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Abstract 
 

We describe in this report a new technique for the separation of temperature and 
emissivity in the thermal infrared part of the electromagnetic spectrum. The 
measurement taken with by a passive remote sensing instrument is radiance. This 
radiance is a combination of components originating from the atmosphere and from 
the ground. Once the atmospheric contribution is removed, the result is radiance from 
the ground that depends on its fundamental parameters i.e. temperature and emissivity. 
These parameters are useful to determine the nature and use of the material under 
observation. The new technique presented here is based on an iterative scheme for the 
selection of temperature and of its corresponding emissivity. At each temperature it 
evaluates a criterion, the total square error. The selected temperature is the one 
showing the smallest error. To evaluate the error we first compute the equivalent 
emissivity at a given temperature, we smooth the emissivity using a linear procedure 
then we compute a new radiance for the smoothed emissivity. The error is computed 
by the summation of the squared difference between the ground radiance and the new 
radiance. This technique is robust to noise and atmospheric parameters errors. The 
currently airborne imaging FTIR sensor (AIRIS) built by DRDC Valcartier is targeted 
as an application of interest for this algorithm. However, it can be applied to imaging 
sensor with at least six bands.  

Résumé 
 

Nous décrivons dans ce rapport une nouvelle technique destinée à permettre la 
séparation de la température et de l'émissivité dans la gamme infrarouge thermique du 
spectre électromagnétique. Les mesures obtenues par l'entremise d'un capteur passif en 
télédétection sont une combinaison de la contribution provenant de l'atmosphère et du 
sol. La contribution atmosphérique éliminée, on obtient seule une radiance provenant 
du sol. Cette dernière dépend de paramètres fondamentaux du sol; la température et 
l'émissivité. Ces derniers sont utiles pour l'identification de la nature et de l'utilisation 
des matériaux sous observation. La technique présentée ici s'appuie sur une estimation 
itérative de la température et de l'émissivité qui lui correspond. Pour chaque valeur de 
température, on estime un paramètre d'erreur. La plus faible valeur de ce paramètre 
caractérise la température à sélectionner. L'evaluation de l'erreur est faite en estimant 
pour chaque valeur de température une émissivité correspondante. Cette émissivité est 
lissée au moyen d'une procédure linéaire. Nous calculons ensuite la radiance 
correspondant à cette émissivité. L'erreur est enfin calculée en faisant la somme des 
carrés de la différence entre la radiance émanant du sol et la radiance calculée. La 
technique est robuste au bruit d'instrumentation et résistante aux erreurs d'estimation 
des paramètres atmosphériques. Nous destinons l'application de notre technique au 
futur imageur FTIR qui est construit par RDDC Valcartier. Cependant la technique est 
applicable à beaucoup d'autre capteurs fonctionnant dans la gamme infrarouge 
thermique. Il suffit pour ces capteurs de posséder au moins six canaux de mesure.    
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Executive summary 
 

Hyperspectral imagery applications generate large hopes, especially in the thermal 
band that extends from 8 to 12 microns. These applications vary from target detection 
and identification to terrain characterization. The main source of signal is the material 
composing the pixel footprint. The fundamental properties of the material, emissivity 
and temperature, are responsible for the signal generation, while the atmosphere 
contributes to some signal modifications and generation. The emissivity is 
characteristic of the object nature and the temperature yielding its activity and its 
interaction with the environment.  

The processing of thermal hyperspectral images includes the following steps: 
radiometric calibration, atmospheric contribution elimination, and the extraction of the 
fundamental parameters of the targets. This last step is in the thermal band the 
separation of temperature and emissivity. This document addresses only temperature 
and emissivity separation, for which a first version algorithm was designed and its 
behaviour under various operation conditions. The performance study of the algorithm 
is conducted only with simulations because at this time, there is not enough high 
quality data to carry out this work correctly.  

The described algorithm possesses multiple strengths. It is resistant to noise; it 
generates results even when there is erroneous radiometric calibration of the data; it is 
also able to work when there are large errors in the atmospheric optical parameters; 
there is no bias introduced by random noise in the temperature estimation. Finally, it is 
able to work when the target emissivity is low. All these strengths constitute major 
improvements to similar published algorithms. However, it possesses difficulty when 
the emissivity of the target has large variations within the sensor spectral band. For 
these variable emissivities, the algorithm behaviour will be enhanced in its future 
versions.  

The work performed in temperature and emissivity separation is one of the steps 
leading to a tool suite designed for processing thermal hyperspectral images with only 
in-scene information. This capability will make the image processing and extraction of 
all the information contained in an image independent of any other information 
sources. The work has been carried out in DRDC Valcartier under WBE 15ev11  
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Sommaire 
 

Les applications de l'imagerie hyperspectrale suscitent de grands espoirs, en particulier 
dans la gamme thermique, celle des longueurs d'ondes comprises entre 8 et 12 
microns. Ces applications vont de la détection et de l'identification de cibles, jusqu'à la 
caractérisation de terrain. La plus grande partie du rayonnement perçu par un capteur 
dans cette gamme provient de l'émission propre des objets sous observation. Les autres 
composantes du rayonnement sont générées par l'atmosphère. L'émissivité et la 
température sont les paramètres fondamentaux qui déterminent la quantité d'énergie 
émise par la cible. L'émissivité étant caractéristique de la nature de la cible et la 
température rendant compte de son activité et de son interaction avec l'environnement.  

La chaîne de traitement des images hyperspectrales comprend: l'étalonnage 
radiométrique des données brutes fournies par le capteur, l'élimination de la 
contribution de l'atmosphère ou compensation atmosphérique, et enfin, l'extraction des 
paramètres fondamentaux des objets sous observation en réalisant la séparation de la 
température et de l'émissivité. Ce document traite seulement de la séparation de la 
température et de l'émissivité pour laquelle nous avons élaboré un algorithme dont 
nous décrivons la première version ainsi qu'une étude de comportement face à diverses 
conditions d'utilisation. La caractérisation du comportement est faite par simulation car 
nous manquons de données de qualité suffisante pour effectuer ce travail.  

L'algorithme obtenu dans ce travail possède plusieurs forces; il est très résistant au 
bruit, il fonctionne lorsque l'étalonnage radiométrique du capteur est déficient et 
lorsque les paramètres optiques de l'atmosphère sont mal connus. Aucun biais n'est 
introduit dans l'estimation de la température par le bruit du capteur. Enfin, il est 
capable de travailler lorsque les émissivités sont faibles. Il s'agit ici  d'améliorations 
importantes comparativement à divers algorithmes de même nature obtenus dans la 
littérature scientifique. Il possède cependant des difficultés lorsque l'émissivité de la 
cible varie fortement. L'amélioration du comportement dans ce cas fera l'objet d'une 
étude subséquente.  

Le travail réalisé ici s'inscrit dans une démarche qui devrait permettre d'obtenir une 
suite d'outils qui traiterait les images hyperperspectrales thermiques en utilisant 
seulement les informations disponibles dans ces images. Cette capacité opérationelle 
rendra le sytème de traitement des images autonome pour l'extraction des informations 
de toute nature disponibles à l'intérieur des images. Le travail décrit dans ce rapport a 
été entièrement réalisé à RDDC Valcartier dans le cadre du projet 15ev11   
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1. Introduction 
 

In relation with the design of a new hyperspectral airborne sensor, AIRIS based on 
FTIR imaging technology and operating in the thermal infrared DRDC Valcartier 
undertook work to develop an algorithm for temperature and emissivity separation in 
the thermal infrared band from 800 to 1250 cm-1. This band is also known as LWIR for 
long wave infrared.  

Current algorithms have been studied prior to the design of our technique. The 
techniques can be separated into two classes. The first class considers that radiation 
comes mainly from the ground so they completely ignore the incident radiation from 
the atmosphere and do not make use of the reference the atmosphere provides. This 
first class of algorithms generally produces an estimation of temperature 
corresponding to the highest brightness temperature of the sample at the wavenumber 
where the emissivity is the largest. At this point the emissivity is set to 1 or any given 
number lower than 1 and all other emissivities are computed relatively to that 
emissivity. We did not consider these techniques because we are interested in more 
precision for the estimation of temperature and emissivity. The second class of 
algorithm makes use of the available knowledge about atmospheric downwelling 
irradiance. The atmospheric downwelling radiation shows characteristics enabling the 
positioning of the maximum emissivity at an arbitrary value selected by an algorithm. 
This cannot be done if atmospheric radiation is ignored. Examples of such algorithms 
are the ASTER TES algorithm designed by Gillespie et al. [2], [3], [4] and of Borel’s 
iterative spectral smoothness (ISSTES) [5], [6] method.  

Gillespie technique was designed for application to data obtained from the ASTER 
multispectral sensor. It is however easily applicable to hyperspectral data with some 
minor modifications. The algorithm uses some a priori assumptions about the 
maximum of the emissivity to compute an initial value for the temperature and the 
emissivity. It then uses an estimation of the minimum emissivity and computes 
temperature and emissivity according to this minimum value. This algorithm is fast. 
On the other hand, the ISSTES technique is different. It iteratively tries different 
temperature and chooses the right one according to a smoothness criterion. The 
criterion is computed as the variance of the output of a digital linear filter applied to 
the trial emissivity. In this case, the filter is a second order derivative operator. The 
chosen temperature is the one showing the smallest variance. The likeliest emissivity 
is computed from the measured radiance and the chosen temperature.    

The two previous algorithms show some operation problems. For the ASTER 
algorithm, we observed a bias of at least 1 Kelvin that is superimposed on the resulting 
temperature. This bias was observed by Dash et al. [7].  The bias also affects the 
emissivity. The algorithm also generates numerical overflow error when the emissivity 
is low. The problem arises from the second block of the algorithm where, using the 
emissivity shape characteristics, the algorithm sets the minimum of emissivity. If the 
emissivity is too flat, the algorithm sets the minimum at a too high position and the 
temperature satisfying the Planck law become complex valued. It has not originally  
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been designed for processing low emissivities. It has instead the objective of providing 
results in the case of natural materials. For large pixels such as ASTER footprint, it is 
not likely to have low emissivity, because this type of material (e.g. metallic surface) 
is not often met in natural scene. In the case of the ISSTES, the appeal of the 
assumption is diminished when there is even a small error in the atmospheric 
irradiance estimation or if the sensor is a bit noisy. In these cases, the smoothing filter 
is not well behaved and reduces the algorithm convergence capability.  

Iterative spectral smoothness assumptions are however very interesting and we 
decided to use them in another way. Instead of using a linear filter, that behaves like a 
second order derivative finite-difference filter, we prefer to filter the emissivity 
differently. We then compute a new radiance to obtain the total square error associated 
with the filtered emissivity. The technique behaves better near the likeliest temperature 
than the original ISSTES algorithm. One of the most interesting feature of this 
technique, is its behaviour with temperature. It enables the use of a fast procedure to 
identify the best temperature even with very noisy signals or large atmospheric errors.  

A good algorithm can be stated as having three main characteristics. The first is the 
resistance to noise. The second is the ability to provide a realistic result even with high 
error on atmospheric characterization. The third is a behaviour enabling fast 
convergence toward likeliest temperature. Another interesting feature is the ability to 
work with a variable spectral resolution. The AIR-PIRATE sensor will need such a 
capability. Its signal-to-noise ratio will decrease with an improvement in spectral 
resolution. Resistance to noise feature of the TES technique is mandatory in this 
context. The resistance to atmospheric characterization error is needed because 
atmospheric models are still in a development phase and even if they were completed 
there will remain an error in the acquisition of the atmospheric profiles or on their 
determination using the image itself.  

The algorithm described in the following pages uses iteration on temperature scheme 
similar to ISSTES. It is very resistant to noise. It is also resistant to atmospheric 
characterization errors in the sense that there will still be realistic results when the 
atmospheric characterization is completely wrong. It shows a capability to adapt to 
high or low spectral resolution. Finally, its behaviour is stable enough that it could be 
used with a fast temperature determination technique.   

This memorandum is arranged as follows. It first describes the design of the algorithm. 
Afterwards, it shows results confirming its robustness to noise and atmospheric 
characterization errors. It then presents some results and a critic where it does not 
behave so well. Finally, it provides a conclusion.  
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2. Basis for algorithm design 
This chapter describes the underlying assumptions and phenomenology under which a 
TES algorithm must operate. It also describes the iterative process of temperature 
estimation. It finally includes a description of the structure of the new algorithm. The 
technical details of the implementation are not described in this chapter but in chapter 
3.   

2.1 Theoretical foundations  

2.1.1 Radiative transfer  

We first assume that the atmospheric correction of the hyperspectral image was 
correctly applied. It means that there were no errors in the estimation of the 
transmittance and path radiance during the atmospheric compensation of the image, 
from which we obtain the ground leaving radiance defined as: 

π
εε sEBR )1( −+=    (1) 

where R is the radiance just above ground level, B is the blackbody radiation function, 
ε the emissivity of the sample and Es is the sky downwelling irradiance. The π factor is 
there because we assume the sample is a lambertian surface.  The sky downwelling 
irradiance is the combination of the sun irradiance and the thermal irradiance for the 
sky itself. Even if the sun possesses a large radiance in the thermal infrared, its 
irradiance could easily be ignored when compared with the total atmospheric 
irradiance.  Using equation (1), the channels from which a sensor makes its 
measurements becomes: 

νν
π

ννεννε
ν

ν

dwEBR
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


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 −+=   (2) 

where ν denotes the wavenumber. wn(ν) is a weighting function corresponding to nth 
channel response. If we consider the different components of this equation to be 
constant on the interval over which the channel is defined, it could be simplified to 
yield: 

π
εε sn

nbnn
EBR )1( −+=     (3) 

In the remainder of the document the π factor is incorporated inside the downwelling 
irradiance term. In this context the irradiance will be considered to be radiance. We 
can do that since the surface is considered to be lambertian. Equation (3) is a 
simplification of the complete radiance equation and could generate errors in the 
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estimation of emissivity. However, since equation (2) cannot be easily inverted with 
respect to emissivity, we use instead equation (3). Once the temperature is known, the 
emissivity could be computed using the following expression: 

snn

snn
n LB

LR
−
−

=ε     (4). 

2.1.2 Iteration on temperature 

One of the common bases between our technique and ISSTES is the iteration on 
temperature. To do this, we must use a criterion to detect the best temperature. Usually 
a criterion could not be defined alone, some features of the signal must be removed or 
enhanced to increase the detectability of the correct emissivity. Borel uses a filter to 
remove the slow variation component of the emissivity. His criterion to choose the 
adequate temperature is the variance minimum of the filter output. Our criterion is 
different. We use the minimum of the total quadratic error between the measured 
radiance and a trial radiance computed with the filtered emissivity. The applied filter is 
built using a polynomial smoothing process.   

If the function determining the criterion possesses a convenient behaviour, in the sense 
that it only shows one absolute minimum and no local minima, a fast minimum finding 
method could be used. The algorithm will be slow if instead it possesses multiple local 
minima, because we need to find the absolute minimum. Therefore, the iteration step 
can be adapted to the expected behaviour. Simulations have shown that our technique 
enables larger temperature steps when compared with ISSTES.     

2.2 Description of ISSTES algorithm  

ISSTES computes its smoothness criterion using the variance of the result of the 
application of a linear filter on the emissivity computed in (4).  The filter is defined as: 

3
11 +− ++

−= nnn
nns εεεε    (5). 

ISSTES smoothness criterion is computed as the variance of the sn values from n equal 
2 to N-1, where N is the number of channels used in the TES operation. This operation 
implies the loss of two values from the extremity of the emissivity vector. Expression 
(5) could be rearranged like this: 

3
2 11 +− −+−

= nnn
ns εεε

     (6) 

By comparison a second order finite difference derivative is given by: 
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2
11 2

∆
+−= +− nnn

n
xxxy ''     (7) 

Where ∆ is the width of the sampling interval. The behaviour of the ISSTES filter is 
the same as the second order signal derivative. It is very sensitive to noise. Looking at 
equation 7, we see that if the sampling interval is 1, then the variance of a filtered 
white noise sequence will be six times higher than the variance of the original 
sequence. This constitutes the lower limit of the variance. Generally, we obtain for the 
variance a figure that looks like Figure 1 in which there is a steep slope on the left side 
of the minimum and a gentle one on the right side. The minimum is not very well 
defined and the effect of noise could even decrease the slope on the right side as we 
can see in Figure 2. In Figure 2 we see outcomes of simulations where the same signal 
is corrupted with additive white noise. The noise amplitude is 1/250 of the blackbody 
emission computed at 293K. We can see that, in some cases, it may be impossible to 
find a minimum for the variance. That is due to the effect of the filter on the 
emissivity. The results shown in Figure 2 motivate our design of a new algorithm. 
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Figure 1: Variance as a function of temperature for a clean signal without noise 
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Figure 2: Variance as a function of temperature for the same signal as Figure 1, for 9 cases of 
noisy degradation. The noise level of the sensor is 1/250 that of a 293K blackbody. Only the 

random sequences change. 

 

2.3 New technique description 

We developed a different way to use the smoothness assumptions. The response of the 
filtering process must be considered carefully. A second order derivative filter 
increases the noise level and lower the signal-to-noise ratio when compared with a 
band-pass or even an all-pass filter. The filter used in ISSTES is a second order 
derivative filter. The frequency response of this filter decreases the signal to noise ratio 
by a very important factor. The emissivity cannot be considered to be stationary in the 
wavenumber domain. A linear filter, for which, every emissivity value has the same 
importance is therefore inadequate. We want to use every spectral band, because in 
low spectral resolution every band counts. ISSTES systematically loses the end bands 
for each measurement, which prevents its application to small band count 
hyperspectral data. With these considerations in mind, we decided to use a smoothing 
technique involving a polynomial fit of the emissivity computed using equation (4). 
The fitted emissivity is then used to compute back the radiance values. The likeliest 
temperature is the one that minimizes the total quadratic difference between the 
measured radiance and the computed radiance. The computed radiance is obtained 
using equation (3) where the emissivity is replaced by the smoothed emissivity. Figure 
3 shows the flow of the algorithm for a given pixel. 
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Figure 3: Program flow for the proposed algorithm 

The following list enumerates the function to be implemented inside the algorithm. 
Some are done only at the initialisation and others are done for each pixel.  

1. Initialization of the algorithm 

2. Initialization of pixel processing. 

3. Computation of the emissivity 

4. Smoothing of the emissivity 

5. Computation of new radiance 

6. Computation of the error 

7. Choice of a new trial temperature 

To summarize the algorithm description, one must remember that the key features of 
the algorithm are the criterion and the filter used to smooth the emissivities.  The 
criterion is the minimum total squared error. The last list describes all the elements 
that must be included in the implementation of the algorithm. All the implementation 
details are described in the following section.  

Algorithm general initialization  
a) Input of sensor noise 
b) Input of downwelling irradiance 
c) Input of channel transmittance 
d) Channel selection 
e) Vectors computation 
f) Matrix computation 
g) Minimum and maximum emissivity 

computation 

Pixel input

Computation of minimum 
temperature 

Iterative estimation of the 
temperature showing the 
smallest radiance error 

Output of the estimated  
temperature and emissivity 
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3. Algorithm implementation 
This section provides the description of the implementation details of the algorithm. It 
includes the design of all the building blocks and the motivation for the choices we did 
whenever it is necessary.  

3.1 Initialization of the algorithm  

The initialization of the algorithm is done using primarily the sensor characteristics 
and the atmospheric radiative transfer parameters such as the sky downwelling 
irradiance and the transmittance. The sensor characteristics are the spectral response of 
the channels and the noise added by the sensor. The radiative parameters can be 
obtained from various sources. Actually, we use radiosoundings acquired in the period 
near the acquisition of image data to compute the radiance and transmittance. 
Atmospheric parameters could however be acquired differently. In order, the following 
tasks need to be done: input the transmittance, input the downwelling irradiance and 
input the sensor noise. Once these steps are done, the channel selection is done using 
the sensor noise and the atmospheric transmittance. The sensor noise appears to be 
amplified when the atmospheric correction, to obtain the ground-emitted radiance, is 
done on the measurement. Therefore the noise levels are not the same; the ground-
emitted radiance noise also depends on the transmittance of the channel. These 
variables are related by: 

NRGR plm ++= τ     (8) 

where Rm is the measured radiance, Gl is the ground leaving radiance, τ is the 
transmittance Rp is the path radiance and N is the sensor noise. Inverting this equation 
to obtain the ground leaving radiance corrupted by noise, we obtain: 

ττ
NRR

G pm
l −

−
=     (9) 

The noise term for the ground leaving radiance is the sensor noise divided by the 
transmittance. It means that, in circumstances of low transmittance, the signal to noise 
ratio of the ground leaving radiance will be too low. When this happens it may be 
better to discard the channel rather than using it and corrupting the whole process. The 
choice should be done with the signal to noise ratio in mind. For example, in our 
simulation we considered that the noise level of the sensor was 1/250 the signal level 
of a blackbody at 293K. It roughly means that with a transmittance of 0.4, the SNR 
will be of 100 for the ground leaving radiance. All the data with transmittance below 
or equal to 0.4 are discarded because of this too low signal-to-noise ratio. It is actually 
an ad hoc threshold. More work is needed to select a better threshold. Another 
possibility is to insert a weighting function to the error computation associated with 
the noise. The weighting function would depend on the noise level and transmittance 
of the channel. We decided to discard the too noisy channels because of their impact 
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on the polynomial coefficients estimation. The noisy channels possess a bad influence 
and should be ignored unless a good weighting scheme is designed to diminish the 
problem.  

3.1.1 Vector and matrix computation   

The polynomial-smoothing filter requires some computation during the initialization 
phase of the algorithm. Fundamentally the filtering process consists in 1) computing a 
set of coefficients for the polynomial that represents the best fit for the emissivity and 
2) computing back that polynomial at each original wavenumber values. This process 
is described in many textbook, however, we reproduce it here, in order to highlight the 
important features of the computation. 

The process starts with a set of measurement {xn, yn} for which a function that models 
the yn with respect to the xn (the channel centers vector) is required.  

The polynomial estimate of yn is defined by: 

∑
=

=
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i
nin xay

0

~     (10) 

The problem is to determine, according to the data, the coefficients ai that give the best 
fit for the polynomial. We use for this purpose the least squares criterion. The total 
square error is defined as: 
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This function describes a quadratic surface in I+1 dimensions where I is the 
polynomial degree. It must be derived with respect to the polynomial coefficients ai. 
Thus we obtain a linear system described by: 

Mbv =     (12) 

where  j
n

n
nj xyv ∑=   and    ∑

+=
n

ij
nji xM   and finally   ii ab = . To obtain the 

coefficients, one only has to compute the inverse matrix of M: Q=M-1 and compute the 
vector vj at each iteration.  

The following steps describe the matrix and vector computation part of the 
initialization. 

1) Compute the power from 0 to I of the channel center vector (xn) and keep those 
values for use in the algorithm operation, they will form the vth vector set {xn

i};  
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2) Compute the sum of the power of the vector xn from the power 0 to the double of 
the polynomial degree. They will form the matrix M. 

3) Invert the matrix M and keep the result for algorithm operation. 

The matrix M possesses the rank I+1. Since the elements of that matrix are the sum 
vector values at the power computed from their matrix position index, an increase in 
the size of the matrix reduces our capability to invert it. The matrix becomes badly 
conditioned with an increase in its size. This fact imposes a maximum value to the 
polynomial degree, which must generally be kept below 6 to avoid bad conditioning.    

The final step, in the initialization procedure of the algorithm, is the computation of 
the minimum and maximum of the emissivity according to the sensor noise 
characteristics. We need in this step, guidance for the tolerable emissivity extreme 
values. For this purpose, we need to use an arbitrary temperature that could not be 
stated easily. The temperature can be defined using various ad hoc criterions in 
accordance with certain assumptions. One interesting criterion is the minimum 
equivalent temperature observed in the image because; the minimum temperature 
implies the minimum signal-to-noise ratio. The equation describing the transfer of the 
sensor noise to the emissivity is: 

)( ss
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+

−
−

=
τ

ε   (13) 

The second term in the right member contains the effect of noise. The only unknown 
in this equation is B the blackbody radiation because the temperature of the material 
under observation is unknown. In only very rare occasions the temperature of a pixel 
will be lower than the sky downwelling irradiance equivalent temperature. The lower 
B, the higher will be the effect of noise on the emissivity. The emissivity, of the 
material represented by the first term of the right member, could be 1, even if that 
situation is very rare. The emissivity defined in eq. (13) can therefore be superior to 
one, because of the sensor noise. The maximum emissivity could therefore be set 
according to the following equation: 
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The standard deviation of the noise of the emissivity is computed using (13) as: 

)( s

n

LB −
=

τ
σσ ε      (15) 

Where B is set at a value corresponding to the lowest possible temperature and F is a 
tolerance factor chosen by the user. Its value depends largely on the knowledge of the 
user about the sensor noise characteristics.  
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The minimum emissivity could also be set similarly. However this time, the minimum 
emissivity could be inferior to zero because of the effect of noise. The equation for the 
minimum emissivity is then: 

)(min
s

n

LB
F

−
−=

τ
σε       (16) 

The importance of the maximum emissivity lays in the selection of the minimum 
temperature at which the algorithm will start at the beginning of each pixel processing. 
Its value needs to be computed for each sensor channels.       
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Figure 4: Detailed algorithm of the pixel processing 
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3.2 Pixel processing 

In the previous section, the initialization phase of the algorithm is described. The 
object of the present section is to describe the operation of the algorithm (pixel 
processing). The pixel processing objectives are to obtain a temperature value and an 
emissivity set. One temperature value is needed for a given pixel while a set of 
emissivity values, one for each channels of the sensor, is needed. To obtain the 
temperature and the emissivities, a process has been designed. This process starts 
when a radiance measurement is introduced into the algorithm. The lower limit for the 
temperature is the first computation. It is done with eq. 17.   
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Where εmax,n is the maximum value the emissivity could take at the nth wavenumber 
bin. It is obtained using equation (14). The minimum temperature computation 
constitutes the initialization of the pixel processing described in Fig. 4. In the 
following pixel processing, temperatures are selected using a minimum search 
technique based on the total quadratic error.  

A loop follows the initialization. The first task, performed in this loop, is the 
computation of an emissivity value. It is done using equation (4). Afterwards, the 
emissivity is smoothed using the following procedure that begins with eq. 18. 

∑
=

=
N

n

i
nni xs

0
ε      (18) 

The s vector is a column vector of intermediate values used in the polynomial fit. Its 
component number is the degree of the polynomial plus 1. The xn

i is the nth 
wavenumber elevated to the power i. The polynomial coefficients, then, are computed 
using the matrix Q and the s vector  
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  (19), 

and finally the smoothed emissivity is computed using the polynomial coefficients. 

∑
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'ε    (20). 

This procedure is equivalent to the computation of a large square matrix with the size 
of the emissivity vector, which is computed as follows: 
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Let X be the rectangular matrix for which each line is the power of the vector xn. The 
number of lines is equal to the polynomial degree increased by one. The smoothing 
matrix is obtained using the steps given above. It has the form: 

εε Gn ='   Where QXXG T=    (21) 

The G matrix is a square matrix that has the same size as the emissivity vector 
dimension. However, the G matrix rank is determined by the rank of the Q matrix and 
is the same as the degree of the polynomial plus one. XT is the transpose of the X 
matrix. There could be an operational gain in using directly the G matrix as a linear 
filter, but it is interesting only for large polynomial values and small channel numbers. 
What makes the interest of the smoothing matrix is that it enables the study of the 
whole process in a simpler way, noting that the complete smoothing process is in fact 
the application of a linear filter to the trial emissivity. This study will lead to more 
interesting filters, optimized for atmospheric effect reduction or noise mitigation. 

The following step is the computation of radiance using the smoothed emissivity. This 
is done using eq. 3 and the smoothed emissivity. The new radiance could be written as: 

snnnnn LTBR )'1()('' εε −+=    (22) 

The total quadratic error is computed as a function of temperature. It is given by: 

[ ]22 '∑ −=
n

nn RRE    (23) 

Equation (23) is the sum of quadratic differences. The fact that the modeled emissivity 
could have an offset compared with the true emissivity is handled by the return to the 
radiance domain using the trial temperature. The total quadratic error could also be 
replaced by the total absolute value of the differences. In this case, there are only 
marginal differences between the two schemes. Instead of an error on radiance, the 
difference between the trial and filtered emissivity could be used as the temperature 
selection criterion. The reason why the error on radiance his used lies in the fact that 
noisy bands see their influence reduced, when compared with the difference in 
emissivities.  The differences between these computations are illustrated below. 
Mathematically the emissivity change could be stated as: 

( )22 '∑ −=
n

nnE εεε  (24) 

where  

εε G='     (25) 

G is the operator representing the filtering process. The error on the radiance could be 
represented as follows: 
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The radiance at channel n could be replaced with the parameters used to compute it. ER 
leading to the following expression: 

( ) ( )[ ]∑ −−=
n

nnsnnR LBE 222 'εε       (27) 

Which is almost the same as equation (24) with the exception of the weighting 
function composed of the difference between the blackbody radiation and the 
downwelling irradiance converted into radiance. This weighting function depends on a 
slowly varying function, the blackbody relation, and the sky irradiance, which varies 
faster. Most of the time the temperature of the ground will be higher than the apparent 
temperature of the sky. However, at low atmospheric transmittance the atmospheric 
irradiance will be at its highest point, so the weighting function will be small. The 
noise level possesses its largest value at low transmittance. Equation 27 provides a 
natural consideration for noise. This way, some very noisy channels are usable and 
their effects mitigated in the error computation when compared with the less noisy 
channels.  

3.2.1 Minimum search and selection of new temperatures  

One of the strength of this method is the fact that the error computed with equation 
(21) is generally well behaved. It is smooth with temperature. Its shape is very similar 
to a parabola in the temperature region of interest. This is true even with very noisy 
signals. This behaviour enables the use of fast minimization algorithm of the error. 
The fast technique could be used with a very noisy signal and large errors in 
atmosphere downwelling irradiance estimation. In the initialization procedure done for 
each new pixel, we have computed the minimum possible temperature. This value is 
the starting point for the minimum search algorithm. In the following the search 
technique is described. 

Start at the minimum temperature value; 

Set the temperature step to 1K; 

Compute the total quadratic error; 

Repeat the sequence of increasing the temperature by one step and compute the total 
quadratic error until the error begins to increase;  

Reduce the temperature step by a factor of 10;  

Reduce the temperature by one step and keep reducing the temperature until the error 
begins to increase;  
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If the error increasing behaviour began at the first iteration increase the temperature by 
one step until the error starts to decrease;  

Reduce the temperature by one step. This is the minimum temperature. 

The application of this procedure will lead to evaluations of the error approximately 20 
times per pixel. The number of times the error has to be estimated can be reduced with 
the use of a better minimum search technique.  

3.3 Polynomial degree 

A polynomial of a too low degree will not enable the modeling of some emissivities, 
while a too high degree introduces a too good modeling of computed emissivities and 
the remaining atmospheric features contained in the computations. There is another 
reason for keeping the polynomial degree low. In the initialization a matrix needs to be 
inverted. It is notorious that the matrices used in polynomial fitting are frequently not 
well conditioned. This problem increases with the high polynomial degree. 
Computation tricks may be used to reduce this problem.   

3.4 Conclusion 

The implementation details of the algorithm have been described in this chapter. The 
technique initialization procedure, the initialization of the pixel processing, the process 
itself, the decision rule for the choice of the pixel temperature and the use of the 
quadratic error have been described. To remove the atmospheric features from the 
emissivity, a polynomial fitting technique is used. The hypotheses behind this choice 
are that at the right temperature the trial emissivity will contain a very small amount of 
atmospheric feature and that the materials emissivities are smooth when compared 
with the atmospheric features. The material emissivity will not be modified by the use 
of a sufficiently low degree polynomial. It implies that the differences in the radiance 
domain between the measurement and the smoothed emissivity computed radiance are 
minimum at the adequate temperature. The emissivity filter possesses a tremendous 
importance because it is the key element for determining stability, accuracy and noise 
sensitivity of the algorithm.  

A stable error function enables the use of a fast minimum search technique. This 
search technique, while secondary in importance to the precision has been described in 
this chapter. It also includes the decision rule for selecting the correct temperature. The 
gradient technique is not used because an analytical expression for the error does not 
exist. Instead, an iterative method is used. It is based solely on the computation of the 
quadratic error.   
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4. Robustness of the algorithm to noise and 
atmospheric modeling errors 
An interesting characteristic of a TES algorithm is ability to work in very adverse 
conditions: it must provide results as accurate as possible for inputs that are not 
accurate. Three major impairments could affect the signal. The first is the noise 
generated by the sensor. The second is the inaccuracy of the downwelling irradiance at 
the input of the algorithm. Finally, the third impairment is the incorrect atmospheric 
correction (wrong estimation of path radiance and transmittance) of the pixel. 
Inaccuracies in estimation of atmospheric optical parameters occur generally because 
the atmosphere is not well modeled or the radiative transfer model is wrong. Since the 
error in atmospheric correction increases with altitude, a satellite born sensor will 
suffer more than a low altitude airborne sensor. The error in estimation of 
downwelling irradiance, however, does not depend on altitude. It has a higher effect on 
low emissivity targets. If the downwelling irradiance estimation is erroneous, it is very 
unlikely that the estimation of other atmospheric optical parameters would be good. 
The largest difficulty in estimating the robustness of a TES algorithm to inaccuracies 
in atmospheric modeling arises from the present incapacity to model them. The errors 
are largely dependent on the used atmospheric correction algorithm and they have to 
be characterized on that basis. Attention has been directed at robustness to errors in 
downwelling irradiance estimation and a simulation approach has been used. 

4.1 Simulation description 

The TES technique seems quite robust in a number of operating conditions. A 
stressing atmospheric model, the MODTRAN tropical model, is used. It is stressing on 
the algorithm because it lowers the contrast between the blackbody radiation emitted at 
the ground temperature and the atmospheric downwelling irradiance. The sensor is 
positioned at a 10 km altitude for transmittance computation. The simulated sensor is a 
FTIR having bandwidths of 4cm-1 and channels going from 800 to 1250 cm-1. The 
channels showing a transmittance lower than 0.4 are eliminated in the channel 
selection step as this has been discussed in the previous chapter. The experiment 
characteristics are the following:  

• About the sensor: 

•  FTIR sensor with 4 cm-1 channel bandwidth 

•  Noise level corresponding to 1/250 of the 293K blackbody 

•  Position of 10 km above ground 

• About the targets 

•  Temperature of 293K 
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•  Emissivity extracted from the ASTER Library 

• About the atmosphere 

•  Simulation atmosphere is MODTRAN standard tropical  

•  Adverse atmospheric conditions 

• MODTRAN tropical +2 degree temperature offset 

• MODTRAN tropical –2 degree temperature offset 

• MODTRAN mid-latitude summer 

To estimate the temperature selection accuracy, three simulations have been selected. 
The first one had the objective of to verify the effect of noise on the temperature 
estimation. The second one aimed at estimating the algorithm robustness to 
atmospheric modeling errors. The objective is the verification of the stability of the 
algorithm when the error of atmospheric downwelling irradiance is high. The 
measured radiance is simulated using the MODTRAN tropical atmosphere model, 
while the downwelling irradiance is computed using the MODTRAN mid-latitude 
summer model. The last simulation is the most streesful case for the algorithm; 
random noise is added to the second simulation measured radiance. To illustrate the 
results, the computation done with a colemanite emissivity "colemac.txt" extracted 
from the ASTER spectral library is used. 

4.2 Algorithm resistance to noise 

The first studied simulation is the noise simulation. It is performed with the use of all 
the samples contained in the ASTER spectral library. In all cases the algorithm 
converged to a valid value, which means a clear minimum error.      

Figure 5 shows the error curve as a function of temperature for an ideal case, without 
noise or atmospheric error. The inability of the smoothing filter to model perfectly the 
emissivity of the colemanite explains the remaining error at the minimum position. It 
also explains the temperature estimation error. The temperature should be 293K. 
Remember that the objective of the filter is not to model accurately the emissivity; it is 
the removal of the atmospheric residues in the computed emissivity. This introduces 
errors in the results whenever there is a sharp variation in the emissivity.  
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Figure 5: The error as a function of temperature for the sample of colemanite 

Noise introduces errors in the signal. These could be interpreted as atmospheric 
features in the computed emissivity by the algorithm. The random noise generated by 
the sensor possesses a different behaviour compared to the atmospheric features. Its 
mean is null and its standard deviation depends on the sensor noise and on the channel 
transmittance. Figure 6 shows for the colemanite sample some of the Monte-Carlo 
results in the experiment made with the use of the good correction atmosphere and 
measured radiance corrupted by noise.    
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Figure 6: Error as a function of temperature for noisy data 
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The error floor, the temperature position and the sharpness of the error parabola, are all 
affected by noise, as it can be seen in Figure 6. The error floor is higher than what is 
observed in Figure 5. It does not influence much the algorithm's ability to find a 
minimum position. The temperature position is more influenced, since half a degree of 
precision must be tolerated with such a high noise level. The third effect, the 
broadening of the parabola could be interpreted as a decrease in stability of the 
algorithm because of the noise. If we compare with ISSTES in Figure 2, we see that 
this technique is more stable with the same input data. 

4.3 Algorithm resistance to downwelling irradiance errors 

A simulation performed with high atmospheric downwelling irradiance error is 
presented in Figure 7. To generate the measured radiance the MODTRAN standard 
tropical model   and the MODTRAN standard mid-latitude summer atmosphere has 
respectively been used for the computation of the measured radiance and the 
correcting downwelling irradiance. Figure 8 shows, for the same set of atmospheric 
models, simulations performed with some noise added.    
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Figure 7: The error as a function of temperature for the sample of colemanite with the wrong 

atmosphere 
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Figure 8: Some samples of the error as a function of temperature for noisy data and wrong 

atmosphere for the sample of colemanite. 

These atmospheric conditions can be considered as extreme cases of error. 
Nonetheless, the algorithm still converges with stability toward credible values. The 
difference between Figures 7 and 5 is that the parabola is much wider in the first one. 
The position of the minimum for the choice of the temperature did not change much. It 
can be seen, from the comparison of Figure 8 and 6 that the width of the parabola 
increases further when noise is added. The width increase can be interpreted as a 
stability reduction of the algorithm.  

4.4 Conclusion 

It has been shown in this Chapter that the designed algorithm is quite resistant to 
sensor noise and to atmospheric downwelling estimation errors. The errors introduced 
by a wrong atmospheric correction are not considered in this chapter. The impacts of 
these last errors must be considered separately in conjunction with the algorithm that 
will be used for estimating the atmospheric correction parameters, the transmittance 
and the path radiance.   

The objective of this section was to demonstrate the good behaviour of the algorithm 
in a wide range of conditions even in the case of large errors from both noise and 
atmospheric nature. The algorithm has demonstrated it has this capability. The 
demonstration is needed to provide some confidence in the possibility to use a fast 
minimum search technique to a multitude of cases. Confidence in the algorithm is well 
founded because the stability looks to be very high. However, one must not be too 
confident as some cases could exist that will prove to be wrong. To consider those 
probable cases, a feature for detecting an out of range temperature should be included 
inside the algorithm.    
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5. Critic of algorithm operation  
In the previous chapter, the concern was to establish the stability of the algorithm 
when it is subject to strong errors. In this chapter the aim is to verify the susceptibility 
of the algorithm to impairments. The study is based on work already carried out on the 
Borel ISSTES algorithm by Ingram and Muse [6]. They provide an interesting way to 
analyze the results of a TES algorithm. In their work, three types of errors are 
identified depending on the algorithm operation or on its assumptions. The first kind of 
error is defined as the algorithmic error, i.e. the error generated solely by the use of the 
technique without any impairment and in the best possible conditions. This error is due 
mainly to the under-determinate nature of the algorithm. Measurement error such as 
the sensor noise constitutes the second kind of errors. Ingram and Muse considered 
this noise to be white and gaussian. The last type of error is the modeling errors, i.e. 
the errors caused by problems with atmospheric corrections techniques and the 
downwelling irradiance estimation errors or by any other pre-processing steps 
performed on the image. The atmospheric modeling error is due mainly to algorithmic 
error on estimation of atmospheric parameters such as the downwelling irradiance, the 
transmittance and the path radiance. They will be studied in conjunction with the 
atmospheric correction algorithms in future work. Another error is due to sensor 
calibration. It is supposed that the sensor is well calibrated spectrally and 
radiometrically because calibration errors are very difficult to characterize.    

The error study is focused on the effects due to sensor noise and those of the 
variability in emissivity. To fulfill this task, a complete set of data has been generated 
by simulation. The emissivities contained in the ASTER spectral library are used; it 
represents a number of 1244 emissivity samples. The radiances are computed for a 
temperature of 293K at the surface and the use of MODTRAN standard tropical 
atmosphere for the other radiative transfer parameters. Some of the samples duplicate 
measurements of the same material in a different form, some are solid and others are 
powders. The atmosphere and ground temperatures were chosen in order to diminish 
the contrast between them. This setup stresses the algorithm because it decreases the 
signal-to-noise ratio for the ground leaving radiance. The dataset is then perturbed 
with white noise transferred from the sensor to the ground through the transmittance. 
A hundred sequences of noisy data were generated this way and recorded for future 
use. The algorithm is used with the complete dataset to obtain the results of 
algorithmic errors and the effects of sensor noise on the data. 

5.1 Algorithmic error 

The algorithmic error must be considered for both the temperature and emissivity even 
if these two errors are interdependent. A temperature error, for instance, will generate 
an offset on the emissivity.  Ingram and Muse [6] evaluated the error in emissivity 
with root mean square (RMS). However, the use of an offset from the current 
computed emissivity to the sample emissivity is preferable since it is the kind of error 
that will generally be observed. The random noise introduces an error in the estimation 
of temperature. This error in temperature introduces an error in the emissivity 
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estimation. Since equation 15 suffices to describe the effect of noise on emissivity and 
that this error is linked to the error on temperature, the effort is concentrated on the 
evaluation of the error on temperature rather than on emissivity.  

From the simulation results, using the ASTER spectral library, three groups of 
emissivity samples have been identified to cause high temperature errors. The first 
group generates errors that are more than 2K below the target temperature, the second 
generates errors 2K higher and finally the last group generates errors below 0.1K from 
both sides of the target temperature the remaining emissivity samples are generating 
errors below 2K but not outstandingly good estimation. 

The first group is constituted of 9 samples. These are the files:  olivin4t.txt; 
olivin6t.txt; olivin8t.txt; orthoc3s.txt; ps22ac.txt; s22am.txt; sanidi1s.txt; topaz1s.txt; 
vesuvi1s.txt. The emissivity of these samples all show very sharp transition from low 
to high emissivity or brutal changes of amplitudes. These could be difficult to model 
with our polynomial and so produce these types of errors. The largest error is given by 
ps22ac.txt and is of –3.08K. This sample is a kind of silicate material from India.  

The second group generates errors that are larger than 2K. It is composed of 14 
samples. These samples are: andrad1s.txt; bustam1s.txt; c02af.txt; clinoz1s.txt; 
hemimo1s.txt; hornbl3s.txt; natrol1s.txt; ns03bc.txt; ns03bm.txt; quartz1s.txt; 
richte1s.txt; tremol1s.txt; tremol2s.txt; zoisit1s.txt. Of these samples, zoisit1s.txt 
generates the largest error of more than 7K. It is followed in order by: natrol1s.txt; 
clinoz1s.txt and quartz1s.txt, which generates, respectively, errors of about:5.7K, 4.5K 
and 3.8K.  

Zoisit1s is a silicate material from Tanzania. This sample represents the most difficult 
case for the algorithm to tackle. Figure 7 shows the emissivity of the sample. In the 
band of interest it has two deep valleys. These valleys are very deep and a polynomial 
of the fifth degree is not good for modeling it. Higher degree polynomials were tried to 
estimate the needed degree. A 15th degree polynomial was needed to reduce the error 
made with the zoisit sample to an acceptable level. This polynomial also models too 
accurately the variations introduced by noise and atmospheric perturbations. It has to 
be discarded as a solution because of this behaviour. This kind of result, if occurring 
more frequently, will trigger the need for the design of a different algorithm more 
adapted to these situations. Adding together the samples generating high error levels, a 
number of 23 samples is obtained. When compared with the 1244 samples it means 
that less than 2% of the samples are causing errors exceeding a 2K limit.   

The last group is composed of samples generating very small errors. That one is 
composed of 183 samples out of the 1244 processed samples. There is no need to 
enumerate them. However, their emissivity is generally very well behaved in the sense 
that they are very flat in most cases if they are low or they may vary but still stay at a 
high level above 80% emissivity. Of the 1244 samples processed 1221 samples stays 
below the +- 2K errors for the algorithmic error.  

The error on emissivity depends on the error on temperature, especially if there is no 
error on the atmospheric downwelling irradiance. The fact that temperature is crucial 
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to the operation of the algorithm implies that if there is no error on the temperature 
there should also be no error on the emissivity other than what is introduced by noise. 
At 300K an error of 1 degree is likely to generate an error of approximately 2.5% on 
the emissivity at 1000 cm-1. In Figure 9 the errors in emissivity are approximately of 
16% for a temperature error of 2.5K. This error   is spread evenly on the whole 
emissivity with differences generated by the shape of the blackbody function and 
atmospheric introduced feature. The emissivity of the Zoisit1s sample is given in 
Figure 9 and its error curve in Figure 10. 
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Figure 9: Emissivity of the Zoisit1s sample. 
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Figure 10: Error curve for the Zoisit1s sample 
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The error curve shows a minimum that is not well defined and largely above the 
simulation temperature. It is clear that noise will have a strong effect on that sample.  
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Figure 11: Error on emissivity for sample of orthoc3cs, estimated temperature 290.5K 

Figures 9 and 11 shows samples of emissivity that generates high error levels. One 
common characteristic of these emissivities is that they have strong variations as a 
function of wavenumber. In the case of the sample shown at Figure 8, at least two 
local minima and two local maxima with a number of low importance local maxima 
and minima. For the ortho3c sample shown at Figure 11, there is 1 local maximum and 
2 local minima with two ramps at the edges of the sample. We use in the algorithm a 
fifth degree polynomial for the representation of the emissivity. Such a function could 
possess only a total of four minima and maxima. It means that in such cases the fifth 
degree polynomial will not work and must be replaced by something else in the design 
of the filter. Nonetheless, the technique is promising in its actual form. It works well 
for low emissivity targets and for emissivities that do not change much, like 
vegetation.  

5.2 Error due to measurements errors 

In this section we consider only the random error made on the measurement. This error 
is considered as white gaussian noise generated by the sensor. Measurements are taken 
independently so there should be no correlation between measurement errors from one 
channel to the other. Ingram and Muse [6] used two procedures to estimate the 
retrieval error. They developed an analytical method based on the implicit function 
theorem for the estimation of the variance and bias of the error. They also used a 
Monte Carlo simulation to obtain the variance and bias due to noise. Even if the noise 
is additive and possess a zero average, a bias produced by non-linearity of the process 
could exists. This bias could be estimated with the use of a Monte-Carlo experiment. 



Unclassified 
 

26 DRDC Valcartier TM 2004-124 
 
  

Unclassified 

Only the Monte-Carlo simulation was used to obtain the bias and the standard 
deviation of the error for the case of an already well-behaved sample of colemanite. 

5.2.1 Monte Carlo experiment 

The algorithmic error associated with the colemanite sample is -0.31 K. The 
simulation was launched using the already computed ground emitted radiance. The 
sensor noise was transferred to the ground with the use of the transmittance given in 
Figure 12. The determination of temperature is done 1000 times with a different noise 
vector possessing the same statistical properties. The mean of the error in temperature 
is computed to obtain the noise-generated bias and the temperature error standard 
deviation is computed for each noise level. Two figures, 13 and 14 have been 
generated. Figure 13 shows the bias due to noise and algorithmic error and Figure 14 is 
the standard deviation.  

It can be seen from Figure 13 that the bias added by noise to the algorithmic error is 
very small except for high noise level and is smaller than the algorithmic error itself. 
For the standard deviation shown in figure 14 the noise has a more important effect. If 
an error of about 0.1 degree is tolerable due to the effect of noise then a signal-to-noise 
ratio of approximately 750 will be necessary. With an expected signal to noise ratio of 
250 and the sensor at 10 km a standard deviation of 0.3 has to be accepted. If the 
transmittance is better or if the contrast between the atmospheric radiance and the 
ground radiance being larger, then a sensor could generate more noise and still 
produce the same result. 
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Figure 12: Transmittance for each channel  
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Figure13: Bias error for temperature as a function of signal to noise ratio 
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Figure 14: Temperature standard deviation as a function of signal to noise ratio 

The consideration for the error on emissivity is still the same here as it was in the 
previous chapter. The variance at each channel value depends on the random noise 
statistics in the channel. If there is no bias introduced by the noise the offset error due 
to noise on emissivity will remain very low. There will only remain the offset error 
due to the algorithmic temperature error. The effect of noise on emissivity is to make it 
spiky. If an error due to temperature algorithmic error exists, then the remaining 
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atmospheric spikes will add to the noise spikes. To alleviate this problem one could 
use a noise reduction filter that will diminish the effects of the random noise and the 
impact of the variations in atmospheric downwelling irradiance. 

5.3 Conclusion 

In this chapter, simulations studying the behaviour of the algorithm relatively to 
algorithmic errors and noise have been performed. The algorithmic error is defined as 
the estimated temperature offset due to the operation of the algorithm on a given 
sample. It is due to the underdetermined nature of the TES problem. One goal in the 
design of a suitable algorithm is to reduce it as much as possible in most cases. The 
noise can introduce two forms of errors; a bias due to the nonlinear behaviour of the 
estimation technique and a random inaccuracy in the estimation of temperature. This 
last error is normal and constitutes a linear behaviour of the algorithm.  

The simulations are using stressing conditions for contrast between the ground 
thermally emitted radiance and the incident irradiance from the sky. Nonetheless, the 
obtained estimation error on the temperature are in most cases below 2K. In some 
cases where the emissivity of the sample changes a lot the error is too large. The 
algorithm will have to be modified in order to provide better results in these cases. 

Using a Monte Carlo simulation the effects of noise on the temperature estimation are 
assessed. It has been found that the noise-introduced bias on the temperature estimate 
is very small as shown in Figure 13. The linear error due to noise on the temperature 
estimate is more important as shown in Figure 14. To achieve a precision on 
temperature of 0.1K the required signal-to-noise ratio needs to be better than 750.      
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6. Conclusion 
In this document a new technique for the separation of temperature and emissivity 
from the ground leaving radiance is described. To obtain the temperature, it looks 
iteratively for the temperature that minimizes an error criterion, which is the total 
squared error using the following procedure. The algorithm estimates the emissivity 
according to a trial temperature. It smoothes this emissivity using a polynomial linear 
filtering process similar to a matrix operator applied to a vector. The radiance is 
computed back with the smoothed emissivity. The error is the total of the square of the 
difference between the computed radiance and the measured radiance.   

The algorithm is robust to noise and to strong error in atmospheric downwelling 
irradiance estimates. To characterize the operation of the algorithm with error in 
atmospheric parameter one will have to use particular atmospheric estimation 
algorithm in conjunction with the TES algorithm. The error function of temperature is 
well behaved in most situations. In simulations, even with a low signal to noise ratio 
the algorithm converge and there has been no situation where it had not converged in 
realistic noise and atmospheric errors situations. 

The algorithm has similarities with the ISSTES algorithm from Borel [5]. The 
difference stands mainly in the way the sample temperatures are selected. In the Borel 
algorithm the trial emissivities are filtered using a numerical second order derivative. 
The temperature showing the minimum variance for this operator is selected as the 
adequate temperature. The Borel algorithm did not show the same convergence 
capabilities compared to our algorithm in noisy environments. A thorough study of the 
operation of both algorithms in the very same conditions is needed, however, to assess 
and compare their performance.  

It is shown in the document that the filtering process used to smooth the emissivity has 
a tremendous importance in the behaviour of a technique and its susceptibility to noise. 
The filter used to do it must be designed in order to minimize the effects of the noise 
and the atmosphere without too much altering the underlying emissivity. Future work 
on this matter should be done with the goal of reducing as much as possible the 
algorithmic error on temperature and keeping a high resistance to noise. The 
importance of the filtering process constitutes the main theoretical observation made in 
the work leading to this document.   
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List of 
symbols/abbreviations/acronyms/initialisms 

 
R: Ground leaving radiance 
Rn:  Ground leaving radiance for channel n 
ε:  Emissivity 
B:  Planck function 
Es: Sky downwelling irradiance 
n:  Wavenumber 
non:  Lower boundary for channel n 
n1n: Higher boundary for channel n 
n:  Index of channel 
wn(ν): Spectral response for channel n 
Esn: Total value of sky irradiance weighted by wn(ν) 
Lsn: Radiance in channel n corresponding to sky irradiance reflected by a 

lambertian surface 
sn: Result for channel n of Borel's smoothing filter 
y''n:  Second derivative filter result 
∆: Sampling interval 
τ:  Transmittance 
Rp: Path radiance from the ground to the sensor 
Gl: Ground leaving radiance 
N:  Sensor noise 
yn:  Value of a function for channel n 
ny~ :  Estimation of function in channel n 

ai: Polynomial coefficient 
i: Polynomial power and index 
E2: Total square error 
M: Matrix  
mji: Matrix element of matrix M 
εmax: Maximum possible emissivity according to sensor noise 
σe:  Variance of emissivity 
σn: Variance of noise in channel n 
εmin: Minimum of emissivity 
Tmin: Minimum temperature 
B-1:  Inverse of Planck function 
Q: Inverse of matrix M 
εn': Smoothed emissivity for channel n 
X: Rectangular matrix, collection of vectors used in polynomial estimates 
Ee

2: Total square difference of emissivities 
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Glossary 
 

Radiance The intensity of light per unit of solid angle and unit of 
frequency or wavelength or wavenumber 

Irradiance The total intensity of light incident on a given surface 
from all direction per unit of frequency or wavelength or 
wavenumber. 

Emissivity The capability of a surface to emit light comparatively to 
the blackbody 

MODTRAN Moderate spectral resolution software for computation of 
the radiative parameters of the atmosphere 

ASTER A sensor operating with five bands in the thermal 
infrared and a number of bands in the other spectral 
bands. It is on board a NASA satellite 

ISSTES Iterative spectral smoothing temperature emissivity 
separation.  

PIXEL Picture elements: Units of which an image is composed. 
In hyperspectral imagery it is generally the measured 
spectral radiance corresponding to an element of the 
surface of the ground 
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