersson’s controller and 

Equation (3.3). 

 

Figure 13.  Paths of both gliders for performance comparison of controllers. 
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More details about the climb performance are presented in Figure 14; it 

shows the altitude profile versus the simulation time. Besides comparing the initial 

and final positions of the gliders in Figure 12, it is also possible to observe that 

both controllers generate a different slope of the climbing profile. The difference in 

altitude after 230 s of flight is about 90 m; therefore, if the gliders visit multiple 

thermals during the same period of time, the energy gained by each controller will 

be very different. Another important fact to mention is that thermals have a limited 

lifetime (they eventually disappear); therefore, it is better to climb as fast as 

possible when the thermal is detected. 

Notice that these results were obtained using the simulated environment of 

Condor; therefore, it is still necessary to validate and verify the results in real flight 

tests because the geometry of a real thermal might affect the performance of both 

controllers. 

 

Figure 14.  Evolution of altitude profile of two controllers. 
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IV. PATH PLANNING 

The chapter proposes a Bayesian search approach as a solution of the 

problem of finding the best navigation path toward the thermals in the area of 

interest; this algorithm allows native integration of any prior knowledge about the 

atmospheric or geographical conditions that affect the creation of thermals. The 

contribution of this chapter is to minimize the energy spent in a search for 

thermals, which in turn maximizes the energy available for practical mission 

objectives. The novel navigation algorithm is designed and implemented in a flock 

of gliders. The evaluation of the expected performance of the resulting 

decentralized control architecture is performed in numerical simulation using 

Condor software. The results show that the distributed architecture that adapts the 

Bayesian search approach to finding the best path through the sequence of 

thermals is very efficient as it increases the endurance of multiple gliders. 

A. OVERVIEW 

The ability of a glider to detect thermals and gain potential energy by 

utilizing the thermal centering control still leaves unsolved the task of finding 

thermals. There are a number of techniques that guarantee completeness of 

search for a known feature in a given bounded search space. In application to the 

search for thermals by soaring gliders, the choice of the technique should account 

for the fact that when “not in thermalling flight,” the glider continuously loses 

altitude (potential energy). Since the objective of the soaring system is to minimize 

or better avoid using the battery powered propulsion (to preserve the battery 

energy for the overnight flight), the use of electric propulsion must be penalized. 

However, the time allowed for the glider to find at least one thermal might be too 

long, which will result in premature flight termination. The solution of the search 

problem adopted in this work is mostly biologically inspired—thousands years of 

evolution enable many species of birds to easily find thermals in the environment 

by integrating a seemingly disconnected set of features that birds observe in the 
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environment. The engineering implementation of the biological inspiration relies on 

the Bayesian search technique. The Bayesian inference is a natural and a 

mathematically rigorous approach that allows integrating heterogeneous data and 

prior knowledge represented by probabilistic or statistical means.   

Bayesian inference has been studied extensively by numerous researchers 

in the operations research area. This approach allows treating the search area as 

a set of discretized cells with a probability of finding a target associated with each 

cell—the probability map. Initial “assignment” of the probability values is based on 

the level of information available about the existence and the physical nature of the 

phenomena in each cell. If no information is available, then the prior probability is 

uniform and small; the integral of the probability over the area of all cells in the 

operational area is equal to 1. If there is a belief that some cells have higher 

probabilities of encountering the phenomena, then the corresponding probabilities 

are increased; still the corresponding integral over the entire area is 1.  

In application to the search for thermals, the probability of finding a thermal 

is continuously evaluated by the glider which acts like a detection sensor. The 

dynamic update of the probability distribution map is based on the given prior 

probability and the measurements provided by the thermal detection algorithms. 

Thus, this chapter adapts the Bayesian inference approach and applies it to the 

case of collaborative gliders operated in the field of multiple thermals. The 

developed solution implements methods that initialize the prior probability 

distribution map, update the values of probability of each cell of the discretized 

map, and use the map to optimally solve the navigation task. The optimal 

navigation solution utilizes the well-known “travelling salesman problem” (TSP) 

algorithm. The navigation solution implemented onboard of each glider allows 

guiding each glider of the flock through the field of thermals in a given operational 

area. Each glider implements onboard the same navigation algorithm. 

Simultaneous sampling of the operational environment and exchange of 

knowledge (probability of the thermal in a sampled cell) over the communication 
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network makes the overall solution highly distributed, which is a very desirable 

property of the cooperative thermal soaring system. 

The practical objective of this chapter is to develop and implement a search 

algorithm that enables cooperative gliders to find and navigate through the field of 

thermals while also performing a specific mission in a given area. The software 

simulation results are used for the verification of the algorithms and evaluation of 

their efficiency and computational feasibility. Their analysis shows high efficiency 

of the Bayesian search that significantly reduces the number of visited points. The 

number of points and the cumulative distance travelled between them can be 

directly translated to the minimization of energy loss. It is also demonstrated that 

the distributed nature of solution keeps the probability maps onboard the gliders 

nearly synchronized; the higher the update frequency of the information exchange 

among the gliders, the smaller are the differences of the onboard maps among all 

gliders. 

B. METHODS 

This section explains the atmospheric phenomena as well as the 

characteristics of the terrain that contribute to the formation of thermals; 

furthermore, this information is used to solve the task of finding thermals over an 

area of interest. 

1. Physical Nature of Atmospheric Thermals and their 
Mathematical Model. 

The formation of thermals results from the interaction of the atmosphere 

with the solar radiation. The Federal Aviation Administration (FAA) in the Glider 

Flying Handbook (GFH) [34] provides a clear explanation of how thermals are 

formed and evolve over time with the changes in the atmospheric conditions. 

There is a mixture of gases present in the atmosphere, with nitrogen and 

oxygen contributing up to 99% of these gases. Another important component of the 

atmosphere is the water vapor that varies its concentration depending on the 

location over the Earth. Besides the gases content and the water vapor, the current 
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state of the weather is also determined by the vertical and horizontal gradients of 

the temperature, density and pressure; all of these parameters evolve over time 

thus producing the dynamics in weather conditions. 

The atmosphere is divided into five layers: troposphere, stratosphere, 

mesosphere, thermosphere, and exosphere. The focus of the thesis is on the 

troposphere where most of the Earth’s weather is formed. The troposphere 

contains most of the water vapor; the lower part of the troposphere interacts with 

the land and sea surface that generate most of the thermals. An important property 

of the atmosphere is that its temperature decreases with the increase of altitude. 

The troposphere extends from the Earth’s surface to about 36,000 feet over the 

mean sea level (MSL). For our purposes, it is sufficient to assume that a prototype 

glider will not leave troposphere layer. Thermals are enclosed in the category of 

microscale atmospheric phenomena lasting from seconds to minutes; the best 

updrafts for thermal soaring are located in large heated areas, and their typical 

diameter varies from 500‒1,000 feet (152.4 to 304.8 m). 

Formally, a thermal [35] is a column of rising air produced by the convective 

effects which allow the atmosphere to transfer energy from a zone of high 

temperature (low altitude) to a lower temperature (high altitude) region. Therefore, 

thermals [35] are created by gradients of temperature between the earth’s surface 

and the surrounding air. Sunrays heat the earth’s surface unevenly due to the 

variation of angle of incidence, the reflection index of the earth surface. As a result, 

the air nearest to the hot spots gets warmer, thus decreasing its density and 

allowing it to become lighter. The convective effect (Figure 15) causes the lighter 

air to rise. During the upward travel the “hot bubble” is getting cooler through the 

thermodynamic interaction with the surrounding atmosphere; this ascending 

motion stops when the rising air reaches the same density (temperature) layers. 

Thus, the ascending motion of the thermal updraft is always complemented by the 

downwards motion of the air that effectively absorbs the energy of the rising. 

 56 



 
Figure 15.  Convective effect of thermals in the atmosphere, from [36]. 

Among numerous models of thermal updrafts, there are two particularly 

useful approaches (Figure 16)—bubble model and column or plume model. The 

type of thermal that is formed—bubble or plume—depends on the size of the 

heated surface and the temperature of the surrounding air near that surface; when 

the area is small, a single bubble is expected to form; while if the area is big, a 

plume might be generated. These two models encompass most of the 

characteristics and dynamic behaviors of thermals which should be considered by 

autonomous soaring gliders. It is also worth noting that although the bubble and 

plume models allow for unique mathematical description of all possible thermals, 

real life thermals are always different in their shape, maximum strength (strength at 

the core of the thermal), ceiling (altitude where the mass of air stops rising), and 

the lifespan. 
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Figure 16.  Bubble thermal model (left), and plume thermal model (right), from [34]. 

In both models, the air at the core ascends faster than the remaining outskirt 

mass. Figure 17 is taken from the Glider Flying Handbook [34]. It shows a cross 

section of a thermal that is common to both models; the darker green section 

represents the rapidly ascending core of the thermal and the red section shows the 

sinking zone at the outer layer of the thermal. 

 
Figure 17.  Cross section of a thermal with color-coded map of its strength, from 

[34]. 
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In order to formally describe the characteristics and dynamic behavior of 

thermals, several authors have developed mathematical models that capture most 

significant characteristics of thermals. Allen [37] implemented a model based on 

experimental data sampled by rawinsonde balloons. This model adapts the 

parameterized Gaussian distribution equation to describe the bell shape of the 

thermal. The characteristics of thermals include the size, vertical velocity profile, 

spacing, and maximum height that are conveniently parameterized in two ways: 

the convective velocity scale *w , which defines the upward speed of the thermal, 

and the convective mixing layer thickness iz , which defines the maximum height-

above-ground that updrafts can reach. Even though this model is effective in 

simulation of a single thermal and gives a sense of the energy that might be 

extracted from the thermal, it still does not account for the evolution of thermals 

over time, the influence of wind, and merging of thermals. Research performed by 

Zhenhua [38] addresses the time dependency and the drifting nature of thermals, 

thus providing significant improvement to the dynamic modeling of the thermal; see 

an example of the model in Figure 18. 
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Figure 18.  Model of a thermal implemented by Zhenhua, from [38]. 

Similar to the previous findings, the results of Cushman-Roisin [39] present 

a mathematical model of a thermal, which describes how its characteristics evolve 

over time. The model is the most advanced in presenting the dynamic updraft 

phenomena, it is therefore described by following the presentation in [39]. This 

parameterized model uses basic fluid dynamics principles; the dimensionless 

parameters are identified from the experimental data and allow predicting the 

evolution of a thermal over time. The main property of a thermal is its total 

buoyancy defined by Equation (4.1). 

 B gT V g Vα ′ ′= =  

where V  is the volume of the thermal, T ′  is its temperature anomaly (the 

difference between the long-term average temperature and the temperature that is 

actually occurring), and g gTα′ ′=  is the reduced gravity it experiences. This total 

buoyancy is a constant quantity; when the thermal rises, its temperature anomaly 

decreases by the dilution proportional to the volume increase. The volume of the 

thermal is expressed as in Equation (4.2). 

(4.1) 
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3V mR=  

where R  is the radius of the thermal seen from above, and m  is a volume 

coefficient that accounts for the slightly flattened shape, typically less than 

4 4.23
π =  (value for a spherical volume). This last term cannot be measured 

directly and is deduced based on some prior statistics. The mass conservation 

over time can be expressed as dV Au
dt

= , where A  is the enclosing surface area of 

the thermal and u  is the average entrainment velocity across that surface. Taking 

the area A  proportional to the square of thermal’s radius 2R , and considering the 

entrainment velocity u  to be proportional to the thermal’s vertical velocity w , one 

can obtain Equation (4.3). 

2dV aR w
dt

=  

where a  is an experimentally defined dimensionless constant. Combining with 

Equation (4.2), (4.3) is reduced to Equation (4.4). 

3
dR a w
dt m

=  

The momentum budget over time takes the form of Equation (4.5). 

3 _ _ _
2 thermal

d Vw Upward bouyancy force Downward weight
dt

ρ  = − 
 

 

ambient thermalVg Vgρ ρ= −  

thermal thermalT Vg g Vρ α ρ′ ′= =   

where the factor 3 2  is due to the added-mass effect. Physically, the thermal also 

accelerates (time derivative of thermalVwρ ); thus it also accelerates the surrounding 

fluid that is diverted by its body. The bubble effectively accelerates up to 50% more 

fluid mass; hence, the factor 3 2 1.5= . Rearranging Equation (4.5), we obtain 

Equation (4.6). 

( ) 2
3

d Vw g V
dt

′=   

(4.2) 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

 61 



The term g V′  at the right-hand side of this equation is constant and equals 

to the total buoyancy, see Equation (4.1). Integrating this equation over time yields  

2 2
3 3

Vw g Vt Bt′= =   

where 0t =  denotes the time when the thermal had zero momentum. Next, solving 

for w ( 32 3 2 3w Bt V Bt mR= = ) and substituting into Equation (4.4) defines the 

dynamics of the thermal radius R  ( ( )( )2 32 9dR dt a m Bt R= ), which after 

integration results in the following: 
1 4

1 4 1 2
2

4
9

aR B t
m

 =  
 

   

Equation (4.8) defines the variation of the radius of the thermal over time 

and can be used to determine parameters of the thermal, such as volume V , 

vertical velocity w , and reduced gravity g′  as expressed in Equations (4.9). 
1 43

3 4 3 2
2

64
729

aV B t
m

 
=  
 

  

1 42 1 4

3 1 2

9
4
m Bw
a t

 
=  
 

  

1 42 1 4

3 3 2

729
64

m Bg
a t

 
′ =  

 
  

The parameters R , V , w , z , and 'g  are used to describe the evolution of 

the thermal over time. The terms a  and m  contained in their equations are 

determined based on laboratory tests, such that their values only depend on B and 

t . 

The singularity of equations (4.9) at 0t =  is purely numerical and does not 

represent any physical nature of the thermal formation, as it is assumed that the 

initial conditions of the thermal formation are: 0V = , w = ∞ , and g′ = ∞ .It is also 

observed that Equations (4.9) depend on the dimensionless parameters a  and m , 

which are experimentally determined by analyzing thermal properties. First 

property to be analyzed is the dynamics of expansion of the thermal radius with the 

(4.7) 

(4.8) 

(4.9.1) 

(4.9.2) 

(4.9.3) 
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vertical distance travelled, z. It can be obtained by integrating dz dt w=  that yields 

Equation (4.10). 
1 42

1 4 1 2
3

36mz B t
a

 
=  
 

    

Getting the ratio of the radius R  to the elevation z  we obtain the expression

3R z a m= , which makes evident that thermals grow at similar rates. Utilizing the 

laboratory observations [39] presented in Figure 19, one can conclude that the 

ratio of R  to z  is about tan(14 ) 0.25= ; thus, 0.25R z= , and 0.75a m= . Another 

useful property to be observed is the ratio 2z t  (the time constant predicted by the 

theory), which varies from experiment to experiment in proportion to B  (Figure 

20). The theoretical coefficient of proportionality is 2 336m a  and the experiments 

estimate its value at 5.80. Solving 0.75a m=  together with 2 336 5.80m a =  yields: 

1.90a =  and 2.54m = ; therefore, the final equations that describe the 

characteristics of a given thermal are given in (4.11).  

1 4 1 20.60R B t=    3 4 3 20.55V B t=    
1 4

1 21.20 Bw
t

=   

1 4 1 22.41z B t=    
1 4

3 21.81 Bg
t

′ =      

(4.10) 

(4.11) 
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Figure 19.  Anatomy of a rising thermal from [39]. Red line traces the outer edge of 

the thermal over time. 

 
Figure 20.  Plot of 2z t  (time constant during the life of the thermal) versus the 

square root of the thermal’s buoyancy from [39]. 
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To illustrate the expected results of the presented mathematical model, a 

numerical simulation of the evolution of two thermals over the period of 400 s with 

values of total buoyancy 1 15B =  and 2 150B = is shown in Figure 21 and Figure 22. 

 
Figure 21.  Evolution of a thermal’s shape after 400 s using 1 15B = . 

 
Figure 22.  Evolution of a thermal’s shape after 400 s using 1 150B = . 
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2. Search for Thermals 

After understanding the behavior of thermals and how they evolve over 

time, it is desired to search for them in an intelligent manner. As explained in the 

previous section, the formation of thermals depends on many factors. Intuitively, it 

is clear that the more knowledge (statistical observations) one has about the 

thermal formation and the more recent the knowledge is, the more accurate the 

estimation of possible location of thermals should be. The type of information that 

is effective in determining the more likely spots of thermals include: the elevation 

maps—data containing latitude, longitude, and elevation which inherently 

describes the characteristics of the terrain at the area of interest; heat maps—

showing distribution of temperature over the surface of the earth at a given time; 

meteorological data—including measurements of atmospheric variables that lead 

to the formation of thermals; real-time infrared imagery of the earth’s surface—a 

vision aid useful in determining the heated spots on the ground, which are a very 

good indication of the location of a thermal; and a database of previously observed 

thermals in the area. 

A natural search method that can run in real time to enable finding a target 

and to utilize a number of prior sources of information is the Bayesian search; it 

uses the Bayes’ inference recursive procedure to update the probability of a 

hypothesis given the real-time observations; in application to the thermal search 

the hypothesis is that a thermal is found. The knowledge used to update the 

probability is given by a number of sensors which detect the presence of a thermal. 

In the current project the detection mechanism is based on the Sink Rate Polar 

and/or the Total Energy techniques. 

Implementing the inference takes a number of steps. The first step is to 

identify the area of interest and discretize it into cells; commonly, the size of the 

cells is determined by the sensitivity and the coverage of the sensor (detection 

mechanism) because it is not desired to leave any uncovered spots is a given 

area. However, the smaller the size of the cells (fine grid), the more 

computationally expensive the system becomes, as the number of cells to be 
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iteratively updated will necessarily increase. Moreover, running the fine grid 

algorithms onboard will require not only excessive memory, but also more 

significant communication expenses to synchronize the knowledge preserved in 

the fine grid across the flock of gliders. Communication is one of the loads of the 

electrical management system that will be discussed in the following chapters. 

The approach we use to select the size of the cell is based on the average 

lateral dimension of a thermal. Besides the memory and the synchronization 

expenses, the reasoning also accounts for the robustness of the estimation 

algorithms running onboard. If the thermal is sampled by a glider which is of much 

smaller size, then flying in the proximity of the thermal will give the onboard 

estimation and detection algorithms sufficient time to produce a reliable result. As a 

result, the Bayesian search algorithm will be more reliable and computationally 

efficient, which is an important performance metric of distributed systems. 

After the discretization of the area is done, the next step is to implement the 

inference rule and to update a prior probability value of finding a thermal in every 

cell. At each update step a background computation process normalizes the 

cumulative probability over the area of operation at 1.  

Bayesian search takes into account that the sensors are not perfect and can 

produce erroneous indication of updrafts. The update mechanism considers two 

parameters that describe the characteristics and performance of a detecting 

mechanism; we call it a sensor. The first parameter is the false alarm rate “α”, 

which is the number corresponding to the ratio of the instances when the sensor 

determines the thermal is present when it is not; on the other hand, the second 

parameter is the misdetection rate “β” which defines the ratio of the times when the 

sensor recognizes that the thermal is absent when it is present.  

To illustrate the process of choosing the α ‒ β rates, consider the total 

energy approach that detects the presence of a thermal. The output of the E  

estimation algorithm is a continuous signal, which, in the simplest case, can be 

conveniently converted into a binary signal (1 – there is a thermal, 0 – there is no 
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thermal) by choosing a threshold of E . In a nominal flight with no influence of 

convective air, the value of E  is negative; it increases and becomes positive only 

when the glider enters an updraft. Therefore an intuitive threshold for detecting a 

thermal is 0E > . In fact, determining the proper value of the threshold is the tuning 

knob for the flight operator. First, consider the case of weak thermals with the 

strength well below the threshold 0E > . The value of β will be high because of 

significant number of misdetections. On the other hand, if the threshold of E  is 

decreased even more, the high number of false alarms α will correspond to the 

detection of numerous weak thermals with insufficient “lifting” potential. Based on 

this intuitive analysis, the threshold for the glider will be assigned at 0E > . 

Considering that the detection and estimation algorithms have enough time for 

convergence (the glider flies inside a cell with the size of a thermal), the values for 

α and β will be low; some experimental adjustment of α – β and E  threshold can 

still be done when in flight. 

Implementation of the Bayesian search is based on a simple algorithm that 

recursively updates the probability given the output of an updraft detection sensor, 

see Equations (4.12). 

( ) ( )
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where 0p  is the prior probability assigned to the cell, and α and β are the known 

sensor parameters. When the probability in a cell is updated, the probability of all 

the other cells is affected by the normalization algorithm. 

As stated in Equation (4.12), it is required to have a prior probability at each 

update step in order to compute the new one. At initial time 0t =  there should be 

an initial probability map assigned to capture the best previous knowledge about 

the area of operation; in the worst case scenario when there is no prior information 

available, each cell can be initialized by the inverse of the number of cells in the 

(4.12) 
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area. This initial probability is the guideline for the search task and must be as 

informative as possible. This thesis proposes a heuristic method to determine the 

best prior probability of thermals based on the characteristics of the terrain 

elevation. The motivation for using the 3D elevation approach is based on the 

theory of thermals formation as a function of topography [34]. 

To solve this task of building a 3D elevation map the project utilizes a 

mapping service of Google, Inc. The online service provides a mechanism for 

retrieving of elevation data at any point in the world. The company provides the 

Google Elevation API (Application Programming Interface) [40], which is a simple 

interface that allows a user to get elevation data over an area defined by 

geographical coordinates. Using advanced MATLAB capabilities, it is possible to 

automate the process of retrieving and collecting the desired data. Appendix E 

contains the MATLAB script developed for retrieving data from the Google 

Elevation API. Figure 23 shows an example of the capabilities of this 

implementation. Here, the figure represents the elevation map of a portion of Camp 

Roberts in California. 
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Figure 23.  Elevation map of Camp Roberts, California. 

The data of the terrain is also used for the discretization and analysis of the 

area including the slope characteristics of the terrain. According to the Glider 

Flying Handbook [34], thermals are most likely to occur over flat and hilly terrain; 

the cue is to look for sun-facing slopes. Unless the sun is directly overhead, the 

heating of a sun-facing slope is more intense than over the adjacent flat terrain 

(Figure 24) because the solar radiation strikes the slopes at higher angles. Also, 

cooler air usually stays in low-lying areas over night; then it takes longer to warm 

during the day.  

Infrared imagery can also be used to identify the differential temperature 

distribution that is directly related to the likelihood of forming convective thermals. 

Black asphalt parking lots or roads can also produce strong thermals and usually 

they are located in flat lands as observed in Figure 25, where it is evident that 

there is significant difference in temperature between the asphalt and the 

surroundings. Another cue is that slopes tend to be drier than surrounding 
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lowlands, hence they heats better. Integrating the observations about the formation 

of convective updrafts results in better quality probability maps and saves energy 

when gliders are in search-for-thermals mode. 

 
Figure 24.  Effect of the solar rays on the terrain, from [34]. 

 
Figure 25.  Temperature of the asphalt commonly located in flat lands, from [41]. 
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Since thermals are likely to be formed on hills or flat land, finding the cells 

that meet this criterion can be done by analyzing the elevation map. Every point in 

the map is analyzed and three measurements are obtained: elevation e , slope e′ , 

and change in slope e′′ ; the derivatives are defined with respect to the latitude and 

longitude. For the purpose of this research, the classification of cells with respect 

to the likelihood of generated thermals is based on the following inequalities: 

3e′ <   (flat lands), 30e′ >  (hills), and 25e′′ >   which is equivalent to the bottom of 

hills.  

The discretized cells that satisfy these criteria are separated from the rest of 

the cells and assigned an equal probability of finding a thermal at that location 

equal to ( )_ 0.9 / number of cells that passed the criteriathermal highp = , while the remaining 

0.1 of the probability is distributed equally among the cells that did not passed the 

criteria ( )_ 0.1/ number of cells that did not pass the criteriathermal lowp = . 

There are two equations in (4.12) given that there are two scenarios for 

generating a new probability based on Bayesian inference; as we are always 

looking for a thermal to be present, these scenarios are determined when the 

thermal is either detected or not detected. The probability 

( )thermal_present|thermal_detectedp  is used only when the binary sensor 

determines that a thermal might be present, then the probability increases in the 

current cell; on the other hand, the probability 

( )thermal_present|thermal_not_detectedp  is applied when no thermal are detected, 

hence decreasing the probability in the current cell. 

At each time step of operation the probability map of thermals is used to 

calculate the “shortest” path through the field of thermals in a given area of 

operation; at the initial time t=0, the system is assumed to be initialized with the 

prior probability distribution over the area of operation. The calculation of this path 

solves the navigation task of each soaring glider. Since the gliders are assigned a 

specific mission, the navigation solution should also account for the mission 
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objectives. Mission objectives are represented by discretizing continuous areas 

that needs to be surveyed by the gliders of the flock. To accommodate a wide 

variety of possible ISR missions their objectives are represented by spatial and 

temporal primitives. Spatial primitives are the points or areas of interest (POI), 

while the temporal ones are the time requirements associated with each area; for 

example, an ideal persistent surveillance of a POI would require a rotation of 

gliders such that at least one of the gliders is at this POI continuously. Finally, the 

ultimate navigation solution is the one that calculates the energy efficient path for 

the mission objectives and optimal path through the field of thermals. This task is 

solved by adapting and implementing onboard of each glider a TSP algorithm, 

which provides a suboptimal solution to the desired navigation task. 

Finally, the cooperative flock of multiple gliders executes a number of 

identical algorithms that allow “sensing” of the environment and executing the 

mission objectives. System identification (sink rate polar), updraft detection (sink 

and energy based), thermalling guidance, Bayesian search, TSP-based navigation, 

knowledge sharing, and task allocation are all examples of the algorithms 

implemented identically onboard of each glider regardless of its mission specific 

configuration (IO/EO sensors, for example). Thus, the distributed nature of the 

implemented solution improves robustness of the entire flock to failures. Therefore, 

the possibility of loss of a single agent will not result in losing the entire capability 

of the flock, but will result in its graceful degradation. This last feature is not only a 

desired property of any system of systems, but also a good metric that can be 

used at the mission planning stage.  

3. SIL Environment ‒ Implementation Details  

The algorithm using Bayesian search is implemented over an operational 

area of approximately 12 x 12 km. The size of the cell 300 x 300 m is chosen to fit 

a generalized thermal updraft; the size is based on the statistical observation of 

thermals in California. The algorithms of Bayesian search are implemented in 

MATLAB scripting language; see details in Appendix E. The likelihood of finding a 
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thermal in a cell is based on the estimation of the elevation and its derivatives ( e , 

e′ , and e′′ ); see the corresponding discussion earlier. The synchronization of the 

probability distribution map, which is continuously updated by the Bayesian 

procedure as the gliders perform their mission, is based on indexing the cells 

rather than referencing it by the associated latitude and longitude of the center; 

indexing requires one single integer while geographic coordinates require two 

floating numbers. The choice minimizes the number of data (number of bytes) to 

be exchanged and therefore reduces the communication bandwidth that in real 

operation additionally saves electric energy for communication. The simulation is 

performed for two gliders that share information at the update rate of 1 and 10Hz; 

two rates were chosen to build a tool that evaluates the influence of mis-

synchronization of knowledge and its impact on the overall performance. The 

collision avoidance of multiple gliders is solved in two phases. First, it is performed 

locally by each glider that implements the "rights of way" procedure typical for 

manned aviation [42] but scaled down to 50 m of spatial separation. Second, the 

initial assignment of areas of responsibility intentionally separates the gliders to 

minimize the occurrences of midair collision. Although the implementation might 

not be optimal, it is not the major objective of the current research. 

C. RESULTS AND DISCUSSION 

Figure 26 shows the elevation map of the selected area of operation; this 

elevation map implements the maximum resolution allowed by free service 

provided by the Google API; that is, 25,000 points per request. The resulting lateral 

separation between sample points is approximately 75 m. This spacing for the cell 

size of 300 x 300 m provides about 25 sample points for each cell; see an example 

of a color-coded (by elevation) operational map in Figure 27. 
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Figure 26.  Elevation map obtained through the Google Elevation API. 

  
Figure 27.  Discretized area in small cells (300 x 300 m) capable of enclosing a 

thermal. 
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The resulting 25 samples per cell provide smooth approximation of the 

slope corresponding to every sample. The average slope e′  of the cells is 

presented in Figure 28; from this plot, it is easy to correlate with Figure 26 and 

match visually the type of topography given by its slope. 

 
Figure 28.  Average magnitude of slope per cell in the discretized area. 

Calculating the slope e′  of each cell and categorizing each as the “hills” or 

the “flat land” allows constructing the probability map of operational area. A figure 

of the color-coded prior probability map (it is used to initialize the mission planning 

task) is provided in Figure 29. The red cells represent the spots with the higher 

probability of finding a thermal; they are the most likely points to be included by the 

solution of this TSP problem. 
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Figure 29.  Probability map (top) with initial probability distribution given by the 

identification of “hills” and “flat land.” The bottom picture shows a 
zoomed-in region of the probability map. 
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The solution of the TSP task for every glider is given as a series of 

waypoints starting from the initial point of the mission; the point closest to the 

launching location of the glider. Figure 30 illustrates the paths of two gliders, which 

were computed independently onboard each airplane. Each glider covers a subset 

of the entire area to avoid visiting the same points; this also contributes to the 

collision avoidance. 

  
 
 
 
 
 
 
 

 

 

 

Figure 30.  TSP solution for both gliders. Left picture, glider 1; right picture, glider 2. 

In the first simulation, the objective is to (i) test the implementation of the 

Bayesian search in a decentralized architecture and (ii) observe the “similarity” of 

the probability maps when the knowledge synchronization rate is 1Hz. The results 

are presented in Figure 31; they explicitly represent the minimal discrepancies due 

to the update frequency. Furthermore, the analysis confirms that the knowledge 

based on the priory processed elevation map is useful, as several compact areas 

with a high concentration of thermals are discovered; comparison with the true 

data from Condor confirms the location of thermals. A very similar result is 

obtained at the update rate of 10Hz that suggests that the dynamics of thermals is 

significantly slower and the synchronization rate does not need to be enforced. 

In the second simulation, the environmental conditions were changed to 

obtain a different pattern of the formation of thermals. The ability to change the 

local atmospheric conditions and to continue testing the accuracy of the Bayesian 
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search along with the knowledge representation across multiple soaring gliders is 

an invaluable capability gained by integrating the control development environment 

with the high-fidelity simulation of Condor. The results of this simulation, shown in 

Figure 32; besides confirming the efficiency of the Bayesian search, they also 

illustrate minor improvement in synchronization of probability maps across the 

gliders. The discrepancy is minimally improved for the price of significantly 

increased communication bandwidth. 

 

 

 

 

 

 

 

Figure 31.  Probability maps for both gliders with a transmitting frequency of 1Hz. 
Left picture, glider 1; right picture, glider 2. 

 
 

 

 

 

 

 

 

Figure 32.  Probability maps for both gliders with a transmitting frequency of 10 Hz. 
Left picture glider 1, right picture glider 2. 
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V. ONBOARD INTEGRATION OF SOLAR POWER  

This chapter describes the design and the implementation steps of 

integrating the solar power onboard. The focus is on the detailed presentation of 

major components and their conceptual hardware and software integration 

onboard. While the energy extracted from thermals extends the endurance through 

the increase of potential energy, it is the photovoltaic energy that provides 

electrical power to flight-critical onboard instrumentation. An Electrical Energy 

Management System (EEMS) that is required to control the accumulation and 

distribution of the electrical energy is designed. The hardware prototype is built and 

tested in a multiday experiment. Several battery chemistries are tested to select 

the best performing configuration. The experimental results confirm the overall 

feasibility of the onboard EEMS architecture, the choice of components, and their 

optimal onboard configuration and placement. 

A. OVERVIEW 

A soaring glider has a number of onboard components that require electrical 

energy for safe flight, communication, and support of mission-specific sensors. The 

sole source of renewable electrical energy onboard of the proposed glider is the 

set of PV panels that are embedded into the skin of the wings. 

Although there are examples of airplanes that exclusively use either PV 

energy or the convective air energy to sustain the flight, a flight proven technology 

which successfully combines both sources has not been reported yet. In 2011 

Barnes et al. [20] proposed a project to harvest energy using photovoltaic, 

convective updraft, and the regenerative soaring sources (the motor of the UAV is 

used to generate electrical energy) when the airplane is in thermalling mode. Due 

to a number of obvious multidisciplinary challenges, the initially proposed effort has 

not yet produced any results implemented in flight. Some researchers have 

merged successfully different sources of energy. An example of this is the study 

carried out by Anton [19] who combined the vibrational energy from the airframe 
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with the PV energy. The objective was to verify the feasibility of the 

implementation, and not to achieve a 24/7 flight. 

As stated previously, the principal difference in the design of the NPS glider 

is in combining onboard two forms of solar energy (convective updrafts and 

photovoltaic) with the goal of performing autonomously a specific cooperative 

mission over an extended period of time. The practical task of integrating the 

photovoltaic and EEMS components onboard is solved in two steps. First, it is 

required to integrate the semi-rigid, mono crystalline, silicone cells into the wings at 

the stage of their manufacturing to minimize the adverse effects of parasitic drag. 

In the second step, the design and implementation of the EEMS that manages the 

electrical energy onboard need to be performed. The efficiency of the final design 

(fully-assembled glider) that implements the EEMS in soaring flight needs to be 

verified. The results of initial rigorous ground testing experiments are presented in 

this chapter. 

B. METHODS 

A conceptual diagram of the electrical system of a generic battery-powered 

UAV is given in Figure 33. This traditional concept assumes that the only source of 

energy for propulsion, avionics, and sensors is the set of onboard batteries that 

have finite energy capacity; therefore, the operational endurance of the aircraft is 

fundamentally limited. In order to eliminate the constraint of limited electrical power 

onboard, the proposed design integrates a capability of continuous recharging of 

onboard batteries during the daylight operation. The feasibility of the reasoning 

behind the concept is based on the fact that solar radiation is the sole source of 

both the convective air and the photovoltaic effects that coexist during the daytime. 

The concept assumes that during the nighttime, the electrical energy accumulated 

during the day will be used to sustain the overnight flight.  
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Figure 33.  Conceptual block diagram of the conventional electric-powered UAV. 

To enable the controllable harvesting, storage, and distribution of the 

electrical energy the EEMS is designed as a research and development platform. 

The primary objective of the EEMS prototype design is not only to provide the 

storage and distribution of electrical power, but also to enable access to key 

parameters of the architecture that characterize the system performance; the 

ability to perform case studies is the enabling capability of the NPS glider as a 

research platform. Figure 34 shows a block diagram of the EEMS architecture; the 

motivation behind this particular design and the selection of components is 

explained further in this chapter. 
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Figure 34.  Block diagram of the EEMS system of soaring UAV. 

1. Photovoltaic Cells 

The photovoltaic or solar cells [43] are electrical devices that directly convert 

light to electricity at the atomic level; this phenomenon has been observed in a 

number of materials including crystalline silicon (high purity silicon), cadmium 

telluride, copper indium gallium selenide, and gallium arsenide. When exposed to 

sunlight, these materials exhibit the photoelectric effect, which is the absorption of 

photons of light with the release of free electrons. These free electrons produce an 

electric current. Figure 35 illustrates conceptually the physical process in the cross 

section of a solar cell material. Chemical composition and properties of the 

material are the key parameters that define the efficiency of the electrical energy 

generation. 
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Figure 35.  Cross section of a solar cell, from [44]. 

The NPS soaring glider utilizes a special type of solar cells; they are made 

of the pure mono-crystalline silicon [45] by utilizing thin film technology. At 22.5% 

efficiency and made flexible enough to be embedded into the glider’s wings and 

sustain aerodynamic load in flight, they provide about 60 W of continuous power to 

be optimally exploited by onboard EEMS. The process of embedding the solar 

cells into the wings was not the objective of the thesis work; in fact, the 

manufacturing was done by an external provider. Nevertheless, some details of the 

construction process are described in Appendix B. In the current design, the solar 

wings contain 18 PV cells [45] connected in series with the following manufacturer 

specifications: efficiency = 22.5%, voltage at maximum power point = 10.476 V, 

current at maximum power point = 5.93 A, and maximum power = 62.122 W. 

2. Electrical Energy Management System (EEMS) 

This system controls the collection, storage, and distribution of the electrical 

energy onboard in an optimal and safe way. Besides achieving the utility of 

harvesting and storing the energy, it also manages a number of other tasks like: 

• enforcing the extraction of maximum energy from the PV cells 

• charging the onboard batteries  

• protecting the batteries from an abnormal operation: over-charging and 
over-discharging; limiting current when charging or discharging 
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• balancing the battery cells during charge/discharge 

• measuring the current and voltage at every branch of the electrical 
system to predict the amount of energy available for safe flight. 

The laboratory prototype of the EEMS also has an extended set of 

capabilities that include:  

• collecting and transmitting a set of measurements over Transmission 
Control Protocol/Internet Protocol (TCP/IP)  

• determining the aging and state of charge of the batteries  

• logging all the data processed by the EEMS 

  
Figure 36.  Block diagram of the EEMS. 

The EEMS contains the integrated solar charge and the maximum power 

point tracking (MPPT) controller, which extracts the maximum available power 

(voltage and current) from the PV cells. The output of the MPPT unit is a constant 

voltage with variable current. The research and development prototype is equipped 
 86 



with five analog sensing nodes that measure voltage and current at different points 

of the architecture (see Figure 36). The unidirectional sensing node #1 measures 

the outputs of the MPPT controller in the primary “source” branch. Two other 

identical “storage” branches are used to connect power to the battery packs; each 

battery pack has its own Protection Circuit Module (PCM), which isolates the 

battery pack from the system in the case of off-nominal condition. There are two 

bidirectional multichannel sensing nodes #2 and #3 which measure the 

current/voltage in each “storage” branch. The “load” branch is used to power the 

avionics and the payload. The “storage” branch of each battery has a switching 

unit that is used to power the electric propulsion motor when directed by the 

onboard Guidance, Navigation and Control (GNC) algorithm. The voltage/current 

which enables propulsion is measured by the unidirectional sensing nodes #4 and 

#5. Finally, the “DAQ (data acquisition)” branch is used to power the Arduino 

central processing unit (CPU) board [46] which processes the analog 

measurements from all the sensors; this board also implements the estimation of 

the state of charge (SOC) of the batteries and predicts their aging. Furthermore, 

Arduino encodes all the onboard EEMS measurements and shares (transmits) 

them via User Datagram Protocol (UDP) with online monitoring procedures running 

either onboard or remotely on the ground. 

Finally, it is worth noting that the EEMS configuration is designed to provide 

robustness to possible failures of onboard batteries. The EEMS provides power to 

the onboard avionics and propulsion motor (when necessary) in the presence of 

failure of one of the battery packs. 

Solar Charge Controller with MPPT 

The voltage and current outputs of the given configuration (18S) of solar 

cells directly depend on the amount of solar radiation received. This behavior is 

described by the family of curves shown in Figure 37, which were taken from the 

specifications of the chosen solar cells (SunPower, [45]). There is a point on each 

curve (marked by a circle) where the power is at maximum ; the point is 
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located at the bending portion of each curve. The MPPT is an integrated circuit 

which automatically locates that point and tracks it to guarantee the maximum 

power output of the solar cells. The integrated solar charge controller, in turn, 

provides the regulated voltage required to charge the batteries and to power the 

various onboard loads. 

 
Figure 37.  Voltage-Current curve for SunPower solar cells, after [45]. 

Battery Pack with PCM 

In the current design there are two battery packs integrated onboard; these 

two packs should be capable of supporting up to six to eight hours of autonomous 

flight that is required for the overnight soaring. With about 60W of energy produced 

by 18 solar cells during the daytime, and only 18W required to power the onboard 

avionics (excluding the electric propulsion), the resulting excess of 42W will be 

used to recharge the onboard battery packs. These battery packs serve the 

following objectives: 

• store excess energy coming from the solar cells 

Pmax 
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• provide energy to power the electric propulsion motor; in the actual 
design there is no need to use electric energy direct from the solar cells 
to enable the electric propulsion 

• power the entire system during the night time 

To accomplish these goals, the chemical composition of the battery packs 

must be selected such that they have the highest specific energy [47], 

( )specific energy = energy stored weight , and are capable of managing high 

charging/discharging rates. A high discharge rate of up to 30 A is expected during 

the use of the electric motor. Also, to guarantee convenience, safety, and uniform 

handling procedures it is highly desired to utilize the same chemical composition of 

all battery packs. Furthermore, the same set of packs is used to provide electrical 

energy to all power loads onboard. 

In order to choose the optimal chemical composition, a number of 

commercially available batteries were analyzed against the performance 

requirements. At the end, two chemical types were chosen and analyzed in detail: 

lithium-ion and lithium-polymer. The lithium-ion chemistry claims to provide the 

highest specific energy; however, its charging/discharging rates are very low; i.e., 

the amount of current that can flow through them is small, on the order of 3 A peak 

when charging and 6 A peak when discharging. On the other hand, the lithium-

polymer batteries are advertised with slightly lower specific energy, but the 

charging/discharging rates are much higher; these rates are at 6 A for charging 

and 32 A for discharging. 

By analyzing the specifications, the lithium-ion batteries might look more 

promising due to their specific energy. However, in order to power the electric 

motor safely while discharging at high rate, it is critical that both 4S3P (36 A) 

battery packs operate nominally (not isolated from the system by the protective 

circuitry). Otherwise, a single pack (18 A) would not be enough to power the motor. 

On the other hand, if a failure occurs with one of the 4S3P battery packs, the 

lithium-polymer chemistry is able to power the motor with only one pack plugged in 

to the system, thus providing desired redundancy of the EEMS. 
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The final decision of battery choice is based on the performance of both 

chemistries tested under real load conditions. A representative load experiment 

was performed with fully charged 4S3P battery packs equipped with PCMs to 

achieve a deep discharge state; the experimentally obtained plots and the detailed 

observations are presented later in the results and discussion section. The final 

result of the comparison of the performance of both battery packs shows that the 

lithium-polymer chemistry has higher specific energy and charging/discharging 

rates; therefore, the lithium-polymer batteries are the final choice for the onboard 

integration. Figure 38 shows the schematics of the chosen 4S3P lithium-polymer 

battery pack. 

 
Figure 38.  4S3P lithium-polymer onboard battery pack, after [48]. 

A PCM circuit is the safety controller specifically designed by the industry to 

address one of the fundamental shortcomings of most lithium-based batteries. 

Namely, when the lithium-based battery is overcharged or over-discharged the 

composition becomes unstable and might lead to self-igniting of the pack. The 

functionality of PCMs prevents the batteries from leaving the safe operational 

region, thus preventing the fatal consequences. The EEMS architecture includes 

one PCM circuit per battery pack; this PCM isolates the battery pack from the 
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electrical system should a failure occur. In summary, an advanced PCM addresses 

the following issues: 

• overcharge ‒ the battery is fully charged and cannot store more energy 

• over-discharge ‒ forcing deep discharge might cause permanent damage to the 
battery 

• over current ‒ the load demands more current than the battery is capable to 
provide safely 

• short circuit ‒ any short circuit in the EEMS that could affect the battery 
Besides isolating the battery pack when needed, the PCM also provides 

continuous balancing of the state of batteries; balancing enables the individual 

cells in a pack to have the same voltage and receive/deliver the same current. The 

PCM integrated onboard the soaring UAV is presented in Figure 39. 

 
Figure 39.  PCM integrated onboard, from [49]. 

In order to verify the protective and balancing performance of the PCM, a multiday 

experiment with the EEMS architecture was performed; the detailed results of 

experiment are presented in the results and discussion section of this chapter. 

Sensing Nodes 

The electric sensing nodes of the EEMS are designed to measure the 

analog current and voltage in all the branches; the measurements are processed 

by an Arduino CPU. The number and location of the sensing nodes is chosen to 
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allow for the estimation of the amount of electrical energy produced by the PV 

array, consumed by the instrumentation and propulsion, and stored in the 

batteries. The sensing nodes are divided into two types—unidirectional and 

bidirectional. The unidirectional sensing nodes measure current that flows only in 

one direction. The bidirectional nodes are capable of measuring current in both 

directions. The “bidirectionality” is only required in the “storage” branches of EEMS 

where the current can either flow to charge the batteries or when the batteries 

power the avionics and propulsion system. 

The design of the sensing nodes begins by selecting the sensor, which is 

the core of the design. There are two main types of sensors to be used in these 

applications: Hall-effect sensors and shunt sensors. Although accurate and 

bidirectional, the Hall-effect sensors are not recommended in an environment with 

significant inductive loads (for example, electric motors) because they can induce a 

magnetic field in the sensor thus resulting in erroneous measurements. On the 

other hand, the shunt sensor is a good choice because besides being immune to 

the magnetic fields, it accurately detects the change in direction of the current 

(“bidirectionality”). These observations were made after testing both types of 

sensors in a multiday experiment as shown later in this chapter. 

The design of the sensing nodes is presented in Figure 40; where 1R , 2R , 

and 3R  are resistors used to build a voltage divider; SR  is the shunt resistor that 

produces the voltage drop proportional to the current measured; LR is the output 

resistor; OSR  is the offset resistor; and VC  and LC  are the capacitors used to reject 

the noise in the voltage and current measurements. The specific values of the 

resistors vary for each sensing node. The equations required for computing the 

individual values are presented in (5.1). 
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Figure 40.  Design of sensing node circuit. 

 

2
Smax Smax SP I R=    min

Smin
S

S

VI
R

=    maxSspan S SV nI R=   

5
L

Sspan

voltsR
V

=    ( )( )( )( )out unidirectional 1000 /S S LV I R Amp Volt Rµ=   

out bidirectional 1
S S LREF L

OS

I R RV RV
R k

  ⋅ ⋅⋅  = ±   Ω  
  

2.5
REF

OS L
VR R

volts
= ⋅   

where SmaxP  is the maximum power across the shunt resistor caused by the 

maximum expected current SmaxI ; SminI  represents the minimum current (minimum 

resolution) that can be read accurately as a result of the voltage minSV  drop (which 

(5.1) 
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for the case of the sensor is 0.01 V); SspanV  is the voltage at the shunt resistor that 

determines the required LR  ( 1n =  and 2n =  define the unidirectional and the 

bidirectional nodes correspondingly); and OSR  is the offset resistor that is used 

when the sensing node is bidirectional. Otherwise, the corresponding pin is not 

connected as well as the REFV  pin; outV  is the measured voltage that corresponds to 

SI . The complete set of numerical values of the sensing nodes components is 

presented in Table 3; these values are computed based on the component 

specifications. 

 
Sensing 

node 
ISmax 

(Amperes) 
RS 

(Ohms) 
PSmax 

(Watts) 
VSmin 

(Volts) 
ISmin 

(Amperes) 
VSspan 

(Volts) 
RL 

(kOhms) 
ROS 

(kOhms) 
1 6 0.01 0.36 0.01 1 0.06 80 NA 

2, 3 ±6 0.01 0.36 0.01 1 0.12 40 80 

4, 5 40 0.001 1.6 0.01 10 0.04 100 NA 

Table 3.   Numerical values of the components of the sensing. 

Control and Data Acquisition Unit of the EEMS 

The control unit is the main data processing component of the EEMS. The 

unit collects and processes the analog measurements from all sensing units. This 

unit performs several tasks: 

• receives all the analog current/voltage measurements coming from the 
sensing nodes 

• processes the analog signals and transforms them into digital form 

• computes parameters of interest, such as power and energy 

• determines the aging of the batteries to predict the maximum energy 
they can hold 

• computes the state of charge of the batteries, hence the amount of 
energy that exists in the system 

• transmits collected and computed data over UDP 

• logs all the variables into a removable flash drive 
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The control unit is implemented on an Arduino board, which is a very 

convenient platform for rapid algorithm prototyping. The Arduino board is 

programmed using a simplified subset of C/C++ language. The capabilities of the 

Arduino board include a native support for analog inputs/outputs (IO) as well as 

digital IO. 

The aging of a battery and the state of charge can be estimated by different 

methods. A method named “coulomb counting” was selected to get an estimate of 

the energy; the method is based on the integration of the current passing through 

the terminals of the batteries over time. To implement the numerical integration it is 

necessary to know the initial condition of the battery charge state, which in a 

battery is never precisely known. This problem is solved by correcting the 

integration procedure at the moment when the battery’s state of charge gets to a 

known point (fully charged or fully discharged). The detailed derivation of the 

equations used to compute the state of charge and the aging of the batteries is 

presented in Appendix C. 

Experiment Setup 

In order to verify the EEMS architecture a prototype of the system was built 

and a multiday experiment was run for four days starting on October 31, 2013. 

Figure 41 shows the prototype of the EEMS with a solar cell array; all the 

components but the solar array were put inside a waterproof box to avoid problems 

due to humidity or rain. Only half of the solar cell array (18 out of 36) was used to 

match the number of solar cells used by the soaring UAV. The Hall-effect and 

shunt sensors were installed at different points of the system to test their 

performance and behavior. In order to have the 4S3P configuration of batteries, 

three packs of 4S lithium-ion batteries were put in parallel; each 4S pack has its 

own PCM unit to allow analyzing the “boundary” conditions when the protective 

board isolates the batteries from the system. A load of 9 W was used to simulate 

part of the power requirements for the avionics and payload of soaring UAV. The 

selection of 9 W to emulate the load was due to the fully functional autopilot. 
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Finally, the Arduino board was set to read, process, and log the electrical variables 

involved in the experiment. 

  
Figure 41.  Hardware prototype of the EEMS installed on the roof of a building to 

avoid unintentional shading by structures during the daytime. 

The same setup was also used in a second experiment that measured the 

energy stored in two different types of battery packs. Two PCM units verified the 

boundary states of charge of both batteries. The 12 lithium-ion battery cells in first 

battery pack and 12 lithium-polymer battery cells in second one had the same 

4S3P configuration. Each battery pack was tested individually with a load 

connected to it; both battery packs were fully charged at initialization and the 

experiments were stopped when the PCMs isolated the battery pack at the low 

charge state. Conveniently installed sensor nodes integrated into the EEMS 

architecture allowed for estimation of the consumed power as a time integrated 

 96 



power, thus leading to the precise knowledge of the total energy stored in the 

battery packs. 

C. RESULTS AND DISCUSSION 

Figure 42 presents the results of the multiday experiment that tested the 

prototype of the EEMS. The sign convention for reading the plot is that the lines 

have a positive slope when energy is going into the system, while the negative 

slope corresponds to the energy leaving the system. 

 
Figure 42.  Result of multiday experiment with the prototype of the EEMS. 

The experiment ran for 90 hours continuously with the PV cells representing 

the sole power source. Even though the power out of the PV panel was expected 

to be at 50 W (at equator under clear sun), in reality it peaked at 36 W (at the 

latitude of Monterey, California). As this test was performed in fall, not only were 

the number of daytime hours less than the number of night hours, but also the 

foggy weather of fall in the early mornings affected the amount of solar radiation 

reaching the PV cells. Overall, there is a slight difference in the amount of energy 

collected by the PV cells every day, which would directly affect the endurance of 
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soaring glider. The interval of time when the PV cells provided energy to the EEMS 

can be characterized by the positive slope of the black line in Figure 42; in turn, the 

slope is zero during the nighttime. 

As observed in Figure 42, the experiment started at the very end of daytime 

(no energy input provided by PV cells) and some nonzero charge in the batteries; 

therefore, the simulated load immediately started discharging the batteries. The 

effect of the PCMs for isolating the battery packs from the system can be explicitly 

observed during the nighttime. This isolation is triggered when the lower limit of the 

voltage is reached, thus activating the over-discharge protection. The maximum 

state of charge of the batteries is different for every day; that was caused by the 

amount of PV energy captured by the system. 

The magenta curve corresponds to the dynamics of the load. It shows a 

constant negative slope when the load is active; the slope is zero when the 

batteries are “isolated” by PCM. It can be also observed that there is a minor leak 

of energy (see yellow line) that becomes more pronounced in a long-term 

operation; the leakage is caused by the losses of energy in the EEMS wiring, 

losses in the batteries, and some consumption of electrical energy by the sensor 

nodes. 

The sensor that demonstrated the best performance was the shunt sensor. 

Therefore, the INA170 current shunt sensor manufactured by Texas Instruments is 

chosen for the sensing nodes of the EEMS because it provides the best accuracy 

with a very low level of noise. 

Figure 43 shows the plots with the results of the experiment that tested the 

amount of energy stored in two types of battery packs: lithium-ion and lithium-

polymer. Table 4 shows the comparison of the claimed end actual energy capacity 

of both types of batteries. 
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Figure 43.  Performance test of energy capacity for lithium-ion and lithium-polymer 

4S3P battery packs. 

 
Battery 

chemistry 
Nominal 
voltage 
(volts) 

Nominal 
capacity 

(watt-hour) 

Actual capacity 
(watt-hour) 

Weight total 
/casing 

(kilogram) 

Specific energy  
(watt-hour/kilogram of 

total weight) 

Lithium-ion 14.8 134.1 93.2 0.640/0.04  145.625 

Lithium-polymer 14.8 88.8 80.2 0.521/0.01 153.935 

Table 4.   Comparison of the energy capacity between lithium-ion and lithium-
polymer 4S3P battery packs. 
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VI. FLIGHT TEST RESULTS 

This chapter presents the onboard implementation of developed algorithms 

that enable autonomous cooperative soaring and solar energy harvesting. To 

achieve this objective a real SB-XC glider was equipped with the hardware 

components discussed in the previous chapters. The scope of the experimental 

program covers the system identification (sink rate and the energy estimation), the 

thermal detection, thermal centering guidance, Bayesian search, and the TSP-

based solution of the navigation task. The experimental verification of the solar 

harvesting wings had been performed on the ground; the process of obtaining 

formal Interim Flight Clearances (IFCs) is driven by the complicated NAVAIR 

guidelines which were not completed in time. 

The platform utilized to test the algorithms is the SB-XC glider manufactured 

by the RnR company [50]. The cross-country soaring platform has the following 

characteristics: wing span = 170 in, wing area = 1545 in2, airfoil SD-2048, aspect 

ratio 19.8:1, wing loading ≈ 14 oz/ft2. Figure 43 shows the SB-XC glider used for 

the flight testing; there are two identical gliders and only one of them has the solar 

cells embedded into the wing. The SB-XC is equipped with the Piccolo Plus 

Autopilot [51] controlled by a Ground Control Station. The architecture of the 

onboard instrumentation followed the design concept of the Rapid Flight Control 

Prototyping [52] system that has been developed to achieve the flexibility and 

guarantee the rigor of experimentation. 
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Figure 44.  SB-XC gliders with and without solar panels. 

The implementation of these algorithms onboard a glider is done by a 

secondary controller (PC104 CPU) connected to the autopilot through the full-

duplex RS232 serial line. Serial communication allows reading telemetry from the 

autopilot sensors and submitting the low-level control commands to the autopilot at 

50 Hz. 

The algorithms related to the search and detection of thermals, as well as 

the thermalling guidance, have been designed in Simulink models and then 

autocoded into a real-time executable code utilizing the advanced capabilities of 

MATLAB Code Generator [53]; the xPC target was used as the hard real-time 

operating system. 

The flight test was performed in the restricted airspace of Camp Roberts, 

California, during one of the Joint Interagency Field Exploration (JIFX) events; the 

objectives and the truly collaborative environment built by JIFX serve as a perfect 

mechanism for rapid transition of research results into a realistic operational 

environment [54]. 

The first experiment verified the performance of the Sink Polar identification 

algorithm. The algorithm, which is based on the Recursive Linear Least Square 

concept, should exhibit rapid convergence properties but requires enforced 

persistency of excitation condition [31]. Verification of the convergence and 
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precision of parametric approximation is the key objective of this step. The ideal 

flight path of a glider in this experiment would be a sufficiently long straight line. 

However, due to the airspace constraints the glider was flown along four straight 

legs corresponding to the sides of a “narrow” rectangular path. The initial 

commanded true airspeed in the experiment was 14m/s, which was gradually 

increased by 2m/s until the glider reached the speed of 22m/s. At each 

commanded value of airspeed, the glider was given time for the long period 

transient to die. When in steady state flight the data acquisition process was 

started to last for at least 30 s segments, where the descend rate versus airspeed 

characteristics were measured at 50Hz. The characteristics of the Sink Rate Polar 

below 14 m/s, which is close to the stall speed of the NPS glider, were not 

investigated because there was minor cross wind that might have affected the 

accuracy of the estimator and the rigor of the experiment. The total time for this 

experiment was 25 minutes, and the final Sink Rate Polar curve is presented in 

Figure 45. The resulting Sink Rate Polar is compared against the results obtained 

by Edwards [32] with the same glider of slightly lighter weight. From the results, it 

is evident that the Sink Rate Polar obtained online closely matches the behavior of 

the Sink Rate Polar obtained by previous researches. The online computation of 

the Sink Polar in a wider range of airspeed would have been possible if the 

weather conditions allowed safe flight at a slower speed of ≈9m/s as Edwards did. 

The major achievement of this experiment is in performing the system identification 

experiment online (in flight) and verifying theoretically expected convergence and 

precision characteristics of the recursive estimator.  
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Figure 45.  SB-XC’s Sink Polar obtained with RLLS. 

Verification of the thermal detection algorithms in a real operational 

environment requires tight integration of a number of algorithms, including the 

Bayesian search, TSP navigation, and the probability map update. During the flight 

the total energy approach was used as the updraft detection mechanism. The 

glider was guided by the heading command computed based on the suboptimal 

path of the TSP solution that utilized the previously given Bayesian map of the 

airspace in Camp Roberts. The first step in this experiment is to obtain the 3D 

elevation map of the Camp Roberts operational area. A rectangular area was 

selected and the map was automatically generated as presented in Figure 46, 

where the black line represents the runway. A comparison of the topography can 

be done by analyzing the data of Figure 47, where a view of the terrain 

corresponding to Camp Roberts is extracted from Google Earth.  
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Figure 46.  3D elevation map of Camp Roberts. 

 

 
Figure 47.  Snapshot of Camp Roberts extracted from Google Earth, from [55]. 
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The data extracted from the elevation map is then used to discretize the 

area of operations in square cells of ≈100m length; historical observations suggest 

that the thermal updrafts in this region of California have smaller diameter. The 

slope of the terrain and its derivative were used to determine the characteristic 

cells with the highest probability of finding thermals; thus, the prior probability map 

was generated. An example of the prior probability map is given in Figure 48. 

 
Figure 48.  Prior probability map at Camp Roberts on the left. Image on the right 

shows its rescaled version to give sense of the magnitude of probability 
in each cell. 

Figure 49 illustrates the solution of the TSP task projected over the local 

terrain. Analysis of the TSP solution shows that the trajectory travels mainly over 

the hills and flat lands where the updrafts are more likely to exist. Flight safety 

considerations and the constraints of the restricted airspace did not allow us to 
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start the experiment at the ceiling altitude and fly through the entire path given by 

the solution of TSP task. Every time the glider reached the low altitude threshold 

(450m MSL), it was necessary to initiate climbing with the electrical motor. Given 

these circumstances, only a portion of the total path, shown as a red line in Figure 

49, was covered. 

 
Figure 49.  Path given by the solution of the TSP task and the portion of the path 

covered by the soaring glider in one of the experiments. 

The probability map was expected to evolve with the detection of thermals; 

the final version of this probability map is given in Figure 50, which illustrates the 

updated probabilities of cells as the thermals were detected during the flight. 
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Figure 50.  Probability map at the end of the experiment. 

In the afternoon of the same flight experimentation day, the wind gusts were 

too high for safe and effective research experimentation. Therefore, the decision 

was made to postpone the flight experimentation with the thermal centering 

control. However the SIL results of the thermal centering guidance and the 

performance of collaboration of multiple gliders has been obtained in the integrated 

SIL environment; see details in Chapter III.  

Since the “solar wing” was not implemented in real flight, the verification of 

the feasibility and performance of the onboard EEMS was performed on the 

ground during the same day. An experiment that tested the capabilities of the solar 

cells embedded into the wings to charge the 4S3P lithium-polymer battery packs 

was performed; the EEMS was equivalently loaded to represent the realistic 

operational conditions. Technically, it was necessary to fully charge a pack of 

batteries and verify correct operation of PCM units. Figure 51 shows the time 

history of energy corresponding to the elements involved in this test. First, it is 
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worth noting that the energy of the load has a negative sign because it is leaving 

the system; this is the same sign convention used for the EEMS test described 

before. From the figure it is evident that the energy extracted from the solar cells 

equals the energy stored in the batteries plus the energy consumed by the load. 

The solar cells had a peak output power of ~50 W; however, the demand of energy 

for the battery pack and the load was small compared to the energy that can be 

obtained from the solar cells. In a short experiment like this, the losses due to 

wiring and other minor parasitic effects are not as explicit as in the multiday 

experiment described before (Chapter V, Figure 42). 

 
Figure 51.  Energy balance and performance of solar cells powering load and 

charging a 4S3P lithium-polymer battery pack. 
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VII. CONCLUSIONS AND FUTURE WORK 

This thesis designed and implemented the software and hardware 

architecture to enable an autonomous glider with a hybrid energy-harvesting 

technique; such a technique is based on the use of convective thermals (updrafts) 

to gain potential energy and solar photovoltaic cells to produce electrical energy. 

The research spans many disciplines such as aerodynamics, flight 

dynamics and control, structures and manufacturing processes, navigation and 

guidance, meteorology, battery technologies, solar power, communication, and 

electronics design. 

A. CONCLUSIONS 

From high fidelity simulations and flight results, it was verified that the 

overall process to extract energy from thermal updrafts is feasible and efficient, 

and requires integrating a series of algorithms such as: 

• identification of the natural Sink Rate Polar of a glider to determine its nominal 
behavior 

• detection of thermals based on the Sink Rate Polar and the total energy 
approaches 

• optimization of the search task by means of the Bayesian search and TSP 
solutions 

Embedding the semi-rigid photovoltaic cells into the skin of the glider wing 

provides a lot of advantages. Conformal shaping of solar cells and negligible (~2%) 

weight gain are the enablers for generating a sufficient amount of electricity from 

them.  

This first iteration of the solar autonomously-soaring glider is a prototype to 

further test the achievable boundaries of the energy-harvesting technique. Even 

though the integrated solar-soaring architecture is capable of flying during the 

daytime, and the electrical energy stored onboard would only be enough to support 

a portion of the nighttime flight, this initial step is the fundamental achievement that 

provides practical verification of the scalability of future modifications. The 
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scalability of engineering solutions needs to explore the variation of cross-

correlated parameters of the system that include the aircraft geometry, the size 

and the architecture of the solar array, the battery size, onboard instrumentation, 

and utility sensors. It is clear that the scalability of the engineering design will 

directly impact the scalability of the mission that a flock of gliders can potentially 

perform. 

B. FUTURE WORK 

The next and most important step is to test all capabilities of the developed 

soaring glider in a flight test during daytime. Once the hybrid energy-harvesting 

technique is proven in flight, it is necessary to run an experiment to test the 

maximum endurance enabled by the soaring platform; the flight should start early 

in the morning and continue during the nighttime. Online analysis of the energy 

balance (consumption versus PV generation) is the most important experiment to 

be performed. With the results obtained from these experiments, the calculation of 

the desired scaling of the system (number and particular design of the solar-

soaring glider) to match the desired mission requirements can be made. 

One way to improve the endurance of a solar-soaring glider is by using new 

electronic devices that require even less power than the ones used in this current 

prototype; the use of batteries with a higher specific energy; and the installation of 

solar cells with higher efficiency. 

There is yet room for improvement of the performance of the proposed 

thermalling controller. The lack of performance exists because the Lyapunov 

stability analysis typically used in these settings only provides the regions of 

feedback gains ( 1k  and 2k ) which guarantee stability of the system; performance 

specifications are not addressed. The variety of flight configurations (trim setting, 

nomenclature of controls surfaces and their configuration, weigh and balancing, 

etc.) of aircraft and shapes of convective updrafts require continuous retuning of 

feedback gains in order to achieve maximum climb rate of the glider. One 

approach to address this lack of performance is to implement a learning 
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mechanism to determine the best gains for every configuration of the glider and 

uncertainties of the updraft; this technology is under development now 

by implementing the online learning and adaptive control techniques. 

This thesis was only concerned about the development of the soaring glider 

as a platform capable of performing multiday operations. However, nothing about 

its application in a specific mission was analyzed. This is an area that now is being 

addressed in some of the control and operations research classes at the NPS 

Mechanical & Aerospace Engineering department. During these classes the 

students develop algorithms for specific missions with flocks of soaring gliders.  

Estimating Cumulative Energy State for Optimal Planning of ISR 
Mission by Multiple Cooperative Autonomous Gliders 

The operational efficiency of multiple cooperative UAVs in an ISR mission 

depends significantly on the optimality of mission planning. In an extended 

endurance ISR mission, when the UAVs are implemented by a novel class of 

soaring gliders capable of harvesting energy from the convective air and solar 

panels, the predictive methods of estimating the onboard energy become the most 

critical factors in planning of persistent ISR. Therefore, it might be necessary to 

develop a new approach to the estimation of the total onboard energy of a flock of 

gliders which can be used as an optimization metric during the mission planning 

phase. In an envisioned scenario, the ISR analyst plans a mission of multiple 

autonomous gliders such that either the feasibility of the desired mission is 

explicitly assessed, or the number of gliders and the mission “horizon” are 

automatically adjusted to optimally fit into the predicted value of cumulative energy 

resources. 

On one hand, the problem of estimating the cumulative energy relies on the 

design of novel methods of combining various physical sources of energy: the 

potential energy of height and the electrical energy stored in onboard batteries. 

The key challenge here is in finding a formal representation of the cumulative 

energy state while the physical nature of its sources is different. On the other hand, 
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the cumulative energy state needs to be manipulated to predict the possible 

transformation of the onboard power into, for example, the feasible operational 

range or the operational time on target. Therefore, it is intuitive that the cumulative 

energy can be used to either maximize the figure of merit (FOM) of the 

collaborative ISR mission or to evaluate the FOM for a mission at hand; the FOM 

can be specific for a particular mission and in a typical persistent ISR scenario can 

be represented by the time on target or the covered operational area. 

Developing the approach of estimating the cumulative energy state of single 

and multiple soaring gliders will not only reduce the demand upon the mission 

planner, but will also increase the guaranteed level of the ISR mission 

effectiveness. The current mode of mission planning for a traditional gas- or 

electric-powered UAV considers the longest operational time due to onboard gas 

or power supplies at the most. Mission planning of multiple cooperative UAVs has 

just started to emerge, and is typically implemented as an ad-hoc method with no 

prior guarantees of mission success. These limitations motivate the development 

of a cumulative energy state estimation algorithm of a flock of energy-harvesting 

gliders to facilitate enhanced operational efficiency by accounting for energy 

constraints at the mission planning level. 
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APPENDIX A. CONDOR-SIMULINK INTERFACE 

To validate and verify the algorithms developed, an interface between the 

high-fidelity Condor Simulator and the MathWorks Simulink was developed. 

Simulation allows testing the developed algorithms implemented as mathematical 

models. The level of similarity between the simulation and the real system depends 

on the complexity of the mathematical model. To simulate a soaring glider, it is 

necessary to have an accurate representation of the aircraft aerodynamics and 

flight dynamics, physical principals of sensing instruments, and atmospheric 

phenomena, such as formation of thermals, wind, and solar radiation. The Condor 

soaring simulator meets all these requirements and provides the following 

additional advantages: 

• offers the six degrees of freedom (6DoF) models of gliders, which capture 
accurately the aerodynamic characteristics of the real airplanes 

• provides a variety of glider models corresponding to real piloted gliders 

• has available data acquisition from the simulator, sensing the states of the flight 
environment 

• supports the mathematical model for the thermals, which predicts their behavior 
more accurately than any other simulator 

• provides high fidelity simulation of flight and visual perception of environment, 
which allows training human pilots 

• supports a cooperative network of gliders  

• supports the performance of the algorithms developed for a glider that can be 
compared to the performance of human pilots 

• provides “control” of the atmospheric conditions, such as characteristics of the 
thermals, geographic location, wind, and the solar radiation given by the 
date/time of the simulation 

• supports repeatability of the atmospheric conditions at every simulation  
The objective of building the Condor-Simulink interface is to enable data 

exchange between Condor and the Simulink control development environment; the 

information coming from Condor is used to read the states of the glider and use 

them to develop and test control algorithms such as autopilots, thermalling 

controllers, thermal detecting algorithms, Bayesian search, and any other algorithm 
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used onboard. The outputs of these algorithms are control commands that are sent 

to the Condor via the same interface. 

By default, it is possible to get an UDP ASCII stream of telemetry data from 

the simulator, which contains a subset of current states of the glider and the 

operational flight environment. In order to read an extended set of telemetry 

states—including latitude, longitude, x, y and z positions among others—from the 

simulator and to send back commands, it was necessary to implement an API 

between the Condor software and the Simulink development environment. This 

API was developed by Dmitrij Koniajev, Senior developer in the Demand-Side 

Platform team, Adform Lithuania, J. Jasinskio 16C, LT-01112 Vilnius, Lithuania, 

dimchansky@gmail.com. The API is installed in the host computer and some 

configurations further explained must be done. 

Figure 52 shows a block diagram of the Condor-Simulink interface. The API 

receives/sends data from/to Condor; therefore in Simulink it is necessary to 

develop an interface that solves the following tasks: 

• extract (decode) all the variables coming from the simulator through the API, 
convert them in physical data for further manipulation 

• encode the commands for the control surfaces and send them to the Condor 
simulator via the API 

 
Figure 52.  Block diagram of the Condor-Simulink interface. 

Configuration Files of Condor and Condor API 
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To establish the link between the simulator, the API and Simulink; IP ports 

and addresses need to be set up according to a specific network configuration. 

Before the installation of the API, it is necessary to configure the Condor simulator 

for sending a default set of states; this is done by accessing the directory 

C:\Program Files\Condor and selecting the file UDP.ini, which contains some 

parameters to be set as in Figure 53. 

 
Figure 53.  Customized parameters for UDP.ini file. 

The “Enabled” parameter must be set to 1 in order to get the UDP stream 

from Condor; and the Host and port are the ones where this stream is going to be 

sent. Any port can be chosen within the computer that is running Condor.  

The following step is to install the Condor API on the host computer where 

the Condor simulator is running. After the installation is complete, the file 

CondorAPI.Host.exe, which is located in the directory C:\Program 

Files\Condor\CondorAPI, must be configured with the parameters as shown in 

Figure 54. 
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Figure 54.  Customized parameters for CondorAPI.Host.exe file. 

The Condor “Endpoint” parameters must be the same as in the UDP.ini file. 

The “ExternalEndpoint” port can be chosen at will. This is where the extended UDP 

stream is sent and is the point from which Simulink reads the data. The 

“CommandsEndpoint” is where Simulink sends commands and from where the API 

reads data to be sent to the process memory. 

Implementation of the Simulink Interface 

Standard Simulink library blocks are used to build the interface. The 

implementation is based on a sequential acquisition-decoding-encoding-sending 

process; the parameters described are only the ones that need to be changed from 

the default ones inside the Simulink blocks. 

1. Data Acquisition and Decoding. 
In this portion of the interface, the states of the glider are taken from the 

Condor API and are decoded for their use in the control algorithms.  

A. Receiving Data 
a. UDP Receive Binary Block (Figure 55): 

This block allows getting the UDP stream from any chosen port 

and IP address where it is desired to read the data. 
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Figure 55.  UDP Receive Binary block. 

i. Parameters. 

• port and IP address are the same where the API sends the 
data after reading it from the simulator and adding some extra 
variables 

• the output port width is based in the maximum number of 
bytes that might exist in the output stream from the API. This 
is an important parameter to take into account to avoid 
misreading data and/or unexpected errors in communication. 
The port width must match the length of the stream in the 
subsequent blocks 

ii. Outputs 

• the upper output contains the stream and goes to the Condor 
API_in subsystem for the buffering process 

• the second output port indicates when new data is received by 
the UDP Receive Binary block 
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B. Buffering Data (inside “Condor API_in” subsystem): 
a. FIFO Write Block (Figure 56). 

 
Figure 56.  UDP FIFO write block. 

This block takes as an input the UDP stream coming from the 

UDP receive Binary block and builds a serial stream to be placed into a 

buffer. It is necessary to implement this block before the buffer; 

otherwise, it will not work due to the mismatch of the types of data in the 

stream. 

i. Parameters 

• the size must match with the size established for the UDP 
Receive Binary block, which corresponds to a number 
exceeding the maximum number of bytes expected in the UDP 
stream 
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• the input vector type must be “8 bit uint null terminated” that 
corresponds to a byte 

ii. Output 

• the output contains the serial data that goes to the FIFO Read 
HDRS block 

b. FIFO Read HDRS Block (Figure 57). 

Since the telemetry data is transmitted as “name=value” pairs as 

ASCII symbols, the received stream coming from the FIFO write block 

needs to be parsed, thus separating the name of the variable from the 

corresponding numerical value.  

 
Figure 57.  UDP FIFO read HDRS block. 

i. Parameters 

• for the headers, it is necessary to type inside apostrophes the 
name of the variable followed by the "equals" sign; repeat this 
for all the variables, separating them by commas 
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• the terminating string for this case is [13 10], corresponding in 
ASCII code to “\r” and “\n”, respectively 

• output behavior is “Zero output if no new data" 

• the maximum read size must match with the size of the stream 
of the previous blocks 

• the output vector type is “8 bit uint null terminated” 
ii. Output 

• the number of headers determines the number of outputs, and 
each output is composed of the bytes corresponding to the 
header of the variable and its value 

• each output (variable) goes to an ASCII decode block 
C. Decoding ASCII Data (inside “Condor API_in” subsystem): 

a. ASCII Decode Block (Figure 58). 

Once the bytes corresponding to the header of the variable and 

its value are at the output of the buffer, this block decodes the numeric 

value of the variable. 

i. Parameters 

• in the format string field, enter the name of the variable again, 
followed by the equals sign, after which enter the type of the 
variable, e.g. time=%f 

• number of variables is only 1 

• the variable type is double 
ii. Output 

• after decoding, the result is the numeric value in double type 
format 

• after the output it is necessary to apply a scaling factor to 
adapt the values of the variables to a useful quantity 
(according to the units needed further to control the glider) 

• all the variables are concentrated in a bus to use them as 
required 
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Figure 58.  ASCII decoding implementation. 

2. Encoding and Sending Commands 
This is the section of the interface that collects, encodes, and sends the 

commands to control the glider, which are received by the Condor API and 

written directly in the process memory of Condor simulator. 

A. Encoding 

The modeled glider in Condor is controlled by deflecting four control 

surfaces: ailerons, rudder, elevator and airbrake. The values of the 

commands for such control surfaces are multiplexed/collected in a bus to 

use them as required. 

a. ASCII Encode Block (Figure 59). 

This block takes as input the values of the four commands and 

builds an ASCII encoded binary stream to be sent via UDP. 

i. Parameters 
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• the format of string is as follows: 
“variable1=%f\r\nvariable2=%f\r\n” and so on. The “%f” 
determines the type of the numeric value of the variable; while 
the “\r” and “\n” are the terminating string characters (CR LF) 
needed to terminate the stream and allow the process memory 
of the simulator to read them unequivocally 

• the number of variables is 4, matching the number of control 
surfaces 

• the max output string length is chosen to hold the maximum 
number of the bytes generated by the block 

• the variable types are all doubles 

 
Figure 59.  ASCII decoding implementation. 

B. Sending Commands. 
a. UDP Send Binary block (Figure 60): 
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This block sends the UDP ASCII binary stream coming from the 

ASCII Encode block, to any desired IP address and port.  

 
Figure 60.  UDP Send Binary block. 

i. Parameters 

• port and IP address are the ones where the API is reading 
from Simulink to pass the same stream to the simulator 
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APPENDIX B. INTEGRATION OF THIN FILM SOLAR CELLS ON 
TALEUAS 

TaLEUAS uses a set of thin film solar cells; they were chosen because of 

their high efficiency (22.5%) and power/weight ratio, their thickness of 165 μm ± 40 

μm, and their flexibility that allows them to be molded to the shape of the glider’s 

wings (to be conformal). A sample of the solar cells is shown in Figure 61. 

 
Figure 61.  Thin film solar cell used on TaLEUAS. 

The solar cells were embedded in the glider’s wings with the goal of 

minimizing any parasitic aerodynamic drag that can be produced by increased 

roughness of the wing. The chosen technique eliminates any adverse aerodynamic 

effect with the implementation of a suitable manufacturing process of the wings; 

this process gives the opportunity of placing the solar cells in the wings’ molds at 

the construction stage. In this way, the wings are produced with the solar cells 

embedded as one piece; therefore, there is no change in the shape of the airfoil 

and the wing. Figure 62 shows the structure of the skin of the wings and a sample 
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section. The type of construction used by the manufacturer of the wings is a 

sandwich-structured composite that uses a core layer of foam and two outer layers 

of fiberglass. Even though the solar cells are embedded, the skin of the wings is 

very thin, measuring ≈ 2 mm. 

 
Figure 62.  Structure of the skin of the wings with the solar cells embedded. 

Figure 63 shows several views of TaLEUAS wings; from there it is observed 

how the solar cells adopt the shape of the airfoil. All 18 solar cells in the wings are 

connected in a series array that combines their voltage. 
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Figure 63.  Solar wings. 
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APPENDIX C. STATE OF CHARGE (SOC), AGING ON BATTERIES 
AND CODE FOR THE CONTROL UNIT 

The SOC is the amount of energy available in a battery. It can be measured 

as the percentage of the energy capacity of the battery, ranging from 0 to 100%; or 

it can be expressed in terms of ampere-hours or watt-hours. The method used to 

determine the SOC of a battery depends on its chemistry, the data available 

measured from the battery, and the fidelity desired for the estimation algorithms. 

Defining the SOC is not an easy task because it cannot be obtained directly from a 

sensor reading. Rather, a specific technique that combines measurements must be 

applied. To accurately determine the SOC of a battery, it is necessary to consider 

some parameters, such as instantaneous discharge rate, instantaneous 

temperature, aging, instantaneous voltage, and electrochemical mathematical 

model. In practice, some methods to determine the SOC are based on the 

electrochemical mathematical model of the battery and produce extremely 

accurate results; however, those models are not commonly provided by the 

manufacturer. Some other practical methods demonstrate good results in 

computing the SOC, and they are chosen because of their simplicity in 

implementation. 

SOC Based on Voltage Measurements 

Lead-acid batteries show a linear relationship between the voltage and the 

state of charge. This relation can be expressed as a straight line that is shifted by 

different factors, such as temperature, discharge rate, and aging. On the other 

hand, lithium batteries do not show the same behavior; instead, a small variation in 

voltage is observed over most of the charging/discharging cycle. 

Even though the voltage is not useful to determine the SOC in lithium 

batteries, it is still a good indicator of the battery being fully charged or discharged. 

Moreover, its behavior is predictable in the neighborhood of these end points. 

Therefore, the voltages corresponding to fully charged and fully discharged states 

are used as reference states. This same approach is used by the PCM to 
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determine when the battery pack must be isolated from the system due to 

subnormal operation. 

SOC Based on Current Counting (Coulomb Counting) 

The first requirement of this method is to have accurate measurements of 

the current going in and out of a battery. The current being integrated over time 

gives the real amount of energy stored in the battery. The accuracy in the energy 

estimation depends heavily on the sensing frequency to account for all the 

variations in the flow of current. The main inconvenience of this method is the 

knowledge of an accurate starting point value of the energy in the battery to begin 

the integration. 

Method Proposed To Determine the SOC Onboard Soaring Glider 

In the EEMS implemented onboard the solar glider there are sensing nodes 

which measure the voltage and current in all the branches, and the control unit 

which can determine accurately the current at the terminals of the battery at every 

moment. Those measurements of the voltage/current variables are very accurate 

given the choice of sensors used for the sensing nodes; therefore, the 

measurements can be confidently used to determine the SOC of the batteries. 

The present design uses a combination of the current- and voltage-based 

methods to determine the SOC. The estimation is first determined by the coulomb 

counting method, which requires a known starting point to begin counting. The 

solution to that issue is to have the batteries fully charged at the start of a multiday 

flight. The control unit of the EEMS recognizes this known fully charged state 

(upper limit of the voltage) by measuring the voltage of the battery. If for some 

reason, the batteries are not fully charged at the beginning of the multiday flight, 

the energy counting starts at an unknown state, and as soon as the battery is fully 

charged given by the measurement of the voltage, the control unit corrects the 

value of the SOC. This approach has a behavior similar to the dead reckoning 

method in navigation, where the measurements from the system are used to 

determine the position and as soon as there is a GPS fix, the position is corrected. 
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The number of batteries onboard the TaLEUAS is selected such that the maximum 

capacity of the batteries is reached at a point during the day to survive the 

overnight flight. Therefore, the compensation process based on voltage should 

work. 

Method Used To Determine the Aging of Batteries 

Aging is a very important property that shortens the maximum storage 

capacity of the battery; therefore, it must be taken into account when the control 

unit determines what the SOC of the battery is. A heuristic method to determine 

the aging is proposed and its implementation is explained with example numbers.  

The explanation is based on the characteristics of an ICR18650-30A lithium-

ion battery cell. Its specifications establish that its capacity after 299 cycles ≥ 

2030mAh (70% of the nominal capacity of 3000mAh); consequently, the aging of 

the battery depends on the number of cycles experienced. Each cycle is 

considered as the interval between the charge and the discharge of a rechargeable 

battery. Onboard the glider it is not possible to get a full discharge because it 

would make the avionics and motor stop working. Furthermore, the batteries are in 

a continuous state of charge and discharge, giving no chance to determine when a 

cycle is completed. The method proposed for determining the aging of the battery 

is based on the total amount of energy going in and out of the battery in a common 

cycle. The counting of this energy is done by the control unit and starts at zero 

when the battery is brand new. 

Taking into account the specifications previously mentioned and assuming 

that the aging is linear, the history of aging plot will look as shown in Figure 64. 
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Figure 64.  Aging of the ICR18650-30A lithium-ion battery cell after 299 cycles. 

The equation for the aging line that joins the initial and final value of the 

capacity after 299 cycles is derived as follows. 

2 1

2 1

2030 3000 970
299 0 299

y ym
x x
− −

= = =
− −

  

y mx b= +   

Substituting the point P = (0, 3000) gives: 

3000 *0m b= +   
3000b =   

970 3000
299

y x= − +  

where x represents the number of cycles and y is the maximum capacity that the 

battery can hold. 

One cycle is determined by putting a certain amount of energy in the battery 

and then taking it out. This amount of energy that the battery can hold will be 
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decreasing as the number of cycles increases. For the continuous 

charging/discharging of batteries, if the energy corresponding to one cycle—twice 

the maximum capacity for the corresponding cycle—is measured at the terminals 

of the battery, then it can be assumed that one cycle has passed. This assumption 

can be stated as follows. 

0 0

  970 3000
2 299

x xenergy countingyd dξ ξ ξ = = − + 
 ∫ ∫   

2970  3000
299*2 2

energy countingx x− + =  

where the number of cycles “x” explicitly depends on the energy counting. 

Therefore, having this value it is possible to substitute in the equation of the aging 

line 970 3000
299

y x= − + to determine the value maximum capacity that the battery 

can hold “y” based on the number of cycles. All these values are computed 

recursively by the control unit; consequently, for every computation step, the 

maximum capacity of the battery is known. 

Arduino Code for the DAQ Unit  
//=========================================================================================== 
// Control_Unit_TaLEUAS 
// Date:     Feb-02-2014 
// Purpose:    Measure, process and transmit variables of the EEMS 
// Input:     Analog measurements from: voltage/current at sensing nodes 
// Output:     Via UDP all the read and processed variables. 
//=========================================================================================== 
 
#include <SD.h> 
#include <Wire.h> 
#include "RTClib.h" 
#include <SPI.h>            // needed for Arduino versions later than 0018 
#include <Ethernet.h> 
#include <EthernetUdp.h>   // UDP library from: bjoern@cs.stanford.edu 12/30/2008 
 
 
// Digital pins to connect the LEDs that indicate the State of charge 
#define greenLEDpin 2 
#define redLEDpin 3 
 
// Definition of variables for UDP communcation 
const unsigned int Buffer_size = 1000; 
byte mac[] = { 0x90, 0xA2, 0xDA, 0x0F, 0x23, 0xA4 };     // Enter a MAC address, this is usually printed on the board. 
IPAddress ip(172, 20, 90, 210);                                   // The IP address will be dependent on your local network. 
unsigned int localPort = 7777;                                      // local port to listen on 
EthernetUDP Udp;                                                          // An EthernetUDP class object to send the data over UDP 
IPAddress remote_ip(255, 255, 255, 255);                    // The IP address where you will send the data: 
unsigned int remote_Port = 8888;                                 // remote port to send data 
 
// Definition of variables for skyassistant 
float scaling_skyassistant = (float)((4096 * 1.8 * 12.4 * 3.3 * 0.585) / 2500);  
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// Definition of variables for energy management 
RTC_DS1307 RTC; 
int DataLine = 10; 
int Counter = 0; 
File dataFile; 
long milli_watts_sec_1 = 0; 
long milli_watts_sec_2 = 0; 
long milli_watts_sec_3 = 0; 
long milli_watts_sec_4 = 0; 
long milli_watts_sec_5 = 0; 
long milli_watts_sec_6 = 0; 
long MillSec_last = 0; 
long MillSec = 0; 
long max_capacity_p1 = 0; 
long max_capacity_p2 = 0; 
long max_capacity_p3 = 0; 
long energy_counting_p1_mWs = 0; 
long energy_counting_p2_mWs = 0; 
long energy_counting_p3_mWs = 0; 
float max_energy_0_cycles = 35000;                                // Nominal is 3000 mAh * 16.5 volts = 49.5 Wh. The rated is 35  

         // Wh = 35000 mWh 
float max_energy_299_cycles = max_energy_0_cycles - 970 * 16.5;   // Nominal is 2030 mAh * 16.5 volts = 33.495 Wh.  
// The consideration will be to have the same decay (3000 mAh - 2030 mAh) = 970 mAh over the 299 cycles 
float energy_decay_slope = (max_energy_299_cycles - max_energy_0_cycles) / 299; 
long energy_pack1_corrected_mWs = 0; 
long energy_pack2_corrected_mWs = 0; 
long energy_pack3_corrected_mWs = 0; 
 
 
void setup() 
{ 
 
  // Initialize communication with SD card 
  Serial.begin(9600);      // This is the correct baudage for Arduino Mega 
 
  pinMode(4, OUTPUT);                       // set the SS pin as an output (necessary!) 
  digitalWrite(4, HIGH);                        // turn off the SD 
  pinMode(10, OUTPUT);                    // set the SS pin as an output (necessary!) 
  digitalWrite(10, HIGH);                    // but turn off the W5100 chip! 
  pinMode(53, OUTPUT);                    // set the SS pin as an output (necessary!) 
 
  Serial.print("\nInitializing SD card..."); 
  if (!SD.begin(10, 11, 12, 13)) { // Must keep the 10,11,12,13 numbers for Arduino Mega 
    Serial.print("\nError in reading SD card"); 
    return; 
  } 
  Serial.println("card initialized."); 
 
 
  // Initialize the ethernet and UDP communication 
  Ethernet.begin(mac, ip); 
  Udp.begin(localPort); 
 
 
  // connect to RTC 
  Wire.begin(); 
  if (!RTC.begin()) { 
    Serial.println("RTC failed"); 
  }// if 
 
  // Assign values for the energy counting variables 
  if (!SD.exists("datalog.txt")) { 
    // If file doesn't exist then assign initial value for the energy counting. Could be initialized to zero. 
    energy_counting_p1_mWs = 0; 
    energy_counting_p2_mWs = 0; 
    energy_counting_p3_mWs = 0; 
  }// if 
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  else { 
    // Get the aging from the last file in the SD card 
 
    // Open the file and go at the end of it 
    dataFile = SD.open("datalog.txt", FILE_WRITE); 
 
    // IF dataFile is open/created get the aging from datalog.txt file 
    if (dataFile) { 
 
      // Declare variables to be used 
      String line = "";      // This is the buffer for the variables from the file coming as strings 
      unsigned long pointer = dataFile.position();      // Pointer to read the file. 
      boolean not_done = true;                            // Determines qhen all aging variables are extracted 
      int var_counter = 0;                                // Counts for the number of battery packs in the system 
      String aging_str[3];                                // Contains the aging as strings 
      int aging_p1 = 0;                                   // Value of aging for pack 1 
      int aging_p2 = 0;                                   // Value of aging for pack 2 
      int aging_p3 = 1;                                   // Value of aging for pack 3 
 
 
      // Extract the aging from SD card 
      while (not_done) 
      { 
 
        pointer -= 1;    // Pointer will avoid the \t character 
        dataFile.seek(pointer);    // Search where the pointer says 
        char new_char = dataFile.peek();    // Extracts the char from the pointed byte 
 
        // Appends the chars backwards till get a \t character 
        if (new_char == '-' || isdigit(new_char)) { 
          line += new_char; 
        } // if 
        // When hit a \t character, the program puts the characters in the correct order 
        if (new_char == '\t') { 
          line.trim(); 
 
          for (int i = 0; i < line.length(); i++) { 
            aging_str[var_counter] += line[line.length() - 1 - i]; 
          } // for 
 
          var_counter += 1; 
          line = ""; 
          if (var_counter >= 3) {   // Accounts for the number of battery packs and exits the program when reached the  

// number 
            not_done = false; 
          } // if 
        } // if 
      } // while 
 
      // Convert the strings of characters to integers 
      aging_p1 = aging_str[2].toInt(); 
      aging_p2 = aging_str[1].toInt(); 
      aging_p3 = aging_str[0].toInt(); 
 
      // Convert the integers to long and to the units of mWs 
      energy_counting_p1_mWs = (long(aging_p1)) * (60 * 60); 
      energy_counting_p2_mWs = (long(aging_p2)) * (60 * 60); 
      energy_counting_p3_mWs = (long(aging_p3)) * (60 * 60); 
 
      // Close the datalog.txt file 
      dataFile.close(); 
 
    }// if 
    else {          // if the file isn't open, pop up an error: 
      Serial.println("error opening datalog.txt"); 
      Serial.println("Must assign the aging factor manually"); 
 
    } // else 
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  } // else 
 
 
 
  // Writing the header file to put data in context 
  HeaderFile(); 
 
  // Set up the Digital I/O 2 and 3 as outputs 
  pinMode(redLEDpin, OUTPUT); 
  pinMode(greenLEDpin, OUTPUT); 
 
 
} // void setup 
 
 
 
void loop() { 
 
  if (Serial.available() > 0) { 
    return; 
  } // if 
 
 
  // Create the process to compute the rate of climb from skyassistant 
  // Read the analog voltage in value from 0 to 1023 : 
  int skyassistant_sensorValue = analogRead(A7); 
  // Map it to the range of the analog voltage that in arduino corresponds from 0 to 5000 milli volts: 
  int millivolts_skyassistant = map(skyassistant_sensorValue, 0, 1023, 0, 5000); 
  // As the voltage beind read can only have values from 0 to 2500 milli volts, map it in skyassistant units in the range of – 
  //2048 to 2048: 
  float units_skyassistant = (float)map(millivolts_skyassistant, 0, 2500, -2048, 2048); 
  // Compute the rate of climb in meters per second from the skyassistant units; this equation was provided by the  
  // manufacturers: 
  float rate_of_climb_m_s = (29.0 / (1295.0)) * millivolts_skyassistant - 29.0;  //Here calibrate with the voltage readings at  
  // zero climbing from the skyassistant. Maximum rate of climb is 29 m/s 
  // Create some variables to be used in the energy management 
  String dataString = ""; 
  MillSec_last = MillSec; 
  MillSec = millis(); 
  long DeltaT = (MillSec - MillSec_last); 
 
 
  // Get measurements at solar panel check point 1 
  // Read voltage from analog pin: 
  int voltage_sensor_1 = analogRead(A9); 
  // Convert the analog reading (which goes from 0 - 1023) to a voltage (0 - 5V): 
  long milli_volts_1 = voltage_sensor_1 * (5.0 / 1023.0) * 1000 * (1000 / 245.2); 
  // Read voltage to get current from analog pin: 
  int current_sensor_1 = analogRead(A8); 
  // Convert the analog reading (which goes from 0 - 1023) to a voltage (0 - 5V) and multiply it by the scaling factor: 
  long milli_amps_1 = (current_sensor_1 * (5.0 / 1023.0) * 1000) * (1000 / 50); // Calibrate as required 
  long milli_watts_1 = milli_volts_1 * milli_amps_1 / 1000; 
  milli_watts_sec_1 = milli_watts_1 * DeltaT / (1000) + milli_watts_sec_1; 
  long milli_watt_hour_1 = milli_watts_sec_1 / (60 * 60); 
 
 
  // Get measurements at solar panel check point 2 
  // Read voltage to get current from analog pin: 
  int sensor_current_2 = analogRead(A10); 
  // Convert the analog reading (which goes from 0 - 1023) to a voltage (0 - 5V) and multiply it by the scaling factor: 
  long milli_amps_2 = ((sensor_current_2 * (5.0 / 1023.0) * 1000) - 4071.58658) / (-0.738281126);  
  long milli_watts_2 = milli_volts_1 * milli_amps_2 / 1000; 
  milli_watts_sec_2 = milli_watts_2 * DeltaT / (1000) + milli_watts_sec_2; 
  long milli_watt_hour_2 = milli_watts_sec_2 / (60 * 60); 
 
 
  // Get measurements at Battery Pack 1 (check point 3) 
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  // Read voltage to get current from analog pin: 
  int sensor_current_3 = analogRead(A11); 
  // Convert the analog reading (which goes from 0 - 1023) to a voltage (0 - 5V) and multiply it by the scaling factor: 
  long milli_amps_3 = ((sensor_current_3 * (5.0 / 1023.0) * 1000) - 4119.67316) / (0.73571); // (Vmeas -Vref)/sensitivity 
  long milli_watts_3 = milli_volts_1 * milli_amps_3 / 1000; 
  milli_watts_sec_3 = milli_watts_3 * DeltaT / (1000) + milli_watts_sec_3; 
  long milli_watt_hour_3 = milli_watts_sec_3 / (60 * 60); 
  energy_counting_p1_mWs = abs(milli_watts_3 * DeltaT / (1000)) + energy_counting_p1_mWs;  // All energy  
  // cummulated since the battery started working. Measured in milli watt seconds 
  long energy_counting_p1_mWh = energy_counting_p1_mWs / (60 * 60); 
 
 
  // Get measurements at Battery Pack 2 (check point 4) 
  // Read voltage to get current from analog pin: 
  int sensor_current_4 = analogRead(A12); 
  // Convert the analog reading (which goes from 0 - 1023) to a voltage (0 - 5V) and multiply it by the scaling factor: 
  long milli_amps_4 = ((sensor_current_4 * (5.0 / 1023.0) * 1000) - 4155.619048) / (0.689796); // (Vmeas -Vref)/sensitivity 
  long milli_watts_4 = milli_volts_1 * milli_amps_4 / 1000; 
  milli_watts_sec_4 = milli_watts_4 * DeltaT / (1000) + milli_watts_sec_4; 
  long milli_watt_hour_4 = milli_watts_sec_4 / (60 * 60); 
  energy_counting_p2_mWs = abs(milli_watts_4 * DeltaT / (1000)) + energy_counting_p2_mWs;  // All energy  
  // cummulated since the battery started working. Measured in milli watt seconds 
  long energy_counting_p2_mWh = energy_counting_p2_mWs / (60 * 60); 
 
 
  // Get measurements at Battery Pack 3 (check point 5) 
  // Read voltage to get current from analog pin: 
  int sensor_current_5 = analogRead(A13); 
  // Convert the analog reading (which goes from 0 - 1023) to a voltage (0 - 5V) and multiply it by the scaling factor: 
  long milli_amps_5 = ((sensor_current_5 * (5.0 / 1023.0) * 1000) - 4147.101732) / (0.678409); // (Vmeas -Vref)/sensitivity 
  long milli_watts_5 = milli_volts_1 * milli_amps_5 / 1000; 
  milli_watts_sec_5 = milli_watts_5 * DeltaT / (1000) + milli_watts_sec_5; 
  long milli_watt_hour_5 = milli_watts_sec_5 / (60 * 60); 
  energy_counting_p3_mWs = abs(milli_watts_5 * DeltaT / (1000)) + energy_counting_p3_mWs;  // All energy  
  // cummulated since the battery started working. Measured in milli watt seconds 
  long energy_counting_p3_mWh = energy_counting_p3_mWs / (60 * 60); 
 
 
  // Get voltage measurement for the load (check point 7) 
  // Read voltage from analog pin: 
  int voltage_sensor_7 = analogRead(A15); 
  // Convert the analog reading (which goes from 0 - 1023) to a voltage (0 - 5V): 
  long milli_volts_2 = voltage_sensor_7 * (5.0 / 1023.0) * 1000 * (1000 / 246.9616); 
 
 
  // Get measurements at Load (check point 6) 
  // Read voltage to get current from analog pin: 
  int sensor_current_6 = analogRead(A14); 
  // Convert the analog reading (which goes from 0 - 1023) to a voltage (0 - 5V) and multiply it by the scaling factor: 
  long milli_amps_6 = ((sensor_current_6 * (5.0 / 1023.0) * 1000) - 253.590909) / (-0.815091569);  
  long milli_watts_6 = milli_volts_2 * milli_amps_6 / 1000; 
  milli_watts_sec_6 = milli_watts_6 * DeltaT / (1000) + milli_watts_sec_6; 
  long milli_watt_hour_6 = milli_watts_sec_6 / (60 * 60); 
 
 
 
  // Compute the equivalency in cycles based on the energy counting 
  float equivalency_cycles = (-max_energy_0_cycles + sqrt(pow(max_energy_0_cycles, 2) - 4 * (energy_decay_slope / 2) * (-
(energy_counting_p1_mWh + energy_counting_p2_mWh + energy_counting_p3_mWh) / 3) / 2)) / (2 * energy_decay_slope / 
2); 
 
  // Compute the maximum energy that the batteries can hold based on the equivalency in cycles. This is expressed in  
  // mWh 
  float max_energy_due_aging = energy_decay_slope * equivalency_cycles + max_energy_0_cycles; 
  // Correct the measurement of the energy stored inside the batteries 
  if (milli_volts_1 >= 16500) {  // Adjust when reached known maximum voltage. Get a known value. 
    energy_pack1_corrected_mWs = ((long)max_energy_due_aging) * (60 * 60); 
    energy_pack2_corrected_mWs = ((long)max_energy_due_aging) * (60 * 60); 
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    energy_pack3_corrected_mWs = ((long)max_energy_due_aging) * (60 * 60); 
  } // if 
  // Keep integrating the current over time 
  energy_pack1_corrected_mWs = energy_pack1_corrected_mWs + milli_watts_3 * DeltaT / (1000); 
  long energy_pack1_corrected_mWh = energy_pack1_corrected_mWs / (60 * 60); 
  energy_pack2_corrected_mWs = energy_pack2_corrected_mWs + milli_watts_4 * DeltaT / (1000); 
  long energy_pack2_corrected_mWh = energy_pack2_corrected_mWs / (60 * 60); 
  energy_pack3_corrected_mWs = energy_pack3_corrected_mWs + milli_watts_5 * DeltaT / (1000); 
  long energy_pack3_corrected_mWh = energy_pack3_corrected_mWs / (60 * 60); 
 
 
 
  // Visualize the State of Charge using the LEDs integrated in the Shield 
  // Evaluate if the batteries are fully charged, and turn on and off the green LED every two seconds 
  // if the batteries are almost discharged, turn on and off the red LED every two seconds 
  if (milli_volts_1 >= 16500) { 
    if (Counter < 2) { 
      // red LED off 
      digitalWrite(redLEDpin, LOW); 
      // green LED off 
      digitalWrite(greenLEDpin, LOW); 
 
      Counter += 1; 
    } // if 
    else { 
      // red LED off 
      digitalWrite(redLEDpin, LOW); 
      // green LED on 
      digitalWrite(greenLEDpin, HIGH); 
 
      Counter = 0; 
 
    } // else 
  } // if 
  else if (milli_volts_1 <= 13000) { 
    if (Counter < 2) { 
      // red LED off 
      digitalWrite(redLEDpin, LOW); 
      // green LED off 
      digitalWrite(greenLEDpin, LOW); 
 
      Counter += 1; 
    }// if 
    else { 
      // red LED on 
      digitalWrite(redLEDpin, HIGH); 
      // green LED off 
      digitalWrite(greenLEDpin, LOW); 
 
      Counter = 0; 
 
    } // else 
  }// else if 
  else { 
    // red LED off 
    digitalWrite(redLEDpin, LOW); 
    // green LED off 
    digitalWrite(greenLEDpin, LOW); 
  } // else 
 
 
  // Put together the string to be saved and displayed 
  dataString += String(millivolts_skyassistant); 
  dataString += "\t"; 
  dataString += String(rate_of_climb_m_s); 
  dataString += "\t"; 
  dataString += String(MillSec); 
  dataString += "\t"; 
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  dataString += String(DeltaT); 
  dataString += "\t"; 
  dataString += String(milli_volts_1); 
  dataString += "\t"; 
  dataString += String(milli_amps_1); 
  dataString += "\t"; 
  dataString += String(milli_watts_1); 
  dataString += "\t"; 
  dataString += String(milli_watt_hour_1); 
  dataString += "\t"; 
  dataString += String(milli_amps_2); 
  dataString += "\t"; 
  dataString += String(milli_watts_2); 
  dataString += "\t"; 
  dataString += String(milli_watt_hour_2); 
  dataString += "\t"; 
  dataString += String(milli_amps_3); 
  dataString += "\t"; 
  dataString += String(milli_watts_3); 
  dataString += "\t"; 
  dataString += String(milli_watt_hour_3); 
  dataString += "\t"; 
  dataString += String(energy_pack1_corrected_mWh); 
  dataString += "\t"; 
  dataString += String(milli_amps_4); 
  dataString += "\t"; 
  dataString += String(milli_watts_4); 
  dataString += "\t"; 
  dataString += String(milli_watt_hour_4); 
  dataString += "\t"; 
  dataString += String(energy_pack2_corrected_mWh); 
  dataString += "\t"; 
  dataString += String(milli_amps_5); 
  dataString += "\t"; 
  dataString += String(milli_watts_5); 
  dataString += "\t"; 
  dataString += String(milli_watt_hour_5); 
  dataString += "\t"; 
  dataString += String(energy_pack3_corrected_mWh); 
  dataString += "\t"; 
  dataString += String(milli_volts_2); 
  dataString += "\t"; 
  dataString += String(milli_amps_6); 
  dataString += "\t"; 
  dataString += String(milli_watts_6); 
  dataString += "\t"; 
  dataString += String(milli_watt_hour_6); 
  dataString += "\t"; 
  dataString += String(max_energy_due_aging); 
  dataString += "\t"; 
  dataString += String(energy_counting_p1_mWh); 
  dataString += "\t"; 
  dataString += String(energy_counting_p2_mWh); 
  dataString += "\t"; 
  dataString += String(energy_counting_p3_mWh); 
 
 
  // Write the measurements in the SD card and display them. 
  // Open file in the SD card 
  dataFile = SD.open("datalog.txt", FILE_WRITE); 
  if (dataFile) { 
    // Write in the SD card 
    dataFile.println(dataString); 
    // Close the file in the SD card 
    dataFile.close(); 
    // print to the serial port too: 
    Serial.println(dataString); 
  } // if 
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  // if the file isn't open, pop up an error: 
  else { 
    Serial.println("error opening datalog.txt"); 
  } // else 
 
 
  // Put together the string to be sent over UDP 
  dataString = ""; 
  dataString += "Reading_skyassistantRate_mV="; 
  dataString += String(millivolts_skyassistant); 
  dataString += "\r\n"; 
  dataString += "Rate_of_climb_m_per_s="; 
  dataString += String(rate_of_climb_m_s); 
  dataString += "\r\n"; 
  dataString += "Time_since_start_ms="; 
  dataString += String(MillSec); 
  dataString += "\r\n"; 
  dataString += "Time_increment_ms="; 
  dataString += String(DeltaT); 
  dataString += "\r\n"; 
  dataString += "Voltage_solar_panel_mV="; 
  dataString += String(milli_volts_1); 
  dataString += "\r\n"; 
  dataString += "Current_solar_panel_mA="; 
  dataString += String(milli_amps_2); 
  dataString += "\r\n"; 
  dataString += "Power_solar_panel_mW="; 
  dataString += String(milli_watts_2); 
  dataString += "\r\n"; 
  dataString += "Energy_solar_panel_mWh="; 
  dataString += String(milli_watt_hour_2); 
  dataString += "\r\n"; 
  dataString += "Current_pack1_mA="; 
  dataString += String(milli_amps_3); 
  dataString += "\r\n"; 
  dataString += "Power_pack1_mW="; 
  dataString += String(milli_watts_3); 
  dataString += "\r\n"; 
  dataString += "Energy_pack1_mWh="; 
  dataString += String(milli_watt_hour_3); 
  dataString += "\r\n"; 
  dataString += "Energy_pack1_corrected_mWh="; 
  dataString += String(energy_pack1_corrected_mWh); 
  dataString += "\r\n"; 
  dataString += "Current_pack2_mA="; 
  dataString += String(milli_amps_4); 
  dataString += "\r\n"; 
  dataString += "Power_pack2_mW="; 
  dataString += String(milli_watts_4); 
  dataString += "\r\n"; 
  dataString += "Energy_pack2_mWh="; 
  dataString += String(milli_watt_hour_4); 
  dataString += "\r\n"; 
  dataString += "Energy_pack2_corrected_mWh="; 
  dataString += String(energy_pack2_corrected_mWh); 
  dataString += "\r\n"; 
  dataString += "Current_pack3_mA="; 
  dataString += String(milli_amps_5); 
  dataString += "\r\n"; 
  dataString += "Power_pack3_mW="; 
  dataString += String(milli_watts_5); 
  dataString += "\r\n"; 
  dataString += "Energy_solar_pack3_mWh="; 
  dataString += String(milli_watt_hour_5); 
  dataString += "\r\n"; 
  dataString += "Energy_pack3_corrected_mWh="; 
  dataString += String(energy_pack3_corrected_mWh); 
  dataString += "\r\n"; 
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  dataString += "Voltage_load_mV="; 
  dataString += String(milli_volts_2); 
  dataString += "\r\n"; 
  dataString += "Current_load_mA="; 
  dataString += String(milli_amps_6); 
  dataString += "\r\n"; 
  dataString += "Power_load_mW="; 
  dataString += String(milli_watts_6); 
  dataString += "\r\n"; 
  dataString += "Energy_load_mWh="; 
  dataString += String(milli_watt_hour_6); 
  dataString += "\r\n"; 
  dataString += "Maximum_energy_due_aging_mWh="; 
  dataString += String(max_energy_due_aging); 
  dataString += "\r\n"; 
  dataString += "Energy_counting_pack1_mWh="; 
  dataString += String(energy_counting_p1_mWh); 
  dataString += "\r\n"; 
  dataString += "Energy_counting_pack2_mWh="; 
  dataString += String(energy_counting_p2_mWh); 
  dataString += "\r\n"; 
  dataString += "Energy_counting_pack3_mWh="; 
  dataString += String(energy_counting_p3_mWh); 
  dataString += "\r\n"; 
 
  char  SendBuffer[Buffer_size]; 
  dataString.toCharArray(SendBuffer, Buffer_size); 
 
  // Send stream over UDP 
  //Udp.beginPacket(Udp.remoteIP(), Udp.remotePort()); 
  Udp.beginPacket(remote_ip, remote_Port); 
  Udp.write(SendBuffer); 
  Udp.endPacket(); 
 
  // Frequency for sensing = 1 Hz 
  delay(1000); 
 
} // void loop() 
 
 
 
// Write the header of the experimental data in the SD card and display it 
void HeaderFile() { 
 
  // Get the correct time from the RTC 
  DateTime now = RTC.now(); 
 
  // Open the file to write in it 
  dataFile = SD.open("datalog.txt", FILE_WRITE); 
 
  // IF dataFile is open/created, write not only the time in it but also the variables and units to be measured 
  if (dataFile) { 
    String headerString = ""; 
    headerString +=  "This file puts the data recorded on datalog.txt in context."; 
    // Write in the SD card 
    dataFile.println(headerString); 
    // print to the serial port too: 
    Serial.println(headerString); 
    headerString =  "datetime at the begining of the recording = "; 
    headerString +=  String(now.month()); 
    headerString +=  "/"; 
    headerString +=  String(now.day()); 
    headerString +=  "/"; 
    headerString +=  String(now.year()); 
    headerString +=  " "; 
    headerString +=  String(now.hour()); 
    headerString +=  ":"; 
    headerString +=  String(now.minute()); 
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    headerString +=  ":"; 
    headerString +=  String(now.second()); 
    // Write in the SD card 
    dataFile.println(headerString); 
    // print to the serial port too: 
    Serial.println(headerString); 
    headerString =  "Data is organized as follows:"; 
    // Write in the SD card 
    dataFile.println(headerString); 
    headerString =  "(Voltage from skyassistant (mV) / Rate of climb (m/s)/ Time since the start (millisec) /  Time increment 
(millisec) / milliVolts_1 / milliAmps_1 / milliWatts_1 /milliWattsHour_1/ milliAmps_2 / milliWatts_2 /milliWattsHour_2 / 
milliAmps_3 / milliWatts_3 /milliWattsHour_3 / energy_pack1_corrected_mWh / milliAmps_4 / milliWatts_4 /milliWattsHour_4 
/ energy_pack2_corrected_mWh /milliAmps_5 / milliWatts_5 /milliWattsHour_5 / energy_pack3_corrected_mWh / 
milliVolts_2 / milliAmps_6 / milliWatts_6 /milliWattsHour_6/ max_energy_due_aging / energy_counting_mWh_p1 / 
energy_counting_mWh_p2 / energy_counting_mWh_p3)"; 
    // Write in the SD card 
    dataFile.println(headerString); 
    // print to the serial port too: 
    Serial.println(headerString); 
 
 
    // Close the datalog.txt file in the SD card 
    dataFile.close(); 
 
  } // if 
  // if the file isn't open, pop up an error: 
  else { 
    Serial.println("error opening header.txt"); 
  } // else 
 
} // void HeaderFile() 
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APPENDIX D. MATLAB CODES AND SIMULINK DIAGRAMS 

Function KF_h_V_estimates.m To Determine the Estimates of h and V 
and their Derivatives 
function Estimates = KF_h_V_estimates(dt,stdev_process,stdev_meas,... 
    meas,u_t,Est_prev) 
% This function applies a Linear Kalman Filter to estimate the values of 
% the altitude and speed as well as their time derivatives 
  
%% Define Update Equations 
  
% State transition matrix 
% State prediction 
A = [1 dt dt^2/2 0 0 0; 0 1 dt 0 0 0; 0 0 1 0 0 0; 0 0 0 1 dt dt^2/2;... 
    0 0 0 0 1 dt; 0 0 0 0 0 1]; 
  
% Input control matrix 
% Expected effect of the input on the state 
B = [0; 0; 0; 0; 0; 0]; 
  
  
% Measurement matrix 
% The expected measurement 
C = [1 0 0 0 0 0; 0 0 0 1 0 0]; 
  
  
%% Define previous estimates and the constant covariance matrices 
  
% Previous estimates for the states and the covariance 
x_t = [Est_prev(1); Est_prev(2); Est_prev(3); Est_prev(4); Est_prev(5); 
Est_prev(6)]; 
E_t = [Est_prev(7) Est_prev(13) Est_prev(19) Est_prev(25) Est_prev(31) 
Est_prev(37); 
       Est_prev(8) Est_prev(14) Est_prev(20) Est_prev(26) Est_prev(32) 
Est_prev(38); 
       Est_prev(9) Est_prev(15) Est_prev(21) Est_prev(27) Est_prev(33) 
Est_prev(39); 
       Est_prev(10) Est_prev(16) Est_prev(22) Est_prev(28) Est_prev(34) 
Est_prev(40); 
       Est_prev(11) Est_prev(17) Est_prev(23) Est_prev(29) Est_prev(35) 
Est_prev(41); 
       Est_prev(12) Est_prev(18) Est_prev(24) Est_prev(30) Est_prev(36) 
Est_prev(42)]; 
  
    
stdev_alt = stdev_process(1); 
stdev_altd = stdev_process(2); 
stdev_altdd = stdev_process(3); 
stdev_vel = stdev_process(4); 
stdev_veld = stdev_process(5); 
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stdev_veldd = stdev_process(6); 
  
stdev_alt_meas = stdev_meas(1); 
stdev_vel_meas = stdev_meas(2); 
  
alt = meas(1); 
vel = meas(2); 
    
  
% Covariance matrices for noise 
% Process covariance 
E_x = [stdev_alt^2 0 0 0 0 0; 0 stdev_altd^2 0 0 0 0;... 
    0 0 stdev_altdd^2 0 0 0; 0 0 0 stdev_vel^2 0 0;... 
    0 0 0 0 stdev_veld^2 0; 0 0 0 0 0 stdev_veldd^2]; 
  
% Measurement covariance 
E_z = [stdev_alt_meas^2 0; 0 stdev_vel_meas^2]; 
  
%% Equations of Kalman Filter 
  
% Predict the next state 
x_t = A * x_t + B * u_t; 
  
% Predict the next covariance 
E_t = A * E_t * A' + E_x; 
  
% Kalman gain 
K_t = E_t * C' * inv(C * E_t * C' + E_z); 
  
% Update state estimate 
x_t = x_t + K_t *([alt; vel] - C*x_t); 
  
% Update covariance estimate 
E_t = (eye(6) - K_t * C)*E_t; 
  
%% Define output 
  
% Make a vector out of the covariance matrix 
E_t_reshape = reshape(E_t,1,36); 
  
% Combine the estimates of the states with the covariance matrix in a 
% single vector 
Estimates = [x_t' E_t_reshape]; 
  
end 
 

 

M-script t[JRL1]hat Extracts a 3D Elevation Map from the Google 
Elevation API  
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% This script builds the 3D map of the terrain getting data from the 
Google 
% elevation API. 
% This script uses the xml2struct.m function. 
%%%%%%% WARNING %%%%%%%%%%%%% 
% Do not exceed the limits for requesting data from Google elevation API 
% Otherwise Google will block the access 
  
% The Elevation API has the following limits in place: 
  
%     2,500 requests per 24 hour period. 
%     512 locations per request. 
%     25,000 total locations per 24 hour period. 
  
  
  
%% Get information from user and declare variables 
  
close all 
clear all 
clc 
  
% Use format long to increase accuracy 
format long 
  
% Establish the limits of the area desired to be built. These numbers 
must 
% be in decimals 
  
lat_min = 35.97973020660298; 
long_min = -112.27502013090998; 
lat_max = 36.24045347975275; 
long_max = -111.93169737700373; 
  
  
% Compute the distance 
dist_lon = vdist(lat_min,long_min,lat_min,long_max) 
dist_lat = vdist(lat_min,long_min,lat_max,long_min) 
  
  
  
% Maximum number of samples in the area taking into account the maximum 
% limit of 25,000 points per day and 
% The number will be taken as a reference to create a square matrix 
max_points = 25000; 
  
% Determine number of samples to apply along latitude and along longitude 
samples = floor(sqrt(max_points)) 
  
% Compute separation (resolution) of the samples in meters 
res_lat = (dist_lat)/(samples - 1)  % meters per one sample 
res_lon = (dist_lon)/(samples - 1) % meters per one sample 
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% Get a name for the map specified by the user 
name = inputdlg('Type a name for your map'); 
  
  
% Initialize the latitude, longitude, and altitude variables to save the 
% data 
latitude = []; 
longitude = []; 
altitude = []; 
  
% Create strings for the initial, final longitudes, and the number of 
% samples 
long_min_str = num2str(long_min,'%3.10f'); 
long_max_str = num2str(long_max,'%3.10f'); 
samples_str = num2str(samples,'%u'); 
  
% The output of Google elevation API is the elevation of a point in 
meters, 
% when given the latitude and longitude. The search can be done 
specifying 
% single points or paths specifying initial and final points together 
with 
% the number of samples that will be taken including the two endpoints. 
  
% The area will be discretized in stripes using the searching method in 
% paths. Along each path, the latitude will be constant and the longitude 
% will change; and among paths, the latitude will change. 
  
% Determine the increment in latitude to generate the paths 
delta_lat = abs(lat_max-lat_min)/(samples-1); 
  
%% Extract from Google Elevation API 
for j=1:samples 
     
    % Create the string of the new latitude for the path to retrieve the 
elevation data 
    new_lat = num2str(lat_min + delta_lat*(j-1),'%3.10f'); 
     
    % This is the format for requesting paths in the Google Elevation API 
    % 
http://maps.googleapis.com/maps/api/elevation/xml?path=46.52664349,15.041
694|46.52664349,15.199506&samples=158&sensor=true 
     
    % Create an Document Object Model (DOM) from the xml file given by 
the url of 
    % Google Elevation API 
    xDoc = 
xmlread(['http://maps.googleapis.com/maps/api/elevation/xml?path=',new_la
t,',',long_min_str,'|',new_lat,',',long_max_str,'&samples=',samples_str,'
&sensor=true']); 
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    % This pause is just in case that the retrieving time from the Google 
    % server is too long 
    % pause(1) 
     
    % This command is just a visual aid to know that the xml file is 
being 
    % retrieved from the Google server 
    xmlwrite(xDoc) 
     
    % This function extracts the data from the DOM file and create an 
    % structure in MATLAB 
    Elev_data = xml2struct(xDoc); 
     
     
    % Get the information of latitude, longitude and elevation from every 
    % sample point 
    for i=1:samples 
        %the number after comma in the struct result is the one that will 
change from 1 to the number of samples 
        latitude((j-1)*samples+i) = 
str2num(Elev_data.ElevationResponse.result{1,i}.location.lat.Text); 
        longitude((j-1)*samples+i) = 
str2num(Elev_data.ElevationResponse.result{1,i}.location.lng.Text); 
        altitude((j-1)*samples+i) = 
str2num(Elev_data.ElevationResponse.result{1,i}.elevation.Text); 
    end 
end 
  
  
% Reshape the data in matrices to be used with the surf command 
X = reshape(longitude,samples,j); 
Y = reshape(latitude,samples,j); 
Z = reshape(altitude,samples,j); 
  
% Plot using the surf command only when there is more than one path of 
% points generated. This is because the surf command doesn't work when Z 
is 
% just a vector instead of a matrix. 
if(size(Z,2) > 1) 
    fig1 = figure('Color',[1 1 1]); 
    surf(X,Y,Z,'FaceAlpha',1,'EdgeColor','none')%,'FaceColor',[1  0]); 
    view(-69,62) 
end 
  
% Save the data to create further the maps without using information from 
% the Google server 
save(['Map_',name{1},'_','lat_min=',num2str(lat_min,'%3.7f'),... 
    '_lat_max=',num2str(lat_max,'%3.7f'),'_long_min=',long_min_str,... 
    '_long_max=',long_min_str,'_samples=',samples_str,'.mat']) 
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Script that Obtains the Model of a Thermal with Evolving 
Characteristics over Time 
% This script plots the model of the thermal described by BENOIT  
% CUSHMAN-ROISIN, which considers the evolution of the characteristics 
% of the thermal over time 
  
close all 
clear all 
clc 
  
% Total bouyancy B = alpha*gT'V = g'V 
B = 150; 
  
% Time to be evalueted 
t = 0:0.1:400; 
  
% Radius of the thermal 
R = 0.60*B^(1/4).*t.^(1/2); 
  
% Altitude reached by the thermal 
z = 2.41*B^(1/4).*t.^(1/2); 
  
% Make a vector to get the points of theta around a circle 
theta = 0:0.01:2*pi; 
  
% Create the figure with the size of thermal and altitude at every step 
in 
% time 
figure('Color',[1 1 1]) 
for i=1:length(z) 
    x = R(i).*cos(theta);   % Create the points in x for every timestep 
    y = R(i).*sin(theta);   % Create the points in y for every timestep 
    subplot(2,2,[1 3]) 
    
plot3(x,y,z(i)*ones(1,length(x)),'Color',[mod(i,length(z))/length(z)... 
        ,mod(i,length(z))/length(z)*0.5,mod(i,length(z))/length(z)*0.2]) 
    hold on 
    subplot(2,2,2) 
    
plot3(x,y,z(i)*ones(1,length(x)),'Color',[mod(i,length(z))/length(z)... 
        ,mod(i,length(z))/length(z)*0.5,mod(i,length(z))/length(z)*0.2]) 
    hold on 
    subplot(2,2,4) 
    
plot3(x,y,z(i)*ones(1,length(x)),'Color',[mod(i,length(z))/length(z)... 
        ,mod(i,length(z))/length(z)*0.5,mod(i,length(z))/length(z)*0.2]) 
    hold on 
end 
  
% Set up labels and orientation of the plots 
subplot(2,2,[1 3]) 
grid on 
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xlabel('X, meters') 
ylabel('Y, meters') 
zlabel('Altitude, meters') 
view(-39,18) 
subplot(2,2,2) 
grid on 
xlabel('X, meters') 
ylabel('Y, meters') 
zlabel('Altitude, meters') 
view(0,0) 
subplot(2,2,4) 
grid on 
xlabel('X, meters') 
ylabel('Y, meters') 
zlabel('Altitude, meters') 
view(0,90) 
  

Script To Initialize the Probability Map 
% This script calls the .mat file with the data obtained from the Google 
% Elevation API. The slope and its derivative is determined to obtain the 
% initial probability for the probability map. Additionally the 3D 
% elevation map is used to plot the position of the glider during the 
% simulation 
  
  
%% Declaration of global variables 
global prob_dist h_prob_map h_prob_map_fig long_middle_cell long_min... 
    long_max lat_middle_cell lat_min lat_max thermal_id wp_index 
visited... 
    h_slovenia_fig wp_opt h_slovenia_g1 h_slovenia_g2 h_slovenia_g3 
prob_max 
  
%% Get the data from the mat file and generate the map of Slovenia 
load('Map_Slovenia_20k_lat_min=46.3844530_lat_max=46.5644470_long_min=14.
9886810000_long_max=14.9886810000_samples=151.mat'); 
  
  
%% Get the information about the number of the gliders for the search 
%  and how they will be distributed 
  
% Get data from user 
variables = {'Number of gliders for initial search (3 max)',... 
    'Id for this glider (1, 2 or 3)'}; 
default = {'1','1'}; 
box_title = 'Data required for initial search'; 
g_info = inputdlg(variables, box_title, [1 20;1 20],default); 
  
% Extract data from user input 
ng = str2num(g_info{1}); % Number of gliders for the initial search 
g_id = str2num(g_info{2}); % Number of this glider among the three 
  
%% Get the slope of the terrain and plot it 
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m = samples; 
n = j; 
  
delta_lat_meters = res_lat; 
delta_lon_meters = res_lon; 
  
Z_diff_lon = diff(Z,1,1); 
Z_diff_lat = diff(Z,1,2); 
  
%Get the first derivative = slope 
slope = sqrt((Z_diff_lon(:,1:end-1)/delta_lon_meters).^2 +... 
    (Z_diff_lat(1:end-1,:)/delta_lat_meters).^2); 
slope_angle = atand(slope); 
  
% Compute the second derivative 
Z_d_diff_lon = diff(Z,2,1); 
Z_d_diff_lat = diff(Z,2,2); 
d_slope = sqrt((Z_d_diff_lon(:,1:end-2)/delta_lon_meters).^2 +... 
    (Z_d_diff_lat(1:end-2,:)/delta_lat_meters).^2); 
d_slope_angle = atand(d_slope); 
  
%% Form cells of approx. 300 meters and find their average slope in that 
cell 
% Find the number of samples to get cells of approximately 300 meters 
s_to_300_lat = floor(300/res_lat); 
s_to_300_lon = floor(300/res_lon); 
  
for j=1:size(slope_angle,2)/s_to_300_lat-1 
  
    for i=1:size(slope_angle,1)/s_to_300_lon-1 
        slope_angle_middle_cell(i,j) = sum(sum(slope_angle(1+(i-1)*... 
            s_to_300_lon:(s_to_300_lon + 1)+(i-1)*s_to_300_lon,1+... 
            (j-1)*s_to_300_lat:(s_to_300_lat + 1) +(j-
1)*s_to_300_lat)))... 
            /((s_to_300_lat + 1)*(s_to_300_lon + 1)); 
        d_slope_angle_middle_cell(i,j) = d_slope_angle((i-1)*... 
            s_to_300_lon+s_to_300_lon,(j-1)*s_to_300_lat + s_to_300_lon); 
        lat_middle_cell(i,j) = (Y(1,(j-1)*s_to_300_lat + ... 
            (s_to_300_lat+1))-Y(1,(j-1)*s_to_300_lat + 1))/2 + ... 
            Y(1,(j-1)*s_to_300_lat + 1); 
        long_middle_cell(i,j) = (X((i-1)*s_to_300_lon + 
(s_to_300_lon+1)... 
            ,1)-X((i-1)*s_to_300_lon + 1,1))/2 + X((i-1)*... 
            s_to_300_lon + 1,1); 
    end 
     
end 
  
  
% Apply criteria to determine where the glider can gain altitude based on 
% this: thermal soaring is generated in flat lands and at the hills 
  
% Test different thresholds for the slope and its derivative 
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% prob = (slope_angle_middle_cell < 2 | slope_angle_middle_cell > 25); 
% prob = (slope_angle_middle_cell < 2 | slope_angle_middle_cell > 30 |... 
% d_slope_angle_middle_cell > 35); 
% prob = (slope_angle_middle_cell > 25 | d_slope_angle_middle_cell > 35); 
prob = (slope_angle_middle_cell < 3 | slope_angle_middle_cell > 30 ); 
  
% Generate the waypoints based on this: 
index_wp = find(prob == 1); 
wp_lat = lat_middle_cell(index_wp(index_wp >= numel(prob)*(g_id-1)/ng... 
    & index_wp <= numel(prob)*(g_id)/ng)); 
wp_long = long_middle_cell(index_wp(index_wp >= numel(prob)*(g_id-
1)/ng... 
    & index_wp <= numel(prob)*(g_id)/ng)); 
  
% Run TSP to get the optimal path 
opt_index = TSP_index(lat_min,lat_max,long_min,long_max,wp_long,wp_lat); 
[~,p_min] = min(sqrt((wp_long(opt_index)-15.1177).^2 + ... 
    (wp_lat(opt_index)-46.471067).^2)); 
wp_pseudo_opt = [wp_lat(opt_index),wp_long(opt_index)]; 
wp_opt = [wp_pseudo_opt(p_min:end,:);wp_pseudo_opt(1:p_min-1,:)]; 
     
  
% Put an identifier to the cells. 0 for the cells with no prior 
% probability, 1 for the cells with prior probability, and later 2 will 
be 
% used for the cells with thermals. 
thermal_id = zeros(size(long_middle_cell)); 
% Assign 1 to the cells with prior 
thermal_id(index_wp) = 1; 
  
% Create a matrix to specify if the cell was visited or not 
visited = zeros(size(long_middle_cell)); 
  
% Inititlize way point indexing to be used in the search stage 
wp_index = 1; 
  
  
%% Create the map of slovenia and the 3 airplanes  
h_slovenia_fig = figure('Color',[1 1 1]); 
surf(X,Y,Z,'FaceAlpha',0.8,'EdgeColor','none'); 
xlim([long_min long_max]) 
ylim([lat_min lat_max]) 
hold on 
  
% Plot initial position for the three gliders at the runway 
lat_g = 46.471067; 
long_g = 15.1177; 
alt_g = 500; 
  
h_slovenia_g1 = plot3(long_g,lat_g,alt_g,'pr','MarkerSize',12,... 
    'MarkerFaceColor','r'); 
h_slovenia_g2 = plot3(long_g,lat_g,alt_g,'pk','MarkerSize',12,... 
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    'MarkerFaceColor','k'); 
h_slovenia_g3 = plot3(long_g,lat_g,alt_g,'pm','MarkerSize',12,... 
    'MarkerFaceColor','m'); 
xlabel('Longitude, deg','FontSize',12) 
ylabel('Latitude, deg','FontSize',12) 
zlabel('Elevation, m','FontSize',12) 
view(-69,62) 
  
%% Generate probability Map 
  
% Convert the values of the probability map from logical to double and 
% assign the initial probability to the cells keeping two separated 
fields, 
% one for the places with good priori probability and other for the 
places 
% with no good priori probability 
  
prob_max = 0.9; 
prob_dist = (prob + 0)*(prob_max)/sum(sum(prob)); 
ind_no_prior = find(prob == 0); 
prob_dist(ind_no_prior) = (1 - prob_max)/length(ind_no_prior); 
  
% Create figure for the probability map and plot it 
h_prob_map_fig = figure('Color',[1 1 1]); 
  
% Plot the bars and create the handle to color them later 
h_prob_map = bar3(prob_dist); 
  
% Color the map corresponding to the values of probability 
for k = 1:length(h_prob_map) 
zdata = get(h_prob_map(k),'Zdata'); 
set(h_prob_map(k),'Cdata',zdata,'EdgeColor','k','FaceAlpha',0.8); 
end 
  
% Manipulate axes properties 
set(gca,'YTick',[0:length(long_middle_cell)/3:length(long_middle_cell)],'
YTickLabel',[long_min:(long_max-long_min)/3:long_max]) 
set(gca,'XTick',[0:length(lat_middle_cell)/3:length(lat_middle_cell)],'XT
ickLabel',[lat_min:(lat_max-lat_min)/3:lat_max]) 
xlabel('Latitude, deg','FontSize',12) 
ylabel('Longitude, deg','FontSize',12) 
zlabel('Probability','FontSize',12) 
set(gca,'FontSize',12) 
zlim([0 1]) 
view(195,40) 
  

Function To Update the Probability Map 
function Prob_map_3_gliders_norm(input) 
% This function updates the probability map using a maximum of 3  
% gliders in simulation 
  
% Define the global variables 
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global prob_dist h_prob_map thermal_id visited prob_max 
  
% Parameters of the sensor 
alpha = 0.05; %False alarm P(sensor says target present|target absent) 
beta = 0.01;  %Missed detection P(sensor says target absent|target 
present) 
  
% Combine signals from the three gliders 
detection = [input(2) input(4) input(6)]; %Detection given by the 

% thermal state of the three 
% gliders (0, 1 or 2) 

index = [input(1) input(3) input(5)]; % index of the cells where the 
                                      % gliders are flying 
  
                                       
% Compute the maximum probability that can hold a cell with a thermal 
if(sum(sum(thermal_id == 2)) == 0) 
    pmc = prob_max; 
else 
    pmc = prob_max/(sum(sum(thermal_id == 2))); 
end 
  
% This for loop goes through the index and detection of every glider 
for i=1:length(index) 
     
% Use the measurements of index and detection only if the corresponding 
% glider is in the network determined by being in an index ~= 0 
    if(index(i) ~= 0) 
        % Mark the cell as visited 
        visited(index(i)) = 1; 
         
        % Compute the posteriori probability 
        if (detection(i) ~=0) 
            % Probability of target present given target detected 
            P_tp = ((1-beta)*prob_dist(index(i)))/(alpha*(1-... 
                prob_dist(index(i)))+(1-beta)*prob_dist(index(i))); 
        elseif (detection(i) ==0) 
            % Probability of target present given target not detected 
            P_tp = (beta*prob_dist(index(i)))/((1-alpha)*(1-... 
                prob_dist(index(i)))+beta*prob_dist(index(i))); 
        end 
         
         
        % Determine if a thermal is detected looking at increase of the 
        % probability in the cell going above some threshhold 
        if(P_tp > pmc && detection(i) ~= 0 && thermal_id(index(i))~= 2) 
             
            % Mark the cell as having a thermal 
            thermal_id(index(i)) = 2; 
            % Determine the probability at the cells with thermals 
            pmc = prob_max/(sum(sum(thermal_id == 2))); 
  
            % Get the indices of the cells that have thermals on them 
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            % Assign the probability at the cells with thermals 
            ind_2 = find(thermal_id == 2); 
            prob_dist(ind_2) = pmc; 
             
            % Get the indices of the cells that have no thermals on them 
            % and assign the corresponding probability 
            ind_0 = find(thermal_id == 0);% & visited == 0); 
            prob_dist(ind_0) = (1-prob_max)*(1-prob_max)/(length(ind_0)); 
            ind_1 = find(thermal_id == 1);% & visited == 0); 
            prob_dist(ind_1) = (1-prob_max)*(prob_max)/(length(ind_1)); 
         
        % Determine if the probability is bellow of some threshold to  
        % determine the presence of a thermal; this portion is done at  

  % every moment while the probability in a cell does not 
  % increase because of the presence of a thermal 

        elseif ( P_tp < pmc) 
  
            % Find the indices of the cells corresponding to the thermal 
            % ids and assign the probability to all the cells 
            ind_2 = find(thermal_id == 2); 
            ind_0 = find(thermal_id == 0); 
            ind_0(ind_0 == index(i)) = []; 
            ind_1 = find(thermal_id == 1); 
            ind_1(ind_1 == index(i)) = []; 
             
            if(numel(ind_2) == 0) 
                prob_dist(ind_0) = prob_dist(ind_0) + (1-prob_max)*... 
                    ((prob_dist(index(i)) - P_tp)/(length(ind_0))); 
                prob_dist(ind_1) = prob_dist(ind_1) + (prob_max)*... 
                    ((prob_dist(index(i)) - P_tp)/(length(ind_1))); 
            else 
                prob_dist(ind_2) = pmc + 
prob_max*((prob_dist(index(i))... 
                    - P_tp)/(length(ind_2))); 
                prob_dist(ind_0) = prob_dist(ind_0) + (1-prob_max)*... 
                    (1-prob_max)*((prob_dist(index(i)) - P_tp)/... 
                    (length(ind_0))); 
                prob_dist(ind_1) = prob_dist(ind_1) + (1-prob_max)*... 
                    (prob_max)*((prob_dist(index(i)) - P_tp)/... 
                    (length(ind_1))); 
            end 
            prob_dist(index(i)) = P_tp; 
        end 
         
         
         
         
        % Go through the values of the 3D plot bar to assign the values 
of the 
        % probability distribution matrix 
         
        for o = 1:size(prob_dist,2) 
            zdata = get(h_prob_map(o),'Zdata'); 
            k = 1; 
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            for j = 0:6:(6*size(prob_dist,1)-6) 
                zdata(j+2:j+3,2:3) = prob_dist(k,o); 
                k = k+1; 
            end 
            set(h_prob_map(o),'Zdata',zdata); 
        end 
         
        % Color the map corresponding to the values of probability 
        for k = 1:length(h_prob_map) 
            zdata = get(h_prob_map(k),'Zdata'); 
            
set(h_prob_map(k),'Cdata',zdata,'EdgeColor','k','FaceAlpha',0.8); 
        end 
    end 
end 
  
  
end 
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Abstract: This paper presents a review of the multidisciplinary approach to the design of a fleet
of cooperative gliders capable of extended endurance operation. The flock of autonomous gliders
is able to harvest energy from the environment, both through photo-voltaic energy generation
and through exploitation of natural convective lift in the surrounding air, and act cooperatively
to meet mission requirements and to share knowledge of the local environment. The paper
begins with a brief overview of the total-energy approach required for such a feat, along with
a short description of key system components and the principal technologies. This is followed
by details of the evolution of a previously-developed architecture that supported autonomous
thermaling, to an architecture that considers the total-energy budget in all flight segments, and
utilizes the cooperative flight to maximize the cumulative energy capture while simultaneously
meeting mission objectives.


Keywords: cooperative control; solar energy; convective air energy; autonomous soaring; UAV.


1. INTRODUCTION


One of the most critical limiting factors impacting effec-
tive collaborative autonomy today is the lack of range
and endurance that are typical in most of the existing
autonomous aircraft; see a comprehensive review in Com-
mittee on Autonomous Vehicles in Support of Naval Op-
erations [2005]. Despite almost two decades of significant
advances in low-power and high-performance microelec-
tronics development including CPUs, sensors, actuators,
and communication circuits (see Tong [1995], Singh and
Shukla [2010]), the only task addressed was to lower
the power consumption and to reduce the pace of en-
ergy expenditures. In turn, the progress in energy renew-
able technologies has also been advancing fast, especially
in the flight-relevant areas of solar photovoltaics (PV)
(Hamakawa [2004]) and electro-chemical battery technolo-
gies, see Tarascon and Armand [2001]. Yet, the balance
of energy use and the regenerated energy income has not
been met. Since the loss of energy is unavoidable due to
the limited efficiency of energy conversion, storage, and
transmission, the traditional mission duration will always
be limited. However, coupling these existing advances with
convective air (thermal) soaring capabilities and novel
approaches in the cooperative mission planning and execu-
tion can not only further reduce the rate of loss of onboard
energy, but can also result in energy increase during the
? The project has been supported over the last 3 years by a num-
ber of sponsors including the NPS Consortium for Robotics and
Unmanned Systems Education and Research, the Army Research
Lab, and ”The Multidisciplinary Studies Support for USMC Expe-
ditionary Energy Office” program.


autonomous mission; this capability is not readily available
today in any of the available technologies, see Siciliano and
Khatib [2008], Martinez et al. [2008], and Nonami et al.
[2013].


Considering the state of the art in aerial robotics (algo-
rithmic support, instrumentation, size weight and power
constraints), it is our belief that the best approach to
enable long duration flight would combine the collabo-
rative mission management with the energy harvesting
and onboard storage. Collaboration is the first key ca-
pability that spans across every element of the mission
as it enables effective search for available energy sources.
Most of the available energy sources can be detected by
autonomous vehicles equipped with appropriate sensors.
Thus, multiple agents would have much better chances of
finding ”free energy“ when cooperating and sharing their
findings. Second, the operational utility of multiple agents
equipped with complementary sensors is superior to the
capability of an individual agent. Finally, robustness of
the collaborative mission execution is significantly higher
because partial loss of a subset of the vehicles does not
lead to the loss of entire flock capability. Energy harvest-
ing and storage is the second complementary enabler of
long endurance flight that allows for the accumulation of
energy. The feasible methods of energy extraction in aerial
application include the solar PV and airflow soaring; the
soaring can be based on the convective air (thermaling) or
wind shear energy extraction. While the PV boost can be
achieved only during the daylight, the extraction of power
of surrounded moving air can be utilized even during the







nighttime. The combination of harvesting and storage is
the ultimate solution for the ”eternal“ flight.


Therefore, it is envisioned that enhancing mission per-
formance can be achieved by implementing the en-
ergy harvesting-storage and collaboration capabilities on-
board of multiple autonomous solar-powered and thermal-
soaring gliders. Thus, the triplet of (i) mission manage-
ment, (ii) energy harvesting-storage and (iii) collabo-
ration builds the fundamental architecture of future en-
ergy enhanced autonomy. The remainder of the paper
briefly outlines the core ideas implemented to date in
autonomous thermaling. Therefore, the section 2 describes
the ”individual gliders“ algorithms. The following section
3 outlines the development of the collaborative autonomy
algorithms. Section 4 provides details of the developed
high-fidelity simulation environment used to verify the
algorithms.


2. ALGORITHMS OF INDIVIDUAL GLIDERS


This section discusses key components necessary for a suc-
cessful glider flight. The algorithms run online and enable
identification of the flight dynamics of the glider which are
in turn used to detect the thermal updrafts. When flying in
the updraft, the guidance algorithm is engaged to enable
the maximum energy harvesting efficiency of the updraft’s
free energy, and on the other hand estimates the updraft
geometry and motion, that are used to georeference the
updraft and share its utility properties (strength) across
the network of collaborative gliders. While in autonomous
soaring mode, the electrical management system that con-
sists of solar PV panels, batteries and the maximum peak
power energy tracking (MPPT) unit, supports the avionics
and recharges the batteries keeping them evenly balanced.


2.1 Electric Energy Management Subsystem


The project considers two sources of energy input into
the system: photovoltaic and atmospheric convection, and
typically two methods of energy storage; potential energy
stored chemically in batteries and potential energy stored
via altitude. This section describes the electrical half of
that system; electricity harvesting through PV conversion
and energy storage in rechargeable batteries.


While the electrical system architecture is conceptually
well-understood, the variation of physical and mechanical
properties of PV panels and batteries presents the most
significant uncertainty, and thus poses the challenge for
the overall system design. Not only basic physical prop-
erties of all components vary significantly, but also the
same properties depend on the mode of operation (e.g.
discharge rate) and environmental parameters(e.g. tem-
perature). Thus, before the electrical system is integrated
onboard it is necessary to characterize mathematically the
solar-powered energy generation, storage, and the energy
expenditure system, so that the particular uncertain pa-
rameters could be identified on the ground and during the
flight of a particular glider platform. The need for online
identification arises as the properties of the system are
expected to change over time.


As an example of variation of system parameters, the
following data represent the results of the discharge ex-
periment performed with 2 different types of batteries


Table 1. Measured battery performance


Type C-rate Energy (Wh) Energy Density (Wh/kg)


LiPo 0.209 115.5 177.7
LiPo 2.502 105.8 162.8
LiIon 0.171 107.9 167.3


at different discharge rates; the experiment utilized the
Lithium polymer (LiPo) and the Lithium-Ion (LiIon)
packs. Figure.1 illustrates how voltage drops over the
discharge cycle, a feature that is convenient for estimating
remaining energy in the battery pack.
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Fig. 1. Pack voltage as a function of normalized discharge
time for 2 different chemistries of the battery packs
at different discharge rates.


Figure.2 illustrates how much energy can be extracted
from the same sample batteries at different discharge rates.
During the experiment, the discharge cycles were halted
when the pack voltage reached 3.2 V/cell or 12.8 V for the
pack. The measured useful pack energy and energy-density
are shown in Table 1. While the sensitivity to drain rate
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Fig. 2. Energy output as a function of normalized discharge
time for different discharge rates; at 1C rate the
discharge current discharges the battery in 1 hour.


is clear, it is also clear that advertised energy and energy-
density might not be achievable in a practical application.
While the LiIon cells would appear to be far superior based
on manufacturers’ specifications, experiments suggest that
LiPo batteries are superior for onboard integration.


A number of other uncertainties and design considerations
still need to be identified and formalized. Among them
are the structural integrity of the wings and the PV cells
under the flex load in flight, dissipation of heat induced
by the dark surface of solar panels and its effect on the
structural integrity, performance of the MPPT unit under
the variable exposure of the PV cells to the sun, stability of
the battery chemistry under variable temperature, losses







in the mechanical gear system and the propulsion motors
at different load, to name a few. Moreover, it is needless to
say that PV-enhanced system may gain energy, however it
won’t help if the aircraft loses that same energy through
increased viscous drag or loss of lift. Therefore the cells
need to be built into the wing surface such that they are
conformal with only subtle fine-texture differences.


Addressing this challenge, the projects built a generalized
prototype of the onboard system that consists of the semi-
rigid research-grade mono-crystalline Silicon cells with an
advertised efficiency of 22.5%, MPPT unit, rechargeable
batteries with balancing circuitry, and the load represented
by the well-defined power load of avionics and the uncer-
tain load of the propulsion system. An example of the lab-
oratory prototype used for multi-day data acquisition and
system identification experiment is presented in Figure. 3.


Fig. 3. Laboratory prototype of the solar-driven electrical
management system; the setup is instrumented with
a set of voltage and current sensors at key points to
allow for the system identification.


An example of multi-day experiment focused on pre-
cise characterization of the system is presented next in
Figure.4. The data illustrates the time history of electrical
energy input from the PV array, the dynamics of the
batteries charge and discharge under the constant load,
and the estimated losses of energy due to the wiring,
data acquisition sensors and adverse uncertainties. Close
inspection of the data suggests that the state dynamics of
batteries (both charge and discharge) can be accurately
described by the first order differential equations, while
the solar input is closely represented by the gain that is
directly proportional to the angle of incidence toward the
sun. Although not representing all the envisioned flight
conditions, the result still allows to recognize the key
functions that can be used to formally describe the states
of the system components and the total electrical energy
balance. When the result is further enhanced with the
feedback from the flight dynamics and the operational
environment, it can be used to precisely characterize the
range and endurance of a particular glider platform. The
system identification phase of this work is under way.


2.2 Glider Identification and Updraft Detection


There is a number of prior efforts devoted to the thermal
soaring flight. First demonstrated by human pilots in 1900s


Fig. 4. Results of the multi-day experiment with the
prototype installed in a fixed location.


(see Simons and Schweizer [1998]) the idea of soaring in
convective air became feasible for onboard autonomous
implementation only in the 1990s, see Wharington [1998].
While enabling the desired functionality by primarily
mimicking the birds flight and indeed achieving significant
extended flight capabilities (see Edwards [2008], Allen
[2006], and Allen and Lin [2007]), most of the algorithms
used heuristics in the identification of the updraft strength,
its potential utility in energy gain, and the decision of when
and how to enter the updraft. The reason for employing
heuristic approaches is obvious, since both the strength of
the updraft and its efficiency are both subject to significant
uncertainties and are hard to formalize. Next, when a
glider moves through unsteady air the estimation of the
updraft strength and geometry, which are critical utility
parameters of the updraft, significantly lacks of spatial
content in noisy onboard measurements. Thus, it takes
significant time before the updraft utility is identified and
the guidance algorithm is engaged.


The algorithm of detecting a thermal is based on two
complementary approaches. The first approach utilizes the
inherent sink rate polar, and the second one is based on the
total energy of the system. However, conceptually they are
similar as they compare the natural metrics of the system
with the same metrics actually measured in flight.


Characterization of the sink polar - the function of ver-
tical sink rate versus the true airspeed (TAS) - of a
particular glider can be practically achieved in extensive
experimentation. However, flight-experimentation in real-
world environment can hardly provide ideally controlled
conditions. In the developed approach, the estimates of the
sink-polar were first made by post-processing a collection
of experimental flight results obtained in low-wind, low-lift
conditions, see Andersson et al. [2012b]. Sink polars are
roughly quadratic in nature, and a least-squares approach
yields suitable coefficients based on the historical data.
Further in flight, a recursive linear least square estimator
is used in real-time to account for specific variation in the
platform and atmospheric conditions at that moment. An
example of accuracy of this approach is presented below
in Figure.5 for a full-scale ASW-27 glider; the result was
obtained using the Condor simulator (Condor [2013]) and
”true“ data of Boermans and Van Garrel [1994], see more
details in sec.4. The detection of a thermal and estimation







of its intensity, that contributes to the recursive identifica-
tion of its parameters (see sec.3.1), are based on compari-
son of the currently measured sink rate with the sink rate
predicted by the polar for a measured TAS; if the measured
sink rate is smaller than predicted, then there is a thermal.
The analytical representation of the sink polar contributes


Fig. 5. Identifying the inherent sink polar: both the sink
rate and the TAS are directly measured by the on-
board sensors. Minimum sink rate Vsmin and the
optimal crusing speed Vcc corresponding to the max-
imum glide ratio ( typical for the ”cross-country“
flight) are presented.


not only to the identification of thermal updrafts, but also
to the mission planning of a specific glider, see Piggott
[1997] and FAA [2011]. In particular, the polar defines
the minimum sink rate Vsmin and the corresponding TAS
command for the autopilot to follow. While Vsmin may
be too close to the stall speed Vstall ≈ Vsmin and should
be avoided, the effective speed commanded in thermaling
mode Vth may be slightly higher. The polar also defines the
optimal TAS command Vcc for the maximum glide ratio
flight that is used by the navigation task in planning for the
maximum range ”cross-country“ segment; the tangent line
from the origin defines Vcc. While the sink polar should be
ideally obtained in no-wind environment, its application
to the known wind conditions is also straightforward and
allows for the calculation of the distances to be traveled in
cross-country flight, see more details in Piggott [1997] and
FAA [2011].


The total energy approach is also widely used in human
piloted soaring flight. It is based on the concept that the
mechanical energy Etot of the soaring glider combines
the potential energy, Ep = mgh, and kinetic energy,


Ek = m·V 2


2 , of the airframe minus the ”leakage“ of the
energy due to the work of the parasitic and induced
aerodynamic drag, ED. For an ”aerodynamically clean“
glider with an objective to minimize the total energy
loss, the control commands of its autopilot will necessarily
result in mild variations of the angle of attack, thus leading
to the relatively constant parasitic drag and ĖD ≈ 0.
Consequently, for the total energy and its rate of change
over sufficiently long time intervals one can consider the
following:


Etot = mgh+
m · V 2


2
− ED, E =


Etot


mg
,


Ė = ḣ+
V · V̇
g


, Ë =
V̇ 2 + V · V̈


g
+ ḧ, (1)


where m is the mass of the airframe, g is the gravi-
tational constant, E is the normalized total mechanical
energy of the system (also called the specific energy), h
is the height, and V is the inertial speed. Therefore, the
longitudinal long period oscillations represent the natural
tradeoff of kinetic and potential energy while their sum
remains nearly constant. As a consequence, in no updraft
conditions the rate of change of the total energy Ė ≈ 0.
Therefore, if there is a significant variation of the total
energy, then the energy rate will be significantly away from
zero thus indicating the energy variation due to updraft or
downdraft airflow. In fact, the total energy management
just presented is widely used in manned aviation being
implemented in the so-called total energy compensating
(TEK) variometer, see for example PitLab [2013].


All the components of equation (1) are available in on-
board autopilot. Both equations in (1) are included into
one Kalman filter along with the inertial and barometric
sensors outputs. The resulting energy rate-based solution
provides another accurate indication of the updraft event.
A comparison of the output of the total energy approach
with the output of the TEK variometer ḣTEK is presented
next in Figure.6.
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Fig. 6. Energy-based detection of updrafts; the data is
simulated by the Condor [2013] software, see sec.4.


2.3 Guidance in Thermal Centering Mode


When a thermal updraft is detected the glider needs to
automatically maneuver to enable staying in the ther-
mal with the objective of increasing the glider’s poten-
tial energy through a rapid increase of the height. The
theoretical development of the thermaling guidance law
has been recently reported in Andersson et al. [2012b]).
The most recent experimental results and findings that
motivate further refinement of the solution were discussed
in Andersson et al. [2012a]. This development was recently
modified to include explicitly the sign of the turn rate
command that is defined by the estimate of the body roll
angle φ; it was observed in a number of flights that entering
the thermal induces the motion that rolls the wings away
from the thermal (see Figure.6), thus suggesting the turn
in opposite direction.


The thermal centering guidance law produces a turn rate
command ψ̇c to the autopilot, and is based on the feedback







control law that takes into account the desire to get
closer to the updraft center (defined by the ρd), where its
intensity (the positive vertical speed) is the highest. On
the other hand, the control balances the height increase
and the turn-induced sink by a measure proportional to
the rate of increase of the total energy (defined by the Ë
in (1)), see the geometry of the guidance task in Figure.7
and the resulting guidance law in (2):


ψ̇c =
V


ρd
− k1 · Ë, (2)


where ρ and ρd are the current distance and the desired
orbital radius around the center of the thermal updraft,
and k1 is the feedback gain determined by the stability and
performance requirements. For the feasibility of theoretical
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Fig. 7. Kinematics of guidance around a stationary thermal
updraft; the desired orbit is represented by the red
dashed line defined by ρd.


development the thermal center is assumed stationary
with its position unknown. The desired distance (ρd)
toward the center at this point is not defined, however
for the stability of the control law it is assumed to be
away from zero. The best value of ρd is initially assigned
based on statistical observations of the glider performance
and the shapes of updrafts in the area. Later on, when
collaborative gliders contribute to the identification of the
updraft geometry this value is updated, thus resulting in
a feedback that improves the collaborative efficiency of
utilizing the free energy of the updraft. For the stability
analysis of the thermaling guidance law it is assumed that
the intensity of the updraft can be represented by the
Gaussian distribution function of the form:


ω = ωp · e−[
(x−x0)2+(y−y0)2


2σ2
], (3)


where x, y represent the coordinates of the glider, x0, yo
represent the unknown coordinates of the center of up-
draft, ωp is the peak intensity of the updraft,and σ defines
the geometry of the symmetric updraft (in general case
σx 6= σy). For a stationary updraft modeled by Gaussian
distribution function with σ > 0, ωp > 0 and the glider
with V > 0, ρd > 0, it is proven that the feedback
guidance law in (2) is locally asymptotically stable with
an equilibrium at (η, ρ − ρd) = (0, 0) and a region of
attraction Ω = {(η, ρ− ρd) : |ρ− ρd| ≤ β, |η| ≤ α}, where
β < ρd, α < π/2, for any


k1 > tanα
σ2


ωp(ρd − β)2
e(
−(ρd + β)2


2σ2
).


The physical meaning of the guidance law (2) is to increase
the commanded turn rate until the rate of climb in the
latched updraft is compensated by the sink resulted from
the steep banking; most traditional autopilots implement
bank-to-turn control laws.


3. COOPERATIVE ALGORITHMS


The initial approach to the estimation of thermals (2D
coordinates of the center vs. the glider altitude) by uti-
lizing the measurements of single glider in soaring mode
was based on two classical nonlinear filtering techniques:
first - the nonlinear Kalman filter with the ”bearings
only measurements“, and second - the kinematic relation
ρ̇ = −Vg · sin(η) between the speed over ground Vg and
the ”navigation error“ η, see Figure.7. In both formula-
tions the bearing to the updraft center was assumed to
be constant at π/2 (λ − ψ = π/2) with respect to the
direction of turning flight; the turn is defined toward the
center of the updraft. When entering a strong updraft,
the performance of either filter was slow but reasonable,
resulting in a converging solution in about 2 full orbits and
precision of the thermal center estimation of 75m.


3.1 Bayesian Mapping of Thermals


To further improve the efficiency of updraft estimation the
solution should integrate the knowledge gained by multi-
ple gliders and the prior meteorological observations (see
Pennycuick [1998], Hindman et al. [2007]), which might
be available for the area of operation. The latter data
can be conveniently interpreted as a map of probability
density of convective air activity with respect to the geo-
graphic latitude and longitude, see a conceptual example
in Figure.8. As a first step toward cooperative identifi-


Fig. 8. ”Heat map“ of probability of finding a thermal over
an area of operation.


cation and mapping of convective thermals over extended
areas with an account of prior methodological observation,
the probabilistic recursive Bayesian approach was adopted,
see details of the approach in Bergman [1999].


Consider a task where N gliders cooperatively estimate
the velocity fk = f(xk, yk, zk) of flow field at the inertial
coordinates xk, yk, zk of k-th glider, k = 1...N . Assume
that the onboard instrumentation enables measuring the
lateral and vertical components of the airflow. The convec-
tive airflow of interest is captured by a given parametric
model with unknown characteristics; see, for example, the
vertical updraft model in (3) with unknown parameters ωp,
σ, x0, y0. The objective of the task is to estimate f by using







noisy observations of the airflow provided by cooperative
gliders.


Let X(t) = (ωp, σ, x0, y0) be a state vector that encap-
sulates the unknown constant parameters of the convec-
tive flow velocity fk that is estimated at each point of
the discretized space at discrete time instance t, sk(t)
denote the noisy measurement of vehicle k at time t, and
Sk(t) = {sk(0), ..., sk(t)} define the set of samples up to
the current time t. Assume that sk(t) of each vehicle at
location xk, yk, zk is corrupted by Gaussian noise such that
sk(t) = fk(xk, yk, zk) + µh,k + µv,k, with µh,k ∼ N(0, σ2


h)
and µv,k ∼ N(0, σ2


v) being white noise components in the
lateral and vertical directions.


Then in discrete settings where t−1 refers to the previous
time step, the conditional probability of the state X(t)
given the set of measurements Sk(t) of k-th glider alone is


p(X(t)|Sk(t)) = β · p(sk(t)|X) · p(X(t)|Sk(t− 1)), (4)


where β is the normalization coefficient chosen to guaran-
tee that p(X(t)|Sk(t)) at every instance of t has a unity
integral over the state-space X. The p(sk(t)|X) is the
likelihood function represented by the conditional prob-
ability of the measurement sk(t) given the state X, and
the p(X(t)|Sk(t − 1) is the prior probability distribution
that represents any given knowledge or intelligence about
the most likely location and intensity of thermals. In
our development p(X(0)|Sk(0) is what encapsulates the
probability ”heat map“ at the very first step, see Figure.8.


Finally, let each point of state X in the state-space
be represented by the multi-variate Gaussian likelihood
function:


p(sk(t)|X) =
1


[2π∆]
1
2


exp(
−[fk(X)− sk(t)]


2
∑


[fk(X)− sk(t)]
),


where ∆ = diag(µ2
h, µ


2
v). Assuming that measurements


are synchronously taken at each time step and the gliders
cooperatively share the data, the conditional probability
density of the state X(t) is updated through the natural
motion of the fleet of gliders sampling the airflow at
(xk, yk, zk) as


p(X(t)|S(t)) = β ·
N∏


k=1


p(sk(t)|X) · p(X(t)|S(t− 1)),(5)


where S(t − 1)includes the measurements from all N
gliders in the fleet. Now it is clear that the points of
the parameter space corresponding to the maximum of
the posterior probability density X(t) = max p(X(t)|S(t))
provide the maximum likelihood of the convective flow
field parameters.


An example of the recursive algorithm (5) for the case of
three simulated gliders cooperatively flying and estimating
parameters of a single stationary updraft in a given area
modeled by (3) is presented in Figure.9; note, there is
no horizontal component of airflow in the model. The
task is to find the updraft in a bounded area and to
converge to the same thermal by utilizing the detection
algorithms discussed above; the task mimics the setup
and the objectives of our first cooperative flight test of
two gliders reported earlier in Andersson et al. [2012b].


Fig. 9. Estimation of an updraft obtained onboard of glider
#1 from the cooperative sampling of environment.


Fig. 10. Cooperative flight of three gliders; starting at
different locations they all converge to the same up-
draft when glider #1 finds it and shares its estimated
location.


In the demonstrated result the prior probability density
is initialized by a uniform function over the entire area of
operation. The result corresponds to the progression of the
probability density function estimated onboard of glider
#1 along its flight path, see the corresponding cooperative
trajectories of gliders #2 and #3 in Figure.10, see more
details on the simulation setup in section 4.


4. SIMULATION ENVIRONMENT


To facilitate convenient design and verification of the de-
signed algorithms the project developt a realistic simu-
lation environment that is based on tight integration of
MatLab/Simulink (MATLAB [2013]) capabilities with the
high-fidelity flight dynamics and atmospheric effects of
the Condor soaring simulator, see Condor [2013]. Besides
providing a wide nomenclature of gliders, the software
integrates the cooperative behaviors of multiple agents
that is essential to the project; the collaboration is enabled
by sharing the states of gliders over the network. The
architecture of the software in the loop setup is presented
in Figure.11.


As an illustration of the achieved capabilities, Figure.10
represents the cooperative flight of three gliders in a sim-
plified scenario introduced above. The gliders start their
flight simultaneously at the same altitude, and initially
spend some time in search for thermals. When glider #1
detects an updraft utilizing either of the thermal detection







Fig. 11. Integration of Simulink and Condor capabilities.


approaches ( see sec.2.2), and shares the information about
the thermal, the other two gliders arrive to the same ther-
mal and successfully gain height all together. Time history
of the altitude of three cooperative gliders is presented
next in Figure.12. The result clearly demonstrates the
benefits and significant potential of collaborative strate-
gies in harvesting the convective updraft energy from the
environment.
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Fig. 12. An example of cooperative flight of three gliders.


5. CONCLUSION


The paper presents the initial development of convective
thermal and solar energy harvesting capability integrated
onboard of multiple cooperative gliders. The discussion
details the key technologies required to integrate the en-
ergy harvesting into a cooperative mission planning and
execution environment. The key technologies include the
online characterization of the electrical (PV solar and
batteries) management system, glider properties, convec-
tive thermals detection, and the collaborative environment
sensing by utilizing recursive Bayesian estimation.
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