Plasma spray coatings for IDs

HCAT Program Review
Park City, UT
July 2004

Keith Legg, klegg@rowantech.com, 847-680-9420
Report Documentation Page

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

1. **REPORT DATE**
 JUL 2004

2. **REPORT TYPE**

3. **DATES COVERED**
 00-00-2004 to 00-00-2004

4. **TITLE AND SUBTITLE**
 Plasma spray coatings for IDs

5a. **CONTRACT NUMBER**

5b. **GRANT NUMBER**

5c. **PROGRAM ELEMENT NUMBER**

5d. **PROJECT NUMBER**

5e. **TASK NUMBER**

5f. **WORK UNIT NUMBER**

6. **AUTHOR(S)**

7. **PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)**
 Rowan Technology Group, 1590 S. Milwaukee Ave., Suite 205, Libertyville, IL, 60048

8. **PERFORMING ORGANIZATION REPORT NUMBER**

9. **SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)**

10. **SPONSOR/MONITOR’S ACRONYM(S)**

11. **SPONSOR/MONITOR’S REPORT NUMBER(S)**

12. **DISTRIBUTION/AVAILABILITY STATEMENT**
 Approved for public release; distribution unlimited

13. **SUPPLEMENTARY NOTES**

14. **ABSTRACT**

15. **SUBJECT TERMS**

16. **SECURITY CLASSIFICATION OF:**

 a. REPORT
 unclassified

 b. ABSTRACT
 unclassified

 c. THIS PAGE
 unclassified

17. **LIMITATION OF ABSTRACT**
 Same as Report (SAR)

18. **NUMBER OF PAGES**
 32

19a. **NAME OF RESPONSIBLE PERSON**

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18
Progress

- Data on all materials complete (Praxair W-121 added)
 - Corrosion
 - Wear
 - Structure, hardness, microstructure
 - 4-point bend testing done at NRC
- Spray visualization system developed at NRC
- Corrosion:
 - Potentiodynamic measurements found to be not useful as corrosion current only through Cr cracks to substrate, but all over thermal spray surface
 - Will run B117 as well
 - Specimens sprayed at Sulzer Metco
 - To be sprayed at Praxair in a week
- Sulzer to spray ID of demo part (F-18 LG outer cylinder) and 3” tube for cut-up
ID guns and spray rates

<table>
<thead>
<tr>
<th>Minimum bore diameter (mm)</th>
<th>Deposition rate (g/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM-F1</td>
<td>~1 kg/hr</td>
</tr>
<tr>
<td>SM-F100 Connex</td>
<td>~1 kg/hr</td>
</tr>
<tr>
<td>SM-F210</td>
<td>~1 kg/hr</td>
</tr>
<tr>
<td>SM-F300</td>
<td>~1 kg/hr</td>
</tr>
</tbody>
</table>

Do not take this too literally!

Keith Legg, klegg@rowantech.com
Plasma spray coatings optimized

<table>
<thead>
<tr>
<th>Powder</th>
<th>Chemistry</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diamalloy 2003 (Sulzer Metco)</td>
<td>WC-12Co</td>
<td>Fused and crushed. Contains WC and W_{2}C.</td>
</tr>
<tr>
<td>Diamalloy 2002 (Sulzer Metco)</td>
<td>55%(WC 12Co) 45%(66Ni 18Cr 7Fe 4Si 4B 1C)</td>
<td>~55/45 mixture of WC-Co in self fluxing binder</td>
</tr>
<tr>
<td>Ni-988 (Praxair)</td>
<td>50%(WC 12Co) 50%(66Ni 18Cr 7Fe 4Si 4B 1C)</td>
<td>50/50 mixture of WC-Co in self fluxing binder</td>
</tr>
<tr>
<td>Co-109-3, Tribaloy 400 (Praxair)</td>
<td>Co-28 Mo-8 Cr-2 Si</td>
<td>Fine cut powder</td>
</tr>
<tr>
<td>W-121 (Praxair)</td>
<td>WC-Cr_{3}C_{2}-NiCr</td>
<td>Precipitated</td>
</tr>
</tbody>
</table>

Additional coatings tested by Sulzer Metco, but no advantage over existing coating Hastelloy, NiCr, Cr_{3}C_{2}-NiCr, fine WC-Co
Optical overspray monitoring

Laser, Detector, Gas tube, ID gun
Configuration of the gun

- F sensor head
- P is the plasma gun
- L refers to left-hand side
- R refers to right-hand side
Type of Air Jets Used

Multiple

Spray direction (left, right)

Straight

The jets were installed on both sides of the plasma gun alternately for the measurements
Multiple nozzles

Left configuration

Right configuration
Left and right nozzles

Left configuration

Right configuration
Straight left and right

Left configuration

Right configuration
Fumespector Signal Processing

Signal strength as traverse in, then out again in a closed-end tube

Keith Legg, klegg@rowantechology.com
Signals from the Detector

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Mean signal (mV)</th>
<th>RMS (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 multiple right</td>
<td>1781</td>
<td>22.3</td>
</tr>
<tr>
<td>2 multiple left</td>
<td>2098</td>
<td>26.2</td>
</tr>
<tr>
<td>3 spray direction right</td>
<td>2980</td>
<td>37.3</td>
</tr>
<tr>
<td>4 spray direction left</td>
<td>3013</td>
<td>37.7</td>
</tr>
<tr>
<td>5 straight right</td>
<td>2648</td>
<td>33.1</td>
</tr>
<tr>
<td>6 straight left</td>
<td>1729</td>
<td>21.6</td>
</tr>
</tbody>
</table>

The highest overspray was with the nozzle pointing at the wall, while the lowest was from the straight left and multiple right.
Overspray dust control

Best approach is to blow straight in. Presumably returning air blast sweeps the dust back out of the tube.
Performance
Hardness

Note: Only WC-12Co and WC-Cr$_3$C$_2$-NiCr are as hard as EHC

<table>
<thead>
<tr>
<th>Material</th>
<th>Hardness (VHN 300g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-400</td>
<td></td>
</tr>
<tr>
<td>55WC-45 self flux</td>
<td></td>
</tr>
<tr>
<td>55WC-45 self flux thick</td>
<td></td>
</tr>
<tr>
<td>Ni5Al</td>
<td></td>
</tr>
<tr>
<td>WC-12Co</td>
<td></td>
</tr>
<tr>
<td>50WC-50 self flux</td>
<td></td>
</tr>
<tr>
<td>WC-Cr3C2-NiCr</td>
<td></td>
</tr>
<tr>
<td>Cr</td>
<td></td>
</tr>
</tbody>
</table>

W 121

Material

Typical build-up and bond coat
Abrasion resistance – ASTM G-65

Material Comparison

<table>
<thead>
<tr>
<th>Material</th>
<th>Abrasion Volume Loss (mm³) 5 min test</th>
</tr>
</thead>
<tbody>
<tr>
<td>T400</td>
<td>50</td>
</tr>
<tr>
<td>55WC-45 self flux</td>
<td>45</td>
</tr>
<tr>
<td>WC-12Co</td>
<td>35</td>
</tr>
<tr>
<td>50WC-50 self flux</td>
<td>30</td>
</tr>
<tr>
<td>50WC-50 self flux low overspray</td>
<td>25</td>
</tr>
<tr>
<td>WC-Cr3C2-NiCr</td>
<td>20</td>
</tr>
<tr>
<td>Chrome run 3-4</td>
<td>15</td>
</tr>
<tr>
<td>Chrome test</td>
<td>10</td>
</tr>
</tbody>
</table>

Test: Rubber wheel, dry sand abrasion

Test relevance: Debris in hydraulic fluid

Note: Abrasion resistance increases with hardness, but depends also on material.

Rubber wheel + dry sand

WC-Cr3C2-NiCr not very good

With best overspray removal, self-fluxing material is as good as **WC-12Co**

Keith Legg, klegg@rowantechology.com
Sliding Wear

- Dry sliding, 5200 steel rotor
- What is most important is total wear
- All coatings show more coating wear than EHC, although WC coatings are similar
- Only Tribaloy shows significantly more total wear than EHC, primarily from coating wear

WC-Cr3C2-NiCr not very good for coating wear
Fatigue
Conclusion from data so far

- In general plasma spray works well for ID >2.75” most guns (1.6”ID for Sulzer F300 gun)
 - High deposition rate
 - Quality similar to OD coatings when properly optimized and flushed
- Technical properties generally acceptable
 - Abrasive wear better than EHC, but not
 - Longer repair cycle (lower LCC, less pollution)
 - Pin on disc wear not as good
 - Not a good measure of actual service performance
 - Corrosion current worse than EHC
 - Different mechanism, in common with other thermal spray
 - Probably need sealer for corrosion and high pressure leak-by
 - B117 testing to be done
- Producibility
 - Good, especially for shops already using HVOF for OD chrome replacement

Keith Legg, klegg@rowantechnology.com
Implementation Assessment and Cost Benefit Analysis
Methodology

- We are doing an Implementation Assessment rather than a simple CBA because it tells us much more
- Using C-MAT cost model developed under SERDP Stainless Steel Landing Gear program
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2. Process/Product to be Replaced</td>
<td>2</td>
</tr>
<tr>
<td>3. New Process/Product Description</td>
<td>4</td>
</tr>
<tr>
<td>4. Gap Analysis</td>
<td>6</td>
</tr>
<tr>
<td>5. Cost/Benefit Analysis</td>
<td>9</td>
</tr>
<tr>
<td>6. Impact on readiness</td>
<td>29</td>
</tr>
<tr>
<td>7. Risk Analysis</td>
<td>30</td>
</tr>
<tr>
<td>8. Environmental Assessment</td>
<td>32</td>
</tr>
<tr>
<td>9. Recommendations and Conclusions</td>
<td>33</td>
</tr>
</tbody>
</table>
Comparison of EHC vs APS process cost

Plasma spray with large ID gun is essentially same cost as EHC, but small gun is twice as high (lower rate, longer time).

EHC cost data from F-35 analysis, with APS cost data from HCAT and ID team

Use a big gun!
Is there a cost driver for replacement?

- If the process cost is the same or higher, when you add in the capital cost and the qualification and adoption cost, it cannot be cost-effective.
- But there are two other cost issues:
 - Performance
 - Abrasive wear rate looks as though it could be $\frac{1}{2}$ EHC
 - Will need service data to know if same or better
 - Double overhaul cycle
 - New OSHA PEL
 - Probable PEL of 1 μgm m$^{-3}$ (as against today’s 100 μgm m$^{-3}$)
 - Navy/Industry task force estimated high costs at this level
 - Analysis of their evaluation shows EHC cost doubles
 - Raises the risk of sticking with EHC
Some simple calculations

NPV as function of how far out you look for simple process cost comparisons.
Realistic calculations

NPV - Cost based

<table>
<thead>
<tr>
<th>-2 sigma</th>
<th>Value</th>
<th>+2 sigma</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPV</td>
<td>($1,920,239)</td>
<td>$2,105,61</td>
</tr>
<tr>
<td>IRR</td>
<td>-6%</td>
<td>14%</td>
</tr>
<tr>
<td>ROI</td>
<td>25%</td>
<td>47%</td>
</tr>
<tr>
<td>Payback period</td>
<td>5.1</td>
<td>8.3</td>
</tr>
</tbody>
</table>

Cost data summary

Differential cost

Assumes
1. the coating is more wear resistant
2. the PEL is adopted and costs as much as expected
So, what is the likelihood it will really be cost-effective?

Can predict probability of a particular NPV, e.g.
- Assume 33% chance wear rate will really be ½
- Assume 50% chance of PEL adoption and cost

Areas under curves – 50% probability of coming out ahead
Reducing the financial risk

- Use large ID gun to make as efficient as possible
 - Will coat most items of importance
- Keep on top of OSHA to see where PEL headed
- Calculate real potential cost of lower PEL at any depot wanting to adopt plasma spray
 - Remember cost based on overall Navy costs, which could be way off (high or low) for specific location
- Get some early rig test data of true wear rate on components in rig test or service
 - Is there an improvement in wear in service?
But is it worth doing anyway?

- The real reason JAX wants to use ID plasma spray or nCo-P is turnaround time
- All depots have high war-footing workloads
- Any item in the depot is not available to the fleet
- Faster turntime reduces work-in-process
 - Faster return to action
 - Reduces total inventory of spares needed by the fleet (Col Diehl, Tinker AFB)
 - Improves both war-readiness and logistics
- Faster depot processing also increases total depot workload that can be processed
 - Higher depot cash flow
 - Better finances to implement improvements
Thus faster turnaround is critical to readiness and reduces fleet costs, even though it makes no direct financial impact on that specific component or process being assessed.

Cost impact should be considered on a broader basis since readiness impact is now critically important.
Where to on environmental cost analysis?

- New ESTCP-funded effort with OC-ALC and Pratt & Whitney to create a simplified cost model for strategic decision making
 - Idea is to make a simple model that engineers can use to show materials change is sound business policy, not just ESOH mandate
 - It will include all the true costs to DoD of using hazmats
 - It will have default values for average costs and will link cost reduction with hazmat reductions through P&W’s Hazmat Index for quick assessment of potential costs, benefits and hazmat reduction
 - Prioritization of environmental projects
 - Strategic decision making

Keith Legg, klegg@rowantecnology.com
What will this new tool do?

- Give a global estimate of average costs that captures the **true costs** of using hazmats (and therefore the true benefits of using clean technologies)
 - Cost to DoD over the life cycle, not cost to the plating shop
 - Provide comparable costs for clean technologies

- Provide a DoD-recognized approach with standard “default” costs so people can compute costs and benefits in a consistent manner
 - Initial estimate of costs since only one depot – to be improved and refined with additional depots later