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Summary

This report covers the period of performance of the FPGA Mission Assurance Center (FMAC)
Cooperative Agreement at the University of New Mexico (UNM). The organization has changed
its name from the FMAC to the Configurable Space Microsystems Innovations and Applications
Center (COSMIAC) to better reflect the work that is being accomplished. The main emphasis of
this work was to develop and implement new principles related to reconfigurable electronics as
applied to the space environment. Issues such as radiation hardening, complexity, reliability and
Space Plug-n-Play are presented and discussed in detail. This report includes theory, analysis,
design and implementation of several reconfigurable devices that can be used on a space vehicle or
platform. Several recommendations and future ideas are presented and discussed in detail.

Introduction

This report completes the period of performance of the Cooperative Agreement entitled “FPGA
Mission Assurance Center (FMAC) Support Activity at the University of New Mexico (UNM)”.
The UNM organization that performed the work was originally called the Field Programmable
Gate Array (FPGA) Mission Assurance Center but changed its name to the Configurable Space
Microsystems Innovations and Applications Center (COSMIAC). This change better reflected
the work that was accomplished under the revised statement of work issued on September 8,
2011 and new work being performed under separate sponsorship. COSMIAC is the Tier-2
Research Center at UNM’s School of Engineering.

COSMIAC was devised as a way of adding value to the Air Force and the nation at large by
ensuring the success of FPGAs and reconfigurable systems in a variety of application areas.
Particular emphasis was placed on the key application areas for FPGAs that include space
environment and its unique reliability requirements, high-performance embedded processing,
and system-on-a-chip designs. COSMIAC brings together New Mexico participants from across
Industry, Academia and government laboratories in order to assure the greatest benefit from
FPGAs and other reconfigurable systems to the U.S. military and the nation as a whole.

The development of the next generation responsive systems can significantly benefit from the
use of real-time reconfigurable systems. Such systems form the next generation FPGAs, or plug-
and-play electronic components, allowing production of scalable components that optimize
performance in terms of both speed and energy consumption (or power). Although the initial
work was focused on FPGAs, other systems were studied under this contract. Reconfigurability
became an important desired feature of modern, agile, radio frequency (RF) systems for wireless
and satellite communications, sensing, and imaging. There is a shift towards incorporating smart
and agile RF devices that both sense the surrounding RF environment and communicate at the
same time in any contested/congested environment. These concepts significantly reduce the
number of components and thus hardware complexity and cost compared to today’s technology,
which relies on inflexible hardware. FPGAs and Microcontrollers are particularly useful and cost
effective for military systems, particularly in space where a few parts can be qualified and then
reused for many purposes such as space applications.

The scope of this work was to conduct and manage direct research activities on the use of
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FPGAs and other reconfigurable systems in space systems, with emphasis on: (a) establishing
open design guidelines for best-practice application of FPGASs in space and defense systems, (b)
improving the reliability of FPGAs and reconfigurable systems, (c) adapting and augmenting
commercially available FPGA design tools to accommodate unique space and defense
requirements, (d) verification of correct design, (e) high system-level productivity assurance, (f)
assessment of the future development of reconfigurable electronics and architectures, and (Q)
planning for future space and defense requirements. Additionally, COSMIAC was tasked to
facilitate the exchange of information between interested organizations on the use of
configurable devices and present results of research and development at technical conferences
and meetings.

This report covers six primary scope topics that are presented individually that are addressed in
detail, specifically work on FPGAs, analog systems, RF, antennas, adaptive wiring, and the
design and testing of several devices to be fielded in space. The COSMIAC team included
researchers from many different areas, including engineering, physics and biology.
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1. Methods, Assumptions and Procedures: Establishing, verifying, and
demonstrating open design guidelines for best-practice application
of FPGAs and other configurable devices in space and defense systems

This section describes the work done on hardware and software development to support the latest
FPGA devices. The goal was to create the concepts of plug-and-play used in the computer
industry and apply them to the concepts to satellite design. The plug-and-play architecture
developed by AFRL to address this challenge is called Monarch, for “modular open network
architecture”. The architecture is open, not proprietary, and uses publicly available interfaces
akin to the USB and Ethernet standards found in computers.

1.1 AFRL'sOpenASIM

Nine years ago the Air Force Research Laboratory (AFRL) set out to study the concepts of plug-
and-play used in the computer industry to apply them to satellite design. The goal was to reduce
the time needed to build a working satellite from years to only 6 days using Monarch. With
Monarch, a spacecraft’s components can be thought of as ‘black boxes’. These components, all
of which have standard connectors, can be easily combined to form a Monarch system. A larger,
more complex spacecraft would have more black boxes than a smaller, simpler one. Monarch
allows for three classes of black boxes: (1) endpoints, which are components that perform a
function, such as thermometers, cameras, and radios, (2) routers, which connect two or more
components, and (3) hosts, which are comparable to the central processing unit of a PC [1].

The connectivity between components in a Monarch network is done through a variety of
standards and a defined protocol. In cases where designers want to integrate a legacy sensor or
actuator into a Monarch network, a specialized interface needs to be added to it. Such an
interface is called Appliqué Sensor Interface Module (ASIM). ASIMs serve as a bridge between
a module’s native communication channel and a Monarch network. ASIM’s generally consist of
a microprocessor with several communication channel alternatives and general purpose
input/output ports. Figure 1 depicts a generation 1 ASIM block diagram.
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There exist several ASIMs reported in the literature and known within the scientific community
[2][3]. All of the current ASIMs are proprietary, costly and closed designs. Each has a different
development tool chain to incorporate different processors. Table 1 summarizes currently known
ASIMs and their more significant features.

Table 1. Summary of currently known ASIMs and their more significant features
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Although functional and standard compliant, ASIMs can differ significantly over their wide
range of features. AFRL recognized the need for an open source ASIM design that could be
shared at no cost and modified as needed. The task of creating such a design was assigned to
COSMIAC under this agreement. OpenASIM is the result of COSMIAC’s efforts over the last
year. Table 2 defines AFRL’s general requirements for OpenASIM.

Table 2. AFRL’s general requirements for OpenASIM

OpenASIM shall provide the capability to address up to 2GB of instruction 2GB
memory.

Memory

Up to 64kB of instruction memory should be addressable internally (memory
Memory | implemented on the chip). The actual size should be defined by a parameter the | 64kB
user can change.

Memory | OpenASIM shall provide the capability to address up to 1GB of data memory. 1GB

Up to 64kB of data memory should be addressable internally (memory
Memory | implemented on the chip). The actual size should be defined by a parameter the | 64kB
user can change.
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Memory | Data cache should be parameterizable between 0 and 8kB. 8kB

Memory | Instruction cache should be parameterizable between 0 and 8kB. 8kB

Non-volatile storage should be available to store application code and/or XTEDs 1GB

Memory data

OpenASIM shall provide 32 general digital 1/0 channels, whose direction

GPIO should be individually controlled by the microprocessor. 32
12C OpenASIM shall have an 12C master peripheral attached to its internal bus. -
SoW OpenASIM shall have an SpW peripheral attached to its internal bus, capable of 10M
P operation at least 10Mbps. bps
SoW The SpW peripheral should be able to reset the microprocessor upon command, )

P independently of the microprocessor operations and state.
Spw We shall seek to avoid the need of using an external converter or PHY. -

The OpenASIM shall provide a parameterizable number of asynchronous serial

RS232 ports, between 1 and 4. Serial ports shall use eight data bits, 1 stop bit and no 4
parity bits (8N1).

RS232 OpenASIM shall support a minimum of 9.6kbauds and a maximum of 115.
115.2kbauds. 2k

RS232 Serial ports shall provide a buffer of at least 128 bytes. 128
OpenASIM shall include an Ethernet core in its internal bus. (Many features

Ethernet : A -
still uncertain, this is a complex core.)

Ti The OpenASIM shall provide a parameterizable number of hardware timers 4

Imers (between 0 and 4) capable of being programmed to trigger at a specified rate.
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CRC The OpenASIM shall have a CRC hardware calculator in its internal bus. 1

CRC The CRC implemented shall be CCITT X.25 polynomial. -

PWM The OpenASIM shall provide a parameterizable number of PWM cores 4
(between 0 and 4) attached to its internal bus.

PWM PWM outputs should be programmable in duty cycle from 0 to 100%. -

The OpenASIM shall provide ways to perform software debugging, including

Debugger step by step execution and the ability to use break points.

The OpenASIM shall keep time from a local oscillator. Time shall be available
to the microprocessor from a memory mapped location composed of 4 bytes -
seconds & 4 bytes microseconds.

Time_
keeping

Time_ The OpenASIM shall be capable of receiving a 1 Hz signal. This signal shall be
keeping used to load a new time into the time register.

Watchdo The OpenASIM shall incorporate a watchdog timer, which will reset the )
g MICroprocessor upon expiration or trigger an interruption.

OpenASIM is an OpenRISC based system with 1°C and Spacewire interfaces to serve as an
adaptors for non-SPA compatible sensors/actuators to connect into a MONARCH network.
Figure 2 depicts the block diagram of the system in its current state.
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Figure 2. Current state of OpenASIM

1.2 Hardware & Software development

OpenASIM was developed based on an open source project called Minimal System-On-Chip
(MinSOC). MiInSOC consists of the minimal hardware necessary for a microprocessor system
based on the OpenRISC 1200. The original system included a startup module, memory, an
Ethernet and a UART core. The COSMIAC project supported several hardware development
platforms, and its RTL was coded to support different FPGA manufacturers, different FPGA
families as well as ASIC implementations. Compiling of the software and hardware module is
accomplished through extensive use of MakeFiles across the directory structure of the project.

The following is a summary of the tasks to modify MinSOC and create OpenASIM as defined
and executed by COSMIAC. The definition of these tasks was based on the specific
requirements in Table 2.

1. Add support for latest FPGA devices from Xilinx: Virtex 5, Virtex 6 and Virtex 7.

2. Add support for new development platforms used to implement ASIMs.

3. Create a fully functional simulation framework and verification suite based on System
Verilog to support the hardware development.

4. Modify hardware synthesis process to obtain higher frequencies of operation.

5. Add new hardware components as peripherals to support all ASIM features. New cores
identified were: SpaceWire, I°C, SP1 and a Real Time Timer.
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6. Create a set of ASIM core libraries to support communication with SSM, the standard sensor
software management running on Monarch networks.

7. Create a framework for code documentation that could be used for future developers to
expand on the software and hardware capabilities of OpenASIM.

8. Streamline the process of porting OpenASIM to different FPGA-based hardware platforms.

1.1.1 Support for latest FPGA devices

The original MinSOC project supported FPGAs from Xilinx up to the Virtex 4 family. For
OpenASIM requirements it was necessary to extend support for Virtex 5, Virtex 6 and the Series
7 families. Although MinSOC’s RTL is written in a very portable form, a few key components of
the system had to be coded in a family-dependent way in order to guarantee performance and an
efficient implementation. For instance, memory structures had to be hard coded to specific
primitives in each particular family for efficient and fast implementations. Important memory
structures defined this way belonged to the main memory space (RAM for instruction and data
memories) of the microprocessor. Other memories, such as cache, were implemented on a
portable across families register file fashion, not requiring any modification. Figures 3 and 4
show a code snippet with modifications made to support newer families.

// Instantiation of FPGA memory: // Instantiation of FPGA memory:

;; SPARTAN3/SPARTAN3E/VIRTEX2 // VIRTEX5 are automatically reallocated by ISE

// SPARTAN3A/VIRTEX4 are automatically reallocated by ISE 1/

1/ // Added By alnz

// Added By Nir Mor /1

W wire [dw-1:0] doq_1internal; // output data bus

wire [dw-1:0] doq_1internal; // output data bus

BRAM_SINGLE_MACRO #(

RAMB16_S9 ramb16_s9_inst( .BRAM_SIZE("18Kb"), // Target BRAM, "18Kb" or "36Kb"
.CLK(c1k), .DEVICE("VIRTEX5"), // Target Device: "VIRTEX5", "VIRTEX6",
.SSR(rst), // "SPARTANG6"

.ADDR(addr), .DO_REG(®), // optional output register (0 or 1)
.DI(di), .INIT(36'h000000000), // Initial values on output port
.DIP(1'b0), JINIT_FILE ("NONE"),
.EN(ce), .WRITE_WIDTH(8), // valid values are 1-72 (37-72 only valid
.WE(we), // when BRAM_SIZE="36Kb")
.D0(doq_internal), .READ_WIDTH(8), // valid values are 1-72 (37-72 only valid
.DOP() // when BRAM_SIZE="36Kb")
)3 .SIM_MODE("SAFE"), // Simulation: "SAFE" vs. "FAST", see "Synthesis
// and Simulation Design Guide" for details
assign doq = (oe) ? (dog_internal) : { dw{1'bZ} }; .SRVAL(36'h000000000) , // Set/Reset value for port output
R R .WRITE_MODE("WRITE_FIRST") // "WRITE_FIRST", "READ_FIRST", or "NO_CHANGE"
Figure 3. Code for a Virtex 4 memory structure )
ramb16_s9 (
.DO(doq_internal), // Output data
.ADDR(addr), // Input address
R . .CLK(clk), // Input clock
Figure 3(Above), code for a Virtex 4 01(dD), /] nput data port
L. R .EN(ce), // Input RAM enable
memory structure as originally defined HEI{rat); /I Tngut resst
.WE(we) // Input write enable

by MinSOC, Figure 4 (right), code for s
a Virtex 5 memory structure, as added to ~ 2sstan doa = (oe) 7 (dog_internal) = { dw{i'bz} };

provide support for latest FPGA families. Figure 4. Code for a Virtex 5 memory structure

Additionally, issues in the simulation of some memory structures were detected. Although these
issues did not represent a risk of hardware malfunction, they did make the interpretation of
simulation results more complex. Some issues are simulator dependent and are associated with
the differences in mixed language simulations. An example is depicted in Figure 5. In
ModelSim, VHDL and Verilog are compiled using the “single big file” strategy. However,
SystemVerilog is not compiled the same way by default, unless the -mfcu flag is used. This
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“minor” detail caused substantial issues in our simulation as the “include’ approach of having
parameters did not scale properly across all the RTL files. The first warning was a significant
memory collision problem that did not occur with original simulations.

# Memory Collision Error on RAMB16_S36_S36:test_minsoc.TheMinsoc.dut.or1200_top.or1200_cpu.or1200_rf.rf_b.ramb16_s36_s36.display_ra_wb at simulat
3146450.000 ns

# A read was performed on address 009 (hex) of Port A while a write was requested to the same address on Port B. The write will be successful howg
read value on Port A is unknown until the next CLKA cycle.

# Memory Collision Error on RAMB16_S36_S536:test_minsoc.TheMinsoc.dut.or1200_top.or1200_cpu.or1200_rf.rf_b.ramb16_s36_s36.display_ra_wb at simulat
3148450.000 ns

# A read was performed on address 003 (hex) of Port A while a write was requested to the same address on Port B. The write will be successful howg
read value on Port A is unknown until the next CLKA cycle.

Figure 5. Memory collision detected during simulation. This error implies a hardware malfunction and required analysis.

RAMB16_S536_536 #(.SIM_COLLISION_CHECK("NONE")) ramb16_s36_s36(

RAMB16_S36_536 ramb16_s36_s36( -CLKA(clk_a),

.SSRA(1'b0),
g;é:éilté? .ADDRA({4'b0080, addr_a}),
.ADDRA({4'booB, addr_a}), -DIA(32'h00000000),
.DIA(32'h000808e8se) -DIPA(4'he),
.DIPA(4'h0), .ENA(ce_a),
.ENA(ce_a), .WEA(1'bO),
.WEA(1'b®), .DOA(do_a),
.DOA(do_a), .DOPA(),
.DOPA(),
.CLKB(clk_b),
.CLKB(clk_b),| .SSRB(1'b0),
.SSRB(1'b0), .ADDRB({4'b0000, addr_b}),
.ADDRB§{4'b0000, addr_b}), .DIB(di_b),
-DIB(di_b), .DIPB(4'h0),
.DIPB(4'h@), .ENB(ce_b),
.ENB(ce_b), .WEB(we_b),
.WEB(we_b), D0B()
-DOB(), -DOPB()
.DOPB() '
I )i

generation the collision error

Figure 6. Original code for memory Figure 7. Apparent fix for the collision error. Cause still not resolved.

#!/bin/bash

#vlog -sv -mfcu -incr -work minsoc_test -f minsoc_sysverilog.src testbench.sv
vlog -sv -mfcu -incr -work minsoc_test -f minsoc_verilog.src testbench.sv
vcom -work minsoc_test -f minsoc_vhdl.src|

Figure 8. Final error detection

The error depicted in Figures 6-8 was associated with mixed language files that are dealt with by
ModelSim. The Default treatment for SystemVerilog files created problems in the way ‘default’
statements scaled across Verilog files in the design. By adding the “mfcu” precompiler flag, the
collision error disapeared.
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Another example of a key element hard coded in a family-

dependent FPGA is the main clock manager. Figures 6 and 7
depict the differences in clock manager instantiations for the
different families. Similar to the memory case, issues were
found during simulation. In this particular case, the issue did
not represent a risk of hardware malfunction, but made the
interpretation of simulation results particularly difficult by

inserting  undefined

signals.
considered a good coding practice; instead, inserting reset

Initializing signals is not

states are recommended. Figures 9-12 depict an example of
simulation differences before and after those reset states are

included.

DCH_ADV #(
.CLKDV_DIVIDE(divisor),
.CLKFX_DIVIDE( 'FX_DIV),
.CLKFX_MULTIPLY( FX_MULT),
.CLKIN_DIVIDE_BY_2("FALSE"
.CLKIN_PERIOD(10.0),
.CLKOUT_PHASE_SHIFT("NONE
.CLK_FEEDBACK("1X"),
.DCM_AUTOCALIBRATION( "TRUE"),

.DCM_PERFORMANCE_MODE( "MAX_SPEED"),

.DFS_FREQUENCY_MODE( "LOW" ),
.DLL_FREQUENCY_MODE("LOW"),
.DUTY_CYCLE_CORRECTION("TRUE"),
.FACTORY_JF(16'hfefe),
.PHASE_SHIFT(®),

.SIM_DEVICE( XILINX_DCM_COMPONENT),

.STARTUP_WAIT("FALSE")

) DCM_ADV_inst (
.CLKB(CLKO_BUF),
.CLK1se(),
.cLk27e(),
.CLK2X(FASTCLK_BUF),
.cLk2x18e(),
.cLkge(),
.CLKDV(CLKDV_BUF),
. CLKFX(CLKFX_BUF),
.CLKFXx180(),
.po(),
.DRDY(),
.LOCKED(),
.PSDONE( ),
.CLKFB(CLKFB_IN),
.CLKIN(CLKIN_IBUFG),
.DADDR(7'heo),
.DCLK(1'b®),
.DEN(1'b0),
.DI(16'heoee),
.DWE(1'b0),
.PSCLK(1'b8),
.PSEN(1'b0),
.PSINCDEC(1'b0),
.RST(1'b@)

);
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Divide by: 1.5,2.6,2.5,3.0,3.5,4.0,4.5,5.0,5.5,6.0,6.5
Can be any integer from 1 to 32

Can be any integer from 2 to 32

TRUE/FALSE to enable CLKIN divide by two feature
Specify period of input clock in ns from 1.25 to 1000.60
Specify phase shift mode of NONE, FIXED,

Specify clock feedback of NONE, 1X or 2X

DCM calibration circuitry "TRUE"/"FALSE"

Can be MAX_SPEED or MAX_RANGE

HIGH or LOW frequency mode for frequency synthesis

LOW, HIGH, or HIGH_SER frequency mode for DLL

Duty cycle correction, "TRUE"/"FALSE"

FACTORY JF value suggested to be set to 16’hfefe
Amount of fixed phase shift from -255 to 1023

Set target device, "VIRTEX4" or "VIRTEX5" or “VIRTEX7"
Delay configuration DONE until DCM LOCK, "TRUE"/"FALSE"

© degree DCM CLK output

180 degree DCM CLK output

270 degree DCM CLK output

2X DCM CLK output

2X, 180 degree DCM CLK out

90 degree DCM CLK output

Divided DCM CLK out (CLKDV_DIVIDE)

DCM CLK synthesis out (M/D)

180 degree CLK synthesis out

16-bit data output for Dynamic Reconfiguration Port (DRP)
Ready output signal from the DRP

DCM LOCK status outplt

Dynamic phase adjust done output

DCM clock feedback

Clock input (from IBUFG, BUFG or DCM)
7-bit address for the DRP

Clock for the DRP

Enable input for the DRP

16-bit data input for the DRP

Active high allows for writing configuration memory
Dynamic phase adjust clock input
Dynamic phase adjust enable input
Dynamic phase adjust increment/decrement
DCM asynchronous reset input

Figure 9. Clock manager code for Virtex 5.

. spu_reg_status 0
rxread

txurite

rxvalid
. started
connecting

MMCME2_ADV
#( .BANDWIDTH
.CLKOUT4_CASCADE
.COMPENSATION
.STARTUP_WAIT
.DIVCLK_DIVIDE
.CLKFBOUT_MULT_F
.CLKFBOUT_PHASE
.CLKFBOUT_USE_FINE_PS
.CLKOUT®_DIVIDE_F
.CLKOUT@_PHASE
.CLKOUT@_DUTY_CYCLE
.CLKOUTO_USE_FINE_PS
.CLKOUT1_DIVIDE
.CLKOUT1_PHASE
.CLKOUT1_DUTY_CYCLE
.CLKOUT1_USE_FINE_PS
.REF_JITTER1
mmcm_adv_inst
(.CLKFBOUT
.CLKouT®
.CLKOUT1
.CLKOUT2
.CLKFBIN
.CLKIN1
.CLKIN2
.CLKINSEL
.DADDR
.DCLK
.DEN
.DI
.00
.DRDY
.DHE
.PSCLK
.PSEN
.PSINCDEC
.PSDONE
.LOCKED
. PWRDWN
.RST

Figure 11. Undefined signals inserted during simulation.
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("OPTIMIZED"),
("FALSE"),
"ZHOLD" ),
"FALSE"),
(1),
(5.000),
(0.000),
("FALSE"),
(5.000),
(0.000),
(0.500),
("FALSE"),
(2),
(0.000),
(0.500),
("FALSE"),
(0.610))

(clkfbout),
(clkoute),
(clkout1),
(clkout2),
(clkfbout_buf),
(clkin1),
(1'be),
(1'b1),
(7'he),|
(1'be),
(1'be),
(16'h0),
(do_unused),
(drdy_unused),
(1'b0),
(1'b0),
(1'b0),
(1'be),
(psdone_unused),
(LOCKED),
(1'bo),
(1'00));

Figure 10. Clock manager code
Virtex 7.

for




clk
sb_rst_i
vb_addr_1

4 wb_ve_L

by 4 wb_dat_o
spy_control_reg

spw_reg_status_0 |
rxread
txwrite
txflag
txdata
txrdy
rxflag
rxvalid
started
connecting
ruining
rxdata
spu_d_pad_{
spu.d_pad_o

or 1 134 ns |

Figure 12. Same simulation after reset states were correctly introduced in simulation code.

1.3  Supportfor new development platforms

Support for new development platforms was necessary to facilitate the development, testing, and
deployment of OpenASIM using hardware platforms that have traditionally been used for ASIMs
(e.g. DataDesign Corporation’s Generation 2 ASIMs based on the Virtex 5 device). Two new
platforms were identified for development and testing: Xilinx’s ML505 and ML510 development
boards (both based on the Virtex 5 family). One new platform was identified for deployment in
current space applications: DataDesign’s Generation 2 ASIM, also based on the Virtex 5 family.

Data Design Gen2
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¢ All constraints were met.,
Minimum Period: 34.836 ns

Maximum Frequency: 28.706 MHz Go To:

Figure 13. Differences between the ML505 and the Data Design Gen2 hardware platforms.

Software support for new development platforms is done by creating new configuration files for
each new platform added. These configuration files include information such as the FPGA
device the platform uses, default clock speeds, peripherals and communication channels the
platform supports, pin assignments for all 1/Os, reset signals polarities, etc. Figure 13 depicts
differences in resources usage between the ML505 and the DataDesign Corporation’s Generation
2 hardware platforms. An interesting observation is that even though both are based on the
Virtex 5 family, they use different chips and implemented features due to platforms differences.

1.4 Creationofsimulation frameworkand verification suite

The original MinSOC project included a set of simple test benches that are used to manually
verify hardware functionality. MinSOC also includes an architectural simulator useful to
simulate software or operating systems. For OpenASIM purposes, a more complete, self-
checking set of test benches was needed. The new simulation framework developed for the
OpenASIM allows the user to simulate complex behavioral processes (such as communication
over serial channels like UART, 12C, SpW, etc) and perform self-checking tests. To accomplish
this, COSMIAC’s team decided to use System Verilog as a language to develop the new test
benches. This decision was based on the extensive use of System Verilog across the industry to
develop verification suites for complex FPGA and ASIC designs.

This simulation framework is based on the definition of Bus Functional Models (BFM) to model

Approved for public release; distribution unlimited
13



the high level behavior of the system. BFM have the additional advantage of a more scalable
simulation framework as they enable the user to create a “harness” to interface with the device
under test (DUT). The DUT can change the nature and number of its 1/Os over the development
time frame. New test benches can be written to exercise and monitor the changing DUT without
breaking test benches that were written for an older version of the DUT. As such, BFMs provide
a more scalable approach to building a comprehensive verification suite.

minsoc_bench.sv
— interface
minsoc_harness.sv test_program.sv
-t—
<_
- OR1200 system
_> (mix of .v & .vhd)
L — >
— >

Figure 14. Newly defined simulation framework

Figure 14 depicts a block diagram with all the components in the newly created simulation
framework. To simulate a mixed language design using System Verilog test benches, advance
simulator software was used: Riviera-Pro from the Aldec Corporation. COSMIAC has acquired
a commercial license for a complete package (all features included) of this software.

To illustrate the full potential of the simulation framework created, Figures 15 and 16 depict the
console output of the original test bench provided with the MinSOC project. The reader can
appreciate a simple and deterministic approach to evaluate the functionality of the UART.
Although this approach works, it scales poorly and becomes impractical when the verification
engineer attempts to increment the overall coverage of the tests. The same Figures also depict
the output of the UART test using the newly created simulation framework. In this case, the
number of tests is an input parameter and the stimulus provided to the DUT is stochastic in
nature, providing better tools to increase the test coverage.
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(minsoc_bench.minsoc_top_0.spw_light_top) SPW INFO: Data bus width is 32. Debug Interface present.

Running simulation: if you want to stop it, type ctrl+c and type in finish afterwards.
Testing UART firmware, this takes a while (~1 min. @ 2.53 GHz dual-core)...
Hello World.
UART data received.
Testing UART interrupt...
UART interrupt failed. B was expected, A was received.
UART firmware test completed, behaving correctly.
Stopping simulation.
** Note: Sfinish : Jopt/minsoc/prij/../bench/verilog/minsoc_bench.v(216)
Time: 3557560 ns Iteration: 1 Instance: /minsoc_bench

Figure 15. Original MinSOC console output of the simulation testing the system’s UART.

test_minsoc.TheMinsoc.dut.spw_light_top) SPW INFO: Data bus width is 32. Debug Interface present.

# Initializing FPGA memory to Os
it Memory model initialized with firmware: eof o] . /sW/uart/uart.hex
7888 Bytes loaded from 7888 ...
#t Testing UART firmware, this takes a while (~1 min. @ 2.53 GHz dual-core)...
it Controller have been reseted
 @test_uart.
t @uart_decoder.
# Hello World.
¥ UART data received.
# Testing UART interrupt. A total of 6 test chars will be send.
# Test O: Send Received D. Passed
It Test 1: Send Received R. Passed
t Test 2: Send Received J. Passed
# Test 3: Send Received U. Passed
t Test 4: Send Received X. Passed
# Test 5: Send Received Q. Passed
it UART firmware test completed, behaving correctly.
it ** Note: Sfinish : random_uart_test.sv(60)
Time: 6261040 ns Iteration: 1 Instance: /test_minsoc/test

[4]+ Done ./run_sim.sh console ../../../sw/uart/uart.hex

Figure 16. Console output for simulation testing the system’s UART using the newly created simulation framework.

1.5 Newhardware features tosupport ASIM requirements

Given the requirements defined in Table 2, a set of new hardware peripherals was created
and integrated with the original MinSOC system. MinSOC is based on the OpenRISC
OR1200 microprocessor which uses WishBone as its main bus standard. WishBone is a
widely accepted bus standard and many of the cores available under the open source license
and community are compliant with it. The main cores that COSMIAC integrated to build the
OpenASIM system are SpaceWire and 12C. These cores are of particular importance as they
represent the two major standards for Monarch networks communication channels.

1.6 SpaceWire integration

SpaceWire is a newly created AIAA standard [SPW_AIAA] that supports data rates up to
400Mb/sec. Two existing cores were investigated as candidates to form part of the OpenASIM
system. The first was a core designed by NASA’s Goddard Space Flight Center that is provided
at no cost for government supported projects. COSMIAC had access to the RTL description of
the core for analysis and possible integration into the OpenASIM system. Figure 17 depicts a
block diagram of NASA’s core.
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FPGA SpaceWire Node Core
d Tx FIFO »  Serializer Primary »
SpW PHY
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\ < Rx FIFO Deserializer SpW PHY
Optional

Figure 17. NASA’s Goddard Space Flight Center SpaceWire core.

This core was successfully integrated into the OpenASIM system after creating a bus interface
compatible with WishBone. Futher testing and development was abandoned because the core,
which relies on a particular PHY chip outside the ASIM platform, is expensive and is not present
on the hardware platforms the OpenASIM project focused on. Despite the fact that development
in this path was discontinued, the current OpenASIM RTL supports integration of this core.

The second core alternative analyzed was part of an open source project known as “SpaceWire
Light” [4]. SpaceWire Light is a VHDL core implementing a SpaceWire encoder-decoder,
synthesizable for FPGA targets. A goal of this project was to provide a complete, reliable and
fast implementation of a SpaceWire encoder-decoder according to ECSS —E-ST-50-12. The
core is "light" in the sense that it does not provide additional features such as RMAP, packet
routing, etc. [5]. This core included an interface for an AMBA bus, which is the bus standard for
other microprocessors such as Leon3 [6].

To complete the integration of this core into the OpenASIM system, a WishBone compliant
interface was created and added. In the process of simulating and verifying the integration some
improvements were made to the WishBone interface to obtain better data rates and reduce
latency. Figure 19 depicts the simulation of a bus transaction on the original adaptation of the
core with obvious latency due to the numerous control-related transactions involved in the
transfer of a byte. Figure 20 depicts an improved version of the same interface where many of
the control related operation were eliminated, obtaining lower latency and better data transfer
rates.
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Figure 18. SpaceWire Light block diagram.

AAAREIANSNNN

Figure 19. Simulation of a bus transaction on the original adaptation of the core. The red circle with the number 1
represents the action of sending a word to the TX register in the core. Number2 is a control operation to set a txwrite flag
high in order to trigger the actual transmission. Number 3 sets the same flag low to allow a new transaction to take place.
The overall operation took ~1920 ns @ 40ns clock period.
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Figure 20. Simulation of a bus transaction on the improved adaptation of the core. The red circle with the number 1
represents the action of sending a word to the TX register in the core. Number 2 shows txwrite flag being automatically
generated. The total time this transaction takes is ~640ns @ 40ns clock period (1/3 original latency).
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To perform further testing, two Star-Dundee devices were obtained on loan from AFRL; a
SpaceWire Link Analyzer MK2 [7] and a SpaceWire brick. The Analyzer consists of a 4
SpaceWire port box with a USB port to connect to a host computer and can operate in two
modes: Loop-through and Loop-back. The analyzer was used in the loop-back mode, where it
basically routes all traffic without modification while capturing and presenting it on a graphical
user interface at the host computer for analysis and debugging. Figures 21 and 22 depict a block
diagram of this mode’s operation and a snapshot of its graphical user interface showing traffic.

200

SpaceWire Link Analyser Mk2 (Serial Number: 06120031) - [ ~~ Not Saved ~~ ]

Figure 22. SpaceWire Analyzer in Loop-back mode [7].

File View Find Settings Trigger Help
s[a]x|[*]® [B] [&]]~]
Time From Trig...| Time Delta End A Event End A Error End A Delta End B Event End B Error End B Delta
-3.100 ps 180 ns NULL 320 ns =
-2,960 ps 140 ns NULL 320 ns
-2.780 s 180 ns NULL 320 ns
-2.640 s 140 ns NULL 320 ns
-2.460 ps 180 ns NULL 320 ns
-2,320 s 140 ns NULL 320 ns
-2.140 ps 180 ns NULL 320 ns
-2.000 ps 140 ns NULL 320 ns
-1.820 ps 180 ns NULL 320 ns
-1.680 ps 140 ns NULL 320 ns
-1.500 ps 180 ns NULL 320 ns
-1.360 ps 140 ns NULL 320 ns
-1.180 ps 180 ns NULL 320 ns
-1.040 ps 140 ns NULL 320 ns
-860 ns 180 ns NULL 320 ns
-720 ns 140 ns NULL 320 ns
-540 ns 180 ns NULL 320 ns =
-400 ns 140 ns NULL 320 ns |
-220 ns 180 ns NULL 320 ns
0 ns 220 ns 400 ns
100 ns 100 ns NULL 320 ns
[B20ns 220 ns NOLL 320 ns
420 ns 100 ns NULL 320 ns
640 ns 220 ns NULL 320 ns
740 ns 100 ns NULL 320 ns
960 ns 220 ns NULL 320 ns
1.060 ps 100 ns NULL 320 ns
1.280 ps 220 ns NULL 320 ns
1.380 ps 100 ns NULL 320 ns
1.600 ps 220 ns NULL 320 ns
1.700 ps 100 ns NULL 320 ns
1.920 ps 220 ns NULL 320 ns
2.020 ps 100 ns NULL 320 ns =]
224011 0n N 320.n bl
Character Display I Packet Display | Bit-Stream Display ] [
Complete End A: 25.000 MHz | End B: 25.000 MHz
Figure 21. SpaceWire Analyzer’s Graphical User Interface snapshot showing traffic.
—
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The second device, the SpaceWire brick, is a USB-to-SpaceWire adapter that allows any
computer with a USB port to connect to a SpaceWire network. Figure 23 depicts the SpaceWire
brick architecture.
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Figure 23. SpaceWire brick architecture.

Both of these devices were used by COSMIAC’s team to perform further testing on the newly
integrated SpaceWire core. The actual setup is depicted in Figure 24. Testing was done using
specialized test routines and drivers provided by the manufacturer of both the SpaceWire
Analyzer and the SpaceWire Brick. Testing focused on obtaining the maximum data transfer rate
possible with the hardware platforms at hand and compliance with the SpaceWire standard.
Performance improvements were obtained by optimizing the RTL code and also simplifying
some of the software driver routines of the SpaceWire core. Figure 25 shows a code shippet of
the SpaceWire interruption handler routine, which was simplified in order to allow higher data
transfer rates.

Figure 24. COSMIAC’s setup to test SpaceWire integration.

void spw_interrupt()

{
char spw_byte_rcved;
char 1sr;
do {
1sr = REG8(spw_base + SPW_STATO);
spw_byte rcved = REG8(spw_base + SPW_RXDAT);
REG8(spw_base + SPW_TXDAT) = spw_byte_rcved;
} while ((lsr & DATA_VALID) == DATA_VALID);
}

Figure 25. Interruption handler routine.

COSMIAC obtained an average data transfer rate of 5.44Mbits/sec and a bus clock frequency of
25MHz, which is within the margins set as goals in Table 2. It is possible to increase the overall
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performance of the SpaceWire channel by creating further clock domains within the OpenASIM
system. Currently, the entire system (CPU plus peripherals including the SpaceWire core) runs
at 75MHz. It is possible to split the system into 2 clock domains: the CPU and most of its
peripherals on one clock domain and the SpaceWire core on a separate clock domain. The
SpaceWire core supports this option. Since the slowest path is currently through the CPU, it is
expected that such separation will allow the SpaceWire core to operate at higher clock frequency,
potentially improving the bus clock frequency and the average data transfer rate.

1.7 I2Cintegration

Inter-Integrated Circuit (1°C) is a standard that supports bus clock speeds up to 400KHz. An
I°C node requires a master and a slave. A core labeled master-slave-i2c, in the open
source community, was adapted for its integration on the OpenASIM system. The core is
WishBone compliant and only minor modifications were required to perform the integration
(the core supports an 8 bit data bus, while the OpenASIM has a 32-bit data bus). The
integrated core is capable of 1°C clock rates over 400KHz. Figure 26 depicts a block diagram
of the I°C core and its Wishbone interface. To complete the integration, a set of low level
software routines or drivers were written to operate the core.

: gres'c‘ale 5 clock
egister generator
A
WISHBONE
Interface Command : .
Register Byte Bit le—»SCL
Command Command
Controller Controller [ «—»SDA
K—— Status K — K—
Register
3
: Transmit :
Register DatalO
Shift
Receiv Register
Recgl‘\e g P
egister

Figure 26. 12C core block diagram.

1.8 Creation of ASIM core libraries for SSM support.

The COSMIAC team developed the lower, hardware-dependent-layer of the ASIM core
libraries. Figure 27 depicts the 4 layer architecture of the proposed libraries. The lower layer,
the closest to the hardware, has an implementation that is strongly driven by the details of
the hardware implementation. Several AFRL sponsored teams we collaborated with
undertook the task of developing this lower layer for different hardware platforms.
COSMIAC is responsible for the OpenASIM implementation. Seven functions are defined to be
the center of the lower layer:
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UlInt16 send (UInt8* pBuf, UInt16 length);

UInt16 receive (UInt8* pBuf);

Int8 createTimer (void* (*funcPtr) (void*), UInt8 rate);
Int8 watchdog_checkIn (void);

void debugPrint (char* pMsg);

Time_t getTime (void);

Int8 setTimeAtTone (Time_t val);

No ok owhE

Application

API

SPA

Device

Figure 27. ASIM Core libraries Layered Architecture.

The “send” and “receive” functions are used to transfer data through either of the communication
channels supported by OpenASIM, I°C or SpaceWire. Selection of which channel used is
defined by using #define statements within the libraries.

The function “createTimer” initializes a periodic interruption that an application developer uses
to perform periodic tasks. The number of “timers” that can be created is specific to the ASIM
used and should be defined within the documentation. Currently, OpenASIM supports the
creation of only one timer using the onboard “Tick Timer”. If the function is called a second
time, it returns a negative value indicating error.

The function “watchdog checkIn” resets the processor watchdog to avoid a general reset from
occurring. Watchdog timers are set in order to allow a microprocessor to reset itself in case it
gets stuck into an infinite loop. The time it takes for a watchdog timer to reset the processor is
application and platform dependent. COSMIAC’s team decided that hardware developers are
free to set a time based on the characteristics of the ASIM and best practices. For OpenASIM,
this time is set to 1 second.

The function “debugPrint” is a generic printout function whose output is re-directed to a system
console. For the vast majority of ASIMs and simple microprocessor systems, this console is
represented by an UART.

“getTime” and “setTimeAtTone” are complementary functions. The first function returns a
time structure with the current system time based on an onboard timer. The second fuction sets
the value of that timer at a particular point in time. ASIM’s that support SpaceWire may have an
external signal called PPS (pulse per second) used to signal the onboard timer when to start
counting, starting at a count previously loaded with the function setTimeAtTone. Other ASIMs,
without the PPS signal, will receive a command and a time through the Monarch network. The
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time is loaded immediately into the timer and is used to set the overall time of the system.
OpenASIM currently supports the second non PPS signal option. Although a PPS is a relatively
simple signal to add, it was not accomplished at the time this report is written. Currently, the set
of ASIM core libraries for the OpenASIM is under test.

1.9 Frameworkforcodedocumentation.

The cores used for OpenASIM have their hardware description well documented, but
software routines have no documentation besides some comments in the actual source
files. Since an important effort of the OpenASIM project was dedicated to write software,
COSMIAC decided that a good documentation method should be selected from the
beginning. This facilitates transferring the code to other developers, as well as to facilitate
the tasks of debugging and development of higher level software routines. Doxygen is
the de facto standard tool for generating documentation from annotated C++ sources,
but it also supports other popular programming languages such as C, Objective-C, C#,
PHP, Java, Python, IDL (Corba, Microsoft, and UNO/OpenOffice flavors), Fortran, VHDL,
Tcl, and to some extent D. OpenASIM uses Doxygen to generate its software code
documentation. A configuration file for the process of generating documentation was created
and has gone through several iterations to its current state. Figure 28 depicts an example of
OpenASIM software documentation. In this particular case the documentation for 1°C drivers is
depicted.
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i2c_ack_interrupt ( unsigned long i2c_base_addr )

Acknowledges interrupt has been serviced

Definition at line 210 of file i2c_master_slave.c.

e reg(i2c base_addr, I2C CR, I2C CR IACK):;

i2c_deact_as_slave ( unsigned long i2c_base_addr)

Disables slave mode for this 12C core and deasserts slave enable bit in control register

Definition at line 125 of file i2c_master_slave.c.

// Clear slave enable bit
i2 yrite r (i2c_base addr, I2C CTR, i2c_read reg(i2c base_addr, I2C CTR) &

IR SLAVE ENASBLE);

i2c_deact_core ( unsigned long i2c_base_addr)

Deactivates |12C core, clear core enable and interrupt enable bits

Definition at line 97 of file i2c_master_slave.c.

i2c write reg(i2c base_addr, I2C CTR, i2c read reg(i2c_base addr, I2C CIR) &

Figure 28. Snapshot for 12C drivers’ documentation.

1.10 Streamlined porting of OpenASIM to other platforms.

One of the goals of the OpenASIM project is to facilitate or streamline the process of
adapting the code for new and different FPGA-based hardware platforms. This process is
currently being accomplished manually by modifying multiple configuration files. Under
the  OpenASIM project, an application in PERL has been created to perform the process of
porting the code to new platforms by means of an intuitive graphical user interface. Figure
29 depicts an early version of the application. Currently, the application is still under
development and testing.
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COSMIAC's OpenASIM specification GUI
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Figure 29. PERL application developed to centralize the generation of configuration files needed to port the OpenASIM
design to different FPGA-based hardware platforms.
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2. Improving the reliability of FPGAs and other configurable devices in
space and defense systems including operation in demanding
environments such as the radiation environment of space

The traditional approach for Single Event Upset (SEU) mitigation on commercial parts is triple
modular redundancy (TMR). Although proven effective, this method adds logic overhead and a
penalty in power consumption and processing speed. This approach is also vulnerable to
multiple-bits upset that are becoming more frequent as geometries decrease in modern devices.
An alternative approach — called “scrubbing” - relies on simply reloading the configuration
memory frames at defined time intervals. This approach is possible with FPGA devices that
support dynamic Partial Reconfiguration (DPR). Scrubbing provides protection against the
accumulation of upsets in the configuration memory and, in combination with TMR, improves
the overall system's reliability. Work done towards this effort using FPGA-based Dynamically
Reconfigurable Systems is described below.

2.1 FPGA-basedDynamicallyReconfigurableSystems

Dynamical partial reconfiguration (DPR) is a relatively new feature of FPGAs. DPR allows the
designer to partially reconfigure an FPGA without stopping or affecting the other parts of the
device are not being reconfigured. This feature opens endless possibilities in the realm of digital
systems, including the Holy Grail of Reconfigurable Computing: a computer capable of changing
itself in response to an external stimulus. The idea of a reconfigurable computer was first
published in the 1960’s by Gerald Estrin, in his landmark paper “Organization of Computer
Systems — The Fixed Plus Variable Structure Computer” [8].

The idea was first triggered by an apparent lack of interest from commercial computer
manufacturers to develop solutions for many vital computational problems, focusing only on
conventional computer systems. The initial concept of reconfigurable computing was to allow
the acceleration of computational processes by using variable configurations of specialized
hardware modules to a classic sequential processing unit. A prototype of the F+V computer
described in Reference [8] was developed at UCLA (See Figure 30). Although the concept didn’t
have much resonance at its time, it started a revolution in the early 1990’s when technique finally
caught up with this visionary concept.
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Figure 30. F+V computer prototype [8].

The world's first commercial reconfigurable computer, the Algotronix CHS2X4, was completed
in 1991. Although not a commercial success, it promised enough that Xilinx bought the
technology. Xilinx started to commercialize FPGAs in the early 1990’s with an architecture
whose basics ideas persist in today’s devices. FPGAs are organized as heterogeneous (in the
beginnings FPGAs were more homogenous) arrays of primitives to perform specific tasks
(arithmetic operations, memory controllers, CPUs, digital signal processing operations, etc) and
generic/programmable tasks (LUTs and FFs within CLBs). Figure 31 depicts a generic and
simplified block diagram of an FPGA’s architecture.
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FPGAs more distinctive feature is its SRAM-based configuration memory. The SRAM nature of
the configuration memory is the origin of FPGA’s main disadvantages and advantages. SRAM
memory loses its contents if powered off, requiring FPGASs to be configured each time they are
powered up. This impedes some applications. SRAM memories usually consume more power
than other alternatives. FPGASs are very power intensive devices and powering them on and off
is not desirable. This is a substantial issue, especially for portable applications. Finally, SRAM
memories are susceptible to radiation effects and their contents can be “flipped” in radiation
harsh environments. These events are labeled Single Event Upsets (SEUs) and are a major
problem for space-borne applications. Conversely, SRAM memories can be read/write at faster
rates than other alternatives and can be addressed to the bit level. This characteristic, together
with a technology that Xilinx labeled “glitch less configuration memory cell”, enabled today’s
DPR capabilities.

The “glitch less” configuration memory cell allows a write process to happen in a configuration
memory cell without generating glitches in the underlying logic, as long as no change in state is
produced. This is particularly important since the FPGA's configuration memory smallest
accessible unit is a frame (41 words of 32 bits for Virtex 4 and newer devices).

configuration memory is accessed externally or within its reconfigurable fabric (internally).
Internal reconfiguration provides devices with the capability of reconfiguring themselves.
Internal access to the configuration memory is accomplished through the Internal Configuration
Access Port (ICAP). Although the ICAP was available in early devices (Virtex 2 are the first
devices we are aware of that included this primitives), using it to perform DPR was not yet
possible because the design flow was not yet supported by the tools.

DPR generated new design challenges. Two important challenges, physical partitioning and
routing planning, were not supportable because of the absence of tools. Physical partitioning for
DPR became more complicated because the tools needed to assure that two time concurrent,
reconfigurable modules were not going to interfere with each other. Routing planning also
became more complicated because tools had to assure that any physical circuitry was placed and
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routed such that all partial configurations interface correctly with each other. It was not until late
2011 that tools started to support DPR commercially. Figure 32 depicts the evolution of Xilinx’s
FPGAs in terms of density and shows the time when the tools supporting DPR in a beta version
first appear and when they were commercially supported.
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Figure 32. Evolution of Xilinx’s FPGAs in terms of density. First green line shows the time where the tools supporting
DPR in a beta version first appear. Second green line shows the time when they were finally commercially supported.

DPR has many implications and applications. The first implication is that it allows multiplexing
in time functional units within the FPGAs, as long as their use doesn’t intersect in time. In
theory, this extends the FPGA’s physical resources infinitely. The second implication is that
DPR can mitigate FPGA’s high power consumption (by trading off performance and power) and
the occurrence of SEU’s.

UNM has explored some of the applications that both of these implications opened up. A PhD
dissertation explored the options of trading off performance and power consumption while
implementing basic arithmetic operations [9]. Also, an ongoing project is exploring DPR’s
capabilities to mitigate SEUs. Both projects efforts are described in detail in the following
sections.

2.1.1 A Dynamic Dual Fixed-Point Arithmetic Architecture for FPGA
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In the realm of embedded systems, a designer often faces the decision of what numerical
representation to use and how to implement it. Particularly when using programmable logic
devices, constraints such as power consumption and area resources lead to traded offs with
performance requirements. Floating point is still too expensive in terms of resources to be
intensively used in programmable logic devices. Fixed-point is less expensive but lacks the
flexibility to represent numbers in a wide range. In order to increase the numerical range, several
fixed-point units—supporting different number representations—are required. Alternatively, the
numerical range can be increased by a single fixed-point unit that is capable of changing its
binary point position.

In this work, DPR is used to dynamically change an arithmetic unit's precision, operation, or
both. This approach requires intensive use of partial reconfiguration making it particularly
important to take into consideration the time it takes to reconfigure. This time is commonly
referred to as the reconfiguration time overhead. Usually, runtime reconfigurable
implementations involve the exchange of relatively large functional units that have large
processing times. This, along with low reconfiguration frequencies, significantly reduces the
impact of the reconfiguration time overhead on performance.

Reconfiguration time overhead is quantified by taking into consideration the bitstream size and
the data transfer speed of the configuration circuitry [10-12]. SelectMap and ICAP are the
external and internal parallel reconfiguration ports for Xilinx FPGAs, respectively [12].
SelectMAP provides an 8-bit or 32-bit bidirectional data bus interface to the Virtex 4
configuration logic that can be used for configuration and read back at an operation frequency of
100 MHz. ICAP has 32-bit wide input and output data buses and is also set to run at a maximum
frequency of 100 MHz. A maximum theoretical speed at which data can be transferred into the
configuration memory using ICAP or SelectMAP is 3.2 Gb per second.
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Figure 33. Virtex 4 family partial reconfiguration times. Points were calculated using the bitstream sizes reported in the
device's datasheets and a theoretical maximum reconfigurable speed of 3.2 Gbits/sec [16].

The smaller unit of reconfiguration is called a frame. In Virtex 4 devices, a frame corresponds to
a bit-wide column of 16 CLBs. All Virtex 4 configuration frames consist of forty-one 32-bit
words resulting in a total of 1312 bits per frame. The bitstream size per each reconfigurable
region in a device is calculated by the number of frames (CLB columns) it contains. Figure 33
depicts the time it takes to reconfigure fully or partially (horizontal axis) different devices in the
Virtex 4 family (vertical axis), assuming the maximum reconfiguration speed of to be 3.2 Gb per
second.

Unlike common runtime reconfigurable implementations, the exchangeable 