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AUTOMATIC IDENTIFICATION OF GENERALIZED 
UPPER BOUNDS IN LARGE-SCALE OPTIMIZATION 

MODELS* 

GERALD G. BROWNt AND DAVID S. THOMENt 

To solve contemporary large-scale linear, integer and mixed integer programming problems, 
it is often necessary to exploit intrinsic special structure in the model at hand. One commonly 
used technique is to identify and then to exploit in a basis factorization algorithm a 
generalized upper bound (GUB) structure. This report compares several existing methods for 
identifying GUB structure. Computer programs have been written to permit comparison of 
computational efficiency. The GUB programs have been incorporated in an existing optimiza­
tion system of advanced design and have been tested on a variety of large-scale real-life 
optimization problems. The identification of GUB sets of maximum size is shown to be among 
the class of NP-complete problems; these problems are widely conjectured to be intractable in 
that no polynomial-time algorithm has been demonstrated for solving them. All the methods 
discussed in this report are polynomial-time heuristic algorithms that attempt to find, but do 
not guarantee, GUB sets of maximum size. Bounds for the maximum size of GUB sets are 
developed in order to evaluate the effectiveness of the heuristic algorithms. 
(PROGRAMMING; LARGE-SCALE SYSTEMS; GENERALIZED UPPER BOUNDS) 

1. Introduction 

Contemporary mathematical programming models are often so large that direct 
solution of the associated linear programming (LP) problems with the classical simplex 
method is prohibitively expensive, if not impossible in a practical sense. It has been 
found that most of these problems are sparse, with relatively few nonzero coefficients, 
and usually possess very systematic structure. These problems exhibit inherent struc­
tural characteristics that can be exploited by specializations of the simplex procedure. 

Methods to exploit special model structure can be categorized generally as indirect 
(e.g., decomposition), where a solution to the original problem is achieved by dealing 
with related models which are individually easier to solve, or as direct when the 
original problem is solved by a modified simplex algorithm. Among the direct 
methods, the most frequently used technique is called basis factorization [7], where the 
reflection of special problem structure appears and is used to good benefit in the 
intermediate LP bases. Basis factorization can be dynamic, where the algorithm deals 
with each basis sequentially and/ or independently in an attempt to extract as much 
specialized basis structure as possible, or static, where the algorithm depends upon 
certain types of special structure being present in all bases. 

Static basis factorizations include simple upper bounds, generalized upper bounds 
(GUB), and embedded network rows, among many others. Simple upper bounds are a 
set of rows for which each row has only one nonzero coefficient. Generalized upper 
bounds are a set of rows for which each column (restricted to those rows) has at most 
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one nonzero coefficient. Network rows are a set of rows for which each column 
(restricted to those rows) has at most two nonzero coefficients of opposite sign. 

Each of these factorizations permits the simplex algorithm to deal with the static 
subsets of the rows (and columns) of all bases encountered with prior knowledge that 
they will satisfy very restricted rules. Most of these methods work best when logic can 
be substituted for arithmetic (as is the case with the coefficients ± 1 ). For this reason, 
static factorizations often restrict the special structure to possess only ± 1, or to be 
scaled so as to produce an equivalent result. 

The concept of generalized upper bounds was introduced in 1964, the result of work 
by Dantzig and VanSlyke [5]. The name is derived from analogy to the simple upper 
bound structure. Graves and McBride [7] refer to Static Signed Identity Factorization 
as a term more suggestive of the implied basis structure. Since their introduction, some 
form of GUB has been implemented in many commercial LP systems. There is often 
confusion between the mathematical characterization of GUB and these various, 
widely used implementations of GUB, in that the latter often restrict the GUB set 
membership rules to permit uncomplicated simplex logic. All of the methods reported 
here address the full generality of GUB sets but can be modified to produce restricted 
GUB sets as necessary. 

The details of how GUB can be exploited to reduce the computations of the simplex 
algorithm are not discussed here. See [1], [5], [7], [11], [13]. The underlying concept is 
that the GUB structure enables the simplex algorithm to manipulate the GUB rows 
implicitly, with logic rather than floating point arithmetic, thus reducing the effective 
size and solution time for the problem. The more GUB rows one is able to identify, the 
fewer rows one has to carry explicitly through the simplex operations. In large 
problems there exists a huge number of subsets of rows that satisfy the GUB criteria. It 
is generally regarded that those subsets with more rows are "better" GUB sets since 
they imply a more contracted explicit basis. The implied problem, then, is to find the 
maximum GUB set. 

Optimal algorithms to find a maximum GUB set do exist. These entail enumeration 
schemes and cannot be guaranteed to be efficient in a practical sense. Conceivably, 
2m - m sets of rows might have to be searched before a maximum GUB structure is 
found: as the problem size grows, the number of possible sets that need to be checked 
increases exponentially. As will be shown later, the hope of finding an efficient 
algorithm to find the maximum GUB set for any general problem is dim. 

Therefore, researchers and practitioners have concentrated on constructing efficient 
heuristic algorithms that attempt to identify, but do not guarantee, a maximum GUB 
set. A few of these methods showing great promise have been reported, but they have 
not been tested with large-scale problems. 

This report (abstracted from [4]) outlines several automatic heuristic GUB-finding 
procedures that have been developed and published in the recent literature. These 
procedures are tested on a suite of large-scale, real-life optimization problems, and are 
modified to improve their behavior. Comparative performance of the methods is given 
both in terms of the computational effort to identify a GUB set, as well as the size of 
the GUB set achieved. 

Identification of GUB sets of maximum row dimension is shown in Section 7 to be 
among the class of NP-complete problems. However, easily computed upper bounds on 
the size of the maximum GUB set are developed and used to evaluate objectively the 
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quality of heuristic GUB algorithms, showing that very nearly maximum GUB sets are 
routinely achieved. 

2. Problem Definition and Representations 

The Linear Programming problem is defined as 

Min 
s.t. !.. < Ax < r (range constraints,) 

.!!.. < x < 7i (simple bounds), 
(L) 

where !. and r are m-vectors, x, c, fl. and b are n-vectors and A is an m X n matrix. The 
constraints are sometimes defined as equations, but for the general case of GUB 
treated here constraints can be equations, inequalities or a mixture. The immediate 
discusssion will be directed at (L); integer and mixed-integer problems are treated 
later. 

Two rows of A are said to conflict if there exists at least one column with nonzero 
coefficients in both rows. The GUB problem can be restated as that of finding a subset 
of the rows that do not conflict. 

There are several ways one can model the maximum GUB problem. Three ap­
proaches are presented to aid in the understanding of the theoretical context of the 
heuristic methods examined and to highlight the formal complexity of the original 
problem. 

Graph Theory Representation 

A graphical representation of the matrix A can be constructed through the following 
mapping rule, f. Let each row of A be a vertex of the graph. Should two rows of A 
conflict then the two vertices of the graph are joined by an edge. This mapping retains 
all the necessary conflict information. If two vertices, a and b, are joined by an edge, e, 
then a and b are adjacent, and a (or b) is incident with e. If a and b are not adjacent, 
this indicates that the corresponding two rows in A do not conflict. 

This introduces the notion of independence. Given a graph G = (V,E), a subset 
V' E V is said to be an independent set if no two of its elements are adjacent. It follows 
that if an independent set of vertices can be found in G then the corresponding rows of 
the matrix A do not conflict and thus define a GUB set. Conversely, a GUB set for A 
defines an independent set for the graph G. It is also clear that an independent set for 
G is maximum if and only if the corresponding GUB set for A is maximum. 

Consider the set ttm, the set of all A-type matrices having m rows. The above 
mapping factors this set into a definite number of classes. Two matrices, A 1 and A 2 are 
said to belong to the same class, C, if and only if each is mapped into the same graph, 
Gc. Thus, an independent set of vertices of Gc correspond to a GUB row set for every 
matrix in the class C. 

The incidence matrix N is defined with niJ = I if vertex i is incident with edge j, and 
niJ = 0 otherwise. There exists one, and only one incidence matrix for each graph of !3, 
where !3 is the set of all graphs having m vertices. 

Since the set of all N-type matrices with m rows is a subset of ttm, every class of ttm 
contains one and only one incidence matrix. In general, for the GUB problem, every m 
row matrix is equivalent to one of a finite number of incidence matrices. Superficially 
this may seem to be a simplification. But as shown in Section 7 the GUB problem on 
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FIGURE I. 

N is as difficult as the independent set problem on G. The equivalent statements of the 
GUB problem do, however, offer different views of the problem which are helpful in 
considering algorithms for and analysis of the problem. (Note: In Garey and Johnson 
[6] it is shown that two other graph problems, the "vertex cover" and the "clique" 
problem, are equivalent to the independence problem, and hence the GUB problem. 
These problems do not seem to offer any additional insight for the GUB problem.) 

Conflict Matrix Representation 

The conflict matrix ~ is defined with mij = 1 if row i conflicts with row j in (L), and 
mij = 0 otherwise. Note that this matrix is symmetric. The sum for any row (or column) 
indicates the number of other rows it is in conflict with, plus one. This sum indicates 
for any particular row how many other rows would be subsequently excluded from a 
GUB set by its addition. 

The rows of a GUB structure can be rearranged to form an embedded identity 
matrix in~. 

Vector Space Representation 

Yet another heuristic approach can be modelled using vectors in an n-dimensional 
vector space, where n is the number of variables in the problem (L). Consider each row 
of A as a vector in this space, having unit length in those "dimensions" corresponding 
with its nonzero coefficients. 

R, the resultant vector from the sum of all vectors of the rows of A, indicates the 
number of conflicts, plus one, associated with each variable of (L). A hypercube in 
n-space situated in the first orthant at the origin with length 1 in all positive directions 
denotes the feasible GUB region. Should R extend beyond this area, then the set of 
rows corresponding to the vectors determining R does not constitute a GUB structure. 

A gradient vector can be calculated indicating the direction of the shortest distance 
to the feasible region. It can be used to determine which row to remove from the set to 
obtain the largest movement in the desired direction. When R falls within the feasible 
region, the set of rows determining R constitutes a GUB set. 

3. Earlier Literature 

Two papers dealing with efficient GUB finding methods are worthy of special note. 
Brearley, Mitra and Williams [2] establish a very useful framework for study of 

methods for finding GUB structure, as well as an insightful discussion of these 
methods and a taxonomy for their classification. 
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They define three sets consisting of the rows of the technological matrix A. The first 
set, the eligible set, is made up of every row of A that is individually eligible to belong 
in the GUB set. The structure set is a subset of the eligible set and includes all those 
rows currently considered as members of the GUB set. The candidate set consists of 
those rows of the eligible set that are candidates for inclusion (or re-inclusion) in the 
GUB set. Every one of the methods examined in [2] is described in terms of 
manipulation of these sets. 

Each method of building a GUB set employs one of two basic strategies. The 
row-addition strategy begins with an empty structure set. Then, based on a particular 
criterion for inclusion, rows are removed from the candidate set and either added to 
the structure set or dropped from further consideration. This procedure continues until 
the candidate set is empty. The rows in the structure set form an admissible GUB 
structure. 

The row-deletion strategy takes the opposite approach and is divided into two 
phases. Methods of this type initially place all eligible rows in the structure set. This 
normally leads to an infeasible GUB set with many conflicting rows. Based upon the 
particular decision rules, rows are removed from the structure set and placed in the 
candidate set. The first phase of this strategy ends when a feasible structure is 
obtained. 

A second phase involves examining the removed rows in the candidate set. Those 
that do not conflict with any of the members of the current structure set are taken 
from the candidate set and reincluded in the structure set. Those that do conflict are 
deleted from the candidate set and dropped from further consideration. The second 
phase ends when the candidate set is empty. At this point the rows of the structure set 
constitute an admissible GUB set. 

Brearley, Mitra, and Williams examine over 18 different methods. These appraoches 
differ in the primary and secondary decision criteria for including (or removing) a row 
in the G UB structure set. The heuristic decision rules examined are based on the 
following model entities and combinations thereof: Include or remove a row based 
upon: 

(a) the number of nonzero elements in the given row, 
(b) the number of rows in conflict with the given row, 
(c) the number of nonzero elements in rows that conflict with the given row, 
(d) the row's relative weight obtained by the inner product of a vector representation 

of the row and a directional gradient. 
These methods were implemented with an ALGOL program run on an ICL 4130 

computer. Twelve linear programming problems ranging in size from 12 rows up to 
166 rows were used for computational tests. The results show that those row-addition 
methods using heuristic (d) above "consistently performed very well" [2]. Similarly, 
those methods using heuristic (b) were found to perform nearly as well as (d). 

McBride [15j compares the directional gradient method (d) with an approach 
suggested but not tested by Greenberg and Rarick [8]. The latter method uses the 
conflict matrix as does heurisitc (b). However, it focuses on finding a maximal 
embedded identity matrix within the conflict matrix, rather than using the conflict 
matrix to determine conflict counts, applying a specialization of the preassigned pivot 
procedure (P 3

) normally used for reinversion [9]. McBride's results indicate that 
heuristic (d) is significantly faster. However, neither method consistently achieves a 
larger G UB set. 
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McBride also comments on the notion of a "good" GUB set. He finds merit in 
selecting a set of GUB rows that minimizes the nonzero build-up in the representation 
of the inverse transformation of the explicit basis during actual optimization. Results 
are also given for a restricted GUB set selection that gives priority to equality 
constraints. Since equality constraints are always binding in feasible solutions, the 
subset of the basis associated with binding constraints, or kernel [7], is expected to 
have fewer explicit nonzero elements. 

Based upon the results in these papers, and on independent computational experi­
ence with automatic GUB factorization reported by Brown and Graves [3], the present 
research intially concentrated on those approaches utilizing the two most successful 
heuristics based on conflict and directional gradient (i.e. methods 1.2, 11.2, 11.9 and 
11.10 of [2]). 

The models studied in this report are of much larger scale and include mixed-integer 
problems as well as models for which prior GUB row sets have been manually 
specified. 

4. Determination of the Eligible Set 

The implementation of GUB in simplex algorithms usually admits only ± 1 as 
nonzero coefficients in the GUB rows. In linear programming, a column scaling can 
make each nonzero element in a GUB row ±I. For variables of an integer or mixed 
integer programming problem, the columns of matrix A that correspond to integer 
variables cannot be scaled without inconvenience for other optimization functions 
depending upon the integrality condition. Therefore, nonzero elements in columns 
corresponding to integer variables will be modified by row scaling. If it is impossible to 
obtain the necessary ± I nonzero coefficients by row scaling and column scaling of 
columns corresponding to continuous-valued variables, the row is deemed not eligible 
for inclusion in a GUB set. 

It is an objective of this research that the procedures examined for locating a GUB 
set in a linear programming problem be designed to be incorporated as an automatic, 
integral part of a contemporary optimization system of advanced design. 

Each method is implemented as a feature of the read routine (written to accept input 
in the standard MPS format, as well as editing information indicating integer vari­
ables, scaling, and known prior GUB structure). Each method automatically examines 
the rows of the input and specifies a GUB set. The appropriate rows and columns are 
then scaled as necessary to obtain the proper GUB structure, and passed on to the 
optimizing portion of the system. (Note that the editing information places conditions 
that must be satisfied for any achievable GUB set.) 

In determining the set of eligible rows, the following factors have to be considered. 
a. Through the editing process, have some of the rows been dropped from the 

problem? If so, these "masked" rows are not eligible for inclusion in the GUB 
structure and are thus dropped from the set of eligible rows. 

b. Through the editing process, have any rows been predesignated to be in the GUB 
structure? Large segments of the constraints can often be selected for the GUB set 
either visually or by recognition of a member of a convenient class of models. Any 
rows that conflict with these rows are not eligible for subsequent inclusion. 

c. All rows designated "nonconstrained" (which include the objective function) are 
ineligible for inclusion in the G UB structure. 

d. If there are any integer-valued variables, an additional check is performed. A row 
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in the GUB set must eventually be capable of being scaled to ± 1 nonzero coefficients. 
This is achieved, if necessary, through a combination of row and column scaling. 
However, with integer variables, column scaling is no longer advisable. Therefore any 
row with a nonzero element in integer columns that is not a + 1 or - 1, or capable of 
being rendered into a ± 1 in those positions through row scaling alone, must be 
marked as ineligible for inclusion in the GUB structure. 

Once the above restrictions have been considered, the resulting set of eligible rows is 
then available for search in order to construct the desired GUB structure. 

5. Implementation of Automatic G UB Heuristics 

Conflict Methods 

These employ the notion of a conflict measure for each row. Consider the conflict 
matrix, M, of the corresponding technological matrix A, for which a GUB set is to be 
found. An individual element, m;k is 1 if row i and row k of the original matrix have at 
least one column j such that aiJ =I= 0 and akJ =I= 0. If the two rows have no nonzero 
coefficients in a common column then the corresponding m;k of the conflict matrix is 
0. Summing across a row of the conflict matrix can thus give the measure of the 
number of rows plus one that are in conflict with a given row. For a given row, this 
sum less one, called the row's deletion potential, indicates exactly how many other rows 
would be immediately excluded from the GUB set by inclusion of this row. 

Conflict row-addition places all the eligible rows on a candidate list. From the 
candidate list, individual rows are selected by minimum deletion potential and removed 
to be added to the structure set. Other rows that are in conflict with the selected row 
are immediately removed from the candidate list and discarded. The selection of rows 
for the structure set and the discarding of conflicting rows continues until the 
candidate list is exhausted. The resulting structure set forms a GUB set. 

A modification to the above heuristic is possible which breaks ties among rows 
sharing the minimum deletion potential by (for instance) selecting the row having the 
most nonzero elements for inclusion with the GUB structure set. 

The program used to test this heuristic approach is adapted from an earlier version 
made available by Graves. 

Conflict Row-Addition 

Step 1. Identify Eligible Rows. Set /3; = 1 if row i is an eligible row, and equal to 0 
otherwise. 

Step 2. Determine Deletion Potential. Scan each eligible row i and increment /3; by 
the number of other eligible rows k where aiJ and akJ are both nonzero for at least one 
column j. ( /3; is the deletion potential, plus one.) 

Step 3. Stopping Condition. If any /3; is greater than 0, go to the next step. 
Otherwise, stop. At termination, the structure set is a GUB row set. 

Step 4. Row Selection. Select row i having the minimum positive ("deletion poten­
tial") /3; and add it to the structure set. 

Step 5. Exclude Rows in Conflict with Selected Row. Locate the ( /3; - 1) rows in 
conflict with the selected row. For each of these rows k, locate the ( f3k- 1) rows that 
they are in conflict with and decrement /3; for those rows by one. 

Step 6. Marking Selected and Excluded Rows Ineligible for Further Consideration. 
Set /3; and the f3k's equal to zero. Go to step 3. 
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Conflict Row-deletion is a two-phase method which initially places all the eligible 
rows in the structure set. From this set individual rows are selected during Phase 1 and 
placed on the candidate list by maximum deletion potential. During Phase 2, remain­
ing candidate rows that do not conflict with the structure set can be reconsidered in 
LOFI order [2). A modification of phase 2 is used in this research which simply 
excludes from further consideration all conflicting rows, reincludes any remaining 
candidate rows, and repeats phase 1, until no further nonconflicting candidates 
remain. 

Gradient Methods 

Gradient row-deletion employs a heuristic method suggested by Senju and Toyoda 
[17] for approximate solution of certain linear programming problems with 0, 1 
variables. The objective is to obtain a maximum number of rows in the GUB structure 
while satisfying the stipulation that the GUB rows be disjoint. 

Max z = X I + x2 + ... + xm 

s.t. 2: X;< 1,j = 1, ... , n 
i: aij,eO 

where X; E {0, 1 ), 

m is the number of candidate rows in ( L ), 

n is the number of variables in ( L ), 

X; is the variable which detemines whether row i is in the 

GUB set or not, and 
Z is the objective function. 

(S) 

Using the vector space viewpoint outlined earlier, consider each row of (S) as a vector 
in n-space. A resultant vector R is determined by the sum of all the included rows and, 
in general1 extends beyond the feasible space denoted by the unit hypercube. A 
gradient vector is calculated from this infeasible point in the direction of the shortest 
distance to the feasible region. An inner product of this gradient with each of the row 
vectors results in a relative weight for each row, which can be viewed as indicating the 
relative contribution that removal of the row would have towards obtaining a feasible 
structure set. 

Rows are removed from the structure set according to their relative weight, the 
largest weight being removed first. This process is continued until a feasible set of 
GUB rows has been obtained. (The gradient vector is not recomputed as the method 
proceeds.) 

Next, a phase 2 procedure examines each of the initially removed rows to see if any 
can be reincluded into the structure set without violating the GUB restrictions. Upon 
completion of phase 2, the selected rows constitute a GUB set. 

A variation on the above procedure recalculates the shortest distance to the feasible 
region after the removal of each row. With the new gradient, a new set of relative 
weights for the remaining rows is then calculated and used, if necessary, to determine 
which of the subsequent rows will be removed. 

Another modification is possible whenever two rows are found with equal weights. 
As a tie-breaking rule, the row found to have the least number of nonzero coefficients 
may be discarded first. 
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Gradient Row-Deletion 

Phase 1 : Deletion of Infeasible Rows 
Step 0. Initialize Sets. Add all eligible rows to the structure set. The candidate set is 

empty. 
Step l. Determine the Vector R. For each columnj, define PJ as the number of rows 

in the structure set having nonzero elements in column j. 
Step 2. Determine Relative Weight of Each Row. For each row i, define v; as the 

sum of (p1 - 1) of every columnj, for which aiJ =I= 0. 
Step 3. Feasibility Condition. If for every column, PJ < l, then go to step 6; else find 

a column j such that PJ > 1. 
Step 4. Determine Row for Exclusion. Examine the rows in the structure having 

nonzero elements in columnj. Select the row i with the largest v;. 
Step 5. Remove Selected Row. Remove row i from the structure set, decrementing p1 

by one for every column j with aiJ =1= 0. Add row i to the candidate set and return to 
step 3. 

Phase 2: Improve Feasible GUB Set Found by Re-including Excluded Rows 
Step 6. Eliminate Rows in Candidate Set that Conflict with the Feasible Set. For 

every row i of the candidate set that has at least one aiJ =1= 0 in a column with p1 = 1, 
remove that row from the candidate set. 

Step 7. Re-inclusion of Rows. If any rows remain in the candidate set, then find row 
i having the smallest v;. Remove row i from the candidate set andre-include it in the 
structure set. Increment PJ by one for every column j where aiJ =1= 0. 

Step 8. Stopping Condition. If the candidate set is empty, stop; else go to step 6. 
To modify the algorithm in order to compute a new gradient vector after the 

removal of each row in phase 1, step 5 is changed as follows: 
Step 5*. Remove Selected Row. Remove row i from the structure, decrementing PJ 

by one for every column j such that aiJ =1= 0. Locate each row k that is in conflict with 
row i. Decrement vk by the number of conflicts between the two rows. Add row i to 
the candidate set and return to step 3. 

These two basic methods have been implemented as integral modules of a large 
scale optimization system. Therefore, explicit conflict matrices are not built. (To have 
done so would have consumed too much computer time and space.) Instead, all the 
information is stored in the vectors {3, p, and v. Logical flags associated with each row 
indicate whether it is eligible, and whether it is in the candidate set or in the structure 
set. 

The problem data is expressed internally in terms of only the unique nonzero 
elements. This input is stored in a doubly linked list having both a row and a column 
thread. Thus, along with any nonzero coefficient aiJ, the location of adjacent nonzero 
elements in both the row i and column j are also immediately available. This crucial 
feature permits efficient row access for various operations (e.g., to locate all rows that 
conflict with a given row at a particular column). 

6. Computational Results 

The heuristic methods have been tested on 15 problems that vary in size from 92 
constraints to 4,648 constraints. A description of each of the problems is given in 
Figure 2. As can be seen, four of the problems are mixed integer and two are pure 
integer. 
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Number Number Integer 
Problem of rows of columns Columns Nonzeros 

VANN 92 1,324 1,324 2,648 
NETIING 103 247 103 494 
AIRLP 171 3,040 0 6,023 
COAL 171 3,753 0 7,506 
TRUCK 239 4,752 4,752 30,074 
CUPS 415 619 145 1,341 
FERT 606 9,024 0 40,484 
PIES 663 2,923 0 13,288 
PAD 695 2,934 0 13,459 
ELEC 785 2,800 0 8,462 
GAS 799 5,536 0 27,474 
FOAM 1,017 4,020 42 17,187 
LANG 1,236 1,425 0 22,028 
JCAP 2,487 3,849 560 9,510 
ODSAS 4,648 4,683 0 30,520 

FIGURE 2. 

The results of these experiments are given in Appendix A. The first two columns 
give the rows and nonzero column elements, respectively, of the GUB structures 
found. The time given in column three is the time required to locate the GUB set once 
the set of eligible rows has been determined. The final columns give additional 
information relating to the two versions of the gradient methods examined and 
represents total time in phase I and the number of rows reincluded in the GUB 
structure during phase 2. 

As with the earlier work cited, the Senju and Toyoda methods were found to be 
consistently the faster. Gradient row-deletion which updates the gradient after each 
row is removed takes longer in phase I than its nonupdating counterpart. However, it 
so selectively deletes the rows, that few if any rows are ever added back into the 
structure during phase 2. This suggests that it be implemented as strictly a one-phase 
method. 

All methods are robust in that they consistently find large GUB sets. The conflict 
approaches generally find a larger number of variables with nonzero coefficients in the 
GUB rows. However, they definitely become relatively inefficient when larger prob­
lems are analyzed, regardless of the relative size of the GUB structure in the problem. 

There is some discrepancy between these results and those published earlier [2]. The 
wide variation between gradient row-deletion with, and without, gradient updating has 
not been observed in the current experiments. It is hypothesized that this is due 
partially to differences in implementation of the various approaches and partially to 
problem size and structure variations between these studies. 

7. Problem Complexity 

The complexity of a problem is said to be polynomial if an algorithm exists for which 
the fundamental operations are limited by a polynomial function of intrinsic problem 
dimensions. Such an algorithm would be called a polynomial time or good algorithm. 
The class of all problems for which such algorithms exists is denoted (P). If an 
algorithm is not polynomial time, then it is defined to be an exponential time algorithm. 
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The disadvantage of an exponential algorithm is the explosive growth of the maximum 
solution time as the dimensions of the problem increase [14]. 

A problem x is said to be reducible to a problemy if each good algorithm for solving 
y can be used to produce in polynomial time a good algorithm for solving x [12]. Note 
that this does not necessarily require that a good algorithm for x andy actually exist. 
This requires only that if one exists for y, then one also exists for x. 

An intractable problem is one for which it is known that no polynomial time 
algorithm exists. In between this class of problem, and the class P, is a vast number of 
problems whose status is uncertain. Among these is a class of nondeterministic 
polynomial-time problems (NP) for which a polynomial-time algorithm can be shown 
to exist that can verify a guessed solution, but for which the existence of a (de­
terministic) polynomial-time algorithm to actually solve a problem has not yet been 
demonstrated. 

If every problem of the class NP is reducible to the problemy, then y is said to be 
NP-hard. In addition, if y itself belongs to NP, then y is NP-complete [6], [12]. 

The following problem is known as the independent set decision problem (lSD). It 
belongs to the set of NP-complete problems. 

(lSD) Given a graph G = (V,E) and an integer t, decide whether G contains an 
independent set of size t or more. 

The GUB decision problem (GUBD) can be defined as follows: 
(GUBD) Given an integer p and an m X n matrix K defined as KiJ = 1 if aiJ =1= 0, and 

KiJ = 0 otherwise, decide whether K contains a set of p or more rows i 1, i2 , ... , iq such 
that 

q 

~ k;d <;;; 1 for every column; q > p. (*) 
e=l 

Given an instance of the lSD problem, the incidence matrix N can be constructed. 
This matrix along with the integer t is an instance of the GUBD problem. The 
following theorem proves the correctness of this reduction: 

THEOREM. The incidence matrix N has t rows satisfying (*) if and only if there are t 
vertices in G that are independent. 

PROOF. a) Assume there exists t rows of N that satisfy (*). They correspond to 
vertices V;

1
, V;

2
, ••• , v;, in G. If any two of these vertices are adjacent, then 

I 

"n = 2 L.. lef. 

e=l 

where j is the column in N that corresponds to the edge connecting the two vertices. 
This is a violation of the assumption, hence the t vertices in G are not connected to 
one another. 

b) Assume there exists t vertices v; , v; , ... , v; in G that are independent. Since no 
I 2 ' 

two are adjacent, the corresponding rows in N satisfy (*) [19]. Q.E.D. 
Since the lSD problem, a problem known to be NP-complete, is reducible to the 

GUBD problem, it follows that the GUBD problem itself is NP-complete. (It is clear 
that the reduction is polynomial time and it is also clear that GUBD is in NP.) The 
related problems of finding a maximum independent set and a maximum GUB set are 
not in NP, however, they are NP-hard. It is therefore unlikely that a polynomial-time 
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algorithm will be found for these problems. Only exponential-time algorithms are 
presently available. 

The above analysis of GUB algorithms has only addressed the worst case bound. No 
conclusions are made about the average performance of an algorithm. In other words, 
the possibility of the existence of an algorithm with good average performance, but 
having an exponential worst case bound, has not been ruled out. 

8. Upper Bounds for the Size of Maximum GUB Set 

The intrinsic difficulty of identifying a maximum GUB set has been shown to be 
essentially impossible for problems of the scale at hand. However, the efficient 
heuristic procedures have been shown to provide very large GUB sets, whose size 
appears to be relatively stable for each problem regardless of the particular method 
applied. This suggests that these large GUB sets may be, in fact, very nearly 
maximum, although there is no practical way to verify this directly. 

Although the problem of determining the size of the maximum GUB set is also 
NP-hard, it is possible to develop an easily computable upper bound on the maximum 
GUB set size. This bound can then be used to objectively evaluate the quality of the 
GUB sets produced by heuristic algorithms. 

It is clear that the number of rows of a GUB set can be no greater than the number 
of rows in the problem. Also any one row by itself can form a GUB set. But these 
bounds are of little practical use when considering the problem of identifying a 
maximum GUB set. Utilizing information that is already available in the heuristic 
procedure, it is possible to construct in polynomial time an upper bound on the size of 
the maximum GUB set. (It is also possible to construct a lower bound on the size of 
the maximum GUB set, but that topic is not pursued in this report.) 

For the purpose of developing a better bound, the incidence matrix representation 
(N) of the problem is used. Lets; be the number of l's in row i. Note that s; is the 
number of edges incident to vertex i in G. Also note that s; = /3; - 1. The number of 
columns in N represents the number of distinct conflicts that exist between the rows of 
the original problem. This number is denoted as c, and can be found by the following 
formula 

n 

~S; 
i=l 

c= -2-. 

If c is greater than 0, all the rows of N cannot simultaneously belong to a GUB set, 
which implies the cardinality of the GUB set is less than m. As c becomes larger, the 
following argument shows that the upper bound of the maximum GUB set decreases. 

If c is positive, but strictly less than m, it is possible for all the conflicts to involve 
one row. Removal of that row would then leave m - 1 rows that form a GUB set. 
Thus for c in the range from 1 tom- 1, an upper bound on the size of the maximum 
GUB set is m - 1. Since one row can conflict with at most m - 1 other rows, once 
c ;;;. m, at least two rows have to be removed to form a GUB set. For m < c < [(m -
1) + (m - 2)] it is possible to construct an incidence matrix such that all the conflicts 
are between a pair of rows and the remaining set of rows. Removal of the pair would 
result in a GUB set of m - 2 rows. This constructive argument continues until 
c = [(m)(m - 1)]/2, which occurs when each row conflicts with every other row. At 
that point, the max maximum GUB =min maximum GUB =one row. 
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In general, for any problem with an m X c incidence matrix, the largest maximum 
GUB set that can be obtained is: 

u1 = L0.5 +~0.25 + (m)(m- 1)- 2c 

where L indicates truncation to an integer. 
The above bound is problem-independent and a sharp bound in that matrices with a 

GUB set the size of the bounding value can be constructed. 
With additional information about a specific problem a better bound can be 

constructed. Since s; is the number of other rows that conflict with row i, removing row 
i from the set of rows reduces the number of conflicts, c, by s;. Let y denote max s;. 
Since y is the largest row conflict count, c can be reduced by not more than y with the 
removal of each row. The minimum number of rows that would have to be removed to 
reduce the number of row conflicts to 0, is I c / y. Therefore, given m, c andy, the 
bound can be improved to 

Uz = {m- I ~r-·--------
L0.5 +~0.25 + y(2m- y- 1)- 2c, 

c < (m- y)y, 

c >(m- y)y; 

where I indicates rounding up to the next integer. 
In order to determine y, the entire f3 vector must be examined. 
A third, even better bound can be obtained with additional information on the 

frequency of the conflict counts from 1 toy. The procedure is the same as above, in 
that when a row is removed withy conflict count, c decreases by y. However, instead 
of continuing to decrease c by y; it is decreased by the next largest s;. This procedure 
continues until, once again, c becomes zero. This bound is named u3 • 

The bounds developed can be used to objectively evaluate the size of a GUB set 
found by heuristic methods. In two problems examined, V ANN and AIRLP, the 
number of rows in the GUB set equal an upper bound on the maximum GUB set for 
the problem. Therefore, for those problems, the heuristic methods are verified to have 
located maximum GUB sets. 

Manual specification of a GUB set from visual inspection can utilize these bounds 
as an excellent measure of the maximum additional rows to be found. This informa­
tion is also an aid in deciding whether to subject the problem to additional automatic 
search for GUB. 

9. Extensions 

The upper bounds developed in this report vary from a problem-independent bound 
to tighter problem-dependent bounds. It is speculated that additional information can 
be easily extracted from the actual conflict structure of the problems that can be used 
to tighten the existing bounds even further. This is strongly suggested by manual 
analysis of problems with particularly loose bounds for which the conflict structure 
seems to have higher-order pathology. In addition, lower bounds have been developed 
by similar methods. 

Another area that warrants further study is the special structure of the incidence 
matrix representation of the original problem. It is noted that for an incidence matrix, 
N, the relative weights generated for each row are (except for a constant) identical for 
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both the conflict and the gradient methods studied. This implies that for a matrix N, 
the row-deletion heuristics will identify the same GUB set. 

As things now stand, GUB-finding demands far less cost than the benefits derived 
during model optimization. Better GUB-finding methods may result from simple 
extensions arising from relaxations of (S), use of conflict information of higher order, 
limited application of backtracking enumeration, or exploitation of conditioned 
bounds !on the remaining candidate rows to allocate heuristic effort. 

Finally, research is continuing on automatic location of network row structure (e.g., 
Musalem [16] and Wright [18]). As one illustration of an immediate generalization of 
the GUB results, a GUB set for a problem can be identified and then another GUB set 
of an eligible subset of remaining rows can be found. Thus, a bi-partite network row 
factorization can be achieved (e.g., transportation or assignment rows). 

10. Conclusions 

The computational benefits of a large GUB set for an LP problem are widely 
recognized. This report shows that the identification of a maximum GUB set is a 
difficult problem, essentially as hard as many other widely known difficult problems. 

The use of heuristics seems inescapable. This report has examined two promising 
heuristics (with two versions of each) applied to a series of real-life, large-scale models. 
All versions are robust in their ability to find large GUB row sets. However the two 
versions that use the Senju and Toyoda method are consistently the fastest. These two 
methods are essentially equal in their efficiency and effectiveness. Since the version 
which recalculates the gradient after the removal of each row so selectively removes 
the rows during the first phase that few if any rows are re-included in the GUB set 
during the second phase, this suggests that the latter phase be omitted. 

The representation of an infinite number of m-row matrices by a finite number of 
incidence matrices offers a powerful and concise way of examining the GUB problem. 
Under this representation, both basic heuristic methods investigated assign (within a 
constant) the same relative selection weights to each row. 

Finally, the ability to define upper bounds on the maximum size of the GUB set 
gives a new powerful tool in this area. It enables one to evaluate the quality of GUB 
sets found even in every large problems, for which the algorithmic identification of a 
maximum GUB set is probably impossible in general. In some cases, verification of a 
heuristically achieved maximum GUB set is now possible. Further, the bounds 
developed may be further enhanced in future research, and may be applicable to 
related problems of equivalent complexity. 1 

Appendix A 

This appendix contains computational results for fifteen linear, mixed-integer and 
integer models. All execution times reported are expressed in actual CPU seconds, 
accurate to the precision displayed for IBM 360/67 and FORTRAN H (Extended). 

For clarity, the following terms are defined: 

Eligible rows: The number of rows of the model initially eligible 
for inclusion in a set of GUB rows. 

1 The authors wish to thank Gordon Bradley and Shmuel Zaks for their insights on complexity, and also 
Glenn Graves and William Wright for thier considerable assistance. 



1180 GERALD G. BROWN AND DAVID S. THOMEN 

Conflict count: The number of columns of the incidence matrix for 
the problem. 

Conflict density: The ratio of the conflict count to the maximum 
conflict count for that problem size [i.e., m(m - 1)/2]. 

Time to find Elig: The time in CPU seconds to determine the set 
of eligible rows. 

IMAX: The maximum of s;. 
U1, U2 , U3 : Bounds defined in Section 8. 

The methods are labelled: 

Problem: 
Rows: 
Columns: 
Integer: 
Nonzero: 

Method 

CRA 
CRD 
GRD* 
GRD 

Problem: 
Rows: 
Columns: 
Integer: 
Nonzero: 

Method 

CRA 
CRD 
GRD* 
GRD 

Problem: 
Rows: 
Columns: 
Integer: 
Nonzero: 

Method 

CRA 
CRD 
GRD* 
GRD 

VANN 
92 
1324 
1324 
2648 

Rows in 
GUB set 

69 
69 
69 
69 

Conflict Row-Addition 
Conflict Row-Deletion 

CRA 
CRD 
GRD* 
GRD 

Gradient Row-Deletion (with gradient update) 
Gradient Row-Deletion 

Description: Fleet Dispatch Model 
Eligible rows: 69 IMAX: 0 
Conflict count: 0 Ul: 69 
Conflict density: 0 U2: 69 
Time to find Elig: 0.14lsec U3: 69 

Columns in Time to find Time in Number added 
GUB set GUB set (sec.) Phase I in Phase 2 

1324 0.237 
1324 0.125 
1324 0.202 0.198 0 
1324 0.202 0.198 0 

NETTING Description: Currency Exchange Model 
103 Eligible rows: 71 IMAX: 5 
247 Conflict count: 46 Ul: 70 
103 Conflict density: 1.85% U2: 59 
494 Time to find Elig: 0.022 sec U3: 46 

Rows in Columns in Time to find Time in Number added 
GUB set GUB set GUB set (sec.) Phase I in Phase 2 

36 84 0.169 
36 84 0.164 
36 i7 0.047 0.042 0 
36 72 0.042 0.037 0 

AIRLP Description: Fleet Dispatch Model 
171 Eligible rows: 170 IMAX: 150 
3040 Conflict count: 2983 Ul: 151 
0 Conflict density: 20.77% U2: 150 
6023 Time to find Elig: 0.076 sec U3: 150 

Rows in Columns in Time to find Time in Number added 
GUB set GUB set GUB set (sec.) Phase I in Phase 2 

150 3000 1.16 
150 3000 0.761 
150 3000 0.645 0.639 0 
150 3000 0.444 0.439 0 
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Problem: COAL Description: Energy Development Model 
Rows: 171 Eligible rows: 170 IMAX: Ill 
Columns: 3753 Conflict count: 3753 Ul: 146 
Integer: 0 Conflict density: 26.13% U2: 136 
Nonzero: 7506 Time to find Elig: 0.106 sec U3: 121 

Method Rows in Columns in Time to find Time in Number added 
GUB set GUB set GUB set (sec.) Phase I in Phase 2 

CRA Ill 3753 1.38 
CRD Ill 3753 1.24 
GRD* Ill 3753 0.920 0.912 0 
GRD 100 2568 0.641 0.631 0 

Problem: TRUCK Desciption: Fleet Dispatch Model 
Rows: 239 Eligible rows: 221 I MAX: 171 
Columns: 4752 Conflict count: 10438 Ul: 165 
Integer: 4752 Conflict density: 42.94% U2: !59 
Nonzero 30074 Time to find Elig: 0.116 sec U3: 144 

Method Rows in Columns in Time to find Time in Number added 
GUB set GUB set GUB set (sec.) Phase I in Phase 2 

CRA 32 1069 6.88 
CRD 30 1099 7.095 
GRD* 30 857 5.00 4.95 2 
GRD 32 986 1.70 1.58 8 

Problem: CUPS Description: Production Scheduling Model 
Rows: 415 Eligible rows: 390 IMAX: 48 
Columns: 619 Conflict count: 744 Ul: 388 
Integer: 145 Conflict density: 0.98% U2: 374 

Nonzero 1341 Time to find Elig: 0.042 sec U3: 294 

Method Rows in Columns in Time to find Time in Number added 
GUB set GUB set GUB set (sec.) Phase I in Phase 2 

CRA 213 494 2.96 
CRD 214 442 3.15 
GRD* 214 466 0.212 0.194 0 
GRD 200 394 0.384 0.132 24 

Problem: FERT Description: Production & Distribution Model 
Rows: 606 Eligible rows: 605 IMAX: 580 
Columns: 9024 Conflict count: 16455 Ul: 577 
Integer: 0 Conflict density: 9.01% U2: 576 
Nonzero: 40484 Time to find Elig: 0.257 sec U3: 567 

Method Rows in Columns in Time to find Time in Number added 
GUB set GUB set GUB set (sec.) Phase I in Phase 2 

CRA 559 9024 15.8 
CRD 559 9024 10.5 
GRD* 559 9024 6.73 6.71 0 
GRD 559 9024 2.52 2.50 0 
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Problem: PIES Description: Energy Production & Consumption Model 
Rows: 663 Eligible rows: 662 IMAX: 21 
Columns: 2923 Conflict count: 4116 Ul: 655 
Integer: 0 Conflict density: 1.88% U2: 466 
Nonzero: 13288 Time to find Elig: 0.866 sec U3: 422 

Method Rows in Columns in Time to find Time in Number added 
GUB set GUB set GUB set (sec.) Phase I in Phase 2 

CRA 180 1848 10.8 
CRD 169 1693 13.5 
GRD* 172 1811 2.82 2.77 I 
GRD 177 1761 1.31 0.788 28 

Problem: PAD Description: Energy Production & Consumption Model 
Rows: 695 Eligible rows: 694 IMAX: 23 
Columns: 2934 Conflict count: 4416 Ul: 687 
Integer: 0 Conflict density: 1.84% U2: 502 
Nonzero: 13459 Time to find Elig: 0.104 sec U3: 449 

Method Rows in Columns in Time to find Time in Number added 
GUB set GUB set GUB set (sec.) Phase I in Phase 2 

CRA 200 1864 13.1 
CRD 189 1771 16.6 
GRD* 188 1708 3.34 3.26 2 
GRD 189 1275 1.35 0.928 21 

Problem: ELEC Description: Energy Production & Consumption Model 
Rows: 785 Eligible rows: 784 IMAX: 22 
Columns: 2800 Conflict count: 6167 Ul: 776 
Integer: 0 Conflict density: 2.01% U2: 503 
Nonzero: 8462 Time to find Elig: 0.089sec U3: 492 

Method Rows in Columns in Time to find Time in Number added 
GUB set GUB set GUB set (sec.) Phase I in Phase 2 

CRA 309 2461 11.4 
CRD 210 2791 16.1 
GRD* 309 2641 1.15 1.12 0 
GRD 309 2605 0.842 0.579 14 

Problem: GAS Description: Production Scheduling Model 
Rows: 799 Eligible rows: 789 IMAX: 608 
Columns: 5536 Conflict count: 22220 Ul: 760 
Integer: 0 Conflict density: 7.!5% U2: 752 
Nonzero: 27474 Time to find Elig: 0.151 sec U3: 652 

Method Rows in Columns in Time to find Time in Number added 

GUB set GUB set GUB set (sec.) Phase I In Phase 2 

CRA 583 5102 16.2 
CRD 639 5536 10.4 
GRD* 608 5309 3.79 3.77 0 
GRD 639 5533 1.47 1.44 
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Problem: FOAM Description: Production Scheduling Model 
Rows: 1017 Eligible rows: 1006 IMAX: 261 
Columns: 4020 Conflict count: 8186 Ul: 997 
Integer: 42 Conflict density: 1.62% U2: 974 
Nonzero 17187 Time to find Elig: 0.198 sec U3: 934 

Method Rows in Columns in Time to find Time in Number added 
GUB set GUB set GUB set (sec.) Phase I in Phase 2 

CRA 932 4020 23.4 
CRD 932 4020 9.47 
GRD* 917 3981 1.73 1.71 0 
GRD 917 3981 0.902 0.879 0 

Problem: LANG Description: Equipment &Manpower Scheduling Model 
Rows: 1236 Eligible rows: 1235 IMAX: 184 
Columns: 1425 Conflict count: 46424 Ul: 1196 
Integer: 0 Conflict density: 6.09% U2: 982 
Nonzero: 22028 Time to find Elig: 0.072 sec U3: 973 

Method Rows in Columns in Time to find Time in Number added 
GUB set GUB set GUB set (sec.) Phase I in Phase 2 

CRA 382 1207 46.2 
CRD 338 908 54.2 
GRD• 342 923 14.9 14.8 2 
GRD 342 922 12.4 1.13 234 

Problem: JCAP Description: Production Scheduling Model 
Rows: 2487 Eligible rows: 2446 IMAX: 488 
Columns: 3849 Conflict count: 16578 Ul: 2439 
Integer: 560 Conflict density: 0.55% U2: 2412 
Nonzero: 9510 Time to find Elig: 0.265 sec U3: 1812 

Method Rows in Columns in Time to find Time in Number added 
GUB set GUB set GUB set (sec.) Phase I in Phase 2 

CRA 529 2072 104 
CRD 512 2186 !53 
GRD* 529 2087 2.23 1.87 5 
GRD 523 1393 3.98 1.10 59 

Problem: ODSAS Description: Manpower Planning Model 
Rows: 4648 Eligible rows: 4647 IMAX: 4194 
Columns: 4683 Conflict count: 5220 Ul: 4645 
Integer: 0 Conflict density: 0.05% U2: 4645 
Nonzero: 30520 Time to find Elig: 0.263 sec U3: 4024 

Method Rows in Columns in Time to find Time in Number added 
GUB set GUB set GUB set (sec.) Phase I in Phase 2 

CRA 751 3116 369 
CRD 721 3846 651 
GRD* 749 4436 7.12 6.88 0 
GRD 751 3020 3.01 2.57 2 
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