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ABSTRACT

Multiscale Simulations of Barrier and Aging Properties of


Polymer Nanocomposites

Report Title

This report describes the progress made under the auspices of the funded project. Specifically, developments have centered around four 
issues:





1. Models and simulations which address the impact of role of polymer-surface interfacial interactions upon the macroscopic properties;





2. Development of a new computational method capable of predicting the barrier


properties of polymer membranes;





3. Development of a coarse-grained computational method to address the physical


mechanisms underlying the barrier properties of polymer nanocomposite membranes;





4. Atomistic and quantum mechanical investigation of the transport properties of polymer membranes proposed for use in fuel cell 
applications.
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Final Report: 2012 - 2013

1. Summary of Broad Objectives

This project proposes the development of a multiscale computational approach to predict

the barrier and aging properties of polymer-nanoparticle composites (PNCs). The specific

objectives are:

(i) Develop and apply a new multiscale computer simulation approach to predict the barrier

and selectivity properties of polymer nanocomposite membranes. This will build upon our

recent work on coarse-graining techniques for PNC systems, but extend it in new directions

by rendering it a predictive tool for characterizing penetrant transport in PNC membranes.

(ii) Develop and apply a new multiscale computer simulation approach capable of charac-

terizing the aging properties of polymer nanocomposites. This effort is motivated by recent

work from our group, but shares many components with objective 1. Our intent was to use

the results of such computer simulations to develop fundamental models which can facilitate

modeling and prediction of the aging properties of polymer nanocomposites and confined

films.

We proposed to address the above features by developing multiscale simulation ap-

proaches which use a combination of molecular/atomistic simulations, mesoscale simulations

and macroscale models to predict both the dispersion state and macroscopic properties of

PNCs.

In this period of the annual report, scientific progress has been achieved in three broad

directions:

1. Development of a new computational method capable of predicting the barrier prop-

erties of polymer membranes: We extended our time-extending simulation method to study

penetrant transport in glassy polymer matrices. This methodology was used to study: (i)

The effect of nanoparticles on the diffusion of Lithium ions through PEO matrices.

2. Atomistic and quantum mechanical investigation of the transport properties of polymer

membranes proposed for use in fuel cell applications. This project is broadly related to (2)

above, but includes the possibility for proton hopping and acid-base chemical equilibria.

3. Cationic dendrimers have shown great promise in drug and gene therapy applications.

Despite the advantages realized through positively charged dendrimers, a number of studies
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have noted that the non-specific electrostatic binding to charged lipid head groups of cellular

membranes may contribute to dendrimer cytotoxicity, and such effects have been noted

to increase with dendrimer size, charge density, and concentration. Despite a number of

efforts, there is still not full clarity on the physics and parameters governing dendrimer-

membrane interactions and the role of grafts in modulating such interactions. Motivated

by the above considerations, in this study we developed a coarse-grained model of grafted,

charged dendrimers interacting with anionic membranes.

2. Conductivity of polymer membranes using time-extending simulations

Electrochemical devices such as batteries and fuel cells have recently become popular in

the quest for clean and sustainable energy sources. Electrolytes that facilitate ion transport

between electrodes are key components in such devices, and polymeric membrane materi-

als have emerged as attractive candidates for such applications.1–6,6–12 However, high ionic

conductivities in polymeric materials are often obtained in rubbery polymers which lack the

requisite mechanical strength for solid state batteries.13 In an effort to enhance the mechan-

ical properties of such polymer membranes, a variety of strategies have been explored, such

as cross-linking of the conductive homopolymers, using diblock copolymers etc.14–23 In such

contexts, interest has recently arisen in the strategy of using “nanocomposite” membranes,

which contain nanoscale inorganic fillers dispersed in the polymer matrix.24–31 A number of

studies have demonstrated that the addition of ceramic particles having nanoscale dimen-

sions and suitable surface characteristics can improve properties such as anodic stability,29

the low temperature conductivity and the cyclability of the polymer matrix.32–36 Such

demonstrations have provided a strong motivation for understanding of the influence of

nanoparticles on the electrochemical properties of polymeric electrolytes.

This specific work was motivated by the influence of nanoscopic filler particles upon the

low temperature conductivity of the polymer matrix. For instance, Croce et al.27 considered

TiO2 particles dispersed in a poly(ethylene-oxide) (PEO) matrix and demonstrated an in-

creased ionic conductivity relative to the pure polymer matrix. Such results were rationalized

by suggesting that the addition of nanoparticles suppresses the crystallization of the polymer

matrix to promote the local mobility of the polymers.29,37,38 On the other hand, some exper-

iments have noted that conductivity enhancements in composite polymer electrolytes can
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occur even at temperatures above the melting point of the polymer, which suggests that the

physical mechanism underlying conductivity enhancements cannot be attributed solely to

the suppression of crystallization.25,29,39,40 Moreover, in some cases, lowering of conductivity

has been observed upon the addition of nanoparticle fillers.37,41 Such contradicting results

motivate the questions, “What are the mechanisms underlying the ionic conductivities of

polymer nanocomposites?,” “Do ion conductivities in polymer nanocomposites always cor-

relate with the influence of the fillers on the polymer mobilities?,” and “What is the role of

nanoparticle-induced modifications in polymer conformations in influencing ion mobilities?”

In Fig. 1, we present results for the lithium ion diffusivities, D, in PEO matrices as

a function of particle loading for three different temperatures. We observe that there is

a monotonic increase in the ion mobilities with increasing system temperature. Such a

behavior can be understood as a consequence of the increase in polymer mobilities with

increasing temperature. More pertinently, we observe that at a specified temperature, the

lithium diffusivity decreases monotonically with the addition of nanoparticles. We note that

in general the addition of nonconducting nanoparticle obstacles is expected to block con-

ducting pathways and lead to diminished ion diffusivities. However, the mobility reductions

expected from such effects are expected to be less than 10% for even the highest particle

volume fraction considered in our study (which was of the order of 5%). It can be seen that

the mobility reductions in our system significantly exceed the magnitudes expected from

such obstructional effects, and indicates nontrivial mechanisms underlying the influence of

nanoparticles.

To probe the correlation between the lowering of ionic mobilities (Fig. 1) and the polymer

segmental relaxation times, in Fig. 2 we display a direct comparison of the ionic diffusivities

with the inverse relaxation times. While the diffusivities are seen to deviate from the behav-

ior expected from Stokes-Einstein like relationship (D ∝ τ−1), nevertheless, for both lithium

concentrations it is seen that the ionic mobilities are strongly correlated to the modified

polymer segmental relaxation times. Such a result suggests that the impact of nanoparticles

upon the ionic mobilities arises primarily as a consequence of the influence of the former

upon the polymer segmental dynamics.

In summary, we presented results of atomistic MD simulations based on multibody po-

larizable force fields which showed that the addition of nanoparticles to polymer matrices

leads to significant changes in polymer conformations and their dynamics. However, there

3
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FIG. 1: Diffusivities D (cm2 s−1) of Lithium ions in PEO + TiO2 nanoparticle matrices as a

function of weight percentage of nanoparticles: (a) EO:Li = 15:1; (b) EO:Li = 8:1. Lines are

meant to be a guide to the eye.

was observed to be a strong correlation between the particle-induced modifications of the

polymer conformations and the polymer segmental dynamics. As a result, ionic diffusivities

followed the trends exhibited by polymer segmental dynamics. More generally, our results

suggest that ionic mobilities in filled polymer systems strongly correlates with the polymer

segmental dynamics when there is a strong interrelationship between polymer conforma-

tional features and their dynamics. In future studies, we plan to explore the generality of

our results for other polymer-filler combinations.

• Publications Resulting: One publication in press.

3. Conductivity and transport properties of polyelectrolyte membranes

This project focuses on development of computational tools to predict the transport

properties of protons in polymer membranes. Since transport of protons involve bond disso-

ciation processes, such phenomena necessitate quantum mechanical calculations. Our goal
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(b)

(a)
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1 
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D

D

0.73

0.55

FIG. 2: Ionic diffusivities D displayed as a function of inverse of mean polymer segmental relaxation

times in PEO + TiO2 nanoparticle matrices as a function of weight percentage of nanoparticles:

(a) EO:Li = 15:1; (b) EO:Li = 8:1. The different points correspond to the different loadings of the

nanoparticles. The dotted line indicates the power law fit to the data and the numbers correspond

to the exponent of such a fit.

was to develop a simulation scheme which uses quantum mechanically determined rates of

proton transport within the classical simulations of penetrant transport and predict the

overall conductivities of polymer membranes.

Recently acid-base polymer blend membranes are emerging as a promising class of fuel

cell membranes which present opportunities for maximizing proton conductivity and high

temperature dimensional stability with concomitant minimization of methanol crossover.

Many features, such as strength of acid-base hydrogen bonding interactions, hydrophobicity

of the base, size of the base etc. have been speculated as possible causes for their properties.

However, despite the many experimental demonstrations of the novel properties of such

membranes, a fundamental mechanistic understanding of the origins of the properties of such

membranes is lacking. In addition to the fundamental implications, such an understanding

may help in optimizing the properties of the membranes.
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Using all-atom classical molecular dynamics simulations, we recently elucidated, for the

first time, how hydrogen bonding interactions in such membranes affect the methanol trans-

port in such membranes. Explicitly, we demonstrated that accounting for acid-base hydrogen

bonding interactions is necessary to obtain experimentally observed trends. However, we

also show that in most cases, increasing the strength of the acid-base hydrogen bonding

interactions does not lead to an increase in the methanol diffusivities in such systems. The

strength of the parasitic hydrogen bonding interactions is shown to correlate with the pore

distribution characteristics of the membranes and thereby affect the methanol diffusivities

in such systems. The relative strengths of the acid-base and parasitic hydrogen bonding

interactions are in turn shown to be influenced by interplay between structure and the size

of the base units. Our simulation results not only correlate qualitatively (and in many cases,

quantitatively) with the experimentally-noted trends of methanol crossover characteristics of

the candidate blend membranes, but also allow us to justify the experimental results noted

in other systems (which were not simulated in our work).

(a)

(c)

FIG. 3: (a) Structure of sulfonated subunit of SPEEK; (b) Polysulfone unit at the top with the dif-

ferent bases (considered in this study) at the bottom:(i) ABIm (2-amino-benzimidazole); (ii) BTraz

(5-amino-benzotriazole); (iii) PImd (1-H-perimidine); (c) Comparison of normalized methanol dif-

fusivity in our simulation to normalized methanol crossover current density in experiments in Li

at al..42 Both simulated and experimental normalizations are with respect to corresponding value

in PIH (or PImd) blend system.
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• Publications Resulting: One publication.

4. Interactions between dendrimers and lipid membranes

Cationic dendrimers have shown great promise in drug and gene therapy applications.

Despite the advantages realized through positively charged dendrimers, a number of studies

have noted that the non-specific electrostatic binding to charged lipid head groups of cellular

membranes may contribute to dendrimer cytotoxicity, and such effects have been noted

to increase with dendrimer size, charge density, and concentration. Despite a number of

efforts, there is still not full clarity on the physics and parameters governing dendrimer-

membrane interactions and the role of grafts in modulating such interactions. Motivated

by the above considerations, in this study we developed a coarse-grained model of grafted,

charged dendrimers interacting with anionic membranes. We use such a model to study the

following issues:

(i) How do the dendrimer conformational degrees of freedom influence its interactions

with and permeation through membranes?

(ii) How does the addition of neutral grafts affect the interactions between dendrimers and

charged bilayers?

(iii) How does solution pH and membrane surface tension affect the interactions between

dendrimers and charged bilayers?

Our results were in qualitative agreement with observations from previous molecular

dynamics simulation studies.43,44 We observed that dendrimers undergo significant confor-

mational changes to maximize contact between their monomers and the negatively charged

lipid head groups. By performing corresponding calculations for interactions between mem-

branes and (i) non-deformable, porous dendrimers and (ii) charged hard spheres, we were

able to delineate the influences of the penetrability and deformability of the dendrimer on

the PMFs for dendrimer-membrane interactions. For flexible dendrimers, there was a strong

attraction seen between the dendrimer and membrane, with no energy barriers in the in-

sertion of the dendrimer into the membrane. In contrast, the non-deformable dendrimers

and charged hard spheres exhibit an energy barrier with an effective well at a finite distance

from the membrane. The dendrimer-membrane attraction was seen to be strongest for the

deformable dendrimers and weakest for the charged hard spheres.

7



The addition of neutral grafts to the dendrimer exterior was shown to affect the attraction

between the dendrimer and the membrane. In general, we observed that at neutral pH, the

grafted dendrimers experienced a repulsive dendrimer-membrane potential, which arose from

the increase in steric repulsions between the grafts and the membrane. However, when the

pH was lowered representative of the environment in the endosome, the low generation

dendrimers developed an attractive well in their PMF profiles. Furthermore, the addition

of grafts to the dendrimer were seen to reduce the required tension for membrane rupture

and release the genetic material.

The results in this work provide perspective on both the general manner through which

dendrimers permeate cellular membranes and how neutral grafts affect dendrimer-membrane

interactions. When the optimally designed grafted dendrimers are near the cell membrane

at physiological pH, they will not insert themselves into the membrane; however, upon

internalization, the drop in pH and corresponding protonation of the tertiary amine groups

results in favorable dendrimer-membrane interaction. The insertion of the dendrimer into

the bilayer in turn reduces the tension required for the endosomal membrane to rupture

which helps to release the internalized material.

• Publications Resulting: One publication.
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