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SWIR Digital Imaging System 

 
John Green, Tim Robinson 

 
Esterline Control and Communication Systems 

Korry Electronics Co. 
11910 Beverly Park Road 

Everett WA 98204   
 

INTRODUCTION  
 
Shortwave Infrared (SWIR) Focal Plane Array (FPA) Imaging Systems have emerged as viable and important 
technology for military and commercial applications.  This is largely based on improvements impacting sensitivity, 
resolution, frame rate, size, power consumption, and unit cost.  Air Force Research Laboratory (AFRL) has 
particular interest in helmet mounted FPA imaging systems that offer a significant advantage to the US war fighter 
by providing enhanced vision in the SWIR band.  
 
There are several manufacturers of uncooled SWIR cameras.  Given the increasing number of manufactures and 
various camera options available, it is beneficial to characterize the imaging systems using common test and analysis 
methods from an end-user’s point of view.  By adopting common methods, various imaging systems manufactured 
by different OEMs can be compared.   
  
This paper describes test equipment and procedures developed for AFRL to characterize the performance of digital 
SWIR imaging systems.  The equipment has been used to measure Relative Spectral Responsivity, Noise Equivalent 
Irradiance (NEI), Dynamic Range, System Linearity, Pixel Characteristics, Dark Noise, and Image Uniformity for a 
fully assembled SWIR camera.  [1] It has also been used to capture Image Artifacts. The system level requirements 
for the test equipment are described in the next section.  
 

SYSTEM LEVEL REQUIREMENTS  
 
Analog imaging systems based on Gallium Arsenide (GaAs) detectors are sensitive in the visible and near infrared 
(NIR) bands, and used only at night.  They produce images from electrons emitted by the GaAs impinging on a 
phosphor screen.  These analog systems are tested with low irradiance light sources, and often evaluated through 
subjective means.  [2]   
 
SWIR digital imaging sensors overcome many limitations present in traditional analog technologies.  Key areas of 
advancement include Indium Gallium Arsenide (InGaAs) sensor technology with a wide dynamic range useful for 
day and night applications, a spectral responsivity that extends to at least 1.7 μm, and a digital data stream from the 
sensor.  Furthermore, the spectral responsivity is tunable by the manufacturer; the detection range may be extended 
into the visible band by reducing the sensor substrate thickness, and extended further in the SWIR band by 
manipulating the sensor material stoichiometry.  Test equipment designed to characterize digital imaging cameras 
must have the flexibility to capture these benefits. 
 
The test system requirements must also take into the dynamic range associated with the target avionics application.  
As already stated, traditional night vision goggles (NVGs) are used for night operations only.  NVGs are generally 
characterized using a 2856K incandescent lamp set to 0.1 fL to represent night NIR irradiance levels.  Since the 
SWIR imaging system is useful for both day and night operations, the test system should be designed with a wide 
irradiance dynamic range to simulate both day and night levels. 
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Figure 2 shows the spectral irradiance for high intensity sunlight and low intensity night glow from 0.5 to 1.8 μm. 
[3], [4] Each data set contains sharp spectral features associated with either atmospheric absorption or emission 
events.  [5] The spectral gap near 1400 nm is caused by a large atmospheric humidity absorption band. [6] The 
irradiance difference between day and night is approximately 11 decades in the visible band and 8 decades in the 
SWIR band.  A camera useful for both day and night application must have a saturation limit that allows for 
detection at the irradiance levels produced during the day, and have a noise floor less than the minimum night time 
irradiance levels.   The figure also shows that a 3000 K blackbody source set to appropriate irradiance levels may 
approximate the SWIR day spectrum while a 1300 K blackbody source may approximate SWIR night glow. 
 

 
 

Figure 1: Day and Night Glow Spectra (Terrestrial Data); Black Body Spectra approximating the Day and Night 
Glow 

 

Figure 1 estimates the dynamic range and minimum irradiance levels available to the camera when used in an open-
air environment.  However, our target application has two additional factors that must be accounted for.  The pilot 
views the world through a cockpit transparency which can attenuate approximately 10% of the SWIR band.  In 
addition and like NVG specifications, system limitations are based on night irradiance reflections from low 
reflective objects.   For SWIR imaging systems, a 20% reflectance throughout the SWIR band is assumed. [7] 
Taking these factors into account, the minimum night glow irradiance available to a pilot is approximately 2 decades 
less than shown in figure 1.  Therefore, the test bench must have a dynamic range in the SWIR band no less than 10 
decades and produce a minimum irradiance level at 1550 nm no greater than 2 x 10-14 W/cm2.    
 
The image analysis is performed over the entire focal plane array.  The irradiance flux incident across the entire FPA 
must be well characterized at the various test distances.  Any deviation from uniformity must be minimized and 
quantified to correct the baseline of the image data.   For this system, the target flux area is 50 x 38 mm with a 
uniformity > 98% at test positions 11.5 and 22 inches away from the irradiance source.  
 
Table 1 summarizes the primary target requirements for the test equipment.  The system calibrated with Germanium 
sensors has a spectral range appropriate for a non-extended InGaAs imaging system. However, the test equipment is 
designed and can be calibrated for extended InGaAs imaging systems with a range from 600 to 2500 nm. 
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Table 1:  Test Equipment Optical Requirements 
 

Property Target Requirement 
Dynamic Range at 1550 nm 10 Decades 
Minimum Irradiance at 1550 nm 2 x 10-14 W/cm2 
Flux Uniformity at 22 inches over a 50 x 38 mm area >98% 
Spectral Range (with Si and Ge Calibration  Sensors) 600 – 1800 nm 
System Monochromator Range 600 – 2500 nm 
  

EQUIPMENT DESCRIPTION 
 
The test system is composed of three distinct elements.  The first element controls and acquires data from the device 
under test (DUT).  It also controls and acquires data from test equipment components such as a monochromator, 
source lamps, variable apertures (for light level control), picoammeters, and position/stage controllers.  The second 
element is a data processing program that enables the user to manipulate and evaluate images captured under various 
conditions.  The third element consists of various commercially available or open-source data analysis software 
packages for data evaluation and reporting on the imaging systems properties such as spectral range, NEI, dynamic 
range, uniformity, etc.   The relationship among these three elements is in figure 2.  The three fore mentioned 
elements are listed in the figure as System Control and Data Acquisition, Data Processing, and Data Analysis.   
 
The system hardware uses interface converters to connect the various test equipment components to an Ethernet 
backbone.  This design minimizes the types of interface connections, minimizes obsolescence issues around 
computers and computer interface components, and enables the creation of a single software protocol for test 
equipment communication.  As such, the computer can be virtualized and the user can operate the equipment and 
access the data from a remote location.   
 

 

 

Figure 2:  Test Equipment Architecture 

 

1.1 System Control and Data Acquisition 
The System Control and Data Acquisition portion of the Test System consists of hardware and software elements.  
The software element is a LabVIEW program that contains a sequencing module and software drivers for each of 
the hardware components.  Test scripts are created by dragging and dropping LabVIEW controls from the software 
driver to a sequence list.  The data is collected for post processing as the software driver read functions are executed. 
Test script loops are created to perform experiments, such as stepping the monochromator through wavelengths 
while collecting images and reference current values. 
 

System Control and 
Data Acquisition
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Figure 3 shows the user interface for the System Control and Data Acquisition program.  The left column lists the 
available software drivers; highlighted is a SWIR camera driver.  The columns to the right provide actionable 
LabVIEW controls, including (1) selection of software drive (instrument), (2) selection of control name, (3) the 
value of associated with the control, and (4) the type of action to undertake.  The right section of the figure shows 
the user interface for the selected driver.  The controls enable the user to take an image (Snap), stream images 
(Grab), and save images with selected meta-data.  A subset of the camera controls are available and can be modified 
by the sequence module. 
 
Figures 4 and 5 show the schematic and the physical model for the System Control and Data Acquisition hardware.  
The system has three light sources to generate the wide dynamic range specified in the previous section.  250W and 
20W Tungsten filament lamps with a nominal color temperature of 3000K are used to simulate the day irradiance 
spectrum.   A 15W glow bar with a nominal color temperature of 1300K is used to simulate the night irradiance 
spectrum.  The 20 W and 15 W sources are located in satellite spheres attached to the primary sphere.  The flux 
intensity from each lamp is controlled by a programmable variable aperture thereby maintaining constant color 
temperature.  The lamps flood a 12” integrating sphere through these apertures.  The integrating sphere is gold 
coated for maximum SWIR band efficiency. The sphere has a four inch exit port; this port provides the source of 
irradiance incident on the DUT.   
 
 

 
 

Figure 3:  Graphic User Interface for the System Control and Data Acquisition Element 
 
A separate 250W lamp is used with a monochromator to provide a spectral source from the far-visible through the 
SWIR band.  A filter wheel containing order sorting filters is attached to the exit port of the monochromator.  
Monochromatic light enters the sphere through this filter wheel.  This part of the test system is used to determine the 
spectral responsivity of the DUT.  
 
A primary set of photodiodes can be located at the DUT position (shown in figure 4 as 22 inches from the exit port).  
These primary photodiodes are used for calibration, verification, and irradiance uniformity tests.  Silicon and 
Germanium secondary photodiodes are each mounted on the sphere.  The secondary photodiodes are used to 
monitor the sphere’s intensity during a DUT measurement sequence.   
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The DUT is mounted on a bracket attached to a motor controlled positioning stage.  The nominal test distance 
between the DUT’s FPA and the exit port is 22 inches; however the DUT may be moved closer to the exit port if the 
irradiance flux intensity is too low.  There are black baffles extending from the exit port to minimize the impact of 
stray light from the outside environment.  The entire test system is mounted on an optical bench, which is located 
within black curtains, and this curtained off area is in an optical darkroom.   
 

 

 
Figure 4:  System Control and Data Acquisition Hardware Schematic 
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Figure 5: System Control and Data Acquisition Physical Model 

1.2 Data Processing 
The Data Processing program receives digital imaging files with embedded meta-data and supplementary data files 
from the System Control and Data Acquisition element.  The digital imaging files are saved in a Portable Network 
Graphics (.png) file format.    A screen shot of the Data Processing user interface is in Figure 6.  The left column 
contains selection icons for creating different types of new images, performing mathematical operations on the 
select area-of-interest (AOI) within images, and opening and saving images.  The adjacent column to the right is the 
list of working images.  An image or groups of images can be selected and dragged-and-dropped on controls such as 
Set1 and Set2.  If a single image is selected then the image and associated meta-data is in the right hand portion of 
the user interface.   
 
Using one of the four results buttons, the program generates numerical results from the AOI of selected images 
found in Set1.  Results include the digital number mean, standard deviation, histogram, and profiles.  A list of pixel 
values from the same location over multiple images can also be obtained for further processing. 
 
The Data Processing program also performs two special functions important to the image analysis.  These functions 
are used to determine “good” pixels and to create source uniformity correction images.  Four images obtained with 
different flux values are used to determine “good” pixels based on the following criteria:   
 
(1) Does the pixel exhibit a constant non-zero output for all flux values? 
(2) Does the pixel exhibit zero output for all flux values? 
(3) Does the linearity of a pixel exceed the threshold correlation coefficient value? 
(4) Does the pixel exhibit zero output at low flux levels, but is otherwise responsive? 
(5) Does the pixel have abnormal dark field output? 
(6) Does the pixel have abnormal low dark field output? 
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Good pixel maps are established in this data processing step; only the value of pixels deemed “good” are used in the 
analysis of images.   
 
The second special function is the creation of source uniformity corrections maps.  A text data file containing the 
flux measurements sampled at the DUT plane are loaded into the program.  The flux measurements are interpolated 
to create an image having corrections factors for each pixel normalized to the center value. 
 
These maps, coupled with an irradiance responsivity factor associated with the irradiance source, provide the 
baseline to evaluate specific camera performance parameters (NEI, spectral responsivity, dynamic range, pixel 
linearity, etc.).  
 
 

 
 

Figure 6: Graphic User Interface for the Data Processing Element 
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1.3 Data Analysis 
Figure 7 shows the data flow map for the entire test system. The Data Analysis programs that generate the final 
report (shown at bottom and lower right section of the figure) receive raw digital files, processed digital files, and 
meta-data from the Data Processing program.  The Data Analysis programs analyze this information to provide the 
DUT performance final report.  The final report consists three major categories; (1) relative spectral performance 
(spectral responsivity), (2) relative intensity performance (dynamic range, FPA image uniformity, and pixel 
linearity), and (3) absolute intensity performance (sensitivity or NEI).  As shown in the figure, these categories are 
evaluated using previously obtained good pixel maps, image uniformity maps, and meta-data relevant to the specific 
analysis.   

 

 

 
Figure 7:  Data Flow Map through the Test System 
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SELECT TEST EQUIPMENT CALIBRATION AND VERIFICATION TESTS 
Several components within the System Control and Data Acquisition hardware require calibration and/or 
verification.  These components include the spectral irradiance of each lamp, responsivity of system sensors, 
dynamic range of the apertures, flux uniformity for the irradiance source, distance and alignment of the positioning 
stage, optical alignment, wavelength calibration, and bandpass calibration of the monochromator. The calibration 
and verification process for the system spectral irradiance, dynamic range, and the irradiance source spatial flux 
uniformity are described in this section. 
 

 

1.4 System Spectral Irradiance 
The test system elements that provide data used for irradiance analysis (15W, 20W and 250W lamp and the 12” 
integrating sphere) was calibrated by a third party and verified within the host optics laboratory.  The third party 
initially calibrated a scanning, dispersive spectroradiometer using a U.S National Institute of Standards and 
Technology (NIST) traceable standard 1000W FEL type lamp and a NIST traceable diffuse reflectance standard.    
The calibrated spectroradiometer probe was then positioned 22 inches away from the exit port, each test system 
lamp activated, and the irradiance spectrum for each lamp collected.      
 
The calibration was verified in the host optics laboratory using a calibrated Instrument Spectroradiometer System 
(ISS) 320.  The ISS 320 irradiance probe was position 22 inches away from the exit port, the test lamps were 
activated, and the spectrum of the irradiance source collected.  The calibrated spectrum is then compared to the 
verified spectrum.  Figure 8 shows the comparison when using the glow bar lamp driven at a fixed current (2.369 
A).   As indicated in the graph, the calibrated and verified spectra within the SWIR band are reasonably aligned. 

 

 
Figure 8:  Glow Bar Lamp Calibrated and Verification Spectral Data  
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1.5 Absolute Spectral Irradiance 
The absolute spectral irradiance was measured at 1550 nm and bench marked to the current from the silicon sensor 
located on the sphere.  The irradiance responsivity, Rn, is the ratio of the silicon detector current and the absolute 
spectral irradiance at 1550 nm.   The absolute spectral irradiance at different flux levels can be determined by 
scaling according to the relative silicon detector currents, in accordance with equation 1:   
 
 

𝐸𝑒(𝑖𝑀𝑜𝑛 , 𝜆𝐶𝑎𝑙 ,𝑛)[𝑊 𝑐𝑚2𝑛𝑚⁄ ] =
𝑖𝑀𝑜𝑛[𝐴] 

𝑅𝑛(𝑖𝐶𝑎𝑙 , 𝜆𝐶𝑎𝑙)[ 𝐴 𝑊 𝑐𝑚2𝑛𝑚⁄⁄ ] 
 

(1) 
 

Where: 
 

Rn(iCal,λCal) = Irradiance responsivity factor at wavelength λ, lamp calibration current i, and of source n. 
 
iMon = Measured current from the sphere mounted detector. 

 
Table 2 lists the measure current value for the silicon sensor when the glow bar is illuminated and the aperture is 
fully open.  The table also provides both the calculated responsivity factor (Rn) and the measured spectral irradiance 
at 1550 nm. 
 
 

Table 2:  Sensor Current, Responsivity, and Spectral Irradiance for the Glow Bar Lamp 

Property Value 
Current (A) - Measured 7.746E-07 
Responsivity at 1550 nm (A/W/cm2*nm) - Calculated 1.870E+02 
Spectral Irradiance at 1550 nm (W/cm2*nm) - Measured 4.14E-09 
  

 

1.6 System Dynamic Range 
The dynamic range was designed to evaluate camera response from full sunlight to night glow in the shortwave 
infrared band.   Each of the three lamps has a computer controlled high-resolution variable aperture that provides an 
irradiance flux over five orders of dynamic range.  The system’s minimum flux output is limited by light leakage 
through the fully closed aperture. 
 
The dynamic range was verified using a Silicon detector calibrated with the system’s spectral responsivity factor. 
The data was then correlated to irradiance at 1550 nm using the procedure described in section 4.2. The dynamic 
range was measured with the detector positioned at the DUT location, and the detector current as a function of 
aperture setting was recorded.  The system’s dynamic range is in figure 9. 
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Figure 9:  The Dynamic Range for the entire Test System.  Source A is the Glow Bar Lamp; Source B is the 20 
W Incandescent Lamp; Source C is the 250 W Incandescent Lamp. 

 

 

1.7 System Spatial Flux Uniformity 
The irradiance flux uniformity was measured with a Silicon detector having a 2.54 mm aperture, positioned at 11.5 
and 22 inches away from the exit port.  The detector was moved stepwise over a 2 x 1.8 inch area in increments of 
0.1 inches.  Figure 10 shows the flux uniformity of the system illuminated with the 15 W 1300K glow bar lamp 
measured at 22 inches from the exit port.  The blue rectangle in the center of the plot represents the active area for 
the SWIR camera FPA (16 x 12.8 mm). 
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Figure 10:  Flux Uniformity at 22 inches from the Itegrating Sphere Exit Port 
 

 
The irradiance flux increases slightly along both the vertical and horizontal axes.  The central region-of-interest 
shows a deviation of ±0.5% and ±0.1% along the vertical and horizontal axes respectively.  An inverse deviation 
map generated from this data may be applied to the FPA output to correct for the non-uniformity of the incident 
flux. 
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SELECT CAMERA TEST RESULTS 
This section describes select test results for a digital SWIR imaging system analyzed using the equipment and 
procedures described in the previous sections.  Specifically, this section describes Image Uniformity and Spectral 
Responsivity.  Other properties such as NEI, Good Pixel Maps, Dynamic Range, Pixel Linearity, and Dark Noise 
will be the subject of a future paper. 
 
1.8 Image Uniformity 
Spatial uniformity is a measurement of the focal plane array response to a uniform flux.  System verification 
measurements show the uniformity of the incident flux is better than 0.5% at 22 inches from the exit port (see 
section 4.4).  Spatial uniformity is measured by capturing 100 images at an approximate frame rate of one image per 
second.  These images are obtained at four intensity levels, one of which is a dark field.  From these images, the 
digital number mean and standard deviation are calculated for each pixel.   The images are processed using only 
“good” pixels maps established prior to the image uniformity analysis. 
 
Figure 11 shows the mean and standard deviation uniformity maps of the focal plane array for high flux irradiance.  
The mean image is normalized to the average DN value; the contour line with the value “1.0” represents the average 
DN value.  The camera digital output ranges from +14 to -6% of this average.   A digital depression is evident 
slightly below the middle region.   The structure is tilted with an offset concaved surface and high peaks at the 
image field corners.   
 

 
Figure 11:  The Mean (left) and the Standard Deviation (right) Uniformity Maps for an FPA Illuminated with 
High Flux Irradiamce, positioned 22 inches away from the Exit Port, with the Camera set to uncorrected mode 

(Gain = 1X, Global Offset = 0). 

 
The standard deviation uniformity map is predominately stochastic with an average value of approximately 50 DN.  
However, close inspection of the map reveals a structured frame of pixels near the perimeter of the FPA active area, 
most evident along the left and top sides.  This structure is detectable with low to high irradiance flux levels and is 
associated with the camera. 
 
1.9 Spectral Responsivity 
The spectral responsivity of the imaging system is a measurement of the camera’s sensitivity as a function of 
wavelength is determined by measuring the camera digital output relative to a Germanium monitor detector mounted 
on the central integrating sphere.  The camera is then replaced by a calibrated Germanium detector, and a second 
measurement is taken of the calibrated (or reference) Germanium detector and the Germanium monitor detector. 
 
Once measurements are obtained, the spectral responsivity is determined with equations (2) through (4).  The first 
term of equation (3) is the ratio of the camera ROI mean to the monitor detector current.  The second term is the 
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ratio of the monitor detector current to calibration detector current.  The last term is the responsivity of the 
calibration detector.  A responsivity curve is normalized to the maximum value in equation (4). 
 
 

𝐶𝑎𝑚𝑒𝑟𝑎(𝜆) =
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(4) 

 
Where: 
 

MonDetCur = the current measurement from the Germanium detector mounted on the sphere. 
 
CalDetCur =   the current measurement from the Germanium detector mounted at the DUT location. 
 
CalDetResp = the responsivity of the Germanium calibration detector. 
 

 
Figure 12 shows the measured normalized responsivity of the DUT.  The spectral form is representative of 
previously published InGaAs spectral responsivity. [8]  
 
 

 
Figure 12:  Spectral Responsivity of the SWIR Camera Under Test 
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CONCLUSION 
The Department of Defense is interested in helmet mounted digital imaging systems for flight applications.   It is 
envisioned these systems will augment, or in some cases, replace helmet mounted analog night vision goggles 
currently used by most flying US war fighters.  It is generally recognized that there needs to be a way to compare 
various digital systems produced by different OEMs.  Test equipment and methods have been developed to analyze 
the performance of fully assembled devices.  Results of tests conducted with this system should provide the means 
to compare different imaging systems.   
 
The test system is designed to produce a uniform irradiance flux that simulates sunlight and night glow spectral 
properties and intensities within the SWIR band.  Digital information from the fully assembled camera resulting 
from exposure to the flux is used to determine FPA image uniformity, Noise Equivalent Irradiance (NEI), Dynamic 
Range, System Linearity, Pixel Characteristics, Dark Noise, and Image Artifacts.  The test system is also equipped 
with a monochromator to obtain Relative Spectral Responsivity.   
 
A subset of calibration and verification procedures used to confirm the accuracy of the test equipment has been 
described. The spectral output was verified by measuring the spectral power distribution of all lamps associated with 
the test system using an independent spectroradiometer.  The absolute irradiance flux was established through a 
combination of calibration data provided by a third source and verification experiments.  The flux uniformity of the 
system is 99.5% at the DUT position of 22 inches away from the exit port.   The dynamic range of the test system 
was verified to be approximately 10 orders of magnitude and the minimum irradiance level verified at a value less 
than the system requirement (2.0E-14 W/cm2).  These results demonstrate that the test equipment meets the system 
level requirements necessary to characterize high performance digital imaging systems intended to be used in both 
day and night applications.. 
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