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Abstract

A comparative study of non-coplanar binary dislocation junctions in magnesium (Mg) and beryllium (Be) is presented to examine the
effects of elastic properties and active Burgers vectors on junction formation and destruction in hexagonal close-packed (hcp) crystals via
discrete dislocation dynamics simulations. Two junction configurations formed at intersecting prismatic ð01�10Þ=basal ð0001Þ planes and
type-II pyramidal ð�2112Þ=prismatic ð01�10Þ planes are studied using Burgers vectors of varying magnitudes. The equilibrium junctions
are created from two intersecting straight gliding dislocations, and their subsequent strengths are evaluated under uniform applied stres-
ses. The relative junction strengths between Mg and Be are consistent with their relative elastic stiffness, i.e., the modulus of elasticity for
Mg is approximately one order of magnitude smaller than that of Be, and their junction strengths are similarly one order of magnitude
apart. In general, the yield surfaces for junctions in Be are larger than those in Mg after normalization with the respective elastic moduli
and Poisson’s ratios. All yield surfaces exhibit a strong symmetry. However, the size and shape of the yield surfaces depend on the slip
systems, especially the active Burgers vectors. The yield surfaces of hcp crystals can resemble those of face-centered cubic or body-cen-
tered cubic crystals when the active Burgers vectors of the dislocations involved in the junction are of type hai, namely 1

3
h11�20i, and are

distinct when Burgers vectors of different types are used: for instance, a type ha + ci, namely 1
3
h11�2�3i, interacting with a type hai. It was

also found that junctions with more edge part exhibit more elongated yield surfaces than those with more screw part, and slip systems
involved with hai Burgers vectors result in smaller yield surfaces. These results demonstrate that junction strengths for hcp crystals are
largely determined by elastic properties and Burgers vectors. The work aims to assess the effects of intrinsic material properties and dis-
location slip systems on the strength of different binary dislocation junctions for general hcp structures.
� 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Keywords: Discrete dislocation dynamics; Strength; Yield surface; hcp Metals

1. Introduction

Recent progress in the development of new lightweight
structural materials and low-loss wide band-gap semicon-
ductor materials has fostered great interest in dislocation
mechanisms in hexagonal close-packed (hcp) crystals. The
formability of hcp crystals such as Mg and Be and the del-

eterious electronic properties of threading dislocations in
wide band-gap gallium nitride (a wurtzite crystal structure
consisting of two interpenetrating hcp lattices) pose ques-
tions regarding dislocation properties and, in particular,
the fundamental mechanisms that would enable “design-
ability” of the dislocation content. Among the many issues
potentially relevant to designability, entanglements of dis-
locations by way of binary junctions are of keen interest.

From general dislocation theory, two or more intersect-
ing dislocations gliding on adjacent slip planes can attract
each other and form junctions to reduce the total strain
energy [1–3]. These junctions are usually sessile, with
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locked dislocation arms that can act as obstacles and
restrict the movements and interactions of other disloca-
tions (such as the Lomer–Cottrell or Hirth lock). With a
sufficiently high dislocation density, dislocations are more
likely to intersect and form junctions as long as they are
energetically favorable. Possible junction formation and
dislocation interactions in a network are normally modeled
with a glissile dislocation sweeping through a forest of
equally spaced and parallel dislocations on another inter-
secting slip plane [4,5]. Significant efforts in studying the
flow stress effect by this type of multi-junction interaction
can be traced back to Shoeck and Frydman’s work four
decades ago [6]. Using an improved line tension model sim-
ilar to the approach by Hirth [3], Shoeck and Frydman [6]
first computed the interactions of a single binary junction
due to dislocation intersection. The interactions were then
expanded to approximate the overall blocking effect due to
multiple junctions in the entire dislocation network, using
an averaging procedure in order to take into account other
possible interactions. The simplification of Shoeck and
Frydman’s model, which assumed an equal value for the
tree length and the average separation distance in the for-
est, put the accuracy of Shoeck and Frydman’s predictions
into question [7]. In recent years, the quantitative relation
between the flow stress describing the blocking effect and
the dislocation density is generally known as analogous
to that between the internal shear stress and the dislocation
density in cold working [8]. The detailed mechanisms due
to multi-junctions have also been studied via DDD simula-
tions [9,10]. It has been shown that junctions can directly
relate to the local dislocation microstructure and indirectly
affect important properties such as the overall dislocation
density, stress–strain response and yield strength [4,6].
Existing studies of binary junctions mostly seek the regimes
where a junction can form using the initial orientations of
intersecting dislocations as variables. For face-centered
cubic (fcc) crystals, early work by Hirth [3] examined differ-
ent binary junction strengths for all the combinations of
possible pairs of dislocations. Hirth determined the junc-
tion strength relative to the maximum resolved shear stress
via the calculated energy reduction due to junction forma-
tion. With a similar approach, Dupuy and Fivel [11] devel-
oped an improved line tension model, taking into account
the contribution of forces due to the line tension perpendic-
ular to the dislocation direction. Using this approach, they
estimated the strengths of different junctions in fcc crystals.
Simulation techniques such as molecular dynamics (MD)
[7,12–14] and discrete dislocation dynamics (DDD)
[10,15–23], which can reveal dynamical dislocation mecha-
nisms, have also been employed to study dislocation junc-
tions. For example, via MD simulations, Rodney and
Phillips [14] compared the calculated critical stress to
break the Lomer–Cottrell junction in a fcc crystal and
identified a temporary length increase prior to unzipping
when a binary junction is loaded by an increasing stress.
This is a mechanism unexpected by the line tension approx-
imation, which would have predicted a monotonically

decreasing junction length. Most reported studies on
strength only estimate the magnitudes of critical resolved
stresses as the junction strength, such as Hirth’s energy
calculations [3] and Rodney and Phillips’ MD simulations
for fcc crystals [14]. To the best of the present authors’
knowledge, a more quantitatively comprehensive illustra-
tion of junction strength was first shown by Shenoy et al.
[19], where the junction strength of a symmetric Lomer–
Cottrell lock in fcc crystals was described with a yield sur-
face estimated by DDD simulations. Despite the fact that
the yield surface was composed of individual points, it pro-
vided insight on the resistance of the lock to breaking as a
result of the applied stresses. Via the yield surface, the
strength of a junction can be estimated quantitatively by
any loading condition of the applied stresses because the
stable region of a junction is contained by a closed
envelope.

Dislocation junctions have been studied previously,
either for their formation or for their strength (destruction)
properties. As the prior references illustrate, most efforts
have focused on cubic crystals, especially fcc metals. This
is partly because most structural materials fall into this cat-
egory where only one unique dislocation slip system needs
to be considered because of their high crystallographic
symmetry. In contrast, there are several possible slip sys-
tems for dislocations in hcp crystals, because of their lower
crystallographic symmetry. Furthermore, only a few
researchers have studied non-coplanar binary junctions in
hcp [22–24]. In hcp crystals particularly, dislocations can
glide from a primary plane to an adjacent secondary plane,
because a junction can serve as a dislocation source for
cross slip [24]. Therefore, the presence of junctions can
have a significant effect on important macroscopic proper-
ties. Junction strength may also play a role in dislocation
mechanisms near grain boundaries [25,26]. In wurtzite
crystals, experimental findings have indicated that the glo-
bal dislocation density is closely correlated with the annihi-
lation and entanglement of threading dislocations, both of
which are mechanisms that are critically related to junction
strength [27–29].

Nevertheless, studies of junction strengths for hcp crys-
tals are scarcer, and it is unclear to what degree knowledge
of fcc crystals is applicable because of the greater complex-
ity of crystal structure and, more importantly, multiple
possible dislocation slip systems. Using a DDD approach,
Capolungo [22] compared the strengths of binary junctions
formed at the intersections of primary slip planes, including
basal, prismatic and pyramidal planes. Given that the dis-
location mobility may vary from one slip system to another
and to date has not been well documented for hcp crystals,
Capolungo [22] used the mobility law that Monnet et al.
[23] had approximated for dislocations on prismatic slip
planes for zirconium (Zr). However, the choice of mobility
should not play an important role in determining the resul-
tant junction strengths because of the insensitivity of the
yield stress to substantial changes in mobility observed by
Monnet et al. [23].
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In the present work, DDD simulations are employed to
study the strength of binary junctions formed by two non-
coplanar dislocations in Mg and Be crystals. Their different
elastic constants and c/a ratios (where the c and a represent
the vertical and lateral lattice spacings in hcp crystals,
respectively) make them useful for detecting similarities
and differences in binary junctions in general hcp crystals
[30]. Two junction configurations formed at the intersect-
ing edges of the same prismatic ð01�1 0Þ plane with the basal
ð0001Þ and with the type-II pyramidal ð�21 12Þ planes are
studied. The type II-pyramidal plane is chosen in particular
because of its importance as a slip plane in several hcp and
hcp-related structures, such as wurtzite crystals [31,32]. A
variety of Burgers vector pairs are employed to examine
their effects on junction strengths. Burgers vectors are
henceforth defined as 1

3
h11�20i for pure hai type, h0001i

for pure hci type, and 1
3
h11�2�3i for ha + ci type, where a

and c refer to the lattice spacings in the basal plane and
its normal directions, respectively. The paper is organized
as follows. Section 2 presents the calculation methodology
along with the problem setup and assumptions. The results
are presented in Section 3, with extensive discussions of the
observations, focusing on how the differences in the elastic
constants and the Burgers vectors affect junction strengths
in terms of the sizes and shapes for the yield surfaces.
Finally, the paper ends with conclusions in Section 4.

2. Methodology

The dislocation dynamics simulator ParaDiS [33] was
employ in this work. To remain consistent with the imple-
mentation of hexagonal Miller indices in ParaDiS, the
three index convention is used henceforth to represent
directions and planes, with the understanding that the con-
ventional 4-index notation for hexagonal axes can be read-
ily converted [34]. The calculations are performed in two
steps. The first step establishes the equilibrium unstressed
junction via equilibration simulations. Then, in the second
step, stress is applied to the junction so as to result in
unzipping, i.e., complete destruction or dissociation of
the junction.

Despite their known anisotropic properties, both Be and
Mg are approximated to be isotropic to first order in their
dislocation junction behaviors: Be is known to be the least
anisotropic metal among all hcp single crystals, and Mg
also does not significantly deviate from isotropic linear
elasticity, given the ratio between the two elastic constants
C66:C44 is close to 1 (1.030) [30,35]. Capolungo [36] also
studied the effects of elastic anisotropy and suggested the
suitability of using isotropy to approximate long-range dis-
location interactions in Mg.

The equilibrium non-coplanar junctions are first formed
by inserting into the center of a three-dimensional simula-
tion box two straight dislocation lines n1 and n2, each of
length 40,000a, where a is the lattice spacing in the basal
plane. The sets of interacting slip systems are specified in
Table 1 and schematically illustrated in Fig. 1. Table 2 lists
the Burgers vectors and directions for the resultant junc-
tions. The Burgers vectors are chosen such that interaction
leads to the formation of a junction along the direction
parallel to the intersecting edge of the adjacent slip planes.
For the basal/prismatic junction in case (a), the hai-type
Burgers vectors for the intersecting dislocations result in
a junction also with an hai-type Burgers vector. For the
type-II pyramidal/prismatic junction, the ha + ci-type Bur-
gers vector is used for the pyramidal plane and both hai
and hci-types are considered for the prismatic plane. There-
fore, cases (b) and (c) refer to the same junction formed on
the intersecting planes using different pairs of Burgers vec-
tors. An ha + ci-type Burgers vector for the prismatic plane
is not considered here because a h2ai-type junction has a
larger energy than two hai-type junctions. Nor are junction
results shown for dislocation pairs involving an hai-type
and a hci-type Burgers vector, because junction formation
is not favorable in that scenario. Pairs using pure hci-type
Burgers vectors also do not form a junction. Both the 4-
index notation commonly used for hcp crystals and the
equivalent 3-index notation are listed in Table 1. The iso-
tropic elastic constants used for Be and Mg are listed in
Table 3 [35]. The magnitudes of the Burger vectors in the
lateral and vertical directions and can therefore be calcu-
lated by the specified lattice spacing and the c/a ratio.

Table 1
hcp Slip planes and Burgers vectors studied in this work.

Slip plane Burgers vector

4-index 3-index 4-index 3-index Type

(a) ð0001Þ 0 0 c
a

� �
1
3 ½1�210� 1

2

ffiffi
3
p

2 0
h i

hai

ð01�10Þ ð
ffiffiffi
3
p

1 0Þ 1
3 ½�2110� 1

2 �
ffiffi
3
p

2 0
h i

hai

(b) ð�2112Þ ð�
ffiffiffi
3
p

c 3c � 2
ffiffiffi
3
p

aÞ 1
3 ½2�1�13� � 1

2

ffiffi
3
p

2
c
a

h i
ha + ci

ð01�10Þ ð
ffiffiffi
3
p

1 0Þ 1
3 ½�2110� 1

2 �
ffiffi
3
p

2 0
h i

hai

(c) ð�2112Þ ð�
ffiffiffi
3
p

c 3c � 2
ffiffiffi
3
p

aÞ 1
3 ½2�1�13� � 1

2

ffiffi
3
p

2
c
a

h i
ha + ci

ð01�10Þ ð
ffiffiffi
3
p

10Þ ½000�1� 0 0 � c
a

� �
hci
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The core radius of a dislocation is taken to be equivalent to
the lattice spacing a, and the core energy was approximated
by

Ec ¼
la2

4p
ln

ro

0:1a

� �
ð1Þ

where Ec is the core energy (J m�1), l is the modulus of
elasticity (Pa), ro is the core radius, approximated as 1a.
The cubic simulation box is 600,000a on each side, and
all dislocations are initially discretized into segments rang-
ing in length from 1000a to 3000a.

A series of test calculations are first performed [37] to
find stable equilibrium junctions and thereby the most
favorable initial orientations for the two intersecting dislo-
cations. Fig. 2 schematically illustrates the dislocation con-
figurations before and after the junction formation, with w1

and w2 and w01 and w02 indicating the angles that the inter-
secting dislocations n1 and n2 make with the junction direc-
tion before and after junction formation, respectively.
Various junctions are tested to find the configuration with
the lowest energy. The junctions are obtained by varying w1

and w2 in 30� intervals from �180� to +180� to generate
169 total initial intersections. From these, it was found that
junctions can be formed in the absence of a net stress field
when w1 = w2 = 30� for the chosen slip systems. Then, a
more refined calculation is performed to create the initial
junctions. n1 and n2 are placed on their respective planes
with their midpoints intersecting at O at angles
w1 = w2 = 30� to the prospective junction axis. The config-
uration is then allowed to evolve freely and self-equilibrate
with a zero net stress field. The results are largely insensi-
tive to dislocation length, i.e., the dislocations are effec-
tively infinite in length, which was determined by
comparing the results with those produced using virtual
segments at the pinned end nodes. The relaxation is permit-
ted to occur for 30,000 total time steps. The equilibrium
junction length can be reached typically within 10,000 time
steps. The equilibrium junction configuration is also indi-
cated when the displacement of all nodes within a single

Fig. 1. Illustration showing the different interacting slip systems used in this work: The purple arrows represent the Burgers vectors for the dislocation on
the ð01�10Þ prismatic plane (also in purple). The red arrows represent the Burgers vectors for the dislocation on the basal plane ð0001Þ in case (a) and on
the type-II pyramidal plane ð�2112Þ in cases (b) and (c), respectively. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Table 2
Burgers vectors and directions of the resultant binary junctions.

Burgers vector Junction direction

4-Index 3-Index 4-Index 3-Index

(a) 1
3 ½�1�120� ½1 0 0� ½�2110� ½1 �

ffiffiffi
3
p

0�
(b) ½0001� ½00 c

a� ½2�1�13� ½�1
ffiffiffi
3
p

2 c
a�

(c) 1
3 ½2�1�10� ½� 1

2

ffiffi
3
p

2 0�

Table 3
Elastic constants for Be and Mg.

Property Be Mg

Modulus of elasticity l (GPa) 130 17
Poisson’s ratio m 0.032 0.290
Lattice spacing a (nm) 0.229 0.269
c/a ratio 1.568 1.633

Fig. 2. Illustration showing dislocation configurations: (a) n1 gliding on plane 1 (gray) intersects with n2 gliding on plane 2 (white) at their midpoints O

with both angles w1 and w2 30� to ex; (b) a junction n3 is formed along ex and connected to n1 and n2 with triple nodes P and Q. After junction formation,
the angles change to w01 and w02 for n1 and n2, respectively.
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time step is sufficiently small (in the range 1 � 10�4 to
1 � 10�3a). Dislocations are also confined on their slip
planes via a constraint that, over a single time step, pre-
vents each node from having a displacement component
normal to its glide plane.

Depending on the magnitude and the direction of
resolved stresses on the slip planes, dislocation junctions
may be destabilized by an externally applied stress field.
When the junction is unzipped along a straight line and dis-
location arms are forbidden to climb, the dissolution of a
junction is essentially carried out via the Frank–Read
bow out mechanism of the arms induced by the resolved
stress so and can be approximated as [11,40–42]

so ¼
alb

l
ln l ð2Þ

where a is a constant in the range 1.0–2.0, comprising the
pre-logarithm term associated with the Poisson’s ratio, m,
used for the energy of dislocation line tension, b is the mag-
nitude of Burgers vector, l is the shear modulus, and l is
the length of pinned straight dislocation segment prior to
bowing out. Therefore, the critical resolved stress to break
a junction is closely related to so.

Upon equilibration of the junction, trial stresses r are
applied until “unzipping” of the junction is observed,
thereby determining the junction strength. In principle,
the relation between the applied stress field r and the
resolved shear stress on each dislocation ri (i = 1, 2 and
3, corresponding to dislocations n1, n2 and n3, respectively),
should be

r1 ¼ r : s1

r2 ¼ r : s2

r3 ¼ r : s3

ð3Þ

where r is the applied 3 � 3 stress tensor, and si are the
3 � 3 projection matrices, which can be calculated from
the Burgers vector bi and the unit normal vector ni

(i = 1,2,3) for each dislocation, including the two interact-
ing dislocations (i = 1,2) and the resultant junction (i = 3),
as

si ¼
bi

jbij
� ni

jnij
þ ni

jnij
� bi

jbij

	 

ð4Þ

To ensure that the stress on one plane does not cause a
resolved shear on the other, an additional constraint is
applied, using the orthogonal Schmidt tensors S, such that
for j,k = (1,2,3) [38,39]

Sj :¼ sk ¼ djk ð5Þ
where djk is one when j = k, and zero otherwise. The re-
solved shear stress ri on each dislocation can then be calcu-
lated as

r1 ¼ r : S1

r2 ¼ r : S2

r3 ¼ r : S3

ð6Þ

where now r1, r2 and r3 are independent of each other.
That is, the applied stress r for breaking the junction can
be calculated as

r ¼ r1S1 þ r2S2 þ r3S3 ð7Þ
The r3 is set to zero in this work, preventing the junction

from bowing out on either slip plane. Therefore, the trial
applied stress r only depends on the resolved stresses r1

and r2 on dislocations n1 and n2, respectively, and Eq. (6)
becomes

r ¼ r1S1 þ r2S2 ð8Þ
In the following, r2 refers to the resolved stress on the
prismatic plane ð01�10Þ, and r1 corresponds to the stress
applied on the basal plane ð0 001Þ for case (a) and the
type-II pyramidal plane ð�2112Þ for cases (b) and (c). For
each specified ratio of r1/r2, the equilibrium junction is
loaded with the stress tensor r, starting with the smallest
magnitude. If the junction remains after 30,000 total time
steps, the stress is incrementally increased and the equili-
bration is repeated. The critical values of the stress pair
(r1c, r2c) are recorded when destruction or dissolution is
observed. In this work, that point is reached if either of
the following conditions is met: the dislocations completely
detach; or the junction length becomes nil. Upon scaling
with a normalization factor, the locus of points defined
by (r1c, r2c) constitutes the yield surface of the junction.

3. Results and discussion

3.1. The formation of equilibrium dislocation junctions

The initial equilibrium junction lengths and orientations
of the dislocation arms are listed in Table 4. In this table,
Le is the equilibrium junction length in the unit of lattice
spacing a, DE is the total energy reduction in percent due
to junction formation, w01 is the orientation of dislocation
arms on the basal plane for case (a) and on the type-II
pyramidal plane for cases (b) and (c), respectively, and w02
is the dislocation arm orientation on the prismatic plane
for all cases. Here, the angles are measured from the inter-
section edge of two slip planes to the dislocation arm, and
DE is approximated based on the proportional relation
between the energy of a dislocation and the magnitude of
the Burgers vector. When the junction starts to form, it will

Table 4
Properties of the equilibrium junctions.

Case Material Le (a) DE (%) w01/w
0
2

(a) Be 23,323 50 60�/60�
Mg 23,769 50 62�/62�

(b) Be 21,698 45 54�/65�
Mg 16,145 43 45�/64�

(c) Be 31,311 83 88�/75�
Mg 26,029 84 78�/60�

3426 C.-C. Wu et al. / Acta Materialia 61 (2013) 3422–3431



continue growing until all forces at the triple nodes are bal-
anced. These forces are the pulling forces due to the self-
force and the dislocation interaction forces between each
dislocation segment.

The results indicate that it is most energetically favor-
able to form the type-II pyramidal/prismatic junction with
the ha + ci-type Burgers vector on the pyramidal plane
interacting with the hci-type Burgers vector on the pris-
matic plane, as shown in case (c). This junction has the
largest equilibrium length among those tested. At equilib-
rium, on either slip plane, the dislocation on that plane
intersects both triple points at the same angle with the junc-
tion line, regardless of the slip plane pairing. For both Be
and Mg, the dislocation arms make identical angles,
namely w01 ¼ w02, when the Burgers vectors of the two inter-
secting dislocations are the same—both are hai type. How-
ever, choosing different magnitudes of Burgers vector yields
different angles (w01 – w02). As shown in Table 4, the junc-
tion configurations are associated with an identical pris-
matic plane, but intersecting with different adjacent
planes—the basal plane for case (a) and the type II-pyrami-
dal plane for cases (b) and (c). Via analytical calculations,
Yoo et al. [24] predicted that the screw dislocations gliding
on the type II-pyramidal plane have a greater difference in
line tension between Be and Mg than those gliding on the
basal plane. This is consistent with the finding of a greater
difference in the equilibrium junction lengths between Be
and Mg in case (b) than in case (a). The equilibrium length
and arm orientations of the type-II pyramidal/prismatic
junction are only sensitive to the choice of Burgers vector
on the prismatic plane.

Distinctly different zipping mechanisms are also
observed for the different Burgers vector pairs. In cases
(a) and (b), where an hai-type Burgers vector is used for
the dislocation on the prismatic plane, a zipping mecha-
nism is observed similar to the formation mechanism seen
in fcc and body-centered cubic crystals (e.g., Refs. [11,15])
often described as the movement of triple nodes in opposite
directions along a straight line. This mechanism is depicted
in Fig. 3a. In case (c), a Burgers vector associated with hci
is used for the dislocation on the prismatic plane. The inter-
secting dislocation arms rotate and approach each other
such that they become nearly parallel to the junction direc-
tion, forming very shallow angles to the junction line, until
they eventually combine to form the junction. Fig. 3b illus-
trates the junction formation for case (c) via this mecha-
nism. In Fig. 3b, early, almost immediate, adjustment of
line orientation for the dislocations near the intersection
point appears. This is for two reasons. First, as indicated
in Table 1, the two intersecting dislocations are predomi-
nantly screw-like. Secondly, the Burgers vector for the dis-
location on the pyramidal plane is at the same direction as
the junction axis ex, as depicted in Fig. 1b. Therefore, it is
energetically favorable for this dislocation to orient parallel
to ex. Furthermore, through the analytical calculation
based on the Kroupa formula [43], it was found that, at
the original intersecting orientation (i.e., w1 = w2 = 30�),
a repulsive interaction exists between the two intersecting
dislocations. However, the interaction becomes attractive
after dislocation rotation and realignment due to a torque
force. For Mg, some experimental findings suggest a
“self-blocking” effect of the hc + ai dislocations on type

Fig. 3. Different mechanisms to form the junction: In (a) for case (a), the junction starts to form from the intersection and zip up progressively in opposite
directions along the junction. In (b) for case (c), the dislocation arms on either side of the intersection rotate and align themselves parallel to the plane
intersection until they eventually merge and form the junction. The gray plane represents the prismatic plane. The yellow plane corresponds to the basal
plane in (a) and type II-pyramidal plane in (b). P and Q indicate the junction triple nodes. The junction in (a) is oriented along ½1 �

ffiffiffi
3
p

0�, equivalent to
½�2110� in the 4-index notation. The junction in (b) is oriented along ½�1

ffiffiffi
3
p

2 c
a�, equivalent to ½2�1�13� in the 4-index notation. (For interpretation of the

references to colour in this figure legend, the reader is referred to the web version of this article.)

C.-C. Wu et al. / Acta Materialia 61 (2013) 3422–3431 3427



II-pyramidal slip planes [44]. In Grinberg et al.’s [44] work,
it was found that dislocations of this type in Mg prefer to
align along the h1�10 0i direction.

3.2. Junction unzipping and yield surfaces

As shown in the linear dependence of the critical stress
on l in Eq. (2), the computed critical breaking stresses of
junctions in Be should be one order of magnitude greater
(in MPa) than in Mg. The relative strengths of junctions
are compared via their yield surface plots. We use the

normalized stress pairs of (r01;c, r02;c) for the axes. These val-
ues are obtained by scaling the critical resolved stresses
(r1,c, r2,c) using the following normalization factor

ri;c ¼ r0i;c
la

L 1� mð Þ ln
R
ro

	 
� �
ð9Þ

where the slip plane index is i = 1, 2, a is the lattice spacing,
and L is the initial length of the intersecting dislocations.
Here, the term “a” is in the numerator because L is in
the unit of a, so that the normalized critical stresses r0i;c
are dimensionless. Figs. 4–6 depict the resultant yield sur-
faces for the junctions studied in this work.

The yield surfaces in all cases show a remarkable sym-
metry, which is anticipated because of the symmetric initial
equilibrium junction with respect to a center line perpen-
dicular to the junction, as described in Section 3.1. In the
DDD simulations, such symmetry was checked by running
all points for a complete envelope of yield surface. Earlier
studies on the formation and destruction of binary junc-
tions in fcc crystals using analytical models also attributed
the symmetry of yield surfaces to the symmetry of junction
triple nodes [11,19]. The appearance of this trend in hcp
crystals suggests that these symmetries are independent of
crystallographic structure. The shape of yield surfaces are
along a straight line that represents the major axis of the
elongated shapes, r2 = mr1, where m is the slope of that
line. The positive or negative sign of m depends on the
choice of slip planes used to create the junction and the
consequence that choice has on the orthogonal Schmidt
tensor S. The symmetry and elongation also result from
the dependence of critical breaking stresses on the sign of
trial r1 and r2. The uniformity upon scaling with Eq. (9)
reaffirms the sensitivity to the elastic constants of the mate-
rial in light of the one order of magnitude difference in their
elastic moduli and the difference in the Poisson’s ratio.

Fig. 4. The yield surfaces for case (a). r01 and r02 are the normalized
resolved applied stresses on the basal ð0001Þ and prismatic ð01�10Þ planes,
respectively. The junction is oriented along ½1 �

ffiffiffi
3
p

0�, equivalent to
½�2110� in the 4-index notation.

Fig. 5. The yield surfaces for case (b). r01 and r02 are the normalized
resolved applied stresses on the type-II pyramidal ð�2112Þ and the
prismatic ð01�10Þ planes, respectively. The junction is oriented along
½2�1�13�, equivalent to ½�1

ffiffiffi
3
p

2 c
a� in the 4-index notation.

Fig. 6. The yield surfaces for case (c). The r01 and r02 are the normalized
resolved applied stresses on the type-II pyramidal ð�2112Þ and the
prismatic ð01�10Þ planes, respectively. The junction is oriented along
½2�1�13�, equivalent to ½�1

ffiffiffi
3
p

2 c
a� in the 4-index notation.
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The inclination of yield surfaces does not vary signifi-
cantly in Figs. 4–6. The junction unzipping mechanism is
sensitive to the Burgers vector of each dislocation. For
the basal/prismatic junction in case (a), the hai-type Bur-
gers vector on the prismatic plane is in the same direction
as the junction, as indicated in Fig. 1. Therefore, the arms
on the prismatic plane bow out in favor of junction
destruction, resulting in smaller yield surfaces. Junction
destruction, therefore, may be resisted or expedited by
careful choices of interacting Burgers vectors. The role of
Burgers vectors is more complex in the type-II pyrami-
dal/prismatic junction. As evident in Tables 1 and 2, using
1
3
½�211 0�, a pure hai type, as the Burgers vector for the pris-

matic plane makes the junction a mixed dislocation for case
(b). However, by changing the Burgers vector to ½000�1�, a
pure hci type, the junction for case (c) is a pure edge due to
its pure hai-type resultant Burgers vectors.

The elongated yield surface may also be related to the
orthogonal Schmidt tensors S, which are used for the cal-
culation of trial applied stress r, although it is difficult to
isolate their influences from those of the Burgers vectors.
It is noted that the ratio of the major axis of yield surface
to its minor axis is generally consistent with the ratio
between the magnitude of S2 + mS1 or S2�mS1 to those
of S1 and S2 for all cases except case (b), which has rela-
tively rounded yield surfaces. The ratios are �1.5–1.7 for
case (a) and �1.6 for case (c). The results indicate that
junctions with a greater edge component, such as in cases
(a) and (c), are more likely to have an elongated yield sur-
face than junctions with a greater screw component, such
as in case (b). The junctions in case (b) are mixed disloca-
tions with a stronger screw character. Capolungo [22] per-
formed DDD simulations for junctions in Mg that yielded
similar observations. Small differences from the present
results may be explained by the difference in the normaliza-
tion factor used.

The size of the yield surfaces evidently depends on the
elastic constants because of their involvement, namely the
ratio of l/(1 � m), in the normalization factor, as shown
in Eq. (9). After normalization, the one-order difference
in the magnitude of critical unzipping stresses between Be
and Mg can be largely eliminated. However, the differences
in sizes between these two materials are then dominated by
the Poisson’s ratio term (1 � m), for which the ratio
between Mg and Be is 0.71, making the yield surfaces for
Be larger than those for Mg in all cases. From the DDD-
obtained yield surfaces, interacting Burgers vector pairs
both of hai type would result in smaller yield surfaces,
resembling those in fcc crystals [11], as in the present case
(a). This can be attributed to the fact that all the involved
Burgers vectors are hai type, which is the shortest lattice
vector on the basal plane, the only close-packed slip plane
in hcp crystals resembling the h111i slip planes in fcc crys-
tals. Moreover, the basal/prismatic junction in case (a) is a
mixed dislocation with a 60� orientation to its Burgers vec-
tor, a similar geometry to those in fcc crystals. This may
explain why the yield surfaces in case (a) appear to resem-

ble those reported for fcc crystals, except that those in fcc
crystals elongate along the positive diagonal direction.

However, Burgers vector pairs of different types involv-
ing either a type hai or a type hci interacting with a type
ha + ci would make the yield surfaces differ from fcc crys-
tals, such as in cases (b) and (c). This can be attributed to
the different magnitudes of interacting Burgers vector
pairs. The sensitivity to the chosen Burgers vectors indi-
cates the sensitivity of yield surfaces on crystal type. For
both Be and Mg, the junctions in case (c) exhibit signifi-
cantly larger yield surfaces than cases (a) and (b). This
can also be attributed to the �80% reduction in the total
dislocation energy via junction formation for case (c), in
comparison with, at most, 50% reduction for the junctions
formed in other cases. These findings also indicate the pos-
sible extension from fcc crystals to hcp crystals for the cor-
relations between the total energy reduction due to the
formation of a binary junction and its strength. Using yield
surfaces calculated by the line tension model, Dupuy and
Fivel [11] presented a direct comparison among different
junctions in fcc crystals, including the Hirth lock, glissile
junction and the Lomer–Cottrell lock. Their results also
indicated the consistent trends of an increasing total energy
reduction resulting in a stronger junction.

3.3. The effect of dislocation length on critical unzipping

stresses

As predicted by the line tension approximation, the crit-
ical stress needed to break a junction should be propor-
tional to ln(L)/L, where L is the initial dislocation length
prior to junction formation [9,45]. This relation has also
been validated previously by MD and DDD simulations
for junctions in fcc crystals [14,19]. To test this trend and

Fig. 7. The yield surfaces for the junction in Be in case (a) with varying
initial dislocation lengths. The data points shown for the original initial
dislocation length are identical to those for Be in Fig. 4. The junction is
oriented along ½1 �

ffiffiffi
3
p

0�, equivalent to ½�2110� in the 4-index notation.
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use the basal/prismatic junction in Be as an example, the
initial dislocation lengths are varied two and ten times
the original length of 40,000a. The magnitude of the critical
resolved stresses reduce accordingly with increasing dislo-
cation length. Fig. 7 displays the yield surfaces after scaling
by ln(L)/L. Thus, the effect of initial dislocation length is
accounted for through the scaling.

4. Conclusions

We have studied the formation and dissolution mecha-
nisms of non-coplanar dislocation junctions in Be and
Mg via DDD simulations, with a special focus on examin-
ing the influences of material elasticity and active Burgers
vectors on the junction strength. A complete junction dis-
solution appears to be most sensitive to the elastic proper-
ties. The critical stresses required to break junctions are
shown by computing the loci of points that form yield sur-
faces. Separate yield surfaces are generated for both mate-
rials in alternate junction configurations, using different
sets of interacting Burgers vectors. Upon normalization
to account for differing elastic properties and initial dislo-
cation lengths, all yield surfaces are symmetric, but change
their sizes or shapes with the Burgers vectors involved. The
significantly smaller yield surfaces obtained with both
interacting Burgers vector pairs of type hai resemble the
shape of those in fcc crystals. However, the yield surfaces
change either shape or size when the Burgers vectors
involved are of different types with different magnitudes.
It was also found that junctions possessing Burgers vectors
with greater edge character show elongated and reclined
yield surfaces, while those with a more screw character
exhibit more rounded yield surfaces. For all cases studied
in this work, the yield surfaces for Be are larger than those
for Mg. The larger sizes of yield surfaces for the type-II
pyramidal/prismatic junctions formed using interacting
ha + ci- and hci-type Burgers vectors generally affirms that
more energetically favorable junction formations lead to
stronger resultant junctions. Furthermore, using a scaling
factor to account for length effects, the yield surfaces can
be shown to be independent of the initial simulated disloca-
tion lengths.
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