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Abstract

An important problem for augmented reality is
registration error. No system can be perfectly tracked,
calibrated or modeled. As a result, the overlaid graphics
will not align perfectly with objects in the physical world.
This can be distracting, annoying or confusing. In this
paper we propose a method for mitigating the effects of
registration errors that enables application developers
to build dynamically adaptive AR displays. Our solution
is implemented in a programming toolkit called OSGAR.
Built upon OpenSceneGraph (OSG), OSGAR statistically
characterizes registration errors, monitors those errors
and, when a set of criteria are met, dynamically adapts
the display to mitigate the effects of the errors. Because
the architecture is based on a scene graph, it provides a
simple, familiar and intuitive environment for application
developers. We describe the components of OSGAR, discuss
how several proposed methods for error registration can
be implemented, and illustrate its use through a set of
examples.

1. Introduction

Registration errors can have a profound impact on the
effectiveness of an augmented reality (AR) system. The
purpose of many AR systems is to provide information
to the user about objects by aligning graphics with those
objects in the physical world. However, no AR system
is perfect. Tracking systems cannot measure the pose of
their sensors exactly. Internal system calibration parameters
cannot be known perfectly and the world cannot be modeled
precisely. As a result, the graphics will not align perfectly
with the objects in the physical world. In some situations
these errors can be little more than an annoyance. However,
in other situations the annotations could be ambiguously

placed (it is not clear what object they refer to) or appear
to be placed on the wrong object altogether.

The conventional approach to registration errors is
to consider them as a type of tracking problem. Apart
from a few notable exceptions, none of them recent
(e.g., [1], [13]), they are rarely addressed directly. The
prevailing assumption seems to be that, given better
tracking and faster computers, the major causes of
registration errors will be overcome. However, we do not
believe that this is the case, especially when one considers
mobile augmented reality systems where one cannot rely
on accurate, fixed infrastructure in carefully controlled
settings.

We believe that a better approach is to assume that
registration errors will be inevitable, and provide applica-
tion developers with tools to help them understand and
deal with these errors. In particular, we believe that any
AR toolkit should also help developers choose and display
annotations in such a way that the effects of registration
errors are minimized.

Our first attempt at developing an adaptive user interface
was to introduce the concept of a Level of Error 3D scene
graph node [10]. Analogous to Level of Detail (LOD) nodes
(that switch between different representations of an object
based on the projected size of the object), an LOE node
is a switch node that uses an estimate of the registration
error of an object to select the appropriate annotation style
for a particular object in a scene. In [11] we described an
implementation of the LOE which considered the problem
of estimating and adapting to the registration error of a
single object. The only sources of error were due to the
tracker and calibration errors.

However, despite its appeal to conventional graphics
scene graphs, the LOE is not sufficient to handle all of the
possible strategies that are needed to adapt to registration
error. For example, the LOE considers each object individ-
ually. Furthermore, the LOE only allows a finite set of fixed
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(a) (b) (c)

Figure 1. In (a) two drawers are labeled, but the target of the labels is ambiguous. In (b) all drawers are
labeled, reducing ambiguity but cluttering the space. In (c) the two drawers are labeled with callout
lines that point to unambiguous locations on the appropriate drawer.

displays, limiting it to handling a small number of cases.
In this paper, we present the design and implementation

of a programming toolkit for AR, called OSGAR, that
provides a general framework for propagating error
estimates from an arbitrary collection of sources, and
creating adaptive interfaces based on these estimates. It
consists of three main components: an error propagation
mechanism (which calculates the uncertainty at any point
in the scene graph), a set of components for adaptation
(such as replacing models of objects with callout labels and
lines), and a set of common facilities required for many
types of AR applications (including support for trackers,
video-in-the-background and fiducial tracking).

The structure of this paper is as follows. Section 2
provides several motivating examples. Section 3 describes
the sources of registration error we are concerned with.
Section 4 describes the uncertainty representation and the
mathematical framework used to compute the estimate of
the registration error. The architecture and implementation
of OSGAR is described in Section 5. This section also
describes some of the techniques which can be used to
improve the quality of the augmentation presented to the
user as well as the quality of interaction. The limitations
and future directions of OSGAR are discussed in Section 6
and conclusions are drawn in Section 7.

2. Motivating examples

While some AR domains require precise registration
(e.g., AR-guided surgery [13]), there are many domains
where AR could be usefully applied that do not require
precise registration. For example, consider a system that
tries to label two empty drawers in the tool cabinet in

Figure 1(a). While the labels are small enough to fit within
the projected area of the drawers, a small amount of
registration error makes it unclear which drawer the labels
are referring to. Furthermore, because all drawers look
the same there are no obvious visual clues a user could
employ to resolve the ambiguity. One solution, shown in
Figure 1(b), is to label all the drawers, so the user can
infer the registration error offset. However, even for this
relatively small amount of registration error, adding all
thirty labels unnecessarily clutters the user’s view of the
world. A better solution in this case, shown in Figure 1(c),
would be to offset each label so it does not cover any part
of the target drawer, and use a callout line to point to a
location on the display that is likely to overlap some part of
the drawer.

Another example is the recent evaluation (by Honda
and Microvision1) of a wearable maintenance system
that uses a non-tracked see-through heads-up display
to present in-situ automotive maintenance informations
to trained technicians. This system was demonstrably
useful (resulting in a quoted 38% improvement over the
non-wearable version) despite the fact that the graphics
were not registered with the physical world. This system
raises some interesting questions for the AR community:
would an AR version of the system be even more effective?
Would precise registration be necessary, or would a coarsely
registered version using moderately accurate tracking be as
effective (e.g., by allowing the current system’s graphics
to be generated from technician’s approximate viewpoint,
even if they aren’t registered)? Would some tasks benefit

1 For more information, see http://www.microvision.com/
nomadexpert/field.html
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greatly from precise registration, while others would not?
When one considers practical issues of creating, deploying
and maintaining such a system, such as cost and robustness,
these questions become critical.

To continue with the above example, perhaps some
repair shops would have good tracking, and others would
not. Perhaps tracking quality would vary with the model
of the car (e.g., new cars might have “embedded trackers”,
old ones would not), or the location in the shop or parking
lot. Perhaps trackers break occasionally. For whatever
reason, a commercially viable repair system such as this
would need to function in a variety of situations, and
ideally adapt automatically as the situation changes (e.g.,
as the technician walks around the shop). As an application
designer, it is easy to imagine many different display
modes for such a system, based on different amounts
of registration error. What is hard is actually computing
reasonable estimates of registration error for the different
graphical objects in the system, and creating a graphical
display system that uses these estimates to select the
appropriate display modes. OSGAR is designed to address
this problem.

3. Sources of uncertainty

For OSGAR, we consider the following classes of
uncertainty [8]: tracking, calibration, and modeling.

Tracking. Tracking systems estimate, in real-time, the
pose of a tracked object. There are literally hundreds of
papers which describe different tracking methods based on
a variety of sensing technologies (e.g., magnetic, ultrasonic,
inertial, computer vision, etc.), as well as hybrid systems
that combine more than one of these technologies. However,
as noted by Welch and Foxlin, there is no “Silver Bullet”
that is likely to provide perfect tracking [16]. Therefore, any
tracking system should be assumed to return error-corrupted
estimates of the true pose of the sensor. These errors can be
modeled statistically. However, it is often very difficult to
provide precise, high-order statistical descriptions of these
errors, especially since many tracking systems are closed
black-boxes, making it impossible to know what signal
processing is carried on within them.

Therefore, we assume that the measurement from a
tracker can be considered to be the mean of the distribution
and the uncertainty can be represented by the covariance.
Some tracking systems (such as the Intersense VisTracker
and GPS receivers that support the NMEA GST message)
provide covariance information directly. However, many
tracking systems only provide performance specifications
and the covariances must be approximated from these.2

2 For example, if the specifications consist of a hard bound on the errors,
the standard deviation can be set to be a third or a quarter of this value.

Calibration. An AR system consists of a tracking
system and a display system and the calibration of these
systems and the relationship between them must be
known. For example, in video-mixed AR systems the
intrinsic parameters of the camera (such as its optical
distortion) must be computed. Calibration parameters
can be accurately computed off-line for a camera with
a specific focus and zoom setting by looking at a static
scene with a set of calibration patterns in it. However,
there is no guarantee that these parameters are correct for a
moving camera in a scene with different camera settings.
The problems are exacerbated in see-through AR systems
because current methods require the user to align objects
on the display with those in the physical world (e.g.,
SPAAM [14] or the alignment framework described in [2]).
Issues such as fatigue, the finite sampling space and user
error can lead to inaccuracies. The errors can be calculated
using perturbation methods.

Modeling. Models are approximations of the physical
objects they are meant to represent. Models can be acquired
in many ways, from a tape measure to 3D scanning laser
range finders. However, measurements always contain
errors. The environment can change in unmodeled ways.
The GIS community has been cognizant of the effects of
errors for a great deal of time [15] and the Geography
Markup Language (GML) includes a schema for data
quality which is expressed using means and covariances.
Therefore we assume that the raw model constitutes a mean
estimate and each vertex in the model contains errors.

Several issues should be noted. First, each of these error
sources include temporal elements that OSGAR does not
currently address. Latency throughout all components of the
system, time synchronization across multiple devices, and
the discrete update times of displays and the rendering sub-
systems create errors which can be considered to increase
the error in the tracker [8]. Second, some of these errors are
view dependent and some are view independent. The error
in the model is not, for example, a function of the position
and orientation of the user’s head. However, the projection
of the model onto the user’s display is a function of the
users view. As described below, this distinction is used
to optimize the error propagation mechanism. Finally, we
are not aware of any widely-used modeling format which
includes information about the imprecision of the model,
so we do not currently support models with errors on each
vertex. However, it would be straightforward to modify the
system to support such models if they existed.

4. Error representation and propagation

Uncertainty in OSGAR is represented by adding a
covariance matrix to the transformation nodes in the
scene graph. Any transformation matrix is considered to
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be the mean of a probability distribution function (PDF)
for that transformation, instead of just a single discrete
transformation. If no uncertainty information is specified
for a transformation, it is assumed to be exact. The mean
of the PDF (i.e., the original transformation) is used for
culling, rendering, and so on, as before.

No restrictions are placed on the form of the
transformation matrices; the scene graph is assumed
to be composed of arbitrary nodes with arbitrary affine
transformations between them. Specifically, let M j

i be the
true relative transformation from node i to node j ,

M j
i =




m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44




Each element can take arbitrary values.3 To parame-
terize such a general matrix, a number of authors have
developed methods to decompose an arbitrary matrix into
a set of primitive operations including rotation, transla-
tion and scale [12, 6]. However, these decompositions are
constructed by applying potentially expensive nonlinear
operations (such as single value decomposition). Because
the graph can be extremely large, a significant number of
these decomposition operations might be performed leading
to significant computational costs. Therefore, to simplify
the implementation, all errors are expressed directly in
terms of the elements of the transformation matrix. In other
words, the uncertainty is a 16-dimensional state which
corresponds to each element in the transformation matrix.
This is a straightforward generalization of the approach of
Bar-Itzhack for direction cosine matrices [3].

Mn
r is the cumulative transformation matrix from the root

node R to an arbitrary node N. This transformation is given
by:

Mn
r = ∏

∀i∈P

Mi
i−1, (1)

where p is the path from the root node R to an arbitrary
node N and i are nodes in this path.

However, the system does not have access to these true
values. Rather, it only has access to the estimated relative
transformation M̂ j

i . The difference between the two is due to
the sources of uncertainty outlined in Section 3. As a result,
the cumulative transformation calculated in the graph is:

M̂n
r = ∏

∀i∈P

M̂i
i−1 (2)

Therefore, the problem is to estimate the statistics of M̂n
r

given that error can be introduced at any transformation in
the tree.

3 It is not even possible to assume that m44 = 1.

The error introduced at a node is assumed to be an
additive matrix,

M̂ j
i = M j

i +δM j
i . (3)

Therefore, the error propagation equation is

Mi
r +δMi

r =
(
Mi

i−1 +δMi
i−1

)(
Mi−1

r +δMi−1
r

)
= Mi

i−1Mi−1
r +Mi

i−1δMi−1
r (4)

+δMi
i−1Mi−1

r +δMi
i−1δMi−1

r

Assuming that the error introduced at a node is
independent of the error introduced at preceding nodes, the
expected value of the last term will always evaluate to 0
and thus can be neglected. Therefore, the equation which
propagates the error down the scene graph is as follows:

M̂i
r = M̂i

i−1M̂i−1
r

δMi
r = Mi

i−1δMi−1
r +δMi

i−1Mi−1
r

(5)

However, this representation has two main difficulties:

• It is more computationally expensive. If one assumed,
for example, that the matrix only encoded translation
rotation and scale then only 9 or 10 parameters would
be required. However, this is at the cost of introducing
complicated nonlinear transformations at each node to
recover the parameters (and their uncertainties) after a
transformation is applied.

• The representation does not capture the nonlinear
constraints which exist between matrix elements.
For example, large orientation errors are not simply
additive. These could be partially overcome by using
more sophisticated models. For example, the error
could be treated as being multiplicative and of the
form I + δMi

i−1 where I is the identity matrix. A
recursive relationship exists in this case.4 However,
any representation is always an approximation
and, for this paper, we chose the simplest usable
approximation.

Despite these limitations, we believe this representation
is appropriate for the needs of OSGAR:

• The transformation operations on each node are
simple. The transformation consists of a single matrix
multiplication which only involves basic arithmetic
operations.

• The complexity of specifying nonlinearities (e.g.,
tracker errors) are only introduced at the nodes where
the errors occur.

4 The mean term is the same but the error propagation term becomes

δMi
r = δMi−1

r +
(
Mi−1

r

)−1 δMi
i−1Mi−1

r .
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OSG Runtime Graph Traversal
Three Basic Visitors: Application Callback, Cull, Render

OSG Programming Classes

OSGAR Runtime Graph Traversal
(Three New Visitors between OSG Application and Cull)
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Figure 2. The major components of OSGAR.

• If nodes do not introduce their own sources of error,
the first term in the error propagation is not needed,
reducing complexity even further.

• Any type of matrix operation can be supported. There-
fore, not just errors in the location of objects, but also
their sizes, the position and projection properties of the
viewer, etc., can be handled in a uniform way.

5. Architecture

OSGAR is an extension to OSG, a full featured 3D
scene graph library. The key difference between OSG
and OSGAR is that transformations is OSGAR can have
uncertainty associated with them; most of the functionality
of OSGAR builds on this conceptually simple change.
OSGAR also provides programmers with access to basic
AR technologies (e.g., live video-in-the-background,
real-time tracking devices, marker-based tracking in the
video stream).

The components of OSGAR are shown in Figure 2. The
core components are the three runtime Visitors that propa-
gate uncertainty and registration error estimates through the
scene graph (see Section 5.1), plus the subclass hierarchies
under OSGAR Transform (see Section 5.2) and OSGAR
Group (see Section 5.3). The Transform classes are used

to define nodes with uncertain transformations in the scene
graph. The Group classes control how the scene graph
reacts to registration errors (see Section 5.4 for examples
of specific Group classes).

The remaining classes provide facilities needed by AR
applications, and are described briefly in Section 5.5. The
Video Viewer is a specialized 3D viewer that takes video
from a camera and inserts it in the background of the scene.
The Camera, ARToolkit5 and VRPN6 interfaces provide
access to basic AR technology. The Space Manager and
Heads-up Display (HUD) are utility classes designed to
manage space on the display, and layout augmentations in a
2D HUD.

One deviation OSGAR makes from OSG is that we
require the camera location to be specified as a node in the
scene graph. Setting the camera location to a node in the
graph is a straightforward way to generate the uncertainty
estimate of the model-view matrix defining the camera’s
pose in the world.

5.1. Scene graph traversal

OSG is based on the notion of using a set of specialized
Visitors to traverse the scene graph each frame. OSGAR
adds three Visitors (i.e., three passes through a subset of the
scene graph) to the per-frame update loop, after application
callbacks are run, but before culling and rendering. The
three Visitors together implement the OSGAR runtime
functionality, as follows:

1. Optimization. This Visitor initializes the nodes in
the graph for error propagation, determines the subset of
the scene graph that needs to be examined by the other
two Visitors, and sets flags on the nodes to control those
traversals.

The Visitor uses a standard recursive, bottom-up damage
propagation technique to mark the nodes:

1. When a node is reached, its “requires error processing”
flag is set to false.

2. The children are visited.

3. If the node, or any child of the node, needs to be
processed, then this node is also marked as requiring
processing.

2. View-Independent Uncertainty Propagation. This
Visitor propagates uncertainty as it traverses the graph from
the root of the scene through all of the nodes marked by
the optimization visitor, using the algorithm described in
Section 4 (see Section 5.2). At each step, the accumulated
estimate is combined with the uncertainty at the current

5 Available from http://www.hitl.washington.edu/
artoolkit/

6 Available from http://www.cs.unc.edu/Research/vrpn/
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node using Equation 5, giving an estimate of the uncertainty
of that node expressed in the local coordinates of that node.
This computation is done for both OSG and OSGAR
transformation objects, with the OSG transformations
assumed to be precisely specified with no error.

Each time one of the OSGAR Group nodes is visited, the
accumulated uncertainty is stored at that node, for use in
the next traversal. (Note that since OSG supports directed
acyclic graphs, a single node could lie on multiple paths
from the root. The propagated uncertainty is stored for
each path to the root of the graph, and tagged with a path
identifier so it can be recovered when needed.) Any Trans-
formation Combiner nodes encountered during traversal are
also handled by this visitor (see Section 5.2.2).

3. Registration Error Visitor. Before starting this
Visitor, the uncertainty of the camera location (obtained
from the node representing the camera in the scene graph)
is combined with the projection matrix (which may also
include uncertainty). As the Visitor traverses the graph,
the camera uncertainty is combined with the uncertainty
at each OSGAR Group node, creating a view-dependent
estimate of uncertainty. This uncertainty estimate is used
to compute screen-space estimates of registration error
needed by the OSGAR Group nodes (see Section 5.3).

For efficiency, this Visitor collects the vertices of all
geometry in the subtree under each Group node (whenever
any part of the subtree is damaged) and stores a 3D convex
hull of those points in the Group itself. The points in the
3D hull are used by the Group nodes when computing the
view-dependent registration error estimates.

5.2. Transform nodes

The OSGAR Transform base class extends OSG
Transform by using its existing 4×4 transformation matrix
as the mean of the distribution of the transformation, and
associating uncertainty (in the form of a 16×16 covariance
matrix) with this 4×4 transformation. A collection of
utility methods are provided for setting and retrieving the
uncertainty information in various forms. The covariance
matrix can take on the special values perfect (to indicate that
there is no uncertainty associated with this transformation)
and infinite (to indicate that the value of the transformation
is unknown, and the link should not be followed). The latter
value could be used, for example, when a tracker is not
reporting (e.g., the user is out of range, or a fiducial marker
is not currently seen).

A programmer can use OSGAR Transform
directly, to create a node in the graph with some
fixed uncertainty. For example, if the location of an
object in the environment was measured relatively
carefully, a position of +/- a few millimeters and an
orientation of +/- a few degrees could be specified via

method calls to setPositionCovariance(dx, dy, dz) and
setOrientationCovariance(dh, dp, dr) (where dh, dp and dy
are the covariances for heading, pitch and roll respectively).

Several subclasses of the Transform node exist.

5.2.1. Tracked transform nodes One common source
of uncertain transformations is external tracking systems.
OSGAR TrackedTransform is a subclass of OSGAR
Transform whose values are updated automatically
from some tracking system. This class has methods
(implemented by each subclass) to determine if the
tracker is currently reporting or not. The value of the
transformations on each TrackedTransform is updated
by the tracker handler (see section 5.5). The current
implementation of OSGAR supports two subclasses of
TrackedTransform:

• vrpnTransform creates a VRPN tracker client to
connect to a sensor of a local or remote VRPN tracker
server. The application developer specifies the tracker
name and network address, and the specific sensor to
get transformations from.

• visionTransform implements a vision-based tracker,
currently using the ARToolkit. The application
developer specifies the marker that this Transformation
should be attached to. The transformations received
are the position of the fiducial relative to the camera,
so the visionTransform is typically attached to the
scene graph node representing the location of the
camera.

Currently, neither VRPN nor ARToolkit provide
uncertainty estimates for their trackers, so we set the
uncertainty manually on these nodes, typically based on the
manufacturers specifications and our experience. We are in
the process of adding uncertainty support to VRPN, and
enhancing specific VRPN servers to support it (e.g., many
GPS units provide an estimate of their current accuracy, and
one major tracking company is providing us with an SDK
to retrieve covariance information from their trackers).
Similarly, we are creating an accuracy estimator for the
ARToolkit.

5.2.2. Transformation combiner nodes The Transform-
Combiner class is designed for situations where multiple
pose estimates are available for an object. The program-
mer can set up a Combiner to automatically combine the
pose estimates, can leverage application or tracker specific
knowledge to improve the accuracy of the fusion, or can
simply choose between the poses.

If multiple poses are available for a node in a scene
graph, there will be a path from the root to the node for
each pose. Normally, if a node is linked to a scene graph
via more than one path, the scene graph semantics dictate
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Figure 3. The TransformCombiner C chooses which path to cube B1 (the near cube) to use for each
frame, based on the error propagated from T (a receiver for a fixed tracker) and F (a fiducial marker,
measured relative to the video camera V). In (a) the fiducial markers are visible, and has much lower
estimated error than the fixed tracker, so the branch through F is used. The second cube is attached
to C via an LOE L that only displays it when the error is small. In (b) the fiducial is not tracked, so the
fixed tracker is used (and the second cube is hidden by the LOE).

that it is rendered once for each path, usually at a different
location in the 3D world.

The TransformCombiner has different semantics. A
programmer-supplied callback function determines which
single incoming path to use for the subtree under the
Combiner. The function is given the pose estimates for all
of the paths leading into the Combiner, and returns a new
estimate along with an indication of which incoming path
to use for all subsequent passes. The effect is equivalent
to the children of the Combiner being attached to that
path from the root, and the other paths terminating at the
Combiner.

The most obvious scenario is when an object is tracked
by multiple sensors, and the Combiner should fuse the
poses using an approach such as the PDF intersection
method proposed by Hoff [7]. However, there are other
more mundane scenarios in which the combiner turns out to
be a very powerful way of structuring an AR scene graph.

For example, consider a user and object that are tracked
by some reasonably accurate tracker (such as an Intersense
IS600 or an RTK GPS system, both of which give 1-2cm
positional accuracy), and the object can also be tracked
using the camera on the user’s video-mixed AR display. If
the system wants to add augmentations to the object, sensor
fusion is not particularly useful — the absolute accuracy
of a system such as the ARToolkit is not particularly good,
but the registration obtained when using it is quite good.

(While both the translation error along the direction of
projection and the rotation error are large, the translation
error is small perpendicular to the direction of projection.)
In this situation, using the vision tracker when it reports,
and falling back to the less accurate tracker otherwise, is
probably the right thing to do, as illustrated in Figure 3.

Perhaps more interestingly, suppose an object is tracked
intermittently (such as by a vision tracker), but the object
always remains within a certain area, such as on a desk that
it is tethered to by a cable. In most AR prototype systems,
when the object is not tracked, its last known position is
used. OSGAR supports more systematic solutions to this
problem.

One simple solution would be to use a static Transform
to specify a second pose for the object, and use a
TransformCombiner to merge it with the tracked pose. The
Transform would be given a mean in the middle of the
desk and a large uncertainty, to capture the full range of the
object’s possible location.7 The Combiner would choose
this static transformation when the object is not tracked,
but use the tracked path when possible. In this case, the
Combiner would propagate the fixed transformation with
a large error estimate or the tracked transformation with
a very small error estimate. If the programmer simply

7 More complex solutions could also be implemented that take into
account the time since the object was last tracked, or leverage other
application-specific semantics.
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uses the provided transformation (i.e., the mean of the
distribution) to render the augmentation, the resulting
display would be nonsensical (the object would jump
between the tracked location and the arbitrary “middle of
the desk” location specified by the fixed transformation).

However, if the programmer makes use of the error
estimation nodes discussed below, the augmentation itself
can change automatically when the magnitude of the error
changes, and do so in a way that adapts to other aspects of
the viewing situation. If the fixed area is, say, the top of a
desk and the user is very close to the desk, the registration
error (the projection on the 2D display) will be huge,
requiring alternative display methods (such as using a 2D
inset window containing descriptive text). However, if the
user is far from the desk (say, on the other side of a large
lab), the magnitude of the registration error on the 2D
display may be quite small, allowing a 3D augmentation
to be used. By specifying a range of augmentations to
use, based on registration error on the 2D display, the
system can adapt automatically to these very different
situations. This example illustrates the power of OSGAR,
and the approach programmers should take when building
applications using it.

Implementation. The Optimization Visitor counts
the number of paths that enter any Combiner node, and
saves the counter in the Combiner. Then, during the
view-independent uncertainty propagation traversal,8 the
Combiner collects the error estimates for every path into
it. When this visitor enters the Combiner via the final
path, it activates the user specified callback function to
determine the final pose estimate and the path to use for the
subtree during the remaining traversals. Subsequent phases
(registration error computation, culling, rendering) only
traverse the subtree “under” the Combiner when they arrive
along this single path.

We are designing a range of sample callback functions
for common Combiner functions. Currently, we have
implemented a SmallestCovarianceCombiner that always
chooses the smallest covariance, and uses it and its path as
the values for the subtree.

5.3. Basic group nodes

The OSGAR Group class is abstract, and provides
accessor methods to retrieve the view-independent
uncertainty estimates that are computed by the propagation
Visitor. The Assessment and Region subclasses provide

8 This decision should be made in the registration error visitor,
using view dependent estimates, rather than in the view-independent
uncertainty propagation visitor, using the view independent estimates.
This will be changed in the near future when we re-implement
the visitors to solve a set of related problems, but the current
implementation is sufficient for illustrating the desired functionality.

Figure 4. The registration error of cubes
in the world. The blue ellipses represent
the registration error around the vertices of
the cubes. The green “outer” region is the
convex hull representing the area the entire
box will fall within, and the white “inner”
region is the convex hull representing the
area that some part of the box should occupy.

access to two different representations of the registration
error estimate of the objects in the tree under them.
Recall from Section 5.1 that the registration error Visitor
computes the 3D convex hull of the geometry in the subtree
underneath all OSGAR Group nodes. The OSGAR Group
nodes use the view-dependent error estimate to compute
a 2D view-dependent convex hull of the points in this 3D
hull. The points in the 2D hull are used to compute the
registration error estimates.

Region classes. Regions provide the programmer with
a collection of closed regions (illustrated in Figure 4):
an error ellipse for each vertex in the 2D hull, an outer
region (the convex hull of all points in the error ellipses)
representing the region that the object might intersect, and
an inner region representing the region the object should
intersect (see [11] for an explanation of how these regions
are computed).

Assessment classes. Assessments provide the
programmer with a single floating point value representing
an assessment of the magnitude of the registration error.
The assessment is computed using two user-defined
methods: metric is run on each of the vertices in the 2D
hull, giving a floating point value for each. An aggregator
is run on the set of vertices and floating point values, and
returns the single value for the object. There are many
possible metrics that could be used by an Assessment
object, such as the maximum of the main axis of the
ellipses, the area of the ellipse, etc. As an aggregator
function, one can consider the closest vertex, the average of
all vertices, etc.
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5.4. Specialized group subclasses

We have implemented one subclass of Assessment
(LOE) and two subclasses of Region (Bounding Regions,
Label Placer) as examples of how to extend the basic
Group classes.

Bounding Regions. Used to display graphical represen-
tations of the 2D convex hull: the vertex ellipses, the inner
region, the outer region, or any combination of them. It can
be used for prototyping, debugging or to create a simple
highlight of the region an object is expected to occupy.
Figure 4 shows two cubes with all regions displayed.

Level of Error (LOE) Switches. The LOE (originally
discussed in [10]) automatically chooses between different
subgraphs within the scene graph, allowing the application
developer to specify different augmentations corresponding
to the same physical object. At any time, one of the specified
subgraphs is enabled (visible) and the rest are disabled
(invisible). The location of the LOE in the scene graph
is used to determine the registration error estimate, but
the subgraphs do not need to be in the same part of the
graph. In our current implementation, the LOE chooses
between its children and children attached to the HUD
(discussed in Section 5.5), but it could easily be extended
to include subgraphs elsewhere in the scene graph. During
each traversal, one augmentation will be chosen based on to
the metric computed from the registration error estimate at
the LOE node.

Label Placer. The Label Placer computes where to
position the labels for a given object based on the computed
inner and outer regions of the model. A programmer can
choose to keep the label overlapping the object (by keeping
it inside the inner region) or guarantee that the label will
never block the object (by keeping it outside the outer
region). The Label Placer computes where to place the
labels each frame to enforce one of these constraints. The
Label Placer uses a callback that specifies how to position
the labels, for which we have implemented three simple
examples. The first implementation positions the label
where there is the most space available, computed from the
sides of the object to the limits of the screen. The second
implementation always tries to position the label in this
order: right, top, bottom and then left. If the label does not
fit on the right side, then it tries to position it at the top, and
so on. A third implementation favors edges closer to the
screen sides, to keep the middle clear. Labels that are not
positioned by the Label Placer are marked as not anchored
and passed to the Space Manager (described in section 5.5)
to be handled there.

5.5. Additional AR components

As mentioned above, OSGAR provides a collection of
facilities necessary for AR application development.

Video. Our current focus is on video-mixed AR exper-
iences, so the OSGAR Video Viewer class allows a video
stream to be texture mapped onto the background of the
window. The Camera Interface also feeds video to the
ARToolkit for fiducial recognition.

Trackers. OSGAR supports both the tracking of fiducial
markers and a wide variety of spatial trackers via the
VRPN tracker package. Both are handled internally by
a centralized tracker handler that performs the marker
detection on each new video image, polls VRPN once per
frame, and updates the values of the associated Tracker
Transformations in the scene graph when necessary.
Trackers will eventually provide uncertainty estimates with
their reports, although we have not finished extending
VRPN and the ARToolkit to do this.

HUD. The HUD class is used for displaying 2D
augmentations. It is implemented as an orthographic
projection attached to the camera position. Any kind of
OSG subgraphs can be attached to the HUD.

Space Manager. Currently a stand-in for a more
powerful space manager, such as that proposed by Bell and
Feiner [4]. The class collects the regions created by the
Error Region classes into a set of Hull objects, and uses the
HUD to display those that should be visible. Hull objects
store all the vertex error ellipses, the inner and outer hulls,
the path on the scene graph, and the object’s name. The
Space Manager is also responsible for positioning labels
that were not positioned explicitly by the Label Placers.

6. Discussion

Our method deals with the effects of dynamically
changing static uncertainty on spatial registration error;
OSGAR does not yet take into account temporal aspects
of such errors, nor does it try to take into account other
influencing factors, such as illumination.

We designed OSGAR to use several distinct Visitors
because we hope to eventually decouple the registration
error computation from the display loop. Even though the
system has proven to be sufficiently fast (we exceed 60
frames per second on a dual 2GHz Pentium4 Xeon with
an NVIDIA Quadro graphics card in our example and test
programs), we are concerned that a toolkit designed to
reduce the impact of registration error should not increase
the latency of the system (and thus increase registration
errors). Fortunately, the metrics we compute do not
generally need to be synchronized with the display loop;
if a Level-of-Error object or a Label Placement algorithm
works with data that is a few frames (i.e., a fraction of a
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second) old, the result should be almost imperceptible to
the user. Even the computation of the 2D convex hulls does
not need to be done synchronously, as long as the resulting
graphics are translated on the screen with the objects. If an
object is changing quickly, the computed regions may be
slightly wrong, but most of the uses we propose for such
regions would not be adversely affected by such latency.

7. Conclusions

There has been increasing interest in the AR community
on how to engineer solutions that support the real deploy-
ment of AR applications [9, 5]. We believe that the ability
to adapt to error estimates will form the foundation of AR
systems that are not tied to specific tracking and sensing
hardware, and are thus more robust and deployable in a
wide variety of situations.

In this paper, we have introduced an architecture that
integrates the uncertainty associated with the physical
world into 3D computer graphics. We use this information
to automatically and efficiently estimate the registration
error associated with each object in an AR system in real
time, and present a collection of sample programming
structures that demonstrate how these estimates can be used
to improve the quality of the information being conveyed
by the system.

We believe OSGAR represents an important step toward
the creation of real, robust AR systems in complex, mobile
environments. By allowing programmers to deal with
tracking technology (and other uncertainty) in a methodical
and structured way, they can focus on what the application
should do in different conditions, rather than tightly
coupling the system to a particular collection of devices.
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