Evaluation of Dipsol IZ-C17 LHE Zinc-Nickel Plating

By: Stephen Gaydos
Boeing – St. Louis
for
HCAT/JCAT Meeting
January 24, 2007
Report Documentation Page

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

<table>
<thead>
<tr>
<th>1. REPORT DATE</th>
<th>2. REPORT TYPE</th>
<th>3. DATES COVERED</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 JAN 2007</td>
<td></td>
<td>00-00-2007 to 00-00-2007</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TITLE AND SUBTITLE</th>
<th>5a. CONTRACT NUMBER</th>
<th>5b. GRANT NUMBER</th>
<th>5c. PROGRAM ELEMENT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluation of Dipsol IZ-C17 LHE Zinc-Nickel Plating</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. AUTHOR(S)</th>
<th>5d. PROJECT NUMBER</th>
<th>5e. TASK NUMBER</th>
<th>5f. WORK UNIT NUMBER</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</th>
<th>8. PERFORMING ORGANIZATION REPORT NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boeing, P. O. Box 516, St. Louis, MO, 63166</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)</th>
<th>10. SPONSOR/MONITOR’S ACRONYM(S)</th>
<th>11. SPONSOR/MONITOR’S REPORT NUMBER(S)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>12. DISTRIBUTION/AVAILABILITY STATEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approved for public release; distribution unlimited</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. SUPPLEMENTARY NOTES</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>14. ABSTRACT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15. SUBJECT TERMS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. SECURITY CLASSIFICATION OF:</th>
<th>17. LIMITATION OF ABSTRACT</th>
<th>18. NUMBER OF PAGES</th>
<th>19a. NAME OF RESPONSIBLE PERSON</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. REPORT</td>
<td>Same as Report (SAR)</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>b. ABSTRACT</td>
<td>unclassified</td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. THIS PAGE</td>
<td>unclassified</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std Z39-18
Intro

• Key Attributes for Cadmium Plating Alternatives:
 – Drop-In Replacement
 – Sacrificial to Steel When It Corrodes
 – Corrodes Slowly (Long Life in Salt Water)
 – Non-Embrittling to High Strength Steel
 • Plating Process
 • Maintenance Fluids

• So Why Zinc-Nickel Plating?
Cadmium Alternatives are Limited!
Proposed Cadmium Alternatives

• Cadmium Alternative Coatings for Steel
 – Aluminum (IVD-Sputter Aluminum, Alumiplate)
 – Beryllium (Too Toxic)
 – Zinc (Too Active – Corrodes Too Fast)
 – Magnesium (Extremely Active – Corrodes Rapidly)

• Zinc Alloys Can Reduce Activity of Zinc
 – Zinc-Nickel Preferred (Zn-Fe, Zn-Mn, Zn-Co, Zn-Sn, Sn-Zn Not Acceptable)
 • Zinc-Nickel is Sacrificial to Steel if Ni < ~18%
 • Nickel Alloyed to Zinc Has Low Corrosion Rate in Salt Water
 – No Excessive White Corrosion Products
Zinc-Nickel Alloys

• What is Best Ni Composition in Zinc-Nickel Plating?
 – 4 to 18% Appears to Give Good Corrosion Resistance and Sacrificial Protection to Steel
 – High % Ni Appears to Create a Non-Embrittling Plating Process

• What is Best pH for Zinc-Nickel Plating?
 – Alkaline Plating Appears to Be Easier to Use
 • Bath Easier to Maintain
 • Throwing Power Good and No Variance in % Ni
Zn-Ni Versions for Aerospace and Automotive Industry

- Aerospace Needs a Different Version of Automotive Zn-Ni Plating
 - High Strength Steel Used In Aerospace
 - Hydrogen Embrittlement
 - Fatigue Life
 - Corrosion Performance
 - Aerospace Parts Required to Have a Longer Service Life and Higher Reliability Than Automotive
Pre 2003 Zinc-Nickel Plating

• Pre 2003 There Were Two Zinc-Nickel Processes Being Considered at Boeing
 – Boeing Acid Zn-Ni Plating (with BoeNiz)
 • Passes ASTM F 519 Embbrittlement Tests - BUT
 – Plating Process is Not Operator Friendly
 – ASTM F 346 Electronic Hydrogen Measurement (or Similar Method) Cannot Be Used
 – Dipsol IZ-260 Alkaline Zinc-Nickel Plating
 • Occasionally Fails ASTM F 519 Embbrittlement Test
 • Plating Process is Operator Friendly - BUT
 – Needed a Nickel Strike to Pass ASTM F 519 on a Consistent Basis
LHE Alkaline Zn-Ni Plating

• C-17 Pollution Prevention Project - 2003 to 2005
 – Develop an LHE (Low Hydrogen Embrittlement) Version of Alkaline Zn-Ni Plating
 • Look at Different Zn-Ni Formulas with Nickel Composition of 5 to 17%
 • Remove Brighteners and Other Additives to Make Plating Dull (Porous)
 • Vary the Current Density
LHE Alkaline Zn-Ni Plating

- Boeing Teamed with Dipsol of America to Develop an LHE Alkaline Zn-Ni Plating
 - Dipsol Produces IZ-260 Alkaline Zn-Ni Plating
 - Used by Several DoD and Aerospace Subcontractors
 - IZ-260 Has 5 to 8% Nickel – Balance Zinc
 - Dedicated R&D Laboratory in Tokyo, Japan
 - Excellent Technical Support at Laboratory in Livonia, MI
 - Dipsol Understands Zn-Ni Plating Chemistry
2003-05 Test Results

• Based on Successful Test Results an LHE Alkaline Zn-Ni Formula was Selected for Further Development
 – Identified as Dipsol IZ-C17 (13 to 17% Ni)
• IZ-C17 Had Good Corrosion Performance
• IZ-C17 Passed Hydrogen Embrittlement and Re-Embrittlement Testing with 1a.1 and 2a
 – Re-Embrittlement Test Specimens Exposed to Distilled Water and 3.5% Salt Water
Zinc-Nickel Corrosion Test

IZ-C17 LHE Zn-Ni

Cadmium

ASTM B 117 – 816 Hours Exposure
IZ-C17 – HE Test Results

<table>
<thead>
<tr>
<th>Test Description</th>
<th>Specimen Type</th>
<th>ID No.</th>
<th>200 Hour Result (Pass/Fail)</th>
<th>ISL After 200 Hour Test (% NFS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set #1 - Plate Entire Specimen</td>
<td>1a.1</td>
<td>AQ3789</td>
<td>Pass</td>
<td>80</td>
</tr>
<tr>
<td>Set #1 - Plate Entire Specimen</td>
<td>1a.1</td>
<td>AQ5767</td>
<td>Pass</td>
<td>85</td>
</tr>
<tr>
<td>Set #1 - Plate Entire Specimen</td>
<td>1a.1</td>
<td>AQ3623</td>
<td>Pass</td>
<td>90</td>
</tr>
<tr>
<td>Set #1 - Plate Entire Specimen</td>
<td>1a.1</td>
<td>AQ3675</td>
<td>Pass</td>
<td>80</td>
</tr>
<tr>
<td>Set #2 - Plate at 3 Times Current Density</td>
<td>1a.1</td>
<td>AS1279</td>
<td>Pass</td>
<td>80</td>
</tr>
<tr>
<td>Set #2 - Plate at 3 Times Current Density</td>
<td>1a.1</td>
<td>AS1487</td>
<td>Pass</td>
<td>90</td>
</tr>
<tr>
<td>Set #2 - Plate at 3 Times Current Density</td>
<td>1a.1</td>
<td>AS1026</td>
<td>Pass</td>
<td>85</td>
</tr>
<tr>
<td>Set #2 - Plate at 3 Times Current Density</td>
<td>1a.1</td>
<td>AS1248</td>
<td>Pass</td>
<td>85</td>
</tr>
<tr>
<td>Set #3 - Plate with No Preplate Acid Activation</td>
<td>1a.1</td>
<td>AS1385</td>
<td>Pass</td>
<td>95</td>
</tr>
<tr>
<td>Set #3 - Plate with No Preplate Acid Activation</td>
<td>1a.1</td>
<td>AS1085</td>
<td>Pass</td>
<td>90</td>
</tr>
<tr>
<td>Set #3 - Plate with No Preplate Acid Activation</td>
<td>1a.1</td>
<td>AS1040</td>
<td>Pass</td>
<td>90</td>
</tr>
<tr>
<td>Set #3 - Plate with No Preplate Acid Activation</td>
<td>1a.1</td>
<td>AS1281</td>
<td>Pass</td>
<td>95</td>
</tr>
<tr>
<td>Set #4 - Plate with Preplate Acid Activation</td>
<td>1a.1</td>
<td>AS1264</td>
<td>Pass</td>
<td>90</td>
</tr>
<tr>
<td>Set #4 - Plate with Preplate Acid Activation</td>
<td>1a.1</td>
<td>AS1198</td>
<td>Pass</td>
<td>90</td>
</tr>
<tr>
<td>Set #4 - Plate with Preplate Acid Activation</td>
<td>1a.1</td>
<td>AS1421</td>
<td>Pass</td>
<td>90</td>
</tr>
<tr>
<td>Set #4 - Plate with Preplate Acid Activation</td>
<td>1a.1</td>
<td>AS1148</td>
<td>Pass</td>
<td>85</td>
</tr>
<tr>
<td>Set #5 - Plate with Preplate Acid Activation</td>
<td>2a</td>
<td>44911-12</td>
<td>Pass</td>
<td>-</td>
</tr>
<tr>
<td>Set #5 - Plate with Preplate Acid Activation</td>
<td>2a</td>
<td>44911-47</td>
<td>Pass</td>
<td>-</td>
</tr>
<tr>
<td>Set #5 - Plate with Preplate Acid Activation</td>
<td>2a</td>
<td>44911-54</td>
<td>Pass</td>
<td>-</td>
</tr>
<tr>
<td>Set #5 - Plate with Preplate Acid Activation</td>
<td>2a</td>
<td>44911-1</td>
<td>Pass</td>
<td>-</td>
</tr>
</tbody>
</table>

Hydrogen Embrittlement Results for IZ-C17
IZ-C17 – Re-Embrittlement Tests

<table>
<thead>
<tr>
<th>Re-Embrittlement Test Fluid</th>
<th>Specimen Type</th>
<th>ID No.</th>
<th>150 Hour Result (Pass/Fail)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distilled Water</td>
<td>1a.1</td>
<td>AS1224</td>
<td>Pass</td>
</tr>
<tr>
<td>Distilled Water</td>
<td>1a.1</td>
<td>AS1166</td>
<td>Pass</td>
</tr>
<tr>
<td>Distilled Water</td>
<td>1a.1</td>
<td>AS1368</td>
<td>Pass</td>
</tr>
<tr>
<td>Distilled Water</td>
<td>1a.1</td>
<td>AS1169</td>
<td>Pass</td>
</tr>
<tr>
<td>3.5% Salt (NaCl) Water</td>
<td>1a.1</td>
<td>AS1001</td>
<td>Pass</td>
</tr>
<tr>
<td>3.5% Salt (NaCl) Water</td>
<td>1a.1</td>
<td>AS1415</td>
<td>Pass</td>
</tr>
<tr>
<td>3.5% Salt (NaCl) Water</td>
<td>1a.1</td>
<td>AS1328</td>
<td>Pass</td>
</tr>
<tr>
<td>3.5% Salt (NaCl) Water</td>
<td>1a.1</td>
<td>AS1286</td>
<td>Pass</td>
</tr>
<tr>
<td>Distilled Water</td>
<td>2a</td>
<td>44911-42</td>
<td>Pass</td>
</tr>
<tr>
<td>Distilled Water</td>
<td>2a</td>
<td>44911-134</td>
<td>Pass</td>
</tr>
<tr>
<td>Distilled Water</td>
<td>2a</td>
<td>44911-41</td>
<td>Pass</td>
</tr>
<tr>
<td>Distilled Water</td>
<td>2a</td>
<td>44911-76</td>
<td>Pass</td>
</tr>
<tr>
<td>3.5% Salt (NaCl) Water</td>
<td>2a</td>
<td>44911-42</td>
<td>Pass*</td>
</tr>
<tr>
<td>3.5% Salt (NaCl) Water</td>
<td>2a</td>
<td>44911-134</td>
<td>Pass*</td>
</tr>
<tr>
<td>3.5% Salt (NaCl) Water</td>
<td>2a</td>
<td>44911-41</td>
<td>Pass*</td>
</tr>
<tr>
<td>3.5% Salt (NaCl) Water</td>
<td>2a</td>
<td>44911-76</td>
<td>Pass*</td>
</tr>
</tbody>
</table>

* 2a Test Specimens that passed the 150 hour distilled water test were used for the salt water test.
IZ-C17 Thickness and Adhesion

- IZ-C17 Has Good Adhesion
 - Passes Bend-To-Break Tests
- Thickness Control is Very Good
2006 – 2007 Test Objectives

• Install Plating Tank at Boeing – St. Louis with Dipsol IZ-C17
 – Perform More Hydrogen Embrittlement Tests
 – Perform Fatigue Tests
 – Perform Lubricity Tests
 – Optimize Operating Parameters
 • Verify Operating Limits of Plating Bath
 – Plate Parts with Complex Geometries
 • Determine Need for Auxiliary Anodes and Special Tooling
 – Plate ID of Tubular Parts

• Qualify IZ-C17 for C-17 Program
 – Create Draft DPS for IZ-C17
 • Identify Process Controls
 • Hydrogen Embrittlement Test Methods
 • Select Repair Procedures
2006 Status

• IZ-C17 Tech Bulletin (Draft) Prepared
 – Information Provided by Dipsol and Boeing

• Purchased and Installed Plating Tank and Support Equipment
 – IZ-C17 Chemical Received From Dipsol of America – Livonia, MI
 • Original Zn-Ni Chemicals Came From Dipsol – Japan

• Bare Test Specimens Prepared
IZ-C17 Tech Bulletin

DIPSOL OF AMERICA, INC.
34005 Schoolcraft Road, Livonia, MI 48150
TEL (734) 261-0633, TOLL FREE: 1-866-DIPSOL-1
FAX (734) 261-0655, E-mail: main@dipsolamerica.com
www.dipsolamerica.com

ZINC AND ZINC ALLOY PLATING PROCESSES

LHE Zinc Nickel system

DIPSOL IZ-C17

Low Hydrogen Embrittlement Alkaline Zinc Nickel Alloy Plating
IZ-C17 Zn-Ni Plating Process

1. TCE Vapor Degrease or Solvent Clean with MPK
2. Grit Blast with aluminum oxide (120 grit or finer) at ~ 60 psig
3. Rinse in water to remove loose grit
4. Apply LHE zinc-nickel plate: IZ-C17 – 3 A/dm² – RT – 30 to 45 minutes (produces 0.3 to 0.6 mils)
5. Rinse
6. Embrittlement Relief Bake at 375 +/- 25°F for 24 hours. Bake within 4 hours after plating
7. Rinse
8. Chromate Conversion Coating: Apply IZ-258 @ 140°F, 60 seconds
9. Rinse
10. Dry @ < 140°F – 10 minutes
IZ-C17 Plating Tank

- 60 L Plating Tank Installed in Laboratory
Conversion Coat Tank

• Installed IZ-258 Chromate Conversion Coating Tank
2006 Status (Cont.)

- IZ-C17 Test Plan Prepared
 - Hydrogen Embrittlement (1a.1, 1a.2, 2a)
 - Adhesion and Metallurgy
 - Corrosion Testing (Salt Spray and Galvanic)
 - Fluid Immersion (ASTM F 483)
 - Lubricity (Fasteners)
 - Strippability (BCA – Ammonium Nitrate pH 10)
 - Throwing Power (JCAT Method and Tubes)
 - Fatigue
2006 Status (Cont.)

• IZ-C17 Tank Up and Running Since 8-18-06
 – Chemistry Meets Specifications
 • Need to Use only Nickel Anodes (or Ni Plated Steel)
 – Passed Thickness, Composition and Adhesion Tests
 – Passed Hydrogen Embrittlement for Type 1a.1, 1a.2 and 2a Specimens

• Prepared Corrosion Specimens (4”x6” Steel)

• Prepared Fatigue Bars

• Prepared Fluid Immersion Test Specimens (ASTM F 483 1”x2” Steel Specimens)

• Prepared Throwing Power Test Specimens
Type 2a HE Testing
Fatigue Test Specimens
Throwing Power Test
Throwing Power Test

#1
- Open End
- Test Panel
- Ni
- 12”

#2: D = 2 to 3 inches (two anodes)
- Test Panel
- Open End
- D

#2A: D = 10 to 12 inches and only one anode at open end
- Test Panel
- Open End

#3
- 12”
2007 Activity

- Prepare Zn-Ni Plated Fasteners (In Work)
- Perform Tests on Zn-Ni Plated Specimens
- Plate Tube IDs With Internal Anodes
- Prepare Specimens with Different Zinc – Nickel Ratios in Plating Bath
- Prepare DPS Draft Specification for LHE Zn-Ni Plating
- Support JCAT Phase II and III JTP