Cadmium Alternatives Conversion Coatings Studies

Kate Horspool
NAVAIR
March 17, 2005

HCAT/JCAT Meeting
Greensboro, NC
Report Documentation Page

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

<table>
<thead>
<tr>
<th>1. REPORT DATE</th>
<th>2. REPORT TYPE</th>
<th>3. DATES COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td>17 MAR 2005</td>
<td></td>
<td>00-00-2005 to 00-00-2005</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE AND SUBTITLE</th>
<th>5a. CONTRACT NUMBER</th>
<th>5b. GRANT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadmium Alternatives Conversion Coatings Studies</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. AUTHOR(S)</th>
<th>5c. PROGRAM ELEMENT NUMBER</th>
<th>5d. PROJECT NUMBER</th>
<th>5e. TASK NUMBER</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</th>
<th>8. PERFORMING ORGANIZATION REPORT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naval Air Systems Command, 47123 Buse Road, Patuxent River, MD, 20670</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)</th>
<th>10. SPONSOR/MONITOR’S ACRONYM(S)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>12. DISTRIBUTION/AVAILABILITY STATEMENT</th>
<th>11. SPONSOR/MONITOR’S REPORT NUMBER(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved for public release; distribution unlimited</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. SUPPLEMENTARY NOTES</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>25th Replacement of Hard Chrome and Cadmium Plating Program Review Meeting, March 15-17, 2005, Greensboro, NC. Sponsored by SERDP/ESTCP.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14. ABSTRACT</th>
<th>15. SUBJECT TERMS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. SECURITY CLASSIFICATION OF:</th>
<th>17. LIMITATION OF ABSTRACT</th>
<th>18. NUMBER OF PAGES</th>
<th>19a. NAME OF RESPONSIBLE PERSON</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. REPORT</td>
<td>Same as Report (SAR)</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>b. ABSTRACT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. THIS PAGE</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Acknowledgments

• This project was funded by Y0817

• Contributing coworkers
 – Andy Schwartz
 – Bill Nickerson
 – Craig Matzdorf
 – Robert Kestler
Outline

• Introduction
• Key parameters investigated
• Tests
• Bright zinc
• IVD-aluminum
• Acidic Zinc/Nickel
• On-going tests
• Future work
Introduction

Objectives
To demonstrate and validate the performance of TCP (trivalent chromium process) and NCP (non-chromium process) as an alternative post-treatment to hexavalent chromium containing compounds on Cd replacement sacrificial coatings such as IVD-aluminum, acidic zinc-nickel, and bright-zinc on steel.
Test Parameters

- Type of sacrificial coating
 - Bright zinc
 - Acidic zinc-nickel
 - IVD-aluminum
- TCP/NCP composition with and without additives
- Key Processes
 - Activated versus non-activated
 - Peened versus unpeened for the IVD-aluminum
 - Immersion temperature, time, and solution concentration
Key Tests

• Unpainted corrosion resistance via ASTM B117 and ASTM G85.A4
• Painted corrosion resistance via ASTM B117 and ASTM G85.A4
• Paint adhesion via tape test (dry and wet 1, 4, and 7-day accelerated measurements)
NAVAIR Schedule

• Evaluate various compositions of TCP and NCP as post-treatments for the aforementioned Cd-replacement sacrificial coatings
• Optimize activation, temperature, and immersion times
• Determine suitable field test components
• Demonstrate technology at the Depot level
• Treat actual components and commence field testing
Description of TCP and NCP Compositions

- TCP-P*: Cr(III) sulfate basic, K$_2$ZrF$_6$, manipulation during manufacture, indefinite shelf-life.
- TCP-S*: Similar to TCP-P but contains a complex fluoride additive that increases composition activity and auto-stabilizes pH during manufacture, indefinite shelf-life.
- CC1#: Modified version of TCP-P
- CC2#: Modified version of TCP-S
- NCP#: Non-chromium corrosion inhibiting post-treatment

*Matzdorf, C., *et al*, US Patent 5,374,347; 6,375,726; 6,511,532; 6,521,029; 6,527,841

#Patents pending
Benefits of TCP over Chromated Conversion Coatings

- No hexavalent chromium
- Reduced total chromium

Additional Benefit Provided by NCP

- Elimination of chromium from the process
Chromium (VI) Regulations

• OSHA is pushing lower Cr (VI) PEL (personal exposure limits), thereby requiring industry to eliminate or reduce Cr (VI) tanks
 – This reduction will make the use of Cr(VI) cost prohibitive, thereby requiring alternatives to be in place
• TCP does away with Cr (VI), thereby eliminating personal exposure.
Variables Tested for Bright Zinc

<table>
<thead>
<tr>
<th>Activation*</th>
<th>Post-treatment#</th>
<th>TCP Concentration</th>
<th>Immersion Time (min)</th>
<th>Temperature (°F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>YES</td>
<td>P</td>
<td>5</td>
<td>10</td>
<td>120-150</td>
</tr>
<tr>
<td>YES</td>
<td>CC1</td>
<td>5</td>
<td>10</td>
<td>120-150</td>
</tr>
<tr>
<td>NO</td>
<td>P</td>
<td>1-10</td>
<td>5-20</td>
<td>RT-150</td>
</tr>
<tr>
<td>NO</td>
<td>S</td>
<td>5</td>
<td>5-15</td>
<td>RT-150</td>
</tr>
<tr>
<td>NO</td>
<td>CC1</td>
<td>5</td>
<td>5-15</td>
<td>RT-150</td>
</tr>
<tr>
<td>NO</td>
<td>CC2</td>
<td>5</td>
<td>5-15</td>
<td>RT</td>
</tr>
</tbody>
</table>

*1 vol.% H₂SO₄, 10-15 sec

Variation of TCP
Results for Bright Zinc

- Activation of the panels prior to TCP treatment severely decreased the corrosion resistance
- Room temperature application of TCP outperformed commercial Cr (III)
- Optimum TCP performance was found when TCP was applied at 120 °F for a 5-10 min immersion time
Preliminary Test of Temperature Variations on Corrosion Protection for Bright Zinc

The commercial Cr(VI) performed only slightly better than 2P applied at 120° F.

The 2P applied at RT, 85° F, and 100° F outperformed the commercial Cr(III).
26 Days Neutral Salt Fog (ASTM B117)

2P, 120 °F, 5 min

Commercial Cr (III)
25 days

Commercial Cr (VI)
Variables for IVD-Aluminum

- Compositions
 - 5P, 5S, 5CC1, 5CC2, and NCP
- Temperature
 - Room
- Activated and non-activated
- Peened and unpeened
- Immersion time (5-15 minutes)
Results for IVD-Aluminum

- Activation of the panels (more apparent with the peened samples) increased corrosion protection
- At over 4000 hours, the TCP and NCP is performing as well as the chromate control
- Optimum performance for the non-Cr (VI) post-treatments was found on activated, peened samples with an immersion time of 10-15 minutes applied at room temperature for the NCP and TCP
Neutral Salt Fog (ASTM B117) for IVD-Aluminum

5S, RT, 10 min
Activated
Not peened
158 days

NCP, RT, 10 min
Activated
Not peened
131 days

Factory Applied
5S, RT, 10 min
Peened
158 days

Commercial Cr (VI)
Peened
158 days
Neutral Salt Fog (ASTM B117) for IVD-Aluminum

- **5S, RT, 15 min**
 Activated
 Peened
 183 days

- **NCP, RT, 10 min**
 Activated
 Peened
 209 days

- **Factory Applied**
 5S, RT, 10 min
 Peened
 209 days

- **Commercial Cr (VI)**
 Peened
 209 days
<table>
<thead>
<tr>
<th>Condition</th>
<th>Primer Type</th>
<th>Peen Type</th>
<th>Test Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry, Not Peened</td>
<td>5A NCP</td>
<td>5A</td>
<td>ASTM D3359</td>
</tr>
<tr>
<td>Dry, Peened</td>
<td>5A NCP</td>
<td>5A</td>
<td>ASTM D3359</td>
</tr>
<tr>
<td>Dry, Factory TCP Peened</td>
<td>5A Factory TCP</td>
<td>5A</td>
<td>ASTM D3359</td>
</tr>
<tr>
<td>Dry, Factory Chromate Peened</td>
<td>5A Factory Chromate</td>
<td>5A</td>
<td>ASTM D3359</td>
</tr>
</tbody>
</table>
Wet-Tape Adhesion for Panels Treated with Self-Priming Topcoat (TT-P-2756)

- **Dry, NCP**
 - Not peened: 5A (ASTM D3359)
 - Peened: 4A (ASTM D3359)

- **Dry, Factory TCP**
 - Peened: 4A (ASTM D3359)

- **Dry, Factory Chromate**
 - Peened: 0A (ASTM D3359)
IVD with NCP after 6 Months of Carrier Deck Exposure

Rack of Panels

NCP Treated IVD after 6 months on carrier deck
IVD post-treated with NCP and TCP and primed (23377) after 6 Months of Carrier Deck Exposure
Ongoing Tests

• Zinc-nickel
 – Optimization of corrosion protection through the use of various additives

• IVD-aluminum
 – Bare panels have been in SO₂ for 1 week with no signs of red rust
 – Painted corrosion
 – Panels from the Stennis are going out on the Nimitz
 – Depot validation
Preliminary Field Test Platforms for IVD Components

- In collaboration with Cherry Point we have identified two platforms for field-testing of TCP and NCP pending the outcome of the laboratory testing
 - AV-8B
 - H-46
Conclusion

With optimization, non-hexavalent chromium post-treatments have been found to provide corrosion protection that surpasses specifications and equals Cr(VI) containing post-treatment performance on various Cd-replacement coatings. Plans are underway to test the TCP and NCP with non-chromate primers.