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Introduction

Surgery and radiation therapies are difficult to use in the treatment of lung cancer because the
diagnosis often occurs when patients already have metastasis. Drug-based therapies are therefore the
best option, but intrinsic and acquired drug resistance still makes the 5-year survival rate for this disease
less than 15%. Over the years, many specific mechanisms associated with drug resistance in lung cancer
have been pinpointed, but we are still far from understanding how to overcome it. Combination drug
therapy is commonly used to enhance efficacy and overcome drug resistance in cancer, but at present
the choice of drugs and doses is based on empirical clinical experience alone. In this project we have
used an interdisciplinary approach based on the mathematics of complex networks to identify drug
combinations that could be effective in the therapy of lung cancer.

This reports describes the methods used and presents some preliminary computational and
experimental data that we have obtained during the first year of operations. The project has been
extended to August 14 2014 and additional details and data will be included in the final report.



Body: Detailed description of the methods as outlined in the Statement of Work (SOW).

1. TASK1 of SOW: Collection of data for attractor models.

A lung cell interactome was constructed by combining TRANSFAC and PhosphoPOINT data (Subtask 1
of Task 1). The lung network interactome we built has ~9,000 nodes and ~45,000 edges. Gene
expression data was obtained from the Gene Expression Omnibus (GEO) database for A549
adenocarcinoma, H358 non-small lung cancer, and IMR90 fetal lung fibroblast normal cell lines. The
model requires Boolean gene expression states. We have defined a cutoff for the normalized expression
values, and all genes with expression below the cutoff are “off” and all above are “on”. Because the
signaling is based on a model with +1 states, on states are identified by the variable & = +1 and off
states by &/ = —1, where “a” is either normal (n) or cancer (c).

This procedure provided the configurations corresponding to dynamical attractor states in our
method (Subtask 2 of Task 1). Figure 1 shows representative gene expression data and an example of

how the cut-off method was implemented.

Figure 1. Representative gene expression data used in our method. Expression levels take continuous values, but
must be made Boolean for our model. The expression level cutoff for normal lung cells (IMR90, pictured), for
example, use a cutoff (dotted line) of approximately 4. This was chosen because the number of on states is of the
same order as the number of off states, but more importantly the number of on and off states is not very sensitive
to small changes in the cutoff. The same cutoff is used for both normal and cancer cells. The continuous
distribution of expression levels is roughly the same for normal and cancer cells.

We have defined drug inhibitor-kinase links for a library containing about 300 kinase inhibitors
using experimental surveys of kinase inhibitor targets. (Subtask 3 of Task 1)

2. TASK 2 of SOW: Development of attractor model based on neural network Hopfield model

After making the attractor states Boolean, we encoded the states 5"@ = (E?(C), E;(C),..., Elrvl(c))
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in a signaling model defined by the coupling matrix
Jij = Ay + §7E5), Eq. (1)

where 4;; is the adjacency matrix of the lung cancer network interactome obtained in Task 1, and N is
the total number of nodes. The model calculates the total signal arriving at node i at time t as

hi(t) = X34 Jij0;(0),

where the g;(t) is the state of the node i at time t. The discrete-time update scheme for the dynamical
evolution of the state of the node i, g;(t), is given by

o;(t + At) = +1if hi(t) > 0,
o;(t +At) = —1if hi(t) <0,
and chosen randomly from +1 if the field is zero.

Note that we are left with two kinds of genes: similarity nodes, where &' = &7, and differential
nodes, where &' = —&{. We have then calculated the Hamming distance between cell attractors and
the dynamical state of the network (Subtask 1 of Task 2).

This distance has been used to identify the most sensitive single genes in the network using the
following algorithm:

1. Begin with all genes set in the normal/cancer state.
2. Force gene i=1 away from the initial state and count the number of genes that flip as a result.
3. Repeat for i=2...N, where N is the number of genes in the system.

This algorithm is effective in identifying bottleneck genes. Bottlenecks are genes which, when
targeted by inhibitors, drive the cell far away from its initial state. We always try to target bottlenecks
with & = +1 and &' = —1 so that cancer cells are driven away from their initial state, while the normal
cells are left unaltered.

We used both a one-attractor state (p=1) and a two-attractor state (p=2) signaling model. In the
one attractor (p=1) model the J;; only contains one term in Eq. (1). Both models behave like a simple
Ising magnet, except that the interactions are not symmetric: the expression of gene i may affect the
expression of gene j, but j does not necessarily affect i. This asymmetry makes both the p=1 and p=2
systems more vulnerable to external control. The p=2 system has one property that the p=1 doesn't,
however: all edges between similarity and differential genes are effectively removed, while all edges
connecting similarity genes to each other or differential genes to each other remain. The network fully
separates into two independent networks, the similarity network and the differential network. When
looking for nodes to target in the p=2 case, then, all similarity nodes can be safely ignored and the
problem space is significantly reduced. Aside from the edge deletion, however, p=1 and p=2 behave very
similarly. An example of genes identified by this method and their impact / in terms of flipped genes in
the iteractome, is shown in Table 1.



Part of the software was implemented on the high performance computer cluster facility at
MSU (Subtask 2 of Task 2). The algorithm however was sufficiently fast that parallelization of the code
was not necessary.

I/A
p=1 p=2
Gene I Gene 1
HNF1A 29 ORA5I1 35
TMEM37 22 TMEM37 25
UNC ORA5I1 20 HNF1A 23
MAP3K14 19 POSTN 21
MAP3K3 18 RORA 18
CON MAP3K14 19 SRC 15
SRC 14 BMPRI1B 7

Table 1. Representative genes to be targeted for a selective killing of A549 cell line versus a control IMRI0 cell line.
The impact | of each gene for the Sp$=1 and $Sp$=2 models were calculated and ranked. The constrained case (CON
in the table) refers to target that are kinases and are expressed in the cancer case. The calculation is based on the
selective response of | = IMR-90 (normal), A = A549 (cancer).

3. TASK 3 of SOW: First set of experiments at the high-throughput screening facility

We have carried out a first high-throughput screening of single drug and drug pair experiments
(Subtask 1 of Task 3). The original SOW only included single drug response, but we realized that a
screening with pairs would give better selectivity. 244 kinase inhibitors (KlIs) of the EMD drug library
were screened at 1000nM individually and the treatment lasted for 72 hours. To quantify a selective
response of a cancer cell line with respect to a control normal cell line, we define the selectivity S of a
single drug or drug combination as

where vy indicates the viability of normal cells (IMR90) after treatment, and v, the viability of cancer
cells (A549) after treatment. From the screening of the 244 Kls, the top hit was PDK1/Akt1/FIt3 Dual
Pathway Inhibitor (CAS # 331253-86-2) as ranked by selectivity. For the secondary screen (pair
combination of drugs), we used the PDK1/Akt1/FIt3 Dual Pathway Inhibitor as the starting point and
combined this compound with the other KlIs as a drug pair combination. The dose of PDK1/Akt1/FIt3
Dual Pathway Inhibitor was studied to ensure proper dosing range and minimize toxicity. We used
125nM, which maintains the normal cell line IMR-90’s viability >90%. For the other 243 Kls we used the
standard dose of 1000nM. Several pairs in the secondary screen showed very high selectivity. The top
hit from the secondary screen of the library was Alsterpaullone 2-cyanoethyl (CAS # 852529-97-0) with a
selectivity of S= 6.14 for the pair (see Figure 2).



Drug Pair's Selectivity for A549
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Figure 2: Representative data from TASK 3 in SOW. Experimental results of the top ten most selective drugs
(1000nM) when paired with PDK1/Akt1/FIt3 Dual Pathway Inhibitor at 125nM. Selectivity is the IMR-90 to A549
viability ratio. The 3 digit codes identify the compounds: A12: Alsterpaullone, 2-Cyanoethyl (CAS 852529-97-0);
D17: Cdk2/9 Inhibitor (CAS 507487-89-0); KO8: K-252a, Nocardiopsis sp. (CAS 97161-97-2); 021: Staurosporine,
Streptomyces sp. (CAS 62996-74-1); P15: WHI-P180, Hydrochloride (CAS 211555-08-7); E13: Go 6976 (CAS 136194-
77-9); C09: Compound 56 (CAS 171745-13-4); A10: Alsterpaullone (CAS 237430-03-4); 003: AG 1478, Selective
inhibitor of epidermal growth factor receptor (EGFR) protein (CAS 175178-82-2); NO5: Reversine (CAS 656820-32-
5).

We have also carried out measurements on random combinations of drugs (Subtask 2 of Task
3) including compounds from the EMD library and other drugs. A representative data set of random
combinations is given in Table 2.

Koa | A12 | A15 [ E03 [ 111 | 628 | AAG | 263 | MK2 | 662 | 535 | Type | IMR90/A549
Selectivity

0 2 3 0 4 0 0 1 0 0 0 R 3.46

1 2 3 0 3 0 0 2 0 0 1 R 3.81

1 3 0 4 1 1 1 0 0 1 0 R 1.71

2 0 4 4 1 1 0 1 2 0 0 R 3.40

4 3 3 1 0 3 0 0 0 1 0 R 4.90

3 3 2 4 0 1 0 0 0 2 1 R 1.17

3 2 2 1 1 3 0 1 0 0 0 R 3.12

4 3 2 4 3 1 1 0 0 1 1 R 2.11

0 4 3 1 3 1 1 1 1 0 0 R 1.82

1 3 4 0 2 1 0 1 0 2 0 R 7.40

Table 2. Representative data with measurements of selectivity on A549 cells versus IMR90. Drugs were combined
at different doses ranked from 0 to 4. The drug combinations obtained in this table were obtained randomly.



4. TASK 4 of SOW: Running and analysis of simulations

We have run simulations to predict the therapeutic effectiveness of combinations of kinase
inhibitors according to the attractor model (Subtask 1 of Task 4). We have tested our model against the
experimental results discussed in the previous section. We used the available kinase inhibition profiling
for a drug library to determine which kinase are shut off by each drug. We applied the drugs to both the
normal and cancer cells for both p=1 and p=2, and compared the resulting viabilities from the
experiment, V,y,, to the model,

vmodel"’e_m
where “m” is the magnetization of the system along the attractor state (see Figure 3).

Note that the results for p=1 and p=2 are roughly the same, and only the p=1 result is shown.
The black circles indicate the viability of the normal cells for a given drug combination, which is the drug
A15 (a PDK1/AKT1/FLT3 Inhibitor) and the drug code next to the black circles, and the connected red x's
are the cancer viabilities for the same drug combination. This shows only some of the 140 drugs tested.
The most remarkable result is that without any kind of fitting, ~95% of the blue lines (including those
not pictured) have a positive slope, meaning that if the experiment showed that the normal/cancer
cells fared better than the cancer/normal cells, our model showed that as well. Currently we cannot
reproduce the rank of the effectiveness of the drug combinations, but we can quite accurately predict
whether a combination will have a selectivity greater than or less than 1.

Figure 3. Computational versus experimental viability for IMR90 and A549. All drug codes shown are combined
with A15 (a PDK1/AKT1/FLT3 Inhibitor). The experimental results are compared with the p=1 model predictions
(p=2 is similar). A positive slope means that there is positive correlation between the experimental and model
results: the experiment showed that normal cells treated with (A15+016), for example, fared better than cancer
cells treated with the same drugs, which our model predicts as well. Note that while only 11 drug combinations are
shown, 140 were tested, a promising 95% of which had a positive slope.
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We have examined combinations that are more effective using a learning machine method
known as elastic net regression (Subtask 2 of Task 4). The method uses the in vitro lung cancer A549 cell
line response of single drugs and drug pair combinations as a training set to build a regression model.
Besides predicting the effectiveness of untested drugs, the method identifies sets of kinases that are
statistically associated to drug sensitivity in lung cancer. More specifically, we built a regression model
that predicts the response of a cell line to a drug or drug combination i. The response we predict is the
normal and cancer cell viability, from which the selectivity can be derived. For this purpose, we define a
regression problem in which we use the residual activity of the kinase k under the effect of drug i, which
we indicate as Ay ;, as predictors of the viability. The response can be written as

Vi = Po+ Br1Ayi + o+ BpApi- (2)
A fitting procedure based on a training set of measurements produces the coefficients (S, 1, .-, Bp)-
Equation (2) can then be used to predict the viability of a new drug that has not been tested, but of
which the profiling information is available. The coefficients 5} provide a measure of the sensitivity of a
given cell line due to alterations in the activity of kinase k.

Subtask 3 and Subtask 4 of Task 4 are in progress and will be described in detail in the final report.

5. TASK 5 of SOW: Second set of experiments and test of hypothesis (in progress)

We are currently performing measurement of drug response of cells under combinations
involving up to 10 drugs (Subtask 1). We have included drugs that were identified using the KIEN
method above and we used a dose optimization method. Cell survival was assessed by luciferase-based
assay, ATPlite™ (PerkinElmer, CA, USA), which determines viable cell numbers by measuring the
presence of ATP in all metabolically active cells. For the measurement of cell viability, A549 and IMR-90
cells were plated in 384-well plates. Subsequently, the cells were treated with the drugs and 72 hours
later, the ATPlite assay was performed according to the manufacturer’s protocol, and luminescence was
read with an Analyst HT instrument. Each combination was measured in triplicates.

Table 3 shows representative data with results of the measurements. Some of the combinations
reduce the viability of cancer cells almost to zero, still significantly preserving the viability of IMR90.

K04 | A12 | A15 | E03 | 111 | 628 | AAG | 263 | MK2 | 662 | 535 | IMR90 | Selectivity | A549
0.6162 | 297.7349 | 0.0021
0.7287 | 281.8844 | 0.0026
0.7257 | 273.3291 | 0.0027
0.6719 | 244.5041 | 0.0027
0.5578 | 225.7526 | 0.0025
0.7177 | 221.7178 | 0.0032
0.5110 | 216.8450 | 0.0024
0.5600 | 213.5330 | 0.0026
0.5800 | 210.7142 | 0.0028
0.5616 | 205.5397 | 0.0027

NININININRPININ|IN W
RPIN|RP|IRPINRPIRPRININ[F
E N R N SR N R
W D RPIPRPINPRPIRPI RPN
WIN|INININININ|N|N|N
W AININWWINP| W W
W W w w b ww w w w
il S S L
Rl RPWIR|R|RP|RP|RP|FR
P RP|ININRP|ININ| P PP
NINIRPIRINININININ| P

Table 3: Representative data with measurements of the highest selectivity on A549 cells versus IMR90. Drugs were
combined at different doses ranked from 0 to 4
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Conclusions

During the first year of operations, we have achieved many of the milestones defined in the
statement of work. In particular we have a working code able to calculate the effect of drug
combinations on the signaling of A549 adenocarcinoma, H358 non-small lung cancer, and IMR90
fibroblast normal cell lines. (Milestone 1). Two publications on the computational and theoretical results
on controllability of cancer networks and identification of target genes in lung cancer have been
submitted and are currently under review (Milestone 2). Experimentally, we found drugs combinations
with up to 10 drugs that are very effective in killing A549 cells versus the control IMR90 cells in an in-
vitro setting (Milestone 3).
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Prediction of kinase inhibitor response using activity profiling, in vitro screening, and
elastic net regression.

T. Tran,' E. Ong,? A. P. Hodges,* G. Paternostro,*? and C. Piermarocchi®*

'Sanford Burnham Institute for Medical Research, La Jolla, CA 92037

2Salgomed Inc., Del Mar, CA 92014

*Department of Physics and Astronomy, Michigan State University, East Lansing M1 48824
Abstract:

Background: Many kinase inhibitors have been approved as cancer therapies. Recently,
libraries of kinase inhibitors have been extensively profiled, thus providing a map of the
strength of action of each compound on a large number of its targets. These profiled libraries
define drug-kinase networks that can predict the effectiveness of untested drugs and elucidate
the roles of specific kinases in different cellular systems. Predictions of drug effectiveness based
on a comprehensive network model of cellular signalling are difficult, due to our partial
knowledge of the complex biological processes downstream of the targeted kinases.

Results: We have developed the Kinase Inhibitors Elastic Net (KIEN) method, which integrates
information contained in drug-kinase networks with in vitro screening. The method uses the in
vitro cell response of single drugs and drug pair combinations as a training set to build linear
and nonlinear regression models. Besides predicting the effectiveness of untested drugs, the
KIEN method identifies sets of kinases that are statistically associated to drug sensitivity in a
given cell line. We compared different versions of the method, which is based on a regression
technique known as elastic net. Data from two-drug combinations led to predictive models, and
we found that predictivity can be improved by applying logarithmic transformation to the data.
The method was applied to the A549 lung cancer cell line, and we identified specific kinases
known to have an important role in this type of cancer (TGFBR2, EGFR, PHKG1 and CDK4).
A pathway enrichment analysis of the set of kinases identified by the method showed that axon
guidance, activation of Rac, and semaphorin interactions pathways are associated to a selective
response to therapeutic intervention in this cell line.

Conclusions: We have proposed an integrated experimental and computational methodology,
called KIEN, that identifies the role of specific kinases in the drug response of a given cell line.
The method will facilitate the design of new kinase inhibitors and the development of

therapeutic interventions with combinations of many inhibitors.

Keywords: drug response predictions, kinase inhibitors, elastic net regression, high throughput

screening, drug combination therapies.



1. Background

The important role of kinases in cancer biology® has spurred a considerable effort towards
the synthesis of libraries of fully profiled kinase inhibitors, providing a map of the strength of
each compound on a large number of its potential targets.>* In particular, a recently published
dataset has profiled several hundred kinase inhibitors using a panel of more than 300 kinases.*
These profiled libraries define a network of interactions between drugs and their kinase targets,’
and represent a valuable resource for the development of new therapies. In this paper, we
introduce a novel computational method that incorporates profiled libraries and in vitro
measurements to predict the response of cells to previously untested drugs. Besides making
prediction about the cellular response to drugs, the method identifies critical kinase targets and
pathways that are statistically associated to drug sensitivity in a given cell line.

Statistical inference and regression methods in conjunction with gene expression or
mutations have been used to identify specific biomarkers associated with an increased
sensitivity/resistance to drugs. For instance, the sensitivity to PARP inhibitors of Ewing’s
sarcoma cells with mutations in the EWS gene and to MEK inhibitors in NRAS-mutant cell
lines with AHR expression have been predicted using analysis of variance and the elastic net
method® and then experimentally validated.”® In these analyses, the statistical variable
associated to drugs was represented by the half maximal inhibitory concentration (ICsp) in
different cell lines. However, besides the 1Cs, there are many other types of information that
characterize chemical compounds. These types of information can enhance the statistical
analyses and improve the accuracy of predictions. For instance, a method to predict drugs
sensitivity in cell lines based on the integration of genomic data with molecular physico-
chemical descriptors of the drugs has been recently proposed.® Another useful type of
information is the residual activity of kinases after interacting with a compound. Kinase
profiling, patient genetic profiles, and sensitivity of primary leukemia patient samples to kinase

inhibitors were recently used by Tyner et al.*

to identify functionally important kinase targets
and clarify kinase pathway dependence in cancer.

In this paper, the residual activity of kinases upon drug interaction is used to make
predictions of the cellular response for in vitro experiments using an elastic net® regression
approach. This regression method reduces the number of predictors to a minimum set, providing
a clear picture of the kinases involved in the response of cell lines. A primary screen (single
drug) and a secondary screen (two-drug combinations) are used as the training set for the
regression. The two-drug screening exhibits a broader distribution in the response and provides
a good level of predictability. In fact, the model based only on single drug response did not pass

the statistical cross-validation test.



We are applying this Kinase Inhibitor Elastic Net (KIEN) method to predict cell viability
of a lung cancer cell line (A549) and a normal fibroblast cell line (IMR-90) after drug treatment.
We found that the regression can be improved through a logarithmic transformation on the data.
Using the results of the regression, we identified a set of kinases that are strongly associated to a
selective response of A549 and not IMR-90. Then, a pathway-based enrichment using
Reactome revealed ten significant pathways using this set of kinases, including axonal
guidance and related semaphorin interactions as top hits.

This paper is organized as follows: Section 2.1 contains the experimental results of the
primary and secondary in vitro screening corresponding to single drugs and two-drug
combinations. These experimental results and residual kinase activity are analyzed with
Pearson’s correlation in Section 2.2. This simple correlation analysis gives a first glance of the
kinases that are statistically associated to a significant change in the viability of cancer and
normal cell lines. In Section 2.3, we introduce the elastic net approach and we present the
results of a leave-one-out cross validation for predictions on single and pairs of drugs. We also
present in this section the results obtained using the logarithmic transformation on the variables
and a pathway enrichment analysis using Reactome.'* The Discussion of the results is in Section

3, conclusions in Section 4, and Materials and Methods in Section 5.

2. Results

2.1 In vitro screen of the kinase inhibitor library

Our methodology begins with the high-throughput screening of single drug and drug pair
experiments. The 244 kinase inhibitors (KIs) of the EMD drug library were screened at 1000nM
individually and the treatment lasted for 72 hours. To quantify a selective response of a cancer
cell line with respect to a control normal cell line, we define the selectivity S of a single drug or
drug combination as

Un
S =—
Uc

where vy indicates the viability of normal cells (IMR90) after treatment, and v the viability of
cancer cells (A549) after treatment. From the screening of the 244 Kils, the top hit was
PDK1/Aktl/FIt3 Dual Pathway Inhibitor (CAS # 331253-86-2) as ranked by selectivity (Figure
1). For the secondary screen, we used the PDK1/Aktl/FIt3 Dual Pathway Inhibitor as the
starting point and combined this compound with the other Kls as a drug pair combination. The
dose of PDK1/Akt1/FIt3 Dual Pathway Inhibitor was studied to ensure proper dosing range and

minimize toxicity. We used 125nM, which maintains the normal cell line IMR-90’s viability



>90% (Figure 2). For the other 243 Kls we used the standard dose of 1000nM. Several pairs in
the secondary screen showed very high selectivity. The top hit from the secondary screen of the
library was Alsterpaullone 2-cyanoethyl (CAS # 852529-97-0) with a selectivity of S=6.14 for
the pair (Figure 3).

2.2 Analysis of correlations

In our second step, we analyzed the Pearson’s correlation of the primary and secondary
screening with a published dataset* containing target profiles for 140 kinase inhibitors.
Therefore, even though we had a library of 244 Kis in the experimental screening, we were
limited to utilizing 140 KiIs for the analysis. For each inhibitor, the dataset provides the residual
activity (0 < A < 1) of 291 kinases after drug treatment. This quantity is a measure of the
strength of inhibition of a drug on each kinase.

For each kinase k, we calculate the Pearson’s correlation, Cy, between the selectivity
S; and the activities Ay ;, with i € {1, ..., M} indicating the single drug or drug pair in the set.
For drug pairs, the activity is estimated as a product of the residual activities of the two drugs.
The kinases are then ranked based on the p-value of their correlation with selectivity, and we
calculate the False Discovery Rate (FDR) adjusted p value.*? The list of kinases mostly
correlated to the selectivity from the primary and secondary screen are listed in Table 1. We
also did calculations of the correlation between the normal or cancer cell viability and the
activities. The results for the top kinase-viability correlations for the primary and secondary

screen are shown in the supplementary materials (Supplementary Table 1).

2.3 Elastic Net regression

Next, we build a regression model that predicts the response of a cell line to a drug or
drug combination i. The response we predict is the normal and cancer cell viability, from which
the selectivity can be derived. For this purpose, we define a regression problem in which we use
the residual activity of the kinase k under the effect of drug i, which we indicate as Ay ;, as
predictors of the viability. The response can be written as

Vi = Bo + BrAri + -+ BpApi- 1)

A fitting procedure based on a training set of measurements produces the coefficients
(Bo, B1, -+, Bp)- Equation (1) can then be used to predict the viability of a new drug that has not
been tested, but of which the profiling information is available. Note that we are integrating two
different types of data: kinase profiling data is obtained through enzymatic assays that probe

directly the interaction between drug and kinases, while the in vitro cell response data is the



result of complex signaling that involves many pathways downstream of the affected kinases.
The coefficients 5, can be seen as a measure of the sensitivity of a given cell line due to
alterations in the activity of kinase k.

It is well known that the least square method does not perform well in the case of linear
regression with many predictors. In our case, we would like to use a database of drugs that have
been profiled on about 300 kinases. However, it would be desirable to select and keep in the
final model a minimal set of the kinases that provide a simple model, useful to gain biological
insight. The lasso technique®® is a powerful method to reduce the number of predictors by
imposing a penalty on the regression coefficients. However, in the presence of a group of
kinase predictors with strong mutual correlation, the lasso could select only one kinase predictor
from the group while missing the others. To prevent this problem, our method uses the elastic
net approach. This method incorporates the lasso penalty as well as a ridge penalty to keep the
regression coefficients small without completely removing them.® The weights of the ridge and
lasso penalties in the least square procedure can be optimized for best performance of the
method.

We show in Figure 4 (a) and (b) the results of a leave one out cross validation
(LOOCV) method for the primary (a) and secondary screen (b). For each of the 140 drugs, we
apply the elastic net method using the remaining 139 drugs and then we compare the result to
the measured value. This cross validation method is a particular case of the more general k-fold
cross validation procedure in which k is equal to the size of the training set.* The cross LOOCV
shows that the information contained in the primary screen is not sufficient to define a
predictive model. The fact that some kinases in Table 1 show some significant correlation with
the response when considered individually is in general not a sufficient condition for defining a
predictive, multiple regression model. On the other hand, the secondary screen is able to
reproduce the viability of many drugs, especially the ones with the stronger effect on both cell
lines. Overall, the data from the secondary screen presents a much broader distribution with a
tail representing a few drug combinations particularly effective. The regression works better in
identifying these highly effective pairwise combinations and the relative ranking of their
strengths. Data is not particularly informative for drugs and drug pair combinations that are not
effective, which concentrate in the neighborhood of ~1 .

Data transformations can represent a powerful strategy to improve regression. We
applied a logarithmic transformation, which is consistent with the hypothesis of an independent
action on the different kinases on the total viability. In this case we assume that the viability can

be rewritten in the form

Vi = GBO (Alji)ﬂl . (Azli)ﬁz C et (Ap_i)ﬁp . (2)



By applying a log transformation on both sides of Eq. (2) we reduce the problem to a linear
regression, to which the elastic net strategy can be applied. We show in Figure 5 the results of
the LOOCYV for the primary and secondary screen using the logarithmic data transformation.
As in the linear case, we find that the method fails the cross validation procedure if we use data
from the primary screen, while the secondary screen with log transformed data gives better R?,

In addition to a regression model that can be used to predict the efficacy of drugs that
have not been tested, the §; coefficients can be used to rank kinases in terms of their relevance
in the regression. Therefore, these coefficients identify the kinases whose inhibition is
associated to a decrease in the cell viability. A ranking based on the differential B¢ — g, where
the index N and C identify the regression model of the cancer and normal cells, gives insight on
specific pathways important for a selective response of cancer cells. Table 2 shows a list of
kinases ranked in terms of |/3f — ﬁlN| where the coefficients have been obtained using the
logarithmic data transformation on the secondary screen.

In order to test whether selected pathways were significantly enriched for the identified
kinase genes in Table 2, a pathway-based enrichment analysis was conducted using the results
from the elastic net kinase analysis and Fisher exact tests. Ten pathways from Reactome were
identified as significant (p<0.05) using this kinase list, including axon guidance, activation of

Rac, and semaphorin interactions as top hits (Table 3).

3. Discussion

Drug-kinase profiling represents a controller-target network® that when combined with in
vitro testing, can be used in regression models to predict drug response and to identify pathways
statistically associated to drug sensitivity. Network methods in biology are often based on the
analysis of large datasets from high-throughput experiments. An example is given by gene
regulatory networks, which presents many challenges either when restricted to a homogeneous

1516 or when it includes different classes of data.}”?® In our KIEN method,

set of data
information from the drug-target network and experimental query of the biological system are
integrated. The goal is not a reconstruction of a regulatory network, but to identify a set of
kinases linked to a therapeutic response in a given cell line. In order to establish associations,
the system has to be perturbed by the use of kinase inhibitor drugs. The response to these single
drugs or drug combinations becomes a training set that when combined with the kinase
profiling, can lead to predictions.

The elastic net method is one of the most widely used regularization techniques.
Regularization techniques are used in statistical and machine learning models to achieve an

optimal tradeoff between accuracy and simplicity. Simplicity makes a model less prone to



overfitting and more likely to generalize. In our analysis, we found that the elastic net
regressions based on single drug responses were not successful, while drug pair data provided
statistically significant predictions. A possible explanation for this finding is the following:
single drugs might be less able to overcome the robustness of biological networks.”> The
phenotypic signal is therefore blunted and not easily measured. If a second drug is added, any
compensatory capacity is already stretched and the effects from the inhibition of each kinase
can be seen more clearly. Using data from drug pairs, we found that noise can be better filtered
out and stronger statistical associations between kinases and therapeutic response are revealed.
Clearly, if a different training set with higher variance in efficacy measures were used in the
primary screen, it is likely that also single drug in vitro response would have given a significant
predictive model.

We identified several kinases that are implicated in lung cancer that gives biological
significance to our KIEN method. In particular, TGFBR2 appears as a top hit both in the
correlation and in the elastic net methods. This finding is consistent with recent siRNA
experiments on A549 cell lines,”* which demonstrated that silencing of this receptor reduces cell
proliferation, invasion, and metastasis. The Cyclin-dependent kinase 4 (CDK4) appears as a
second top target in the correlation analysis, and is also highly significant in the KIEN analysis.
Experiments using lentiviral-mediated shRNA to inhibit CDK4 in A549 have shown inhibited
cell cycle progression, suppressed cell proliferation, colony formation, and migration,? and
there is an ongoing clinical trial using a CDK4/6 inhibitor in lung cancer.”® The KIEN analysis
identified EGFR, which is known to be overexpressed in the majority of non-small cell lung
cancers.” Furthermore, RNAi experiments targeting EGFR demonstrated cancer growth
suppression in A549 xenograft in mice.”® The third kinase in Table 2, PHKG1 has also been
found to be upregulated in human tumor samples, including lung adenocarcinoma, and
aberrations in its gene copy number is a feature of many human tumors®.

The pathway-based enrichment provides a broader view on the role of the kinases
identified by our method in Table 2. Among the top three pathways shown in Table 3 are
activation of Rac and Semaphorin interactions. Rac proteins play a key role in cancer signaling
and they belong to the RAS superfamily.?’ We also identified a set of semaphorins in our
analysis that is represented in the top significantly enriched pathways. Semaphorins, previously
known as collapsins, are a set of proteins containing a 500-amino acid sema domain among
others (including PSI and immunoglobulin type domains), which can be transmembranous or
secreted.?® It is known that Sema3E cleavage promotes invasive growth and metastasis in vivo.?
These genes also have selective targeting by Rac and Rho family members. This generates

hypotheses of possible pathways that could be targeted therapeutically. However, these



hypotheses need to be validated by further experiments with different inhibitors for the same

targets or with alternative methods, e.g. using siRNA.

4. Conclusions

We have introduced an integrated experimental and computational methodology that
identifies the role of specific kinases in the drug response of a given cell line. The key element
of our KIEN methodology is a multiple regression procedure that uses in vitro screen data as a
training set. If a new library of kinase inhibitor compounds were to be synthetized and profiled,
then our model would be able to immediately estimate the effect of these drugs on in vitro
experiments on a given cell line. We have shown an application to a lung cancer cell line, but
our method can be extended to different cell lines. The method will facilitate the design of new
kinase inhibitors and the development of therapeutic interventions with combinations of many
inhibitors.?® The procedure could be extended to three drug combinations, if measurements for
these larger combinations were available. Finally, the method could be extended to regression
models that are specific of cancer cells with the same set of mutations, or it could be directly

used with patient-derived primary cells to identify a personalized treatment.

5. Materials and Methods
Materials

The primary screening of a kinase inhibitor (KI) library comprised of 244 Kis was
purchased from EMD Chemicals, and diluted with DMSO to 2mM concentrations for high-
throughput screening purposes. The KI library was stored at -80°C. Additionally,
PDK1/Aktl/FIt3 Dual Pathway Inhibitor (CAS # 331253-86-2) was ordered from EMD. Only
140 out of 244 were used in the drug-target network reconstruction because the drug profiling
information was available only for these compounds. One kinase inhibitor known to affect the

kinase targets indirectly was excluded.

Cell Culture

Cell lines IMR-90 (normal lung fibroblast) and A549 (lung adenocarcinoma) were
cultured in RPMI 1640 (Hyclone) supplemented with 10% Canadian characterized fetal bovine
serum (Hyclone), 1% 200mM L-glutamine (Omega), and 1% penicillin/streptomycin (Omega).
The media for the cells were renewed every 3 days and kept at 80-90% confluency. Cells were

maintained in a humidified environment at 37°C and 5% CO.,.



Kinase Inhibitor Experiments

IMR-90 (1500 cells/well) and A549 (750 cells/well) were seeded on 384-well
microplates (Grenier Bio-One) and incubated for 3 hours before the addition of kinase
inhibitor(s). The reason that IMR-90 was seeded at double the cell density of A549 is due to the
difference in cell division. IMR-90’s doubling time is 36-48 hours whereas A549’s is 22 hours.
We wanted to make sure that the cells have divided at least once during the 72hr drug treatment.
Furthermore, both A549’s and IMR-90’s final confluency at 72 hrs is 90-95% and within the
range of the ATPlite 1step assay. Supplementary Figures S1 and S2 show the growth curve for
both cell lines. IMR-90 and A549 cell lines were tested on the same day with three replicates
and the experiment was repeated three times with randomized well positions to reduce biases.
ECHO 555 Liquid Handler (Labcyte) was used to dispense nanoliter volumes of each Kl to 384-
well plates with cells attached (wet dispense). The final volume in the plate is 40uL and cells

were incubated for 72 hours with KI treatment.

ATP Measurements

ATPlite 1Step (Perkin Elmer) was used to evaluate the cell number and cytotoxicity.
ATP measurements were done by dispensing 20uL of the ATPlite 1Step solution to each well to
a final volume of 60uL. The plate was placed on a shaker at 1100rpm and the luminescence
activity was detected by Analyst GT Plate Reader. The percent (%) of control is the quantity of
ATPlite 1step measurement of the treated versus the untreated wells of each individual cell type.
The ATP standard was prepared with culture media to final volume of 40uL, and 20uL of
ATPlite 1step reagent was added. Supplementary Figure 3 shows the ATP standard curve. The

plate was read immediately.

Computational Methods

Correlations between selectivity/viability and kinase activity were calculated using the
python scipy linregress function, which also provide p-values. Ranking the p-values and
directly applying the Benjamini-Hochberg procedure gave us the FDR values. The elastic net
regression was carried out using the Scikit-learn package® which finds the coefficients g that

minimize the function

1 1
F=—/lv—ABI13+apllBlly +5a( - p)IIBII3
where v is the vector of the observed viabilities and A is the matrix containing the residual

activity of the kinases from the profiling, and M is the total number of drugs or drug
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combinations used. The parameters @ and § determine the relative weights of the lasso and
ridge penalties quantified using L' (]| -]|y) and L? (|| -||,) norm, respectively. We used
a = 0.15 and p = 0.01 in the results of Figures 4 and 5 and in Table 2. We also tried other

values of these parameters, which did not give a significant difference in the results.

Pathway-based enrichment

Reactome pathways were downloaded using a newer build of the *biomaRt’ library
(v2.12.0) in Bioconductor /R (v2.15.0). Gene symbols from the kinase list were converted to
Entrez gene identifier numbers (‘entrezgene’) and mapped against the gene ids in each
Reactome pathway. For each pathway, the set of significant genes enriched within any given
pathway was computed using a Fisher exact test. The procedure computes the significance (p-
value) of observing significant kinases, as deemed significant by our method, within the
selected pathway. These pathways are identified from 518 Reactome pathways. Given that our
gene set consists entirely of kinases and would be generalized towards kinase-specific effects,
the set of all kinases (~300) were selected for background adjustment and more sensitive
enrichment of the pathways. This procedure was repeated for each pathway to generate p-
values and pathway rankings. False discovery rate [FDR] values were later generated to further

restrict significance.
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FIGURES

Top Ten Hits of Primary Screen
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Figure 1. Primary screen results of the top ten most selective kinase inhibitors. Drugs are ranked
based on the IMR-90 to A549 viability ratio. The 3 digit codes identify the compounds: A15:
PDK1/Aktl/FIt3 Dual Pathway Inhibitor (CAS 331253-86-2); E20: Cdk/Crk Inhibitor (CAS
784211-09-2); 020: SU9516 (CAS 666837-93-0); H15: MEK1/2 Inhibitor Il (CAS 212631-61-
3); L13: PI 3-Ka Inhibitor VI (CAS 372196-77-5); G10: Fascaplysin, Synthetic (CAS 114719-
57-2); DO7: Cdk2 Inhibitor 1l (CAS 222035-13-4); C16: Cdk1/2 Inhibitor 111 (CAS 443798-55-
8); M16: GSK3b Inhibitor XII, TWS119 (CAS 601514-19-6); NO5: Reversine (CAS 656820-

32-5). The chemical structure of these compounds is given in a supplementary file.
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PDK1/Akt1/FIt3 Dual Pathway Inhibitor Dose Response
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Figure 2. Dose response curve of PDK1/Akt1/FIt3 Dual Pathway Inhibitor. Different doses of
PDK1/Akt1/FIt3 Dual Pathway Inhibitor were tested to measure the response of A549 to the

drug. For the secondary screen we selected 125nM to ensure low toxicity on the normal cell

line.
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Drug Pair's Selectivity for A549
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Figure 3. Secondary screen results of the top ten most selective drugs (1000nM) when paired
with PDK1/Aktl/FIt3 Dual Pathway Inhibitor at 125nM. Selectivity is the IMR-90 to A549
viability ratio, as defined in Section 2.1. The 3 digit codes identify the compounds: Al2:
Alsterpaullone, 2-Cyanoethyl (CAS 852529-97-0); D17: Cdk2/9 Inhibitor (CAS 507487-89-0);
KO08: K-252a, Nocardiopsis sp. (CAS 97161-97-2); O21: Staurosporine, Streptomyces sp. (CAS
62996-74-1); P15: WHI-P180, Hydrochloride (CAS 211555-08-7); E13: GO 6976 (CAS
136194-77-9); C09: Compound 56 (CAS 171745-13-4); A10: Alsterpaullone (CAS 237430-03-
4); 003: AG 1478, Selective inhibitor of epidermal growth factor receptor (EGFR) protein
(CAS 175178-82-2); NO5: Reversine (CAS 656820-32-5). The chemical structure of these

compounds is given in a supplementary file.
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Leave-one-out Cross Validation
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Figure 4: Leave-one-out Cross Validation of the elastic net regression model based on the
primary (top) and secondary (bottom) screens for normal and cancer cell lines. Each of the 140
point in these figures corresponds to one of the 140 drug. “Regression” refers to the viability
predicted by the regression model using all data from the other 139 drugs as training set, while
“Measured” refers to the actual viability measured for the drug or drug combination. Note that

only the secondary screen leads to predictive models with significant R? for the two cancer cell

types.
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Leave one out cross validation: Log transformed data
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Figure 5: Leave-one-out Cross Validation of the elastic net regression model based on the
primary (top) and secondary (bottom) screens for normal and cancer cell lines after logarithmic
transformation on the data. Each of the 140 point in these figures corresponds to one of the 140
drugs. “Regression” refers to —log of the viability predicted by the regression model using all
data from the other 139 drugs as training set, while “Measured” refers to —log of the actual
viability measured for the drug or drug combination. Note that, as in Figure 4, only the
secondary screen leads to predictive models with significant R? for both cell types. The R for

the Cancer cell lines is considerably better using the log transformation.
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TABLES

Kinase Selectivity Corr | FDR ‘ ‘ Kinase Selectivity Corr | FDR
Primary screening Secondary Screening

PRKCZ 0.451 2.28E-08 TGFBR2 -0.501 8.29E-08
DMPK 0.435 7.75E-08 CDK4 -0.412 6.40E-05
STK39 0.430 1.15E-07 CDC42BPB | -0.409 6.40E-05
EPHAS8 0.420 2.33E-07 RIPK2 -0.399 7.73E-05
ADRBK2 | 0.399 1.01E-06 DSTYK -0.369 0.000413
PRKACG | 0.396 1.27E-06 ACVRL1 -0.368 0.000413
CAMK4 | 0.394 1.45E-06 PAK1 -0.367 0.000413
MAP2K2 | 0.393 1.53E-06 MAPKAPK2 | -0.364 0.000413
ADRBK1 | 0.392 1.62E-06 PAK7 -0.359 0.000424
PNCK 0.382 3.29E-06 CDK1 -0.357 0.000429

Table 1 Correlations between selectivity and kinase activity from primary and secondary
screening. A negative correlation indicates that inhibition of that particular kinases is associated
to a higher selectivity. The top two hits with negative correlation, TGFBR2 and CDK4 are
known to have an important role in cell proliferation, invasion and metastasis in lung

adenocarcinoma®+?,



Kinase Cancer beta | Normal beta | Difference
Coefficient | Coefficient
TGFBR2 0.061 0.000 0.061
EGFR 0.060 0.000 0.060
PHKG1 0.051 0.014 0.037
RIPK2 0.032 -0.002 0.034
PRKG2 0.012 0.045 0.033
CDK4 0.021 -0.008 0.029
MAP3K10 | 0.038 0.014 0.024
MARK4 0.000 0.022 0.022
PAK1 0.025 0.004 0.021
MAP4K5 0.021 0.000 0.021
MARK?2 0.006 0.026 0.021
MARK3 0.000 0.020 0.020
TBK1 0.012 0.031 0.020
ERBB2 0.021 0.001 0.019
NUAK1 -0.029 -0.010 0.019
ULK2 0.018 0.000 0.018
MYLK2 -0.024 -0.006 0.018
MAP4K4 0.004 -0.014 0.018
CDK5 0.002 -0.016 0.018
GSK3B 0.021 0.004 0.017
PAK2 0.019 0.002 0.017
CDC42BPB | 0.023 0.006 0.017
DSTYK 0.006 -0.010 0.016
RPS6KA2 0.000 -0.016 0.016
FGFR1 -0.004 0.012 0.016
PAK7 0.015 0.000 0.015
PIM1 -0.015 0.000 0.015
CDK3 0.015 0.000 0.015
IRAK1 -0.002 -0.017 0.015

17

Table 2. Kinases with the highest difference in the regression coefficients for the log
transformed data of the secondary screen. A larger difference is associated with a selective
response of A549 upon inhibition. Note that in addition to TGFB2R and CDK4, which were
identified with the correlation approach of Table 1, additional kinases known to have an
important role in lung cancer such as EGFR *** and PHKG1*® are found using the elastic net

approach.
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‘ Path ID ‘ Path name Ns | Ny | p-val
422475 | Axon guidance 9 | 31| 0.005
428540 | Activation of Rac 3 |5 | 0.008
373755 | Semaphorin interactions 4 |10 0.011
376176 | Signaling by Robo receptor 3 |7 |0.024
1266738 | Developmental Biology 8 |39 0.026
445144 | Signal transduction by L1 4 | 13| 0.030
373760 | L1CAM interactions 4 |14 0.040
193639 | p75NTR signals via NF-kB 2 |4 |0.051
209543 | p75NTR recruits signaling complexes | 2 | 4 | 0.051
389359 | CD28 dependent Vavl pathway 2 |4 |0.051

Table 3. Reactome pathways with significant representation of kinases from the regression
analysis. Ngindicates the number of kinases that are found significant in the regression analysis,
while N+ is the total number of kinases in the pathway. The top ten pathways with Fisher exact
test p<=0.051 are shown. These pathways are identified from 518 Reactome pathways
containing at least one of the kinases identified in Table 2. The 9 kinases in the axon-guidance
pathway are EGFR, PAK1, ERBB2, CDKS5, GSK3B, PAK2, RPS6KA2, FGFR1 and PAKY.
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The asymmetric Hopfield model is used to simulate signaling dynamics in gene/transcription factor
networks. The model allows for a direct mapping of a gene expression pattern into attractor states.
We analyze different control strategies aiming at disrupting attractor patterns using selective local
fields representing therapeutic interventions. The control strategies are based on the identification
of signaling bottlenecks, which are single nodes or strongly connected clusters of nodes that have
a large impact on the signaling. We provide a theorem with bounds on the minimum number of
nodes that guarantee controllability of bottlenecks consisting of strongly connected components.
The control strategies are applied to the identification of sets of proteins that, when inhibited,
selectively disrupt the signaling of cancer cells while preserving the signaling of normal cells. We
use an experimentally validated non-specific network and a specific B cell interactome reconstructed
from gene expression data to model cancer signaling in lung and B cells, respectively. This model
could help in the rational design of novel robust therapeutic interventions based on our increasing

knowledge of complex gene signaling networks.

PACS numbers: 87.16.A-,87.16.Xa

I. INTRODUCTION

The vision behind systems biology is that complex in-
teractions and emergent properties determine the behav-
ior of biological systems. Many theoretical tools devel-
oped in the framework of spin glass models are well suited
to describe emergent properties, and their application
to large biological networks represents an approach that
goes beyond pinpointing the behavior of a few genes or
metabolites in a pathway. The Hopfield model [1] is a
spin glass model that was introduced to describe neural
networks, and that is solvable using mean field theory [2].
The asymmetric case, in which the interaction between
the spins can be seen as directed, can also be exacty
solved in some limits [3]. The model belongs to the class
of attractor neural networks, in which the spins evolve to-
wards stored attractor patterns, and it has been used to
model biological processes of high current interest, such
as the reprogramming of pluripotent stem cells [4]. More-
over, it has been suggested that a biological system in a
chronic or therapy-resistant disease state can be seen as a
network that has become trapped in a pathological Hop-
field attractor [5]. A similar class of models is represented
by Random Boolean Networks [6], which were proposed
by Kauffman to describe gene regulation and expression
states in cells [7]. Differences and similarities between
the Kauffman-type and Hopfield-type random networks
have been studied for many years [8-11].

In this paper, we consider an asymmetric Hopfield
model built from realistic (even if incomplete [12, 13])
cellular networks, and we map the spin attractor states
to gene expression data from normal and cancer cells. We
will focus on the question of the control of the dynamical
properties of the network using external local fields rep-
resenting therapeutic interventions. To a major extent,
the final determinant of cellular phenotype is the expres-

sion and activity pattern of all proteins within the cell,
which is related to levels of mRNA transcripts. Microar-
rays measure genome-wide levels of mRNA expression
that therefore can be considered a rough snapshot of the
state of the cell. This state is relatively stable, repro-
ducible, unique to cell types, and can differentiate cancer
cells from normal cells, as well as differentiate between
different types of cancer [14, 15]. In fact, there is evi-
dence that attractors exist in gene expression states, and
that these attractors can be reached by different trajec-
tories rather than only by a single transcriptional pro-
gram [16]. While the dynamical attractors paradigm has
been originally proposed in the context of cellular devel-
opement, the similarity between cellular ontogenesis, i.e.
the developement of different cell types, and oncogenesis,
i.e. the process under which normal cells are transformed
into cancer cells, has been recently emphasized [17]. The
main hypothesis of this paper is that cancer robustness
is rooted in the dynamical robustness of signaling in an
underlying cellular network. If the cancerous state of
rapid, uncontrolled growth is an attractor state of the
system [18], a goal of modeling therapeutic control could
be to design complex therapeutic interventions based on
drug combinations [19] that push the cell out of the can-
cer attractor basin. [20]

Many authors have discussed the control of biological
signaling networks using complex external perturbations.
Calzolari and coworkers considered the effect of complex
external signals on apoptosis signaling [21]. Agoston and
coworkers [22] suggested that perturbing a complex bi-
ological network with partial inhibition of many targets
could be more effective than the complete inhibition of
a single target, and explicitly discussed the implications
for multi-drug therapies [23]. In the traditional approach
to control theory [24], the control of a dynamical sys-
tem consists in finding the specific input temporal se-



quence required to drive the system to a desired out-
put. This approach has been discussed in the context
of Kauffmann Boolean networks [25] and their attractor
states [26]. Several studies have focused on the intrinsic
global properties of control and hierarchical organization
in biological networks [27, 28]. A recent study has fo-
cused on the minimum number of nodes that needs to
be addressed to achieve the complete control of a net-
work [29]. This study used a linear control framework,
a matching algorithm [30] to find the minimum number
of controllers, and a replica method to provide an an-
alytic formulation consistent with the numerical study.
Finally, Cornelius et al. [31] discussed how nonlinearity
in network signaling allows reprogrammig a system to a
desired attractor state even in the presence of contraints
in the nodes that can be accessed by external control.
This novel concept was explicitly applied to a T-cell sur-
vival signaling network to identify potential drug targets
in T-LGL leukemia. The approach in the present paper
is based on nonlinear signaling rules and takes advantage
of some useful properties of the Hopfield formulation. In
particular, by considering two attractor states we will
show that the network separates into two types of do-
mains which do not interact with each other. Moreover,
the Hopfield framework allows for a direct mapping of a
gene expression pattern into an attractor state of the sig-
naling dynamics, facilitating the integration of genomic
data in the modeling.

The paper is structured as follows. In Section II we
summarize the model and review some of its key prop-
erties. Section III describes general strategies aiming at
selectively disrupting the signaling only in cells that are
near a cancer attractor state. The strategies we have
investigated use the concept of bottlenecks, which iden-
tify single nodes or strongly connected clusters of nodes
that have a large impact on the signaling. In this sec-
tion we also provide a theorem with bounds on the mini-
mum number of nodes that guarantee controllability of a
bottleneck consisting of a strongly connected component.
This theorem is useful for practical applications since it
helps to establish whether an exhaustive search for such
minimal set of nodes is practical. In Section IV we apply
the control strategies of Section III to lung and B cell
cancers. We will use two different networks for this anal-
ysis. The first is an experimentally validated and non-
specific network obtained from a kinase interactome and
phospho-protein database [32] combined with a database
of interactions between transcription factors and their
target genes [33]. The second network is cell-specific and
was obtained using network reconstruction algorithms
and transcriptional and post-translational data from ma-
ture human B cells [34]. The algoritm reconstructed net-
work is significantly more dense than the experimental
one, and the same control strategies produce different
results in the two cases. Conclusions are in Section V.

II. MODEL

We define the adjacency matrix of a network G as

_J1ifj—i
Ay = { 0 otherwise °’ (1)

where j — ¢ denotes a directed edge from node j to node
i. The set of nodes in the network G is indicated by V(G)
and the set of ordered pairs by E(G) = {(j,i) : j — i}.
In our analysis we assume that G is given. The spin
of node 7 at time t is 0;(t) = +1, and indicates an ex-
presssed (+1) or not expressed (—1) gene. We encode an
arbitrary attractor state £ = (&1,&2,...,&N), with & = £1
by defining the coupling matrix

Jij = Ai&&; . (2)

The total field at node i is then h; = h§* + 37, Jijo; ,
where h$*' is the external field applied to node i, which
will be discussed below. The discrete-time update scheme
is defined as

+1 with prob. (1 + exp[—h;(t)/T])~!
oi(t + At) = { —1 with prob. El + exp{—i—higt;?T]) !
where T' > 0 is an effective temperature. For the remain-
der of the paper, we consider the case of T' = 0 so that
o; = sign(h;), and the spin is chosen randomly from 41
if h; = 0. For convenience, we take t € Z and At = 1.
Nodes can be updated synchronously, and synchronous
updating can lead to limit cycles in our model [9]. Nodes
can also be updated separately and in random order
(anynchronous updating), which does not result in limit
cycles. All results presented in this paper use the syn-
chronous update scheme.

Some nodes may have no incoming connections. Ac-
cording to Eq. (3), these source nodes flip randomly be-
tween +1 and —1. The sources are thus fixed to their
initial states so that o4(t) = 0,(0) for all ¢ € @, where
Q is the set of source nodes. The source nodes flip if
directly targeted by an external field. Biologically, genes
at the “top” of a network are assumed to be controlled
by elements outside of the network.

In application, two attractors are needed. Define these
states as 5” and 5‘3, the normal state and cancer state,
respectively. The magnetization along attractor state a
is

me(t) = %Zm‘(?ﬁ) . (4)

where N is the number of nodes in the network. Note
that if m®(t) = £1, &(t) = +££% We also define the
steady state magnetization along state a as

a M 1 . a
mo = Tll)rgo - ;m (t) . (5)



There are two ways to model normal and cancer cells.
One way is to simply define a different coupling matrix
for each attractor state a,

Jis = Ai&rES . (6)

Alternatively, both attractor states can be encoded in the
same coupling matrix,

Jij = Aij (&) +&€5) - (7)

Systems using Eqs. 6 and 7 will be referred to as the one
attractor state (p = 1) and two attractor state (p = 2)
systems, respectively. Eqgs. 6 and 7 are particular cases
of the general Hopfield form

P
Tij = Aiy Y&kl (8)
k=1
where p is the number of attractor states, often taken to
be large. An interesting property emerges when p = 2,
however. Consider a simple network composed of two
nodes, with only one edge 1 — 2 with attractor states {n
and E ¢, and T'= 0. The only nonzero entry of the matrix
Jij is

Jo1 = E581 + 6367 - 9)

Note that if E" = :i:gc, Jo1 = 265€7. In either case, by
Eq. (3) we have

- {GHT0 T w

that is, the spin of node 2 at a given time step will be
driven to match the attractor state of node 1 at the pre-
vious time step. However, if (! = ££§ and £ = FE5,
Jo1 = 0. This gives

[ 41 with probability 1/2
o2(t) = { —1 with probability 1/2 (1)

In this case, node 2 receives no input from node 1. Nodes
1 and 2 have become effectively disconnected.

This motivates new designations for node types. We
define similarity nodes as nodes with &' = &5, and differ-
ential nodes as nodes with ' = —£7. We also define the
set of similarity nodes S = {i: £ = £} and the set of
differential nodes D = {i: & = —£¢}. Connections be-
tween two similarity nodes or two differential nodes re-
main in the network, whereas connections that link nodes
of different types transmit no signals. The effective dele-
tion of edges between nodes means that the original net-
work fully separates into two subnetworks: one composed
entirely of similarity nodes (the similarity network) and
another composed entirely of differential nodes (the dif-
ferential network), each of which can be composed of
one or more separate weakly connected components (see
Fig. 1). With this separation, new source nodes (effec-
tive sources) can be exposed in both the similarity and
differential networks. For the remainder of this article,
Q is the set of both source and effective source nodes in
a given network.

. Similarity node
@ Differential node

FIG. 1. For p = 2, every edge that connects a similarity node
to a differential node or a differential node to a similarity node
transmits no signal. Thus, the signaling in the right network
shown above is identical to that of the left network. Because
the goal is to leave normal cells unaltered while damaging
cancer cells as much as possible, all similarity nodes can be
safely ignored, and searches and simulations only need to be
done on the differential subnetwork.

III. CONTROL STRATEGIES

The optimal choice of control strategy depends on the
control goals, the network topology, the effective topol-
ogy created by the attractor states, and the set of directly
controllable nodes. The strategies presented below fo-
cus on selecting the best single nodes or small clusters
of nodes to control, ranked by how much they individ-
ually change m¢, . In application, however, controlling
many nodes is necessary to achieve a sufficiently changed
mé, . The effects of controlling a set of nodes can be
more than the sum of the effects of controlling individ-
ual nodes, and predicting the truly optimal set of nodes
to target is computationally difficult. Here, we discuss
heuristic strategies for controlling large networks where
the combinatorial approach is impractical.

For both p = 1 and p = 2, simulating a cancer cell
means that #(0) = +£°, and likewise for normal cells. Al-
though the normal and cancer states are mathematically
interchangeable, biologically we seek to decrease m¢, as
much as possible while leaving m2, ~ +1. By “network
control” we thus mean driving the system away from its
initial state of #(0) = & with h°*. Controlling indi-
vidual nodes is achieved by applying an infinitely strong
field to a set of targeted nodes T so that

ext lim U—+00 7u§7c— TeTl
he = { 0 ( ) else ’ (12)
This ensures that the drug field can always overcome the
field from neighboring nodes.

In application, similarity nodes are never deliberately
directly targeted, since changing their state would ad-
versely affect both normal and cancer cells. Roughly



70% of the nodes in the networks surveyed are similarity
nodes, so the search space is reduced. For p = 2, the
effective edge deletion means that only the differential
network in cancer cells needs to be simulated to deter-
mine the effectiveness of h®*. For p = 1, however, there
may be some similarity nodes that receive signals from
upstream differential nodes. In this case, the full effect
of he<t can be determined only by simulating all differ-
ential nodes as well as any similarity nodes downstream
of differential nodes. All following discussion assumes
that all nodes examined are differential, and therefore
targetable, for both p = 1 and p = 2. The existence of
similarity nodes for p = 1 only limits the set of targetable
nodes.

A. Directed acyclic networks

Full control of a directed acyclic network is achieved by
forcing 0, = —¢; for all ¢ € Q. This guarantees mg, =
—1. Suppose that nodes ¢ € @ in an acyclic network have
always been fixed away from the cancer state, that is,
04(t — —00) = —£7. For any node i to have o;(t) = /',
it is sufficient to have either i € @ or o;(t — 1) = £ for
all j — i, i ¢ Q. Because there are no cycles present, all
upstream paths of sufficent length terminate at a source.
Because the spin of all nodes ¢ € @) point away from the
cancer attractor state, all nodes downstream must also
point away from the cancer attractor state. Thus, for
acyclic networks, forcing o, = —£7 guarantees mg, = —1.
The complications that arise from cycles are discussed
in the next subsection. However, controlling the original
and effective sources may not be the most efficient way to
push the system away from the cancer basin of attraction
and, depending on the control limitations, it may not
be possible. If minimizing the number of controllers is
required, searching for the most important bottlenecks is
a better strategy.

Consider a directed network G and an initially identi-
cal copy, G’ = G. If removing node i (and all connections
to and from 4) from G’ decreases the indegree of at least
onenode j € V(G'), j # i, to less than half of its indegree
in network G, {i} is a size 1 bottleneck. The bottleneck
control set of bottleneck {i}, L(7), is defined algorithmi-
cally as follows: (1) Begin a set L(i) with the current
bottleneck i so that L = {i}; (2) Remove bottleneck {i}
from network G’; (3) Append L(%) with all nodes j with
current indegree that is less than half of that from the
original network G; (4) Remove all nodes j from the net-
work G’. If additional nodes in G’ have their indegree
reduced to below half of their indegree in G, go to step
3. Otherwise, stop. The impact of the bottleneck i, I(3),
is defined as

(i) = [L@@)] (13)

where | X]| is the cardinality of the set X. The impact of
a bottleneck is the minimum number of nodes that are

FIG. 2. An acyclic network. Controlling all three source
nodes (nodes 1, 2 and 3) guarantees full control of the net-
work, but are ineffective when targeted individually. The best
single node to control in this network is node 6 because it di-
rectly controls all downstream nodes.

guaranteed to switch away from the cancer state when
the bottleneck is forced away from the cancer state.
The impact is used to rank the size 1 bottlenecks by
importance, with the most important as those with the
largest impact. In application, when searching for nodes
to control, any size 1 bottleneck {i} that appears in the
bottleneck control set of a different size 1 bottleneck {j}
can be ignored, since fixing j to the normal state fixes
7 to the normal state as well. Note that the definition
given above in terms of G and G’ avoids miscounting
in the impact of a bottleneck. The network in Fig. 2,
for example, has three sources (nodes 1, 2 and 3), but
one important bottleneck (node 6). If full damage, i.e.
mS, = —1, is required, then control of all source nodes is
necessary. If minimizing the number of directly targeted
nodes is important and mS, > —1 can be tolerated, then
control of the bottleneck node 6 is a better choice.

B. Directed cycle-rich networks

Not all networks can be fully controlled at 7" = 0 by
controlling the source nodes, however. If there is a cycle
present, paths of infinite length exist and the final state of
the system may depend on the initial state, causing parts
of the network to be hysteretic. Controlling only sources
in a general directed network thus does not guarantee
m&, = —1 unless the system begins with o; = —£5.

Define a cycle cluster, C, as a strongly connected sub-
network of a network GG. The network in Fig. 3, for exam-
ple, has one cycle cluster with nodes V(C') = {4,5,6,7}.

If the network begins with ¢(0) = EC, forcing both source
nodes away from the cancer state does nothing to the



FIG. 3. A network with a cycle cluster composed of nodes 4, 5,
6 and 7. The high connectivity of node 4 prevents any changes
made to the spin of nodes 1-3 from propagating downstream.
The only way to indirectly control nodes 8-10 is to target
nodes inside of the cycle cluster. Targeting node 4, 6 or 7
will cause the entire cycle cluster to flip away from its initial
state, guaranteeing control of nodes 4-10 (see Fig. 4).

nodes downsteam of node 3 (see Fig. 4). This is because
the indegree deg™(4) = 4, and a majority of the nodes
connecting to node 4 are in the cancer attractor state. At
T = 0, cycle clusters with high connectivity tend to block
incoming signals from outside of the cluster, resulting in
an insurmountable activation barrier.

The most effective single node to control in this net-
work is any one of nodes 4, 6 or 7. Forcing any of these
away from the cancer attractor state will eventually cause
the entire cycle cluster to flip away from the cancer state,
and all nodes downstream will flip as well, as shown in
Fig. 4. The cycle cluster here acts as a sort of large,
hysteretic bottleneck. We now generalize the concept of
bottlenecks.

Define a size k bottleneck in a network G to be a cycle
cluster B with |V(B)| = k which, when removed from
G, reduces the indegree of at least one node j € V(G),
j € V(B) to less than half of its original indegree. Other
than now using the set of nodes V' (B) rather than a single
node set, the above algorithm for finding the bottleneck
control set remains unchanged. In Fig. 3, for instance,
V(B) = {4,5,6,7}, k = 4, L(B) = {4,5,6,7,8,9,10},
and I(B) = 7. With this more general definition, we
note that controlling any size k bottleneck B guarantees
control of all size 1 bottlenecks B’ in the control set of B
for all k£ > 1.

For any bottleneck B of size k > 1 in a network G,
define the set of critical nodes, Z(B,G), as the set of
nodes Z(B,G) C V(B) of minimum cardinality that,
when controlled, guarantees full control of all nodes
i € V(B). Also define the critical number of nodes as
Nerit (B, G) = |Z(B, G)|. Thus, for the network in Fig. 4,
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FIG. 4. Cancer magnetization from targeting various nodes in
the network shown in Fig. 3, averaged over 10,000 runs. The
averaging removes fluctuations due to the random flipping of
nodes with h; = 0. Targeting node 7 results in the quickest
stabilization, but targeting any one of nodes 4, 6 or 7 results
in the same final magnetization.

Z(B,G) = {4}, {6}, or {7}, and nei(B,G) = 1.

In general, however, more than one node in a cycle
cluster may need to be targeted to control the entire cycle
cluster. Fig. 5 shows a cycle cluster (composed of nodes
2-10) that cannot be controlled by targeting any single
node. The precise value of n, for a given cycle cluster C'
depends on its topology as well as the edges connecting
nodes from outside of C' to the nodes inside of C, and
finding Z(C,G) can be difficult. We present a theorem
that puts bounds on n.. to help determine whether a
search for Z(C, G) is practical.

Theorem: Suppose a network G contains a cycle cluster
C. Define the set of externally influenced nodes

R(C,G) = {i € V(C) : j € V(G\ C), (i) € E(G)} ,
(14)
the set of intruder connections

W(C,G)=A{(4,i) e E(G):i € V(C),j e V(G\ C)},

(15)
and the reduced set of critical nodes
Zrea(C,G) = Z(C,G\W) . (16)
If N=|V(C)| and
w= min deg™ (i), (17)

i€V (C)
where deg™ (%) is computed ignoring intruder connections,
then

2] < mewtc.oy <. (18)

where

¢ = min qﬂ FIR(C,G) \ Zrea(C, G)|,N> . (19)



Proof: First, prove the lower limit of Eq. (18). Let C
be a cycle cluster in a network G with R(C,G) = {@}.
(A cycle cluster in a network with |R(C,G)| > 0 will
have the same or higher activation barrier for any node
in the cluster than the same cycle cluster in a network
with R = {@}. Since we are examining the lower limit of
Eq. (18), we consider the case with the lowest activation
barrier. Any externally influenced nodes cause n,;; to ei-
ther increase or remain the same.) For any node i to be
able to flip away from the cancer state (although not nec-
essarily remain there), we must have that h; = —a&{ for
a > 0, meaning that at least half of the nodes upstream
of i must point away from the cancer state. The node 4
requiring the smallest number of upstream nodes to be in
the normal state is the node that satisfies deg™ (i) = p.
Controlling less than 1/2 nodes will leave all uncontrolled
nodes with a field in the cancer direction, and no more
flips will occur. Thus,

1
Nerit Z ’72—‘ . (2())

For the upper limit of Eq. (18), consider a complete
cligue on N nodes, C' = Ky (that is, A;; = 1 for all 4, j €
V(Ky), including self loops) in a network G. First, let
there be no connections to any nodes in C' from outside of
C so that R(C,G) = {@}. For odd N, forcing (N +1)/2
nodes away from the cancer state will result in the field

N — N
> Jijos = (21 - ;1> & =-& (21)
i

for all nodes i. After one time step, all nodes will flip
away from the cancer state. For even N, forcing N/2
nodes away from the cancer state will result in the field

N N
ZJijO’jZ (2_2) fiC:O (22)
J

for all nodes 7. At the next time step, the unfixed nodes
will pick randomly between the normal and cancer state.
If at least one of these nodes makes the transition away
from the cancer state, the field at all other nodes will
point away from the cancer direction. The system will
then require one more time step to completely settle to
o; = &§. Thus, we have that for C' = Ky in a network G
with R(C,G) = {@},

e (K. G) = | 3 | (23)

Ky with 0;(0) = & gives the largest activation barrier
for any cycle cluster on N nodes with R(C,G) = {@}
to switch away from the cancer attractor state. A gen-
eral cycle cluster C' with any topology on N nodes with
R(C,G) = {@} in a network G will have deg™ (i) < N
for all nodes i, and so we have the upper bound

N

n(€.6) < | 5| | (29)

thus proving Eq. (18) for the special case of R(C,G) =
{2}

Now consider a cycle cluster C' on N nodes in a net-
work G with |R(C,G)| > 0. Suppose all nodes in
Zved(C, G) are fixed away from the cancer state. By
Eq. (24), |Zrea(C,G)| < [N/2]. For any node i €
(R(C,G) N Z1ed(C, G)), oi(t = o0) = =& is guar-
anteed because it has already been directly controlled.
Any node i € (R(C,G) \ Zea(C,G)) has some incom-
ing connections from nodes j ¢ V(C), and these con-
nections could increase the activation barrier enough
such that fixing Z;eq(C,G) is not enough to guarantee
oi(t = 00) = —&¢. To ensure that any node [ € V(C)
points away from the cancer state, it is sufficient to fix
all nodes i € (R(C,G)\ Zrea(C, Q)) as well as Z,0q4(C, Q)
away from the cancer state. This increases neit by at
most |R(C, G) \ Zea(C, G)|, leaving

n(€.6) < |5 [ +IRC.\ ZaaC. O @)

nerit can never exceed N, however, because directly con-
trolling every node results in controlling C. We can thus
say that

Nerit(C, G) < min (F;[-‘ + |R(C,G) \ Zrea(C, G), N)

(26)
Finally, combining the upper limit in Eq. (26) with the
lower limit from Eq. (20) gives Eq. (18). B

FIG. 5. A network with a cycle cluster C' (composed of nodes
2-10) that cannot be controlled at T' = 0 by controlling a sin-
gle node. Here, R(C,G) = {2,9}, W(C,G) = {(1,2),(1,9)},
Zred(C,G) ={9,10}, p=1and N =9, s0 1 < nerit < 6.

There can be more than one Z,q for a given cycle
cluster. Note that the tightest constraints on ne.¢ in Eq.
(18) come from using the Z,.q with the largest overlap
with R. If finding Z,..q is too difficult, an overestimate
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FIG. 6. Magnetization for network from Fig. 5, averaged over
10,000 runs. There is no single node to flip that will control
the cycle cluster, but fixing nodes 9 and 10 results in full
control of the cycle cluster, leaving only node 1 in the cancer
state. This means Z(C,G) = {9,10} and ncriz = 2.

for the upper limit of n. can be made by assuming that
RN Zea = {@} so that

{g] < Nexit(C, G) < min (Fﬂ +|R(C,G)| N) :

27)

The cycle cluster in Fig. 5 has N = 9, R = {2,9},
w = 1, and one of the reduced sets of critical nodes is
Zrea = {9,10}, s0 1 < neyiy < 6. It can be shown through
an exhaustive search that for this network n. = 2, and
the set of critical nodes is Z = {9,10} (see Fig. 6). Here,
7 = Z,ed, although this is not always the case. Because
the cycle cluster has 9 nodes and 1 < ngyy < 6, at most
2221 (2) = 465 simulations are needed to find at least
one solution for Z(C,G). However, the maximum num-
ber of simulations required to find Z(C, G) increases ex-
ponentially and for larger networks the problem quickly
becomes intractable.

One heuristic strategy for controlling cycle clusters
is to look for size k' < |V(C)| bottlenecks inside of
C. Bottlenecks of size k > 1 and average indegree
(deg™ (B)) < k can contain high impact size k' bottle-
necks, where k' < k. Size k > 1 bottlenecks need to be
compared to find the best set of nodes to target to reduce
m&,. Simply comparing the impact is insufficent because
a cycle cluster with a large impact could also have a large
Nerit, requiring much more effort than its impact merits.
Define the critical efficiency of a bottleneck B as

1(B)

€crit (B) = Morit (B, G) .

(28)
If the critical efficiency of a cycle cluster is much smaller
than the impacts of size 1 bottlenecks from outside of the
cycle cluster, the the cycle cluster can be safely ignored.

For some cycle clusters, however, not all of the nodes
need to be controlled in order for a large portion of the
nodes in the cycle cluster’s control set to flip. Define the
optimal efficiency of a bottleneck B as

< UL, B) ) (29)

copt(B) = max

n
where B; € V(B) are size 1 bottlenecks and I(B;) >
I(B;41) for all i. Note that for any size 1 bottleneck
B, eopt(B) = euit(B) = I(B). This quantity thus al-
lows bottlenecks with very different properties (I(B),
Nerit (B, G), or |[V(B)]) to be ranked against each other.

All strategies presented above are designed to select
the best individual or small group of nodes to target.
Significant changes in the biological networks’ magnetiza-
tion require targeting many nodes, however. Brute force
searches on the effect of larger combinations of nodes are
typically impossible because the required number of sim-
ulations scales exponentially with the number of nodes.
A crude Monte Carlo search is also numerically expen-
sive, since it is difficult to sample an appreciable portion
of the available space. Our alternative is to take ad-
vanatge of the bottleneck nodes that can be easily found,
and rank all size k > 1 bottlenecks B; in an ordered list
U such that

U= (By,Bs,Bs,...) (30)
where
eopt(Bi) 2> eopt(Biv1) » Bi ¢ L(B;) (31)

for all B;, B; € U and fix the bottlenecks in the list in
order. This is called the efficiency-ranked strategy. If
all size k& > 1 bottlenecks are ignored, it is called the
pure efficiency-ranked strategy, and if size & > 1 bottle-
necks are included it is called the mized efficiency-ranked
strategy.

An effective polynomial-time algorithm for finding the
top z nodes to fix, which we call the best+1 strategy
(equivalent to a greedy algorithm), works as follows: (1)
Begin with a seed set of nodes to fix, F; (2) Test the
effect of fixing F' U ¢ for all allowed nodes ¢ ¢ F; (3)
F + F U ipest, Where ipes 1S the best node from all i
sampled; (4) If |F| < z, go to step (2). Otherwise, stop.
The seed set of nodes could be the single highest impact
size 1 bottleneck in the network, or it could be the best
set of n nodes (where n < z) found from a brute force
search.

IV. CANCER SIGNALING

In application to biological systems, we assume that
the magnetization of cell type a is related to the viability
of cell type a, that is, the fraction of cells of type a that
survives a drug treatment. It is reasonable to assume



Properties Lung B cell
Nodes 9073 4364
Edges 45635 55144
Sources 129 8
Sinks 8443 1418
Av. outdegree 5.03 12.64
Max outdegree 240 2372
Max indegree 68 196
Self-loops 238 0
Undirected edges 350 23386
Diameter 11 11
Max cycle cluster 401 2886
Av. clustering coeff. [35] 0.0544 0.2315

TABLE I. General properties of the full networks. The net-
work used for the analysis of lung cancer is a generic one
obtained combining the data sets in Refs. [32] and [33]. The
B cell network is a curated version of the B cell interactome
obtained in Ref. [34] using a network reconstruction method
and gene expression data from B cells.

Lung B

Prop| I/A  1/H ‘ N/D N/F N/L M/D M/F M/L
N 1175 1320 885 724 1035 791 636 921
E 35821 33962|43471 40589 34791 38386 42030 35528

TABLE II. Nodes (N) and edges (E) of the differential net-
works obtained in the p=2 case after deleting similarity nodes
for different pairs of normal and cancer attractor states. I =
IMR-90 (normal), A = A549 (cancer), H = NCI-H358 (can-
cer), N = Naive (normal), M = Memory (normal), D = DL-
BCL (cancer), F = Follicular lymphoma (cancer), L = EBV-
immortalized lymphoblastoma (cancer).

that the viability of cell type a, v*(m% ), is a monotoni-
cally increasing function of m¢, . Because the exact rela-
tionship is not known, we analyze the effect of external
perturbations in terms of the final magnetizations.

We need to use as few controllers as possible to suffi-
ciently reduce m¢, while leaving m[ ~ +1. In practical
applications, however, one is limited in the set of drug-
gable targets. All classes of drugs are constrained to
act only on a specific set of biological components. For
example, one class of drugs that is currently under in-
tense research is protein kinase inhibitors [36]. In this
case one has two constraints: the only nodes that can be
targeted are those that correspond to kinases, and they
can only be inhibited, i.e. turned off. We will use the
example of kinase inhibitors to show how controllabil-
ity is affected by such type of constraints. In the real
systems studied, many differential nodes have only sim-
ilarity nodes upstream and downstream of them, while
the remaining differential nodes form one large cluster.
This is not important for p = 1, but the effective edge
deletion for p = 2 results in many islets, which are nodes

i with A;; = Aj; = 0 for all i # j (self-loops allowed).
Controlling islets requires targeting each islet individu-
ally. For p = 2, we concentrate on controlling only the
largest weakly connected differential subnetwork. All fi-
nal magnetizations are normalized by the total number
of nodes in the full network, even if the simulations are
only conducted on small portion of the network.

A. Lung cell network

The network used to simulate lung cells was built
by combining the kinase interactome from Phospho-
POINT [32] with the transcription factor interactome
from TRANSFAC [33]. Both of these are general net-
works that were constructed by compiling many observed
pairwise interactions between components, meaning that
if j — 1, at least one of the proteins encoded by gene j has
been directly observed interacting with gene ¢ in experi-
ments. This bottom-up approach means that some edges
may be missing, but those present are reliable. Because
of this, the network is sparse (~ 0.057% complete, see Ta-
ble I), resulting in the formation of many islets for p = 2.
Note also that this network presents a clear hierarchical
structure, characteristic of biological networks [37, 38],
with many ”sink” nodes [39] that are targets of transcrip-
tion factors and a relatively large cycle cluster originat-
ing from the kinase interactome. In our signaling model,
the IMR-90 cell line was used for the normal attractor
state, and the two cancer attractor states examined were
from the A549 (adenocarcinoma) and NCI-H358 (bron-
chioalveolar carcinoma) cell lines. The resulting magne-
tization curves for A549 and NCI-H358 are very similar,
so the following analysis addresses only A549. Table IT
lists the number of nodes and edges of the differential
networks obtained using gene expression from these cell
lines. The full network contains 9073 nodes, but only
1175 of them are differential nodes in the IMR-90/A549
model. In the unconstrained p = 1 case, all 1175 differ-
ential nodes are candidates for targeting. Exhaustively
searching for the best pair of nodes to control requires
investigating 689725 combinations simulated on the full
network of 9073 nodes. However, 1094 of the 1175 nodes
are sinks (i.e. nodes i with outdegree deg™ (i) = 0, ig-
noring self loops) and therefore have (i) = eopt(7) = 1,
which can be safely ignored. The search space is thus
reduced to 81 nodes, and finding even the best triplet
of nodes exhaustively is possible. Including constraints,
only 31 nodes are differential kinases with £ = +1. This
reduces the search space at the cost of increasing the
minimum achievable mg_.

There is one important cycle cluster in the full network,
and it is composed of 401 nodes. This cycle cluster has
an impact of 7948 for p = 1, giving a critical efficiency of
at least ~ 19.8, and 1 < neit < 401 by Eq. 27. The opti-
mal efficiency for this cycle cluster is eqp,y = 29, but this
is achieved for fixing the first bottleneck in the cluster.
Additionally, this node is the highest impact size 1 bot-



Lung

Properties I/A I/H N/D N/F N/L M/D M/F M/L

Nodes 506 667 684 511 841 621 457 742
Edges 846 1227 2855 1717 3962 2525 1501 3401
Sources and effective sources 30 34 12 11 9 9 9 12
Sinks and effective sinks 450 598 286 198 369 275 204 333
Av. outdegree 1.67 1.84 4.17 3.36 4.71 4.07 3.28 4.58
Max outdegree 52 51 155 143 336 138 132 292
Max indegree 8 10 40 29 49 35 27 44
Self-loops 27 31 0 0 0 0 0 0
Undirected edges 0 4 1238 738 1468 1000 596 1214
Diameter 9 9 12 15 12 13 14 12
Max cycle cluster size 6 3 351 280 397 305 199 337
Av. clustering coeff 0.0348 0.0421 0.1878 0.1973 0.2446 0.1751 0.1935 0.2389

TABLE III. Properties of the largest weakly connected differential subnetworks for all cell types. I = IMR-90 (normal), A =
A549 (cancer), H = NCI-H358 (cancer), N = Naive (normal), M = Memory (normal), D = DLBCL (cancer), F = Follicular

lymphoma (cancer), L = EBV-immortalized lymphoblastoma (cancer).

tleneck in the full network, and so the mixed efficiency-
ranked results are identical to the pure efficiency-ranked
results for the unconstrained p = 1 lung network. The
mixed efficiency-ranked strategy was thus ignored in this
case.

Fig. 7 shows the results for the unconstrained p = 1
model of the IMR-90/A549 lung cell network [40]. The
unconstrained p = 1 system has the largest search space,
so the Monte Carlo strategy performs poorly. The
best+1 strategy is the most effective strategy for con-
trolling this network. The seed set of nodes used here
was simply the size 1 bottleneck with the largest impact.
Note that best+1 works better than effeciency-ranked.
This is becasue best+1 includes the synergistic effects
of fixing multiple nodes, while efficiency-ranked assumes
that there is no overlap between the set of nodes down-
stream from multiple bottlenecks. Importantly, how-
ever, the efficiency-ranked method works nearly as well as
best+1 and much better than Monte Carlo, both of which
are more computationally expensive than the efficiency-
ranked strategy.

Fig. 8 shows the results for the unconstrained p = 2
model of the IMR-90/A549 lung cell network. The search
space for p = 2 is much smaller than that for p = 1. The
largest weakly connected differential subnetwork contains
only 506 nodes (see Table III) , and the remaining differ-
ential nodes are islets or are in subnetworks composed of
two nodes and are therefore unnecessary to consider. Of
these 506 nodes, 450 are sinks. If limiting the search to
differential kinases with £ = +1 and ignoring all sinks,
p = 2 has 19 possible targets. There is only one cy-
cle cluster in the largest differential subnetwork, con-
taining 6 nodes. Like the p = 1 case, the optimal ef-
ficiency occurs when targeting the first node, which is
the highest impact size 1 bottleneck. Because the mixed
efficiency-ranked strategy gives the same results as the
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FIG. 7. Final cancer magnetizations for an unconstrained
search on the lung cell network using p = 1. The efficiency-
ranked strategy outperforms the relatively expensive Monte
Carlo strategy. The best+1 strategy works best, although it
requires the largest computational time. Note that the mixed
efficiency-ranked curve is not shown because it is identical to
the pure efficiency-ranked curve. Key: MC = Monte Carlo,
B+1 = best+1, ERP = pure efficiency-ranked, ERM = mixed
efficiency-ranked, EX = exhausive search.

pure efficiency-ranked strategy, only the pure strategy
was examined. The Monte Carlo strategy fares better in
the unconstrained p = 2 case because the search space
is smaller. Additionally, the efficiency-ranked strategy
does worse against the best+1 strategy for p = 2 than
it did for p = 1. This is because the effective edge dele-
tion decreases the average indegree of the network and
makes nodes easier to control indirectly. When many
upstream bottlenecks are controlled, some of the down-



stream bottlenecks in the efficiency-ranked list can be
indirectly controlled. Thus, controlling these nodes di-
rectly results in no change in the magnetization. This
gives the plateaus shown for fixing nodes 9-10 and 12-15,
for example.

The only case in which an exhaustive search is possible
is for p = 2 with constraints, which is shown in Fig. 9.
Note that the polynomial-time best+1 strategy identifies
the same set of nodes as the exponential-time exhaustive
search. This is not surprising, however, since the con-
straints limit the available search space. This means that
the Monte Carlo also does well. The efficiency-ranked
method performs worst. The efficiency-ranked strategy
is designed to be a heuristic strategy that scales gently,
however, and is not expected to work well in such a small
space when compared with more computationally expen-
sive methods.
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FIG. 8. Final cancer magnetizations for an unconstrained
search on the lung cell network using p = 2. Asin the p =1
case, the efficiency-ranked strategy outperforms the expensive
Monte Carlo search. The plateaus in the efficiency-ranked
strategy when fixing 9-10, 12-15, 20-21, etc. nodes are a result
of targeting bottlenecks that are already indirectly controlled.

B. B cell network

The B cell network was derived from the B cell inter-
actome of Ref. [34]. The reconstruction method used in
Ref. [34] removes edges from an initially complete net-
work depending on pairwise gene expression correlation.
Additionally, the original B cell network contains many
protein-protein interactions (PPIs) as well as gene-gene
interactions (GGIs). GGIs have definite directionality: a
transcription factor encoded by one gene affects the ex-
pression level of its target gene(s). PPIs, however, do
not have obvious directionality. We first filtered these
PPIs by checking if the genes encoding these proteins in-
teracted according to the PhosphoPOINT/TRANSFAC
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FIG. 9. Final cancer magnetizations for a constrained search
on the lung cell network using p = 2. This is the only case in
which a limited exhaustive search is possible. Interestingly,
the exhaustive search locates the same nodes as the best+1
strategy for fixing up to eight nodes. The efficiency-ranked
strategy performs poorly compared to the Monte Carlo strat-
egy because the search space is small and a large portion of
the available space is sampled by the Monte Carlo search.

network of the previous section, and if so, kept the edge
as directed. If the remaining PPIs are ignored, the re-
sults for the B cell are similar to those of the lung cell
network. We found more interesting results when keeping
the remaining PPIs as undirected, as is discussed below.

Because of the network construction algorithm and the
inclusion of many undirected edges, the B cell network
is more dense (~0.290% complete, see Table I) than the
lung cell network. This higher density leads to many
more cycles than the lung cell network, and many of these
cycles overlap to form one very large cycle cluster con-
taining ~66% of nodes in the full network. We analyzed
two types of normal B cells (naive and memory) and three
types of B cell cancers (diffuse large B-cell lymphoma
(DLBCL), follicular lymphoma, and EBV-immortalized
lymphoblastoma), giving six combinations in total. We
present results for only the naive/DLBCL combination
below, but Tables II, IIT and IV list the properties of
all normal/cancer combinations. The full B cell net-
work is composed of 4364 nodes. For p = 1, there is
one cycle cluster C' composed of 2886 nodes. This cy-
cle cluster has 1 < ngit(C) < 1460, I(C) = 4353, and
3.0 < equit(C) < 4353. Finding Z(C) was deemed too
difficult.

Fig.10 shows the results for the unconstrained p = 1
case. Again, the pure efficiency-ranked strategy gave the
same results as the mixed efficiency-ranked strategy, so
only the pure strategy was analyzed. As shown in Fig. 10,
the Monte Carlo strategy is out-performed by both the
efficiency-ranked and best+1 strategies. The synergis-
tic effects of fixing multiple bottlenecks slowly becomes
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FIG. 10. Final cancer magnetizations for an unconstrained
search on the B cell network using p = 1. The Monte Carlo
strategy is ineffective for fixing any number of nodes. The
efficiency-ranked and best+1 curves slowly separate because
synergistic effects accumulate faster for best+1.

apparent as the best+1 and efficiency-ranked curves sep-
arate.

Fig. 11 shows the results for the unconstrained p = 2
case. The largest weakly connected subnetwork contains
one cycle cluster with 351 nodes, with 1 < neq < 208.
Although finding a set of critical nodes is difficult, the
optimal efficiency for this cycle cluster is 62.2 for fixing
10 bottlenecks in the cycle cluster. This makes targeting
the cycle cluster worthwhile. The efficiency of this set of
10 nodes is larger than the efficiencies of the first 10 nodes
from the pure efficiency-ranked strategy, so the m¢, from
the mixed strategy drops earlier than the pure strategy.
Both strategies quickly identify a small set of nodes capa-
ble of controlling a significant portion of the differential
network, however, and the same result is obtained for
fixing more than 10 nodes. The best+1 strategy finds a
smaller set of nodes that controls a similar fraction of the
cycle cluster, and fixing more than 7 nodes results in only
incremental decreases in m¢,. The Monte Carlo strategy
performs poorly, never finding a set of nodes adequate
to control a significant fraction of the nodes in the cycle
cluster.

V. CONCLUSION

Signaling models for large and complex biological net-
works are becoming important tools for designing new
therapeutic methods for complex diseases such as can-
cer. Even if our knowledge of biological networks is in-
complete, fast progress is currently being made using re-
construction methods that use large amounts of publicly
available omic data [12, 13]. The Hopfield model we
use in our approach allows mapping of gene expression
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FIG. 11. Final cancer magnetizations for an unconstrained
search on the B cell network using p = 2. The rather sud-
den drop in the magnetization between controlling 5 and 10
nodes in the efficiency-ranked strategies comes from flipping
a significant portion of a cycle cluster. This is the only net-
work examined in which the mixed efficiency-ranked strat-
egy produces results different from the pure efficiency-ranked
strategy.

patters of normal and cancer cells into stored attractor
states of the signaling dynamics in directed networks.
The role of each node in disrupting the network signaling
can therefore be explicitly analyzed to identify isolated
genes or sets of strongly connected genes that are selec-
tive in their action. We have introduced the concept of
size k bottlnecks to identify such genes. This concept led
to the formulation of several heuristic strategies, such as
the efficiency-ranked and best+1 strategy to find nodes
that reduce the overlap of the cell network with a cancer
attractor. Using this approach, we have located small
sets of nodes in lung and B cancer cells which, when
forced away from their initial states with local magnetic
fields (representing targeted drugs), disrupt the signal-
ing of the cancer cells while leaving normal cells in their
original state. For networks with few targetable nodes,
exhaustive searches or Monte Carlo searches can locate
effective sets of nodes. For larger networks, however,
these strategies become too cumbersome and our heuris-
tic strategies represent a feasible alternative. For tree-
like networks, the pure efficiency-ranked strategy works
well, whereas the mixed efficiency-ranked strategy could
be a better choice for networks with high-impact cycle
clusters.

Some of the genes identified in Table IV are consistent
with current clinical and cancer biology knowledge. For
instance, in the lung cancer list we found a well known
tumor suppressor gene (TP53) [41] that is frequently mu-
tated in many cancer types including lung cancer [42].
Mutations in PBX1 have recently been detected in non-
small-cell lung cancer and this gene is now being consid-
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I/A I/H
p=1 p=2 p=1 p=2
Gene 1 Gene 1 Gene 1 Gene I
HNF1A 29 ORA5I1 35 HNF1A 29 HMX1 41
TMEM37 22 TMEM37 25 MAP3K3 18 PBX1 38
UNC ORA5I1 20 HNF1A 23 TP53 18 MYB 25
MAP3K14 19 POSTN 21 RUNX1 17 ITGB2 20
MAP3K3 18 RORA 18 RORA 16 TNFRSF10A 18
CON MAP3K14 19 SRC 15 TTN 16 BMPR1B 18
SRC 14 BMPRI1B 7 RIPK3 6 LCK 8
N/D N/F N/L

p=1 p=2 p=1 p=2 p=1 p=2
Gene 1 Gene 1 Gene 1 Gene 1 Gene 1 Gene 1
BCL6 12 NFIC 22 BCL6 12 NCOA1 20 RBL2 11 RBL2 22
MEF2A 5 TGIF1 19 MEF2A 5 NFATC3 15 FOXM1 8 ATF2 12
UNC NCOA1 5 BCL6 14 NCOA1 5 BCL6 11 ATF2 7 NFATC3 11
TGIF1 4 FOXJ2 12 TGIF1 4 CEBPD 8 RXRA 5 RXRA 9
NFATC3 4 NFATC3 12 NFATC3 4 RELA 8 NFATC3 4 PATZ1 8
CON BUBI1B 2 CSNK2A2 2 BUBIB 2 WEE1 2 BUBI1B 2 PRKCD 2
AAK1 1 AKT1 2 AAK1 1 CSNK2A2 2 AAK1 1 AURKB 2

M/D M/F M/L

p=1 p=2 p=1 p=2 p=1 p=2
Gene 1 Gene 1 Gene I Gene I Gene 1 Gene I
BCL6 12 FOXJ2 12 BCL6 12 NCOA1 18 RBL2 11 RBL2 16
MEF2A 5 NFIC 12 MEF2A 5 BCL6 13 FOXM1 8 ATF2 10
UNC NCOA1 5 BCL6 11 NCOA1 5 E2F3 9 ATF2 7 ZNF91 8
NFATC3 4 NCOA1 9 NFATC3 4 RUNX1 9 RXRA 5 STAT6 8
SMAD4 4 MEF2A 8 RELA 4 TFE3 7 TGIF1 4 FOXM1 8
CON AAK1 1 RIPK2 1 AAK1 1 ROCK2 2 AAK1 1 AURKB 2
RIPK2 1 MAST2 1 RIPK2 1 RIPK2 1 SCYL3 1 RIPK2 1

TABLE IV. Best single genes and their impacts for the p=1 and p=2 models. The unconstrained (UNC) and constrained
(CON) case are shown. The constrained case refer to target that are kinases and are expressed in the cancer case. I = IMR-90
(normal), A = A549 (cancer), H = NCI-H358 (cancer), N = Naive (normal), M = Memory (normal), D = DLBCL (cancer),
F = Follicular lymphoma (cancer), L = EBV-immortalized lymphoblastoma (cancer).

ered as a target for therapy and prognosis [43]. MAP3K3
and MAP3K14 are in the MAPK/ERK pathway which
is a target of many novel therapeutic agents [44], and
SRC is a well known oncogene and a candidate target in
lung cancer [45]. BCL6 (B-cell lymphoma 6) is the most
common oncogene in DLBCL, and it is known that its ex-
pression can predict prognosis and response to drug ther-
apy [46]. BCL6 is also frequently mutated in follicular
lymphoma [47]. Our analysis identified BCL6 as an im-
portant drug target for both DLBCL and follicular lym-
phoma using either naive or memory B-cells as a control
for both p = 1 and p = 2. RBL2 disregulation has been
recently associated with many types of lymphoma [48].
FOXM1 is a potential therapeutic target in mature B

cell tumors [49] and ATF2 has been recently found to
be highly disregulated in lymphoma [50]. Besides BCL6
discussed above, the N/D list for DLBC contains genes
(MEF2A [51], NCOA1 [52], TGIF1 [53], NFATC3 [54])
that are all known to have a functional role in cancer,
even if they have not been associated to the specific B-
cell cancer types we have considered. Our predictions
are for the immortalized cell lines we have selected, some
of which are commonly used for in-vitro testing in many
laboratories. RNAi and targeted drugs could then be
used in these cell lines against the top scoring genes in
Table IV to test the disruption of survival or proliferative
capacity. If experimentally validated, our analysis based
on attractor states and bottlenecks could be applied to



patient-derived cancer cells by integrating in the model
patient gene expression data to identify patient-specific
targets.

The above unconstrained searches assume that there
exists some set of “miracle drugs” which can turn any
gene “on” and “off” at will. This limitation can be pa-
tially taken into account by using constrained searches
that limit the nodes that can be addressed. However,
even the constrained search results are unrealistic, since
most drugs directly target more than one gene. In-
hibitors, for example, could target differential nodes with
& = —1 and & = +1, which would damage only nor-
mal cells. Additionally, drugs would not be restricted to
target only differential nodes, and certain combinations
could be toxic to both normal and cancer cells. Few can-
cer treatments involve the use of a single drug, and the
synergistic effects of combining multiple drugs adds yet
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another level of complication to finding an effective treat-
ment [27]. On the other hand, the intrinsic nonlinearity
of a cellular signaling network, with its inherent struc-
ture of attractor states, enhances controllability [31] so
that a properly selected set of druggable targets might
be sufficient for robust control.
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