

Procedia
Computer
Science Procedia Computer Science 00 (2012) 000–000

www.elsevier.com/locate/procedia

 Complex Adaptive Systems, Publication 2

Cihan H. Dagli, Editor in Chief

Conference Organized by Missouri University of Science and Technology

2012 - Washington D.C.

Understanding System of Systems Development Using an Agent-

Based Wave Model

Paulette Acheson
a
*, Louis Pape

a
, Cihan Dagli

a
, Nil Kilicay-Ergin

b
, John Columbi

c
,

Khaled Haris
a

aMissouri University of Science and Technoloy, Rolla, MO USA

bPenn State University, Malvern, PA USA
cAir Force Institute of Technology, Dayton, OH USA

Abstract

System of Systems (SoS) development is a complex process that depends on the cooperation of various independent Systems [1].

SoS acquisition and development differs from that typical for a single System; it has been shown to follow a wave paradigm

known as the Wave Model [2]. Agent based models (ABMs) consist of a set of abstracted entities referred to as agents, and a

framework using simplified rules for simulating agent decisions and interactions. Agents have their own goals and are capable of

perceiving changes in the environment. Systemic (global) behavior emerges from the decisions and interactions of the agents.

This research provides a generic model of SoS development with a genetic algorithm and fuzzy assessor implemented in an agent

based model. The generic SoS development follows the Wave Model. The genetic algorithm provides an initial SoS meta-

architecture. The fuzzy assessor qualitatively evaluates SoS meta-architectures. The agent-based model implements the generic

SoS development, the genetic algorithm, the fuzzy assessor, and independent SoS and system agents and shows the SoS

development based on an initial set of conditions. A prototype model is developed to test the concept on a sample from the DoD

Intelligence, Surveillance, and Reconnaissance (ISR) domain.

Keywords: agent based model; system of systems; SoS; human behavior; genetic algorithm; fuzzy systems

1. Introduction

System of Systems (SoS) architecting poses challenges, as the solution space of the design is much more open

compared to a standalone system [3]. Existing analysis methodologies and tools scope the SoS problem space by

assuming that there is a limited set of solutions [4][5]. However, the SoS problem boundary includes integration of

technical systems as well as cognitive and social processes, which alter system behavior [6]. As mentioned before

* Corresponding author. Tel.: +0-310-336-3789; fax: +0-310-336-4070.

E-mail address: pbatk5@mail.mst.edu.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2012 2. REPORT TYPE

3. DATES COVERED
 00-00-2012 to 00-00-2012

4. TITLE AND SUBTITLE
Understanding System of Systems Development Using an Agent-Based
Wave Model

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Missouri University of Science and Technoloy,1870 Miner
Circle,Rolla,MO,65409

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
System of Systems (SoS) development is a complex process that depends on the cooperation of various
independent Systems [1]. SoS acquisition and development differs from that typical for a single System; it
has been shown to follow a wave paradigm known as the Wave Model [2]. Agent based models (ABMs)
consist of a set of abstracted entities referred to as agents, and a framework using simplified rules for
simulating agent decisions and interactions. Agents have their own goals and are capable of perceiving
changes in the environment. Systemic (global) behavior emerges from the decisions and interactions of the
agents. This research provides a generic model of SoS development with a genetic algorithm and fuzzy
assessor implemented in an agent based model. The generic SoS development follows the Wave Model. The
genetic algorithm provides an initial SoS metaarchitecture. The fuzzy assessor qualitatively evaluates SoS
meta-architectures. The agent-based model implements the generic SoS development, the genetic
algorithm, the fuzzy assessor, and independent SoS and system agents and shows the SoS development
based on an initial set of conditions. A prototype model is developed to test the concept on a sample from
the DoD Intelligence, Surveillance, and Reconnaissance (ISR) domain.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

10

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

 Acheson/ Procedia Computer Science 00 (2012) 000–000

most system architects assume that SoS participants exhibit nominal behavior (utopian behavior) but deviation from

nominal motivation leads to complications and disturbances in systems behavior. It is necessary to capture the

behavioral dimension of SoS architecture to be able to represent the full problem space to guide SoS analysis and

architecting phase [7].

Agent based models (ABM) consist of a set abstracted entities referred to as agents, and a framework for

simulating agent decisions and interactions [8][9]. Agents have their own goals and are capable of perceiving

changes in the environment. Simplified agent interaction rules may result in interesting group behavior. System

behavior (global behavior) emerges from the decisions and interactions of the agents. The approach provides insight

into complex, interdependent processes. Agent based modeling methodology has several benefits over other

modeling techniques, such as Discrete Event modeling or System Dynamic modeling: it captures emergent patterns

of system behavior, provides a natural description of a system composed of behavioral entities and is flexible for

tuning the complexity of the entities [10]. A key characteristic of an SoS is the independence of the individual

systems that comprise the SoS [2]. The ABM has agents implemented as independent processes that more accurately

reflects real world SoS development. The methodology is used in a wide range of application domains including

financial markets [11], homeland security applications [12] and autonomous robots [13].

The goal of this research is to model SoS architecture evolution and acquisition based on the Wave Process

Model and test the concept on the DoD Intelligence, Surveillance, and Reconnaissance (ISR) domain. The idea of

Wave Planning was developed by Dombkins [1] and applied to the Trapeze Model of SoS Systems Engineering in

order to illustrate the incremental and iterative process that characterizes SoS development [2]. Agent based

modeling methodology is well suited to abstract behavioral aspects of the acquisition process in the special case of

SoS. In this project, the SoS and the individual Systems are embodied in agents. The System agents represent

themselves (e.g., Program Manager) as well

as any other individual stakeholders. The

wave model applies to acknowledged [14]

SoS, thus there is a specific agent

responsible for the SoS; that agent influences

the cooperation of other System agents. An

initial SoS mission is already determined and

funds are allocated to the mission through a

responsible organizational entity. The

structure of the wave model is depicted in

Figure 1 [2].

Figure 1. Wave Process Model [2]

The ABM in this paper consists of the SoS proposed development with the genetic algorithm, the fuzzy assessor

applied in several places, and the actual implementation agreed among the System agents. The following sections

describe in further detail these aspects of the model.

2. Proposed Agent Based Model

The proposed ABM consists of a generic SoS development, genetic algorithm, fuzzy assessor and an executable

model. The generic SoS development is based on the Wave Model shown in Fig 1. The genetic algorithm creates an

initial set of SoS meta-architectures, to initiate the SoS. The fuzzy assessor qualitatively evaluates the possible SoS

meta-architectures in the SoS analysis step. The ABM operates on the proposed meta-architecture to develop an

agreed SoS architecture. The SoS agent plans and the System agents implement the agreed update. Finally, the

genetic algorithm and fuzzy assessor operate on the result again to evolve the SoS Architecture in successive

updates.

 Acheson/ Procedia Computer Science 00 (2012) 000–000

Figure 2. Overall Agent based Model of SoS Acquisition

2.1. SoS Acquisition Environment

The SoS agent and the individual System agents may be influenced by changes in the SoS acquisition

environment. Thus the environment model includes external factors/variables such as national priorities, threats and

SoS funding. As the SoS acquisition progresses through wave cycles, these variables are updated to reflect

appropriate environment changes. Table 1 summarizes the model elements in mathematical notation.

Table 1: SoS Acquisition Environment

2.2. SoS Agent Behavior

SoS agent is responsible for the overall SoS

engineering activity and coordinates with

individual System agents to achieve the desired

SoS mission. In the model, it is assumed that an

initial SoS mission is already determined and an initial baseline SoS architecture is available. The SoS agent follows

the six core SoS engineering activities outlined in the Wave Process Model [2] to develop the SoS. The SoS

architecture evolves based on the behavior of individual systems as well as changes in the external environment.

2.3. Initiate SoS

During the initialization phase, the wave interval - the time interval from one wave to next, is determined. At

each wave interval time, the SoS agent identifies SoS target measures that comprise desired SoS capabilities and

SoS performance parameters to meet mission objectives. Since some of the capabilities may have higher priority

External factors/variables:

Changes in external environment at wave time T: T

External factors/variables at time T:

), , (0 threatsfundingSoSprioritiesNationalfE 

TT EE 0

 Acheson/ Procedia Computer Science 00 (2012) 000–000

levels than others, weighted value of each capability is also identified at this phase. Table 2 summarizes the

abstracted model elements in mathematical notation.

Table 2: Initiate SoS

2.4. Conduct SoS Feasibility Analysis

The SoS agent tentatively allocates SoS capabilities

to individual systems or group of systems. This

allocation defines a baseline SoS architecture

identifying individual systems and interfaces necessary

to achieve the SoS target measures. Genetic

Algorithms can generate alternative SoS architectures

as chromosomes. The Fuzzy Associative Memory

determines the fitness of each chromosome and the

best alternative is selected as the initial SoS baseline

architecture for the acquisition wave. Program

management measures such as schedule and funding

are also identified for the selected SoS architecture.

The SoS baseline architecture and program measures

information is sent to individual systems as a

connectivity request to collaborate on the SoS architecture. Individual systems should evaluate whether they can

develop the requested interface with other systems and capabilities in the given deadline and funding. Table 3

summarizes these abstracted model elements in mathematical notation.

3. Genetic Algorithm

An initial SoS architecture is first proposed at random so developers and acquisition officers can improve on it

using the ABM, given an initial set of conditions and based on agent capabilities. An SoS architecture includes

systems and interfaces that reflect these capabilities.

Then, genetic algorithms (GA) can be used to populate the meta-architecture with recommendations of better SoS

architectures forming a trade space. In due course, the proposed architectures are individually evaluated by the

fuzzy assessor. Eventually, the best architecture is selected. Genetic algorithms have been used in the past to

generate optimum architectures in conjunction with Fuzzy Logic [15].

For genetic algorithms, all systems and interfaces can be represented side by side in a chromosome. In the

chromosome structure, each degree of cooperation may be represented as a binary number representing the range of

values possible. In our simplified model, each system or interface found in a possible architecture will be

represented by a simple binary digit, with cooperation taking the value “1” while inability to cooperate will take a

“0”.

Incorporating the interfaces into the chromosome is based on the following idea. Let be the System where

 and is the total number of possible Systems. It is possible to have multiple systems in the set A of

systems that are capable of providing the same capability. In addition, let be the interface between the systems

and where also . Consider the set of all interfaces a graph G of size n. Then, it can be represented

by its adjacency matrix , whose elements are given by the following:

 (1)

Since an interface cannot connect a system to itself then:

That is the diagonal of the adjacency matrix will have the values zero. In addition, since an interface needs

to be considered only once for the connection of two systems, only the upper triangle of the matrix needs to be

considered, whereas the remaining elements of the matrix can take the value of zero. The following illustrates a

Simulation time: t

Wave interval: epoch

Wave time: T = epoch. t

At Wave time: T=0

Determine SoS desired capabilities:

Determine weighted value for each SoS capability:

),...,,(. 21 ni wwwwSoS 

Determine SoS desired performance parameters:

Identify initial SoS Target Measures:

iiiiii

nij

wSoSaPSoSaCSoSa

aMSoS

. ,. ,.

 where][.

321

30



 

),...,,(. 21 ni PPPPSoS 

),...,,(. 21 ni CCCCSoS 

 Acheson/ Procedia Computer Science 00 (2012) 000–000

 adjacency matrix representing interfaces in the upper triangle, which depicts existing interfaces between three

systems:

Table 3: Conduct SoS Analysis

Based on the above discussion, the

chromosome can be simplified as follows

so that only the upper triangular portion of

the respective adjacency matrix is used.

Figure 3 shows the chromosome format.

In order to address the performance value

of the chromosome based on the key

performance attributes in the prototype

implementation, a matrix may be

generated at random to relate the

architecture attributes to the systems and

interfaces identified in the chromosome.

The tabulated values are then used as

inputs to the fuzzy assessor discussed

below.”

3.1. Develop and Evolve SoS Architecture

The SoS agent updates the baseline

SoS architecture based on information

received from individual Systems.

Individual Systems may decide to

cooperate at the requested deadline, may

decide to cooperate at a later time or may

decide to not cooperate at all depending

on their motivation and circumstances. At

this step, based on information received from individual systems, the expected SoS architecture at the end of the

wave cycle is updated. The SoS agent has a Fuzzy Assessor that maps desired target measures to SoS architecture

score/rating. The Fuzzy Assessor determines architecture score for the expected SoS architecture at wave time T.

This SoS architecture score is used later in gap analysis to plan for the next SoS architecture update. Table 4

summarizes the abstracted model elements in mathematical notation.

Figure 3. Chromosome Representation

Identify set of individual systems to satisfy the target SoS measures:

Define initial baseline SoS Architecture using Genetic Algorithm:

 Initial SoS architecture generation chromosome:

and

Evaluate the fitness of each individual SoS architecture chromosome:

Fitness of each chromosome is determined by the
Fuzzy Associative Memory (Table 4)

Select the chromosome with the highest fitness value as the initial SoS architecture:

Determine deadline for each allocated SoS capability of the initial SoS architecture:

 Determine funding for each allocated SoS capability of the

initial SoS architecture:

Send SoS Connectivity Request to individual systems:

s
1
 s

2
 s

i
 s

n
 s

12
 s

1j
 s

1n
 s

23
 s

n-1,n

)...,,(.. 210 ni SSSSSystemMSoS 

ji SS 

jiijijg SSystemSSystemaaCSoS .. where][. nn  

).,.,.(. 0 iii dSoSfSoSASoSfRSoS 

)...,,(. 321 ddddSoS i 

)...,,(. 321 ffffSoS i 

gng CSoSCSoS .. , 





ngCSoSFitness ,.:

)..max(. ,0 ngCSoSFitnessASoS 

Memory eAssociativFuzzy from ... , Tng BSoSCSoSFitness 


 Acheson/ Procedia Computer Science 00 (2012) 000–000

Table 4: Develop and Evolve SoS Architecture

4. Fuzzy Assessor Model

The Fuzzy Assessor was designed to operate on a

reduced set of four fuzzy attributes of: affordability,

flexibility, robustness, and performance. A set of value

membership function for each of the architecture

attributes had to be developed. An even number of

fuzzy values for each attribute prevents an evaluator

from simply “punting” by choosing the middle value

of an odd numbered set. The choice of membership

functions affects the results of the Fuzzy Assessor so it

was important that the membership functions

accurately represent the attribute data. The

determination of membership functions to use for

these attributes was made based on structured

interviews and discussions with stakeholders. The data

from these interviews and questionnaires could be

analyzed to find membership functions for other

domains. The technique is extensible. In our example,

the affordability values range from “totally

unachievable,” through “almost affordable,” “looks

quite affordable,” to “could give resources back.” The

shape of the membership functions and amount of

overlap in their shapes was tuned to be generically

reasonable while covering existing data; other

domains might use differently shaped membership

functions.

The four attributes were chosen to represent a reasonable but extensible architectural evaluation basis, yet still be

simple enough to comprehend the results within the model. Affordability was explained above. Flexibility has

more to do with the development of the SoS and ability to change direction, and whether SoS objectives are

achievable with varying degrees of participation from the component systems, overall resource support from the SoS

agent, or changes in environment such as threat or competition. Robustness has more to do with the SoS success

under varying degrees of participation by the component systems in the mission application. Finally, performance is

evaluated against technical measures of the SoS goals (or requirements). A structured interview process with

stakeholders by a subject matter expert facilitator can create domain appropriate scales for the fuzzy attribute values,

such as that shown in Table 5.

4.1. Plan SoS Update

At the end of the wave cycle, the SoS agent evaluates changes in the external environment. The SoS target

measures and wave interval for the next cycle is updated based on environment changes and architecture gaps

analysis. The gap analysis is also conducted at the end of the wave cycle during the SoS implementation step

described in the following step. Table 6 summarizes the model elements in mathematical notation.

Receive information from individual systems (see Table 8):

Architecture update factor:

Expected SoS architecture at wave time T:

Fuzzy Associative Memory (FAM): F

ii BAF :

m is the number of FAM rules

),(...,),........,(11 mm BABA

ii AnInformatioSystem .

SoS architecture assessment: iB

'.: ii BnInformatioSystemF 

 where
'

iii BWB 

 :iW the strength of the fuzzy association
),(ii BA

Defuzzification:

SoS architecture score: 



m

i

iiT BWBSoS
1

'.

inInformatioSystem.

).(iT nInformatioSystemfBeta 

TT BetaASoSASoS  0..

 Acheson/ Procedia Computer Science 00 (2012) 000–000

Table 5: Fuzzy Architecture Attribute value examples for ISR

 \ Value

Attribute\

Unacceptable Marginal Acceptable Exceeds performance

Performance

(KPPs for ISR SoS)

 Coverage (sq km/hr)

 Resolution

 # of channels

 Timeliness

 Adaptability

Fails to meet multiple key

performance parameters

(KPPs)

Fails to meet at least one

key performance parameter

(KPPs)

Meets or exceeds all

KPPs

Exceeds performance in one

or more KPPs by 20% or

more

Affordability

A measure of the projected total

ownership cost versus budget

(acquisition cost plus O&M cost) vs.

delivered capability

Projected total ownership

cost exceeds 120% of budget

Large mismatch in annual

estimates

Projected total ownership

cost exceeds 100% of

budget

Projected total

ownership cost is

between 85% and 99%

of budget

Projected total ownership

cost is less than 85% of

budget

Robustness (in the field)

Ability of the SoS to continue proper

functioning despite external

disturbances

More than 30% degradation

in one or more KPPs due to

external disturbances or lack

of a single System

Between 10% and 30%

degradation on one or more

KPPs due to projected

external disturbances or

lack of a single System

Between 5% and 10%

degradation in one or

more KPPs due to

projected external

disturbances or absence

of more than one System

Not more than 5%

degradation in any KPP due

to estimated external

disturbances

Flexibility

Ease with which the SoS can be

repurposed to support other missions

Ease with which individual system

contributions can be traded

Architecture is monolithic

and key SoS capability

applications are tightly

coupled

0-25% of key functionality is

allocated to software

Several different

Architectures are possible

with varying degrees of

cooperation among systems

25-50% of key functionality

is allocated to software

Architecture is layered;

most key SoS capability

applications loosely

coupled

50-75% of key

functionality is allocated

to software

Architecture is fluid and all

key SoS capability

applications loosely coupled

> 75% of key functionality

is allocated to software

4.2. Implement SoS

At the end of the wave cycle, the current SoS architecture is evaluated against initial SoS baseline architecture to

identify functionality gaps. The SoS architecture score determined by the fuzzy assessor is also used in the analysis

to identify performance gaps. This step is an input to planning SoS update step. Table 7 summarizes model elements

in mathematical notation.

4.3. Continue SoS analysis

The next wave cycle of the SoS development starts after the SoS target measures and wave interval time are

updated.

4.4. Individual System Behavior

Individual systems receive request for connectivity to SoS architecture. Since each system is independent and has

its own goals and motivations, the system has the option to cooperate or not to cooperate with the SoS agent’s

request. The decision depends on several factors including system’s willingness to cooperate related to the degree of

selfishness of the individual system or other constraints preventing cooperation, and system’s ability to cooperate

which depends on system’s resources that will allow it to be part of the SoS. If individual system decides to

cooperate, it sends information to the SoS agent on the probability of meeting the requested capability at the given

deadline. If individual system decides not to cooperate, it has the option of requesting a later deadline to provide the

 Acheson/ Procedia Computer Science 00 (2012) 000–000

capability. Table 8 and Table 9 summarize the abstracted model elements in mathematical notation for individual

systems.

Table 6: Plan SoS update

Table 7: Implement SoS architecture

Table 8: Evaluate SoS Connectivity Request

Table 9: Reply back to SoS agent

If

where

else Time to cooperate:

5. Initial Implementation of the Agent-Based Model

An ABM implements the generic SoS model, the genetic algorithm, and the fuzzy assessor. The ABM consists of

an SoS agent, a set of system agents, and the chromosome data structure (Figure 3) representing the SoS meta-

architecture. The ABM was developed using an Object-Oriented System Architecture approach [16].

At wave time T:

Adjust/update SoS Target Measures:

Capability update factor

Performance update factor

SoS Target measures update factor

at T=0

SoS Target measures at time T:

Adjust wave interval

Adjust budget/schedule for allocated capabilities

At wave time T:

Gap analysis:

Individual system:

System performance:

System capability:

Willingness to cooperate:

Ability to cooperate:

Receive Connectivity Request from SoS agent:

Evaluate SoS request:

1. icoopSystem

).,.,.(. iiii avSystempSystemcSystemnInformatioSystem 

).(. ii RSoSPavSystem 

ii dSoSttcooptimeSystem . where. 

),...,,(. 21 ni CCCCSoS 

).,(. Tti GapSoSEfCSoS 

),...,,(. 21 ni PPPPSoS 
).,(. Tti GapSoSEfPSoS 

iiii

nijT

PSoSaCSoSa

aAlphaSoS



 

. and .

 where][.

21

2

0. TAlphaSoS

TT AlphaSoSMSoSMSoS ... 0 

).,(TT GapSoSEfepoch 

).,(.

).,(.

TTi

TTi

GapSoSEffSoS

GapSoSEfdSoS





iSSystem.

ipSystem.

icSystem.

iswillingnesSystem.

iabilitySystem.

iRSoS.

).,.

,.(.

ii

ii

RSoSabilitySystem

swillingnesSystemfcoopSystem 






cooperatenot if 0

cooperate if 1
. icoopSystem

).,.,.(. 0 TTT BSoSASoSASoSfGapSoS 

 Acheson/ Procedia Computer Science 00 (2012) 000–000

5.1. System Agent

The system agent represents the individual system that has some capability required by the SoS. The system

agent has three states: Cooperation, Maybe, and Non-Cooperation. The Maybe state is the state when the system is

evaluating its architecture and other factors to determine if it will cooperate with the SoS. The system agent can be

influenced by different factors (such as social, political, economic, etc.) which can affect the willingness of the

individual system to cooperate with the SoS request for capability. In addition, in order to provide a capability to the

SoS, the system might have to modify its own architecture. Thus, the system must analyze the impact of providing

the requested capability to the SoS.

5.2. SoS Agent

The SoS agent represents the overarching SoS that is being developed. The three SoS states were taken from the

Wave Model described in [2]. These states are Develop/Evolve SoS Architecture, Plan SoS Update, and Implement

SoS Architecture.

Initially, the SoS agent begins in the Develop/Evolve SoS Architecture state and the Architecture Algorithm

presented above is run to obtain the starting SoS meta-architecture. Once the SoS meta-architecture is defined, the

SoS agent requests capabilities from the individual systems. When the SoS agent receives the responses from the

individual systems, the SoS agent updates the SoS meta-architecture based on the capabilities the individual systems

provide.

The Fuzzy Architecture Assessor is used in the SoS agent to evaluate the resulting SoS meta-architecture. The

inputs to the assessor are the degree of system agent cooperation and measures of the architecture attributes of

flexibility, robustness, affordability, and performance.

5.3. Agent-Based Model Applicability

Using this ABM, SoS developers and acquisition officers can run “what if” scenarios to examine several SoS

meta-architecture and the quality of the resulting architecture given a set of initial conditions and agent interaction

rules. The agent-based model provides true independence between the development of the SoS and the development

of the individual systems. The model was implemented in AnyLogic [17] because of its support of agent-based

modeling and its basis in JAVA. The model can be provided as a JAVA applet that can be executed without an

AnyLogic license.

6. Concluding Remarks

This research has provided an approach to investigating SoS development utilizing a generic SoS development,

genetic algorithm, fuzzy assessor, and an agent-based model implementation. A genetic algorithm is used to

populate the initial SoS meta-architecture and formulate the trade space of possible architectures with the optimum

architectures. The fuzzy assessor is used to evaluate the set of SoS meta-architectures to determine the highest

quality architectures. Finally, the agent-based model implements the generic SoS development, the genetic

algorithm, and the fuzzy assessor into an executable application of independent agents that can represent the

behavioral stakeholder and system influences on the SoS development. The agent-based model can be used by

acquisition officers and government representatives to analyze the impact of different acquisition strategies and

policies on the SoS development. In this way, the implementation provides data that supports the up-front systems

engineering decisions made by acquisition officers. A prototype model developed is currently being tested on a

sample of the DoD ISR domain.

Acknowledgement

This material is based upon work supported, in whole or in part, by the U.S. Department of Defense through the

Systems Engineering Research Center (SERC) under Contract H98230-08-D-0171. SERC is a federally funded

 Acheson/ Procedia Computer Science 00 (2012) 000–000

University Affiliated Research Center managed by Stevens Institute of Technology.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s)

and do not necessarily reflect the views of the United States Department of Defense.

References

1. David Dombkins, “Complex Project Management” Booksurge Publishing, South Carolina: 2007.

2. J. Dahmann, G. Rebovich, J. A. Lane, R. Lowry, K. Baldwin “An Implementers’ View of Systems Engineering for Systems of

Systems” Proceedings of IEEE International Systems Conference 2011, April 4-7, 2011, Montreal, Quebec, Canada.

3. Nil Kilicay Ergin and Cihan H Dagli, ed. Jamshidi M., “System of Systems Architecting” in System of Systems: Innovations for the

21st Century, Wiley & Sons Inc. 2008.

4. C. Dagli Editor “Complex Adaptive Systems”, Procedia Computer Science Volume 6, Elsevier 2011. (

http://www.sciencedirect.com/science/journal/18770509).

5. Best Practices Model for SoS Systems Engineering (SE) and Test & Evaluation (T&E), Draft for NDIA Strategic Initiative: Best

Practices Model for SoS T&E, 11 October 2011.

6. J. P. Dauby and S. Upholzer, “Exploring Behavioral Dynamics in Systems of Systems”, in Complex Adaptive Systems, Editor C.

Dagli, Procedia Computer Science Volume 6, Page 34-39, Elsevier 2011.

7. J. P. Dauby and C. H. Dagli, “The canonical decomposition fuzzy comparative methodology for assessing architectures,” Systems

Journal, IEEE, vol. 5, no. 2, pp.244-255, June 2011.

8. Brazier F. M. T., Jonker C. M. and Truer J., “Formalization of a cooperation model based on joint intentions” In J.P. Muller, M.J.

Wooldridge, N. R. Jennings (eds), Intelligent Agents III (Proc. Of the Third International Workshop on Agent Theories, Architectures

and Languages, ATAL’96), Lecture Notes in AI, Vol. 1193, Springer Verlag, ppg. 141-155, 1997.

9. Brazier F.M.T, Dunin-Keplicz B., Jennings N. R., and Treur J., “DESIRE: modeling multi-agent systems in a compositional

framework” International Journal of Cooperative Information Systems, M Huhns, M Singh (eds), special issue of Formal Methods in

Cooperative Information Systems, 1996.

10. Bonabeau E. “Agent based Modeling: Methods and Techniques for Simulating Human Systems,” Proceedings of the National Academy
of Sciences, Vol. 99, pp. 7280-7287, 2002.

11. Nil Kilicay-Ergin, David Enke and Cihan Dagli, “Biased trader model and analysis of financial market dynamics”, International Journal

of Knowledge-based Intelligent Engineering Systems, accepted June, 2011.

12. William Weiss, “Dynamic Security: An Agent-based Model for Airport Defense” Proceedings of the Winter Simulation Conference,

2008.

13. Donald Dudenhoeffer and Michael Jones “A Formation Behavior for Large Scale Micro-Robot Force Deployment” Proceedings of the

32nd Conference on Winter Simulation, 2000.

14. Office of the Deputy Under Secretary of Defense for Acquisition and Technology, Systems and Software Engineering. Systems

Engineering Guide for Systems of Systems, Version 1.0. Washington, DC: ODUSD(A&T)SSE, 2008.

15. K. Haris and C. Dagli. “Architecture Trade-off Analysis and Reconfiguration”, Proceedings Conference on Systems Engineering

Research 2011 April 15-16, ISBN -978-0-9814980-1-0.

16. Paulette Acheson, “Methodology for Object-Oriented System Architecture Development” IEEE Systems Conference 2010.

17. AnyLogic. www.anylogic.com.

