Implementing Cr6+Free Coatings Systems

1. **REPORT DATE**
 01 SEP 2009

2. **REPORT TYPE**

3. **DATES COVERED**
 00-00-2009 to 00-00-2009

4. **TITLE AND SUBTITLE**

5. a. **CONTACT NUMBER**
 5b. **GRANT NUMBER**
 5c. **PROGRAM ELEMENT NUMBER**

6. **AUTHOR(S)**

7. **PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)**
 Naval Air Warfare Center, Materials Engineering Division, 22347 Cedar Point Road, Patuxent River, MD, 20670

8. **PERFORMING ORGANIZATION REPORT NUMBER**

9. **SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)**

10. **SPONSOR/MONITOR’S ACRONYM(S)**

11. **SPONSOR/MONITOR’S REPORT NUMBER(S)**

12. **DISTRIBUTION/AVAILABILITY STATEMENT**
 Approved for public release; distribution unlimited

13. **SUPPLEMENTARY NOTES**
 ASETSDefense 2009: Sustainable Surface Engineering for Aerospace and Defense Workshop, August 31 - September 3, 2009, Westminster, CO. Sponsored by SERDP/ESTCP.

14. **ABSTRACT**

15. **SUBJECT TERMS**

16. **SECURITY CLASSIFICATION OF:**
 a. REPORT unclassified
 b. ABSTRACT unclassified
 c. THIS PAGE unclassified

17. **LIMITATION OF ABSTRACT**
 Same as Report (SAR)

18. **NUMBER OF PAGES**
 14

19a. **NAME OF RESPONSIBLE PERSON**

Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std Z39-18
Outline

- Background
- Implementation Status
- Risk Reduction Approach for Primers
- Conclusions and Path Forward
NAE Position on Cr6+ and Path Forward

• Cr6+ is used in 10 major metal finishing and corrosion protection processes, with many sub-processes
 – Cost impact is highest for compliance when removing Cr6+ containing coatings, especially sanding at FRCs
 – Application of most materials can be achieved while complying with regulations

• Alternatives can be implemented during design and production by OEMs and subcontractors and at Navy and contractor facilities which carry out O, I and D-level maintenance.

• Many uses include critical engineering applications including adhesive bonding, wear surfaces and corrosion protection on high-strength steels, and protection of critical structure

• Compliance with memo will increase cost of acquisition environmental and corrosion support

• Implementation of alternatives is not trivial and requires a risk reduction approach, especially for primers

• RDT&E needs to be prioritized and linked to Cr6+ goals
Implementation Points

• **Design- Implemented at OEMs/Suppliers**
 – New design: finish specifications
 – Easiest to implement, lowest cost, difficult to validate alternatives

• **Production- Implemented at OEM/Suppliers**
 – Engineering Change Proposal (ECP): drawings
 – Medium difficulty to implement, variable cost, validation on fielded assets possible

• **Fielded- Implemented at Gov’t and Contractor Facilities**
 – ECP and Local Process Specification modifications; Contract changes; 01-1A-509 and other General Series manual changes
 – Medium difficult to implement for immersion processes, easier for spray and touch up; validation on fielded assets typical
Status of Alternatives at NAVAIR

<table>
<thead>
<tr>
<th>Alternative Implementation Status</th>
<th>wt vol% of Cr6+ in NAE</th>
<th>% of Cr6+ eliminated</th>
</tr>
</thead>
<tbody>
<tr>
<td>M&P Area</td>
<td>Sub Area</td>
<td>Location</td>
</tr>
<tr>
<td>Painting</td>
<td>Aircraft and Components</td>
<td>Depot and Field</td>
</tr>
<tr>
<td>Bonding</td>
<td>Depot and Field</td>
<td>Alternative not authorized</td>
</tr>
<tr>
<td>Sealing</td>
<td>Depot and Field</td>
<td>Chromated and non-chromated sealants in use</td>
</tr>
<tr>
<td>Aluminum Pretreatment</td>
<td>Avionics/Electrical</td>
<td>Depot and Field</td>
</tr>
<tr>
<td>Components/Structure</td>
<td>Cherry Point-Aircraft re-paint (spray)</td>
<td>TBD</td>
</tr>
<tr>
<td>Cherry Point-Aircraft re-paint (spray)</td>
<td>TBD</td>
<td>0</td>
</tr>
<tr>
<td>North Island- Aircraft re-paint (spray)</td>
<td>TBD</td>
<td>0</td>
</tr>
<tr>
<td>Jacksonville- Aircraft re-paint (spray)</td>
<td>TBD</td>
<td>0</td>
</tr>
<tr>
<td>Cherry Point- Component Immersion tanks</td>
<td>TBD</td>
<td>0</td>
</tr>
<tr>
<td>North Island- Component Immersion tanks</td>
<td>TBD</td>
<td>0</td>
</tr>
<tr>
<td>Jacksonville- Component Immersion tanks</td>
<td>TBD</td>
<td>0</td>
</tr>
<tr>
<td>Field</td>
<td>TBD</td>
<td>0</td>
</tr>
<tr>
<td>Sealing Type II & III</td>
<td>Cherry Point</td>
<td>Authorization of alternative (TCP) pending authorization letter.</td>
</tr>
<tr>
<td>North Island</td>
<td>TBD</td>
<td>0</td>
</tr>
<tr>
<td>Jacksonville</td>
<td>TBD</td>
<td>0</td>
</tr>
<tr>
<td>Sealing Type IC</td>
<td>Cherry Point</td>
<td>Authorization of alternative (TCP) pending results of fatigue testing.</td>
</tr>
<tr>
<td>North Island</td>
<td>TBD</td>
<td>0</td>
</tr>
<tr>
<td>Jacksonville</td>
<td>TBD</td>
<td>0</td>
</tr>
<tr>
<td>Sealing Type IIB</td>
<td>Cherry Point</td>
<td>Type IIB not authorized currently. Dem/val underway to produce data for potential authorization as Type IC alternate. Being considered by Jacksonville as part of single tank Type II, IIB and III anodize system. Authorization of alternative (TCP) pending results of fatigue testing.</td>
</tr>
<tr>
<td>North Island</td>
<td>TBD</td>
<td>0</td>
</tr>
<tr>
<td>Jacksonville</td>
<td>TBD</td>
<td>0</td>
</tr>
</tbody>
</table>
Status of Alternatives at NAVAIR

Alternative Implementation Status

<table>
<thead>
<tr>
<th>M&P Area</th>
<th>Sub Area</th>
<th>Location</th>
<th>Process Status</th>
<th>wt % Cr6+ in NAE</th>
<th>% of Cr6+ eliminated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sacrificial Coatings</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cadmium Post Treatment</td>
<td>Cherry Point</td>
<td>Authorization of alternatives pending review of available data</td>
<td>TBD</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>North Island</td>
<td>Authorization of alternatives pending review of available data</td>
<td>TBD</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jacksonville</td>
<td>Authorization of alternatives pending review of available data</td>
<td>TBD</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>IVD Aluminum Conversion</td>
<td>Cherry Point</td>
<td>Authorization of alternative (TCP) pending results of field testing.</td>
<td>TBD</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>North Island</td>
<td>Authorization of alternatives pending review of available data</td>
<td>TBD</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jacksonville</td>
<td>Authorization of alternatives pending review of available data</td>
<td>TBD</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Zn-Ni Post Treatment</td>
<td>Cherry Point</td>
<td>Authorization of alternatives pending review of available data</td>
<td>TBD</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jacksonville</td>
<td>Authorization of alternatives pending review of available data</td>
<td>TBD</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Magnesium Conversion Coating</td>
<td></td>
<td></td>
<td>Authorization pending for alternative use in component recoating and touch up (Alodine 5700 and TCP)</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td></td>
<td>Cherry Point</td>
<td>Authorization pending for alternative use in component recoating and touch up (Alodine 5700 and TCP)</td>
<td>TBD</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jacksonville</td>
<td>Authorization pending for alternative use in component recoating and touch up (Alodine 5700 and TCP)</td>
<td>TBD</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Field</td>
<td>Authorization pending for alternative use in component coating touch up (Alodine 5700 and TCP)</td>
<td>TBD</td>
<td>TBD</td>
<td></td>
</tr>
<tr>
<td>Hard Chrome Plating</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cherry Point</td>
<td>Authorization of alternatives pending review of available data</td>
<td>TBD</td>
<td>TBD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>North Island</td>
<td>Authorization of alternatives pending review of available data</td>
<td>TBD</td>
<td>TBD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Jacksonville</td>
<td>Authorization of alternatives pending review of available data</td>
<td>TBD</td>
<td>TBD</td>
<td></td>
</tr>
<tr>
<td>Titanium Conversion Coating</td>
<td></td>
<td></td>
<td>Authorization of alternatives pending review of available data</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td></td>
<td>Depot and Field</td>
<td>Authorization of alternatives pending review of available data</td>
<td>TBD</td>
<td>TBD</td>
<td></td>
</tr>
<tr>
<td>Phosphating</td>
<td>Steel, "rinse"</td>
<td>Mn-phosphate process with chromate rinse. New alternative being assessed (ChromiPhos).</td>
<td>TBD</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>North Island</td>
<td>Zn-phosphate process with chromate rinse. New alternative being assessed (ChromiPhos).</td>
<td>TBD</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cherry Point</td>
<td>Authorization of alternatives pending review of available data</td>
<td>TBD</td>
<td>TBD</td>
<td></td>
</tr>
</tbody>
</table>
Implementation Progress

• **Use of Chromates in Inorganic Coatings and Processes**
 – Alternatives authorized for
 • Hard Chrome Plating
 • Conversion coating under chromated primer
 • Conversion coating on Alumiplate under chromated primer
 – Alternatives pending authorization
 • Sealing of Type IC, IIB, II and III anodize using chromated primer or unprimed
 • Conversion coating magnesium and titanium
 – Alternatives being assessed in demonstration and validation projects
 • Post treatment of IVD aluminum with chromated primer
 • Post treatment of ZnNi with chromated primer
 • Rinsing/sealing of phosphate coatings with various primers and topcoats
Implementation Progress

- **Use of Chromates in Organic Coatings and Processes**
 - Alternatives authorized for
 - Priming of support equipment (MIL-DTL-53022)
 - Sealing- various specifications
 - Priming aircraft/components in overcoat applications
 - Alternatives pending authorization
 - N/A
 - Alternatives being assessed in demonstration and validation projects
 - Primer “direct to metal/conversion coating” in coating systems with chromated or non-chromated conversion coatings
 - Galvanic primers in total NC systems
 - Alternatives requiring additional research and development
 - Adhesive bond primers
 - Combination of NC primers with other NC finishing options in most applications
Primer Risk Assessment

• Application Axis vs. Platform/Basing Axis

• Application Axis – Low-High Risk
 – 1 (L) – Composite/Fiberglass Surfaces
 – 2 (L) – Non-critical Metallic Surfaces – External Fuel Tanks, etc.
 – 3 (M) – Airframe Tie-Coat Applications
 • 3A – OML / 3B – IML – Topcoat, or inspectable areas only
 – 4 (M-H) – Airframe Direct-to-Metal Applications
 • 4A – OML / 4B – IML
 – 5 (H) – Interior/Faying Surface/HS Components.
Primer Risk Assessment

• Platform Axis

- 1 (L) – Trainer Aircraft – T-45, T-34, etc.
- 2 (M) – Land based Aircraft – KC-135, C-40, etc.
- 3 (M-H) – Special Land – P-8, H-53, etc.
- 4 (H) – Ship-based Aircraft – E-2, H-60, etc.
- 5 (H) – Ship-based Aircraft – *Specialty Coatings
 • F/A-18, EA-18G, F-35, etc.
Status of Primer Assessments

- **Primer options:**
 - MIL-PRF-85582:
 - EWDY048A (PPG) - Good beach testing results (8 yrs); NI implemented in E2/C2 component paint shop in ~2006.
 - 44-GN-098 (Deft) - baseline primer for F-35
 - MIL-PRF-23377:
 - 16708TEP (Hentzen) - Extensive coupon testing underway
 - 02-GN-084 (Deft) -
 - North Island plans to transition E2/C2 component work in 2009/10
 - T-45: implement at NAS Kingsville and Meridian via contract change (contract maintenance)
 - Mg-rich Primer (Akzo) - ESTCP dem/val; validation of lastest products underway

- **Field Testing Status:**
 - FRC SW (North Island)
 - Four E-2 production aircraft: carrier deployed
 - 02-GN-084 - first painted in April 2009. 2nd planned for fall 2009.
 - Using standard (Type I) hexavalent chromium pretreatment (spray applied); Type II pretreatments possible pending results of initial demos
 - FRC SE (JAX)
 - Limited P-3 demo, several primers (wheel)
 - Pax - lab and beachfront assessments of total NC systems on plain panels and galvanic assemblies
 - RQ-8B/Firescout - full NC coating system demo on LRIP aircraft - Type II conversion/084 primer - 2010
Field Test Example

- E-2 rotodome at North Island, 4/09
 - Low risk application on high-risk platform
Field Test Example

- RQ-8B Firescout

- Medium-high risk application on high-risk platform
- Full NC coating system on tailcone, direct to metal
Conclusions & Path Forward

- Alternatives available for most applications- authorization and transition underway in many areas- most rely on use of chromated primer
- Implementation of qualified NC primers on low risk applications/aircraft underway
- Field testing of qualified NC primers/coating systems on higher risk applications and aircraft will continue
- An Engineering Circular will be completed which documents NAVAIR Materials Engineering Division policy for NC Coating Systems and contain information on:
 - State-of-the-art products & processes
 - Transition drivers
 - Testing requirements
 - Demonstration and validation requirements
 - Transition approach
 - Risk analysis
 - Implementation recommendations