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1. Introduction 

The U.S. Army Missile Research, Development and Engineering Center (AMRDEC) is working 
to develop nitrate ester–based (minimum smoke) propellant formulations that are less sensitive to 
threats than current standards. However, reduced sensitivities are usually achieved at the expense 
of burning rate, which, given standard center perf and end-burning grain designs, limits the range 
of applications for which they are suitable (1). Of the many techniques that have been 
successfully employed to increase burning rates, increasing the thermal diffusivity of grains by 
embedding them with metal wires (or fibers) appears to be the approach that is the most 
compatible with the objective. Reported as early as 1955 (2) and fielded in the 1960s (e.g., 
Redeye and Stinger missile systems), this approach is nevertheless a challenge to implement 
reliably. Casting grains without breaking wires is difficult.  

Given the risks related to manufacturing wire-embedded propellant grains, performance 
increases need to be significant to justify an attempt to field the technology. However, the 
limited understanding of the process that exists today makes it hard to predict the technology’s 
full potential. It is known that metal wires produce localized conductive heat transfer from the 
combustion zone into the uncombusted propellant, generating conically burning surfaces and 
changes in surface topology and burning rate. The extent of heat transfer is a function of the 
wire’s thermophysical properties and geometry (1–7). However, only empirical models of the 
process have been developed to date, and their extensibility is very limited. As a result, 
AMRDEC has had to rely on experimental (trial and error) testing of various wire-propellant 
combinations to establish burning rates, then use a model such as the one depicted in figure 1 as 
a basis for grain design. Results have been mixed, and the parameter space that can be probed via 
this approach is limited. (Parameters include the wires’ thermophysical properties and 
diameter(s), their number, spacing and orientation within the grain, and the thermophysical and 
chemical kinetics properties of the propellant formulation.) As such, it is not clear that the full 
potential of the technique can be established or how it might best be approached. 
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Figure 1. (left) Photograph of internal conical burning surface of translucent solid propellant composition 
embedded with 0.8-mm-diameter silver wire (4). (right) Schematic of wire embedded propellant 
combustion (5). (Source: Kubota, N.; Ichida, M. Combustion Processes of Propellants With 
Embedded Metal Wires; and King, M. K. Analytical Modeling of Effects of Wires on Solid Motor 
Ballistics. Reprinted by permission of the American Institute of Aeronautics and Astronautics, Inc.) 

Seeking to address this issue, the U.S. Army Research Laboratory (ARL) is developing a state-
of-the-art computational fluid dynamics (CFD) model of the process (8). As part of the effort, 
experimental data that can be employed for model validation are being sought. In particular, our 
goal is to directly observe burning surfaces produced by various propellant-wire configurations. 
Such data are not produced by the Crawford-style strand burner that AMRDEC has been 
employing for its effort (9). Measuring the time between the openings of two break wires that are 
a known distance apart, the Crawford-style strand burner technique produces data that have 
limited value for CFD model validation.  

Experimental results along the lines of what we are pursuing have been published by Kubota and 
Ichida (4). They reported results for seven different translucent nitrate ester–based formulations 
and three formulations containing ammonium perchlorate. The formulations were embedded 
with a silver, copper, or iron wire. A range of wire diameters was employed. To fabricate test 
articles, Kubota and Ichida cast the formulations into strands, cured them, cut them in half, 
placed a conductive wire between them, and then welded the halves back together by applying 
acetone to the contacting surfaces. The assemblies were then placed in an oven at 40 °C for 72 h 
to remove the acetone and homogenize the propellant. Strands were combusted in an inert 
(nitrogen) atmosphere at pressures ranging from 7 to 50 atm (100 to 750 psi). The translucent 
nature of the formulations enabled flame fronts to be imaged. However, only a few results 
related to surface topology were presented. Those that were presented confirm the expectation 
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that the surface topology evolves with time and therefore has the potential to undermine results 
obtained from a standard Crawford-style strand burner. Moreover, they indicate that, even at 
steady state, the topology depicted in figure 1 is (at best) only valid for a limited radial distance 
(r) from the wire. Without knowledge of the actual topology for all r, the prediction of mass/gas 
generation rates could be problematic. 

Recognizing the need for experimental data that characterize the surface topology and regression 
rate of wire-embedded AMRDEC formulations, ARL sought to conduct such experiments. 
However, the cost to ship nonstandard formulations and/or test articles between AMRDEC and 
ARL was prohibitive. We also found that the start-up cost for making the formulations at ARL 
and fabricating them into test articles would be prohibitive (10). Therefore, the first step of the 
effort involved identifying energetic materials that were chemically similar to AMRDEC’s 
formulations and that could be readily fabricated into test articles. ARL’s ability to model the 
systems’ ignition and combustion with an existing chemical kinetics mechanism was also a 
consideration.   

Driven primarily by fabrication considerations, experiments were developed and conducted with 
Pentolite. Composed of trinitrotoluene (TNT) and pentaerythritol tetranitrate (PETN), it was melt 
cast into glass tubes with or without a silver wire strung along the centerline. The resulting items 
were ignited at one end in a windowed chamber, and events were recorded with a high-speed 
video camera. However, the results were not encouraging. Pentolite is opaque, and though it was 
found that light diffusing through unburned material gave some indication of differences in the 
surface as a function of experimental parameters, there was not sufficient resolution for the 
images to be of use for model validation.   

Based on the experience gained with wire-embedded Pentolite, an alternate sample configuration 
was devised and tested. In it, the wire was sandwiched between JA2 and a polycarbonate 
window. This configuration proved to allow direct observation of the burning surface throughout 
the course of an experiment. JA2 is a standard gun propellant composed of nitrate esters 
(nitrocellulose [NC], nitroglycerin [NG], and diethylene glycol dinitrate [DEGDN]) and is 
therefore chemically similar to minimum-smoke rocket propellants. Stock in hand, it was also 
attractive from a model development standpoint because a chemical kinetics mechanism with a 
demonstrated ability to model its burning rate as a function of pressure was available (11, 12).  

This report provides details of strand configurations that were devised, fabricated, and tested. 
Results of the experiments conducted with Pentolite and JA2 are summarized. They demonstrate 
the need for and utility of the windowed strand assembly that was developed. The results 
obtained for JA2 provide a basis for model validation. 
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2. Experimental Methods 

2.1 Test Article Fabrication 

Our initial approach to assembling test articles was similar to the one employed by Kubota and 
Ichida (4). That is, strips of energetic material were cut from stock pieces, a wire was centered 
between them, and they were glued together with an adhesive. In our case, the adhesive was 
made by dissolving slivers of the host propellant in ethyl acetate. Assemblies were held in 
compression while the adhesive cured. Two different assembly types were fabricated. One was 
made with 0.100-in.-thick sheets of JA2. The other was made from 0.50-in.-diameter sticks of 
M9. M9 is a standard double-base gun propellant that is 57.75 weight-percent (wt%) NC and 40 
wt% NG. All assemblies contained flaws (introduced mainly by the fabrication process) that 
prevented proper end burning. Thus, the results were not useful, and alternate fabrication 
techniques were sought. 

Given the difficulties encountered in embedding wires into nitrate ester–based propellants, we 
decided to consider other energetic material types for use in developing the experimental 
approach and settled on Pentolite (10). Although it is considered an explosive rather than a 
propellant, being 50 wt% PETN, which is a nitrate ester, it has chemical similarities to 
minimum-smoke propellants.  Moreover, ARL has extensive experience in casting it. To 
fabricate wire-embedded strands of Pentolite, a length of wire was tautly suspended along the 
center of a glass tube, and molten material poured into the tube. (See appendix A for details.) 
The glass tube was included to prevent flame propagation down the strand’s side wall, and it 
proved to be effective in this role if it did not break. The articles were nominally 0.34 inches in 
diameter, 1.9 in. high, and had a mass of 4.8 g (figure 2). Ten samples were fabricated. Five had 
no wire, and five had a 0.010-in.-diameter silver wire (Alfa-Aesar, soft-tempered, 99.9% [metals 
basis]).  

 

Figure 2. Pentolite cast into glass tube.
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The third approach was developed from branch discussions about the experimental difficulties 
(13). It involved placing a wire along the surface of a 0.100-in.-thick JA2 strip and sandwiching 
the two components between a pair of 0.200-in.-thick transparent polycarbonate windows. 
Compression applied via six screw-nut pairs positioned around the windows’ edges pressed the 
wire into the propellant (figure 3). Following compression, the exposed sides of the JA2 were 
smeared with Dow Corning Molykote 33 medium-consistency grease to prevent flame 
propagation down them.  

For the experiments reported here, the JA2 sheet was cut to a nominal width of 0.4 in. and a 
height of 3.5 in. The samples were embedded with a single silver wire. Wires with a 0.002-, 
0.005-, or 0.010-in. diameter were employed. To establish baseline burning rates, articles without 
an embedded wire were also fabricated. To test if air gaps were introduced by the embedding 
process, assemblies with a 0.008-in.-diameter nylon wire were fabricated and tested.  

 

Figure 3. Windowed test article: JA2 strip embedded with a silver wire. 

2.2 Measurement Techniques 

All experiments were conducted in ARL’s low-pressure strand burner (14, 15) (figure 4). The 
apparatus includes a windowed chamber capable of being pressurized up to 10 MPa. It also 
includes a ballast tank that adds considerably to the system’s overall volume, minimizing 
pressure increases due to propellant combustion. Nitrogen was employed as the pressurizing gas. 
Pressure was measured with both a Setra Systems pressure transducer and a Heise mechanical 
dial gauge. The desired chamber pressure for each experiment was established just prior to 
ignition. Ignition was achieved by running current through a nichrome wire placed on top of the 
sample. Events were recorded with a Phantom high-speed camera. Images were acquired at 
60 frames per second (fps). Exposures were 1 µs. To prevent smoke and soot buildup from 
obscuring the camera’s view, a slow, steady stream of nitrogen was flowed through the chamber 
over the course of each experiment.  
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Figure 4. Schematic of strand burner facility (left), windowed strand burner (middle), and strand burner control 
panel (right). 

3. Results 

3.1 Pentolite 

Experiments with Pentolite-filled test articles were conducted at pressures ranging from 2.0 to 
6.2 MPa. Figure 5 shows a representative image of a nonwired sample’s burning. The actual 
flame front is obscured by soot formation on the glass tube. Images obtained from experiments 
with wired samples were similar. The most noticeable difference between the two cases was the 
amount of light observed diffusing from unburned portions of the sample, with the wire-
embedded strands producing more. We assume the difference is attributable to the formation of a 
conical burning surface in the wired embedded samples, but Pentolite’s opacity prevented direct 
visualization of the internal surface.  
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Figure 5. Pentolite burning in glass tube. 

Although the imaging results were disappointing from the standpoint of characterizing surface 
topologies, the recordings still proved to be instructive. Employing the bottom line of soot 
formation as a marker of the flame front’s position, we measured it as a function of time to 
establish burning rates. Figure 6 shows representative examples of data acquired for strands with 
and without an embedded wire. Other examples are provided in appendix B, and table 1 provides 
a reduction of the data. For strands without an embedded wire, derived (linear) burning rates 
were constant over the entire duration of each trial. In trials with wired samples, on the other 
hand, an initial phase in which the strand burned at essentially the same rate as the unwired 
strand was followed by acceleration to a second, higher rate. As such, these results demonstrate 
the possibility that a measurement based solely on knowledge of the surface’s position at two 
different times (as it is in standard Crawford-type measurements) could lead to poor predictions 
for the gas generation rates of wire-embedded grains. 

 

 
 

Soot on glass, obscuring flame 

Flame extended above tube 

Illuminated, unburned sample 

Flame front 
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Figure 6. Pentolite burning at 3.50 MPa: rates with and without an embedded 0.010-in. silver wire. 

 
Table 1. Pentolite burning rate data. 

Trial Pressure 
(MPa) 

Burning Rate 
(cm/s) R2 Wire? Phase % Increase 

1 2.00 0.160 0.9974 Y 1 — 
— 2.00 0.447 0.9965 Y 2 179 
2 3.50 0.301 0.9999 N — — 

— 3.50 0.299 0.9999 N — — 
3 3.50 0.305 0.9972 Y 1 — 

— 3.50 1.327 0.9846 Y 2 335 
4 3.50 0.303 0.9988 Y 1 — 

— 3.50 1.265 0.9950 Y 2 218 
5 4.85 0.412 0.9999 N — — 
6 6.20 0.517 0.9997 N — — 
7 6.22 0.488 0.9981 Y 1 — 

— 6.22 a — Y — — 
aThe sample failed catastrophically prior to transitioning to a second phase. 
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3.2 JA2 

Experiments with the windowed JA2 assemblies were performed at 3.45, 5.40, and 6.93 MPa.  
Representative images acquired from various tests are shown in figure 7. Similar to the nonwired 
Pentolite samples, the nonwired JA2 samples showed good end-burning behavior. This behavior 
was also observed for the sample embedded with a 0.008-in. nylon wire, suggesting that air gaps 
were not introduced by the embedding process. 

 

Figure 7. JA2 burning samples at 6.90 MPa; baseline, no wire (top left), 
0.002-in. silver (Ag) wire (top right), 0.005-in. Ag wire 
(bottom left), and 0.010-in. Ag wire (bottom right). 

For samples embedded with a silver wire, conically shaped burning surfaces were clearly 
observed, and marked differences in their shape were found within the range of the parameter 
space that was investigated. Interestingly, in contrast to the tests with wire-embedded Pentolite, 
where the data indicated that a considerable amount of time elapsed before full transition to a 
higher burning rate, the images showed that the surfaces in these tests quickly transitioned to 
their shape at steady state, and the burn rate was constant throughout most of each trial. An 
example of this behavior is illustrated by the results shown in figure 8. Until about 0.2 s, the rate 
of regression at the centerline was higher than the rate of regression of the edge. However, after 
0.2 s, the two rates were effectively the same.  
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Figure 8. Distance measurements taken at the outer edge and centerline. 

Based on this finding, a linear burning rate for each test condition was calculated simply by 
measuring the position of the centerline as a function of time. Table 2 and figures 9–11 show the 
results. They indicate that at the three (nominal) pressures at which the tests were conducted, the 
burning rate increased with the wire’s diameter; the fastest rates at each pressure were produced 
with the 0.010-in. wire. In addition, we observed that the burn rate increase was higher at the 
highest pressure tested. At 3.45 MPa, the burning rate increased 110%. At 6.93 MPa, the burning 
rate increased 350%. A volumetric burning rate (VBR) increase was also calculated from the 
data. To calculate the VBR, the linear burning rate is divided by sin (θ).  

Table 2 also includes cone angle values, θ (defined in figure 1), that were measured in the images 
and calculated based on the ratio of measured rate to the rate measured for the nonwired sample 
at the same pressure. Measured values fluctuated 2°–3° based on when the measurement was 
taken in the burning event. The 3.45-MPa, 0.005-in. wire event fluctuated throughout the entire 
burning event; therefore, the value reported is a range of the highest and lowest measured angles. 
Overall, the measured and calculated values are in good agreement.  
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Table 2. JA2 burn rate data. 

 
P 

(MPa) 

Burning 
Ratea 
(cm/s) 

R2 θ (calculated) 
(°) 

θ (measured) 
(°) 

Burning 
Rate 

 Increase 
(%) 

VBR 
Increase 

(%) 

No wire 3.45 0.549 0.9968 90 90 — — 
0.002-in. wire 3.45 0.635 0.9996 59.8 68 16 34 
0.005-in. wire 3.45 0.759 0.9977 46.3 45–60 38 91 
0.010-in. wire 3.45 1.156 0.9989 28.4 30 111 344 

No wire 5.40 0.889 0.9991 — — — — 
0.002-in. wire 4.80 0.762 0.9965 — — –14 — 
0.005-in. wire 5.05 0.935 0.9988 — — 5 — 
0.010-in. wire 5.22 1.720 0.9995 — — 93 — 

No wire 6.93 1.057 0.9999 90 90 — — 
0.002-in. wire 6.87 1.481 0.9981 45.5 43 40 96 
0.005-in. wire 6.92 2.588 0.9981 24.1 25 144 500 
0.010-in. wire 6.93 4.740 0.9784 12.9 15 348 2007 

aMeasured at the centerline 
 

 

Figure 9. JA2 burning rates at 3.45 MPa. 
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Figure 10. JA2 burning rates at pressure near 5.18 MPa. 

 

 

Figure 11. JA2 burning rates at 6.90 MPa. 
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4. Other Observations 

Beyond enabling direct observation of the burning surface, regardless of sample opacity, the 
windowed strand configuration has several advantages over the other configurations that were 
investigated. It also allows the parameter space of any sufficiently pliable material to be studied 
without having to design and construct elaborate casting hardware, and a wide range of sample 
dimensions can be accommodated. These valuable attributes should facilitate future testing of 
AMRDEC formulations. 

The results also testify to the considerable range of burning rate modification that can be 
achieved with this approach. The parameter space investigated in the current study is only a tiny 
fraction of the nearly limitless combinations of wire material, diameter, shape, and spatial 
arrangement that could be employed. As such, the technology should help motor developers 
meet performance objectives with propellant formulations whose burning rates have been 
compromised in the interest of achieving lower sensitivities. In addition, it is clear that meeting 
those objectives will be greatly facilitated by having models that can make reliable predictions 
for the performance of proposed designs. 

5. Summary 

Techniques for imaging the burning surface of wire-embedded minimum-smoke propellants 
were developed and tested. Test articles fabricated with Pentolite and JA2 were employed for the 
effort. Embedded with a silver wire, the energetic material was ignited at one end in a windowed 
chamber, and events were recorded with a high-speed video camera. Results obtained with the 
Pentolite samples revealed the possibility that burning rates measured via a standard Crawford 
style (two-point break wire) technique could be in error. They also showed that when embedded 
in the interior of an opaque material, one’s ability to characterize the evolution of the surface’s 
topology is seriously compromised. Being a potential impediment to the acquisition of data 
relevant to minimum-smoke formulations, this issue prompted the development and testing of a 
design in which the wire was embedded at the propellant’s surface, and the surface sealed with a 
polycarbonate window. It was found to enable direct observation of the burning surface of JA2, 
with videographs revealing in great detail the evolution of the surface from ignition to a final 
steady-state form. Results for a variety of wire diameters and pressures were acquired, and they 
can be employed to validate a state-of-the-art CFD model that ARL is developing to accelerate 
the development of wire-embedded minimum-smoke propellant technology. 
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Appendix A. Pentolite Melt Casting Hardware Drawing   

                                                 
  This appendix appears in its original form, without editorial change. 
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Appendix B. Measured Burning Rate Data for Pentolite Experiments   
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List of Symbols, Abbreviations, and Acronyms 

θ   theta; cone angle of flame 

Ag   silver 

AMRDEC  U.S. Army Missile Research, Development, and Engineering Center 

ARL   U.S. Army Research Laboratory 

cm   centimeter 

cm/s   centimeter per second 

DEGDN  diethylene glycol dinitrate 

fps   frames per second 

g   gram 

h   hours 

in.   inch 

P   pressure 

psi   pounds per square inch   

MPa   megapascal 

N2   nitrogen 

NC   nitrocellulose 

NG   nitroglycerin 

R2   coefficient of determination 

s   second 

TNT   trinitrotoluene 

µs   microsecond 
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