Coastal Wave Studies
FY13 Summary Report

Jeffrey L. Hanson
US Army Corps of Engineers, Field Research Facility
1261 Duck Rd
Kitty Hawk, NC 27949
phone: (252) 261-6840 fax: (252) 261-4432 email: Jeffrey.L.Hanson@usace.army.mil

Kent K. Hathaway
US Army Corps of Engineers, Field Research Facility
1261 Duck Rd
Kitty Hawk, NC 27949
phone: (252) 261-6840 fax: (252) 261-4432 email: Kent.K.Hathaway@usace.army.mil

Award Number: N0001411MP20057
http://www.frf.usace.army.mil/

LONG-TERM GOALS

Our long-term goal is to make significant advances to coastal and nearshore wave modeling through improved understanding of coastal and nearshore wave transformation processes.

OBJECTIVES

The objectives of this study are to

1. Make high-fidelity measurements of wave transformation processes in the nearshore and coastal zones. Provide high-quality test cases for model development and evaluation
2. Contribute to the improvement of WaveWatch III and SWAN through the integration of a state-of-the-art wave partitioning and swell system tracking technology
3. Develop and apply robust wave model assessment technology for community use (USACE in-kind support)

APPROACH

Wave observations.

USACE has developed, implemented and maintained a cross-shelf array of meteorological, directional wave and vertical current sensors suitable for capturing all phases of wave transformation across the continental shelf and through the nearshore zone. The nearshore array configuration is depicted in Figure 1. Also included are directional waverider buoys at 17- and 26-m depths and NDBC station 44014 at 95-m depth. As data are collected, we are extracting a variety of events (pure wind sea, pure swell, mixed seas, etc) to use as model development test cases.
Coastal Wave Studies FY13 Summary Report

US Army Corps of Engineers, Field Research Facility, 1261 Duck Rd, Kitty Hawk, NC, 27949

Approved for public release; distribution unlimited
Model Improvements
USACE-FRF is working with WaveWatch III and SWAN developers at NOAA NCEP to implement (1) a wave partitioning capability in SWAN similar to what we previously provided for WaveWatch III, and (2) a spatial tracking capability that can be used in both models to track the space-time evolution of coherent wave systems in the model output. Once tested the resulting improvements are to be released as operational code.

Model validation.
USACE has developed the Interactive Model Evaluation and Diagnostics System (IMEDS) as a prototype GUI-driven toolbox to assess coastal process model performance using a variety of temporal and spatial metrics Hanson et al. (2009). As a diagnostic tool, IMEDS can be used to explore model errors and performance as a function of many variables (station, time, components, etc). Our approach is to transition the prototype IMEDS system into a robust model evaluation tool kit for community use. IMEDS will be split into 2 main components:

1. IMEDS desktop tool
2. IMEDS function library (MATLAB toolbox)
This phase of work focuses on improving existing capabilities (winds, waves, water levels and high water marks) and implementation of the IMEDS function library and the IMEDS Desktop tool. The system is designed such that follow-on work, including a web-based tool and addition of new parameters (currents, tides, beach profiles) can eventually be integrated into the architecture. To facilitate this development, USACE is providing in-kind support in the amount of $300,000 during FY11-14.

WORK COMPLETED

The major technical accomplishments for 2013 include:

Wave observations.

- Maintaining the Duck cross-shore wave and current array in operational status for 5+ years to date
- Time series data collections extended to 100-min to capture infragravity range
- Processing and posting data from 6 new cross-shore wave events to the NOPP validation data archive, for a total of 20 events to date including Hurricanes Earl, Bill, Ida, Kyle, Irene, Leslie and Sandy

Model Improvements

- Collaborating with NOAA/NCEP on improvements to wave system spatial tracking algorithm for WaveWatch III and SWAN.

Model validation.

- Directing the development of a professional GUI interface for IMEDS
- IMEDS II release to NOPP community scheduled for September 2013.

RESULTS

Wave observations.

We now have a 5-year near-continuous data set of wave transformation across the shelf and through the nearshore. Included are a large variety of events including several hurricanes, tropical storms and nor’easters. The 17-m Waverider wave height record, with key events annotated, appears in Figure 2.
Figure 2. Sample wave height climatology (Aug 2008 – Sep 2013) from FRF 18-m Waverider station.

A set of unique cross-shore wave events has been processed and provided to the Waves NOPP validation data archive at NCEP. Care was taken to select events with a clear, distinctive wave signature ranging from pure wind sea events to pure swell events and including both offshore and onshore wind events. During FY13 we have added 6 new events including Hurricanes Leslie and Sandy. Table 1 provides a summary of all events added to date. Note that peak significant wave heights range from 0.7-5.5 m with peak wave periods ranging from 3-17.3 s. Event data includes meteorological forcing, waves (spectra and time series), current profiles, tides, and sea surface temperature. Furthermore, supporting bathymetry survey data and Argus imagery are available for download from the FRF web site (http://frf.usace.army.mil/).

IMPACT/APPLICATIONS

Due to the long-term operation of the Duck cross-shelf array (since late 2008), a variety of unique events, such as Hurricanes Ida, Irine and Sandy, have been collected. The resulting set of events is providing nearshore wave modelers with a rich set of information to improve numerical wave model source term performance in the challenging coastal environment.

RELATED PROJECTS

USACE Wave Information Studies (providing in-kind support for IMEDS)
Table 1. NOPP Wave Events from the USACE-FRF Cross-Shore Wave and Current Array

<table>
<thead>
<tr>
<th>Event</th>
<th>Type</th>
<th>Start YYYYMMddhh</th>
<th>Duration (days)</th>
<th>U10 (m/s)</th>
<th>TWD (from)</th>
<th>Max Hs (m)</th>
<th>Tp (s)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1</td>
<td>Hurricane Earl</td>
<td>2010090205</td>
<td>2</td>
<td>24.0</td>
<td>N</td>
<td>4.5</td>
<td>8.5/15</td>
<td>Mixed sea and swell</td>
</tr>
<tr>
<td>E2</td>
<td>Hurricane Bill</td>
<td>2009082100</td>
<td>3</td>
<td>4.0</td>
<td>NW</td>
<td>3.6</td>
<td>17.3</td>
<td>Swell with harmonics</td>
</tr>
<tr>
<td>E3</td>
<td>Noreaster Ida</td>
<td>2009111112</td>
<td>6</td>
<td>14.9</td>
<td>NE</td>
<td>5.2</td>
<td>12.9</td>
<td>Wind sea</td>
</tr>
<tr>
<td>E4</td>
<td>Noreaster</td>
<td>2008101800</td>
<td>4</td>
<td>16.5</td>
<td>NNE</td>
<td>3.7</td>
<td>9-12 s</td>
<td>Wind sea</td>
</tr>
<tr>
<td>E5</td>
<td>Hurricane Kyle</td>
<td>2008092300</td>
<td>5</td>
<td>18.2</td>
<td>ENE</td>
<td>4.9</td>
<td>12.5</td>
<td>Mixed sea and swell</td>
</tr>
<tr>
<td>E6</td>
<td>Swell</td>
<td>2009032600</td>
<td>2</td>
<td>6.6</td>
<td>S</td>
<td>3.1</td>
<td>15.2</td>
<td>Swell, steady</td>
</tr>
<tr>
<td>E7</td>
<td>Swell</td>
<td>2009082715</td>
<td>4</td>
<td>5.0</td>
<td>variable</td>
<td>1.6</td>
<td>8-14</td>
<td>Swell, light winds</td>
</tr>
<tr>
<td>E8</td>
<td>Swell</td>
<td>2010082912</td>
<td>2</td>
<td>1.2</td>
<td>SSE</td>
<td>1.9</td>
<td>13.7</td>
<td>Swell</td>
</tr>
<tr>
<td>E9</td>
<td>Windsea</td>
<td>2009121900</td>
<td>2</td>
<td>12.0</td>
<td>ENE</td>
<td>4.3</td>
<td>10-11</td>
<td>Wind sea, shore parallel</td>
</tr>
<tr>
<td>E10</td>
<td>TS Hanna</td>
<td>2008090420</td>
<td>3</td>
<td>13.5</td>
<td>SE</td>
<td>2.8</td>
<td>7-12.5</td>
<td>Developing windsea over swell</td>
</tr>
<tr>
<td>E11</td>
<td>Fetch Limited</td>
<td>2010022600</td>
<td>1</td>
<td>12.0</td>
<td>W</td>
<td>0.7</td>
<td>3</td>
<td>Offshore winds, opposing swell</td>
</tr>
<tr>
<td>E12</td>
<td>Hurricane Irene</td>
<td>2011082600</td>
<td>5</td>
<td>29.0</td>
<td>NE-SE</td>
<td>5.5</td>
<td>16.3</td>
<td>Mixed sea and swell</td>
</tr>
<tr>
<td>E13</td>
<td>Slanting Fetch NW</td>
<td>2010122612</td>
<td>3</td>
<td>15.7</td>
<td>NNW</td>
<td>3.6</td>
<td>7.6</td>
<td>Wind sea to swell</td>
</tr>
<tr>
<td>E14</td>
<td>Slanting Fetch SW</td>
<td>2011042712</td>
<td>3</td>
<td>14.6</td>
<td>SSW</td>
<td>1.3</td>
<td>8.1</td>
<td>Wind Sea to swell</td>
</tr>
<tr>
<td>E15</td>
<td>Swell</td>
<td>2009021900</td>
<td>3</td>
<td>5.0</td>
<td>NE</td>
<td>2.0</td>
<td>11</td>
<td>Swell, light winds</td>
</tr>
<tr>
<td>E16</td>
<td>Slanting Fetch NW</td>
<td>2011110821</td>
<td>3</td>
<td>18.1</td>
<td>NNW</td>
<td>3.0</td>
<td>6-13</td>
<td>Wind sea to swell</td>
</tr>
<tr>
<td>E17</td>
<td>Mixed sea and swell</td>
<td>2012021919</td>
<td>3</td>
<td>8.0</td>
<td>NNE</td>
<td>1.8</td>
<td>14.0</td>
<td>Sea growth and decay with swell</td>
</tr>
<tr>
<td>E18</td>
<td>Hurricane Leslie</td>
<td>2012041812</td>
<td>7</td>
<td>Light</td>
<td>variable</td>
<td>1.7</td>
<td>12-16</td>
<td>Swell; Epic surfing event</td>
</tr>
<tr>
<td>E19</td>
<td>Hurricane Sandy</td>
<td>2012090319</td>
<td>6</td>
<td>22.2</td>
<td>NNW</td>
<td>6.0</td>
<td>16.3</td>
<td>Wind sea, NW slanting fetch</td>
</tr>
<tr>
<td>E20</td>
<td>Slanting Fetch NW</td>
<td>2012102600</td>
<td>2</td>
<td>17.2</td>
<td>NW</td>
<td>3.3</td>
<td>10.0</td>
<td>Wind sea event</td>
</tr>
</tbody>
</table>
REFERENCES

