
Bayeux: An Architecture for Scalable and Fault-tolerant Wide-area
Data Dissemination

Shelley Q. Zhuang
shelleyz@eecs.berkeley.edu

CS Division, EECS Department, U.C.Berkeley

Report No. UCB/CSD-2-1170

January 2002

Computer Science Division (EECS)
University of California
Berkeley, California 94720

This technical report is supported by grant number DABT63-

98-C-0038

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
JAN 2002 2. REPORT TYPE

3. DATES COVERED
 00-00-2002 to 00-00-2002

4. TITLE AND SUBTITLE
Bayeux: An Architecture for Scalable and Fault-tolerant Wide-area Data
Dissemination

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Department of Electrical
Engineering and Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
The demand for streaming multimedia applications is growing at a fast rate. In this report, we present
Bayeux, an efficient application-level multicast system that scales to arbitrarily large receiver groups while
tolerating failures in routers and network links. Bayeux also includes specific mechanisms for
load-balancing across replicate root nodes and more efficient bandwidth consumption. Our simulation
results indicate that Bayeux maintains these properties while keeping transmission overhead low (i.e.,
overlay routing latency is only 2-3 times of the physical shortest path latency and redundant packet
duplication is a 85-fold improvement over naive unicast). To achieve these properties, Bayeux leverages the
architecture of Tapestry, a fault-tolerant, wide-area overlay routing and location network.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

32

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Bayeux: An Architecture for Scalable and Fault-tolerant
Wide-area Data Dissemination

Shelley Q. Zhuang
Computer Science Division

University of California at Berkeley

January 2002

1 Abstract

The demand for streaming multimedia applications is growing at a fast rate. In this report, we
present Bayeux, an efficient application-level multicast system that scales to arbitrarily large re-
ceiver groups while tolerating failures in routers and network links. Bayeux also includes specific
mechanisms for load-balancing across replicate root nodes and more efficient bandwidth consump-
tion. Our simulation results indicate that Bayeux maintains these properties while keeping trans-
mission overhead low (i.e., overlay routing latency is only 2-3 times of the physical shortest path
latency and redundant packet duplication is a 85-fold improvement over naive unicast). To achieve
these properties, Bayeux leverages the architecture of Tapestry, a fault-tolerant, wide-area overlay
routing and location network.

2 Introduction

The demand for streaming multimedia applications is growing at an incredible rate. Such appli-
cations are distinguished by a single writer (or small number of writers) simultaneously feeding
information to a large number of readers. Current trends indicate a need to scale to thousands or
millions of receivers. To say that such applications stress the capabilities of wide-area networks is
an understatement. When millions of receiving nodes are involved, unicast is completely impracti-
cal because of its redundant use of link bandwidth; to best utilize network resources, receivers must
be arranged in efficient communication trees. This in turn requires the efficient coordination of a
large number of individual components, leading to a concomitant need for resilience to node and
link failures.

Given barriers to wide-spread deployment of IP multicast, researchers have turned to application-
level solutions. The major challenge is to build an efficient network of unicast connections and to
construct data distribution trees on top of this overlay structure. Currently, there are no designs for

1

application-level multicast protocols that scale to thousands of members, incur both minimal delay
and bandwidth penalties, and handle faults in both links and routing nodes.

In this report we present Bayeux, an efficient, source-specific, explicit-join, application-level
multicast system that has these properties. One of the novel aspects of Bayeux is that it combines
randomness for load balancing with locality for efficient use of network bandwidth. Bayeux utilizes
a prefix-based routing scheme that it inherits from an existing application-level routing protocol
called Tapestry [36], a wide-area location and routing architecture used in the OceanStore [16]
globally distributed storage system. On top of Tapestry, Bayeux provides a simple protocol that
organizes the multicast receivers into a distribution tree rooted at the source. Simulation results
indicate that Bayeux scales well beyond thousands of multicast nodes in terms of overlay latency
and redundant packet duplication, for a variety of topology models.

In addition to the base multicast architecture, Bayeux leverages the Tapestry infrastructure to
provide simple load-balancing across replicated root nodes, as well as reduced bandwidth consump-
tion, by clustering receivers by identifier. The benefits of these optimizing mechanisms are shown
in simulation results. Finally, Bayeux provides a variety of protocols to leverage the redundant rout-
ing structure of Tapestry. We evaluate one of them,First Reachable Link Selection, and show it to
provide near-optimal fault-resilient packet delivery to reachable destinations, while incurring a low
overhead in terms of membership state management.

In the rest of this report we discuss the architecture of Bayeux and provide simulation results.
First, Section 3 describes the Tapestry routing and location infrastructure. Next, Section 4 describes
the Bayeux architecture, followed by Section 5 which evaluates it. In Section 6, we explore novel
scalability optimizations in Bayeux, followed by fault-resilient packet delivery in Section 7. We
discuss related work in Section 8. Finally, we discuss future work and conclude in Section 10.

3 Tapestry Routing and Location

Our architecture leverages Tapestry, an overlay location and routing layer presented by Zhao, Ku-
biatowicz and Joseph in [36]. Bayeux uses the natural hierarchy of Tapestry routing to forward
packets while conserving bandwidth. Multicast group members wishing to participate in a Bayeux
session become (if not already) Tapestry nodes, and a data distribution tree is built on top of this
overlay structure.

The Tapestry location and routing infrastructure uses similar mechanisms to the hashed-suffix
mesh introduced by Plaxton, Rajaraman and Richa in [21]. It is novel in allowing messages to locate
objects and route to them across an arbitrarily-sized network, while using a routing map with size
logarithmic to the network namespace at each hop. Tapestry provides a delivery time within a small
factor of the optimal delivery time, from any point in the network. A detailed discussion of Tapestry
algorithms, its fault-tolerant mechanisms and simulation results can be found in [36].

Each Tapestry node or machine can take on the roles ofserver (where objects are stored),
router (which forward messages), andclient (origins of requests). Also, objects and nodes have
names independent of their location and semantic properties, in the form of random fixed-length
bit-sequences represented by a common base (e.g., 40 Hex digits representing 160 bits). The sys-

2

87CA

D598

1598

L4

L2

L1

L3

L4

L4

L3

L2

2118

9098

B4F8

0325

4598

3E98

0098

L3
L2

2BB8

7598

L1

Figure 1:Tapestry routing example.Here we see the path taken by a message originating from node
0325 destined for node4598 in a Tapestry network using hexadecimal digits of length 4 (65536
nodes in namespace).

tem assumes entries are roughly evenly distributed in both node and object namespaces, which can
be achieved by using the output of secure one-way hashing algorithms, such as SHA-1 [25].

3.1 Routing Layer

Tapestry uses local routing maps at each node, calledneighbor maps, to incrementally route overlay
messages to the destination ID digit by digit (e.g.,***8 =) **98 =) *598 =) 4598 where
*’s represent wildcards). This approach is similar to longest prefix routing in the CIDR IP address
allocation architecture [24]. A nodeN has a neighbor map with multiple levels, where each level
represents a matching suffix up to a digit position in the ID. A given level of the neighbor map
contains a number of entries equal to the base of the ID, where theith entry in thejth level is the
ID and location of the closest node which ends in “i”+suffix(N , j � 1). For example, the 9th entry
of the 4th level for node325AE is the node closest to325AE in network distance which ends in
95AE.

When routing, thenth hop shares a suffix of at least lengthn with the destination ID. To find
the next router, we look at its (n + 1)th level map, and look up the entry matching the value of the
next digit in the destination ID. Assuming consistent neighbor maps, this routing method guarantees
that any existing unique node in the system will be found within at mostLogbN logical hops, in
a system with anN size namespace using IDs of baseb. Because every single neighbor map at a
node assumes that the preceding digits all match the current node’s suffix, it only needs to keep a
small constant size (b) entries at each route level, yielding a neighbor map of fixed constant size

3

b � LogbN .

A way to visualize this routing mechanism is that every destination node is theroot nodeof
its own tree, which is a unique spanning tree across all nodes. Any leaf can traverse a number of
intermediate nodes en route to the root node. In short, the hashed-suffix mesh of neighbor maps is
a large set of embedded trees in the network, one rooted at every node. Figure 1 shows an example
of hashed-suffix routing.

In addition to providing a scalable routing mechanism, Tapestry also provides a set of fault-
tolerance mechanisms which allow routers to quickly route around link and node failures. Each
entry in the neighbor map actually contains three entries that match the given suffix, where two
secondary pointers are available if and when the primary route fails. These redundant routing paths
are utilized by Bayeux protocols in Section 7.

3.2 Data Location

Tapestry employs this infrastructure for data location in a straightforward way. Each object is associ-
ated with one or moreTapestry location rootsthrough a distributed deterministic mapping function.
To advertise or publish an objectO, the serverS storing the object sends a publish message toward
the Tapestry location root for that object. At each hop along the way, the publish message stores
location information in the form of a mapping<Object-ID(O), Server-ID(S)>. Note that these
mappings are simply pointers to the serverS whereO is being stored, and not a copy of the object
itself. Where multiple objects exist, each server maintaining a replica publishes its copy. A nodeN

that keeps location mappings for multiple replicas keeps them sorted in order of distance fromN .

During a location query, clients send messages directly to objects via Tapestry. A message
destined forO is initially routed towardsO’s root from the client. At each hop, if the message
encounters a node that contains the location mapping forO, it is redirected to the server containing
the object. Otherwise, the message is forward one step closer to the root. If the message reaches
the root, it is guaranteed to find a mapping for the location ofO. Note that the hierarchical nature
of Tapestry routing means at each hop towards the root, the number of nodes satisfying the next
hop constraint decreases by a factor equal to the identifier base (e.g., octal or hexadecimal) used
in Tapestry. For nearby objects, client search messages quickly intersect the path taken by publish
messages, resulting in quick search results that exploit locality. Furthermore, by sorting distance
to multiple replicas at intermediate hops, clients are likely to find thenearestreplica of the desired
object. These properties are analyzed and discussed in more detail in [36].

3.3 Benefits

Tapestry provides the following benefits:

� Powerful Fault Handling: Tapestry provides multiple paths to every destination. This mech-
anism enables application-specific protocols for fast failover and recovery.

4

� Scalable: Tapestry routing is inherently decentralized, and all routing is done using informa-
tion from number of nodes logarithmically proportional to the size of the network. Routing
tables also have size logarithmically proportionally to the network size, guaranteeing scala-
bility as the network scales.

� Proportional Route Distance: It follows from Plaxton et al.’s proof in [21] that the network
distance traveled by a message during routing is linearly proportional to the real underlying
network distance, assuring us that routing on the Tapestry overlay incurs a reasonable over-
head. In fact, experiments have shown this proportionality is maintained with a small constant
in real networks [36].

3.4 Multicast on Tapestry

The nature of Tapestry unicast routing provides a natural ground for building an application-level
multicasting system. Tapestry overlay assists efficient multi-point data delivery by forwarding pack-
ets according to suffixes of listener node IDs. The node ID base defines the fanout factor used in
the multiplexing of data packets to different paths on each router. Because randomized node IDs
naturally group themselves into sets sharing common suffixes, we can use that common suffix to
minimize transmission of duplicate packets. A multicast packet only needs to be duplicated when
the receiver node identifiers become divergent in the next digit. In addition, the maximum number
of overlay hops taken by such a delivery mechanism is bounded by the total number of digits in
the Tapestry node IDs. For example, in a Tapestry namespace size of 4096 with an octal base, the
maximum number of overlay hops from a source to a receiver is 4. The amount of packet fan-out at
each branch point is limited to the node ID base. This fact hints at a natural multicast mechanism
on the Tapestry infrastructure.

Note that unlike most existing application level multicast systems, not all nodes of the Tapestry
overlay network are Bayeux multicast receivers. This use of dedicated infrastructure server nodes
provides better optimization of the multicast tree and is a unique feature of the Bayeux/Tapestry
system.

4 Bayeux Base Architecture

Bayeux provides a source-specific, explicit-join multicast service. The source-specific model has
numerous practical advantages and is advocated by a number of projects [13, 31, 33, 35]. A Bayeux
multicast session is identified by the tuple<session name, UID>. A session name is a semantic
name describing the content of the multicast, and the UID is a distinquishing ID that uniquely
identifies a particular instance of the session.

4.1 Session Advertisement

We utilize Tapestry’s data location services to advertise Bayeux multicast sessions. To announce a
session, we take the tuple that uniquely names a multicast session, and use a secure one-way hashing

5

**39

1250

JOIN JOIN JOIN
xx76 x876

7876

Receiver
Group

xx50 x250

7250

xx39

JOIN
xx76 x876xxx6

xxx6

JOIN JOIN JOIN

JOIN

Root

Receiver TREE

TREE TREE

TREETREE

TREE

TREE
Receiver

Receiver

Group

1250xxx0

xxx2

xxx9
Receiver

Figure 2: Tree maintenance

function (such as SHA-1 [25]) to map it into a 160 bit identifier. We then create a trivial file named
with that identifier and place it on the multicast session’s root node.

Using Tapestry location services, the root or source server of a session advertises that document
into the network. Clients that want to join a session must know the unique tuple that identifies that
session. They can then perform the same operations to generate the file name, and query for it using
Tapestry. These searches result in the session root node receiving a message from each interested
listener, allowing it to perform the required membership operations. As we will see in Section 6.1,
this session advertisement scheme allows root replication in a way that is transparent to the multicast
listeners.

4.2 Tree Maintenance

Constructing an efficient and robust distribution tree to deliver data to session members is the key to
efficient operation in application-level multicast systems. Unlike most existing work in this space,
Bayeux utilizes dedicated servers in the network infrastructure (in the form of Tapestry nodes) to
help construct more efficient data distribution trees.

There are four types of control messages in building a distribution tree:JOIN, LEAVE,
TREE, PRUNE. A member joins the multicast session by sending aJOIN message towards the
root, which then replies with aTREEmessage. Figure 2 shows an example where node7876 is the
root of a multicast session, and node1250 tries to join. TheJOIN message from node1250 tra-
verses nodesxxx6, xx76, x876 , and7876 via Tapestry unicast routing, wherexxx6 denotes
some node that ends with 6. The root7876 then sends aTREEmessage towards the new mem-
ber, which sets up the forwarding state at intermediate application-level routers. Note that while
both control messages are delivered by unicasting over the Tapestry overlay network, theJOIN and
TREEpaths might be different, due to the asymmetric nature of Tapestry unicast routing.

When a router receives aTREEmessage, it adds the new member node ID to the list of receiver
node IDs that it is responsible for, and updates its forwarding table. For example, consider node
xx50 on the path from the root node to node1250 . Upon receiving theTREEmessage from
the root, nodexx50 will add 1250 into its receiver ID list, and will duplicate and forward future
packets for this session to nodex250 . Similarly, a LEAVE message from an existing member
triggers aPRUNEmessage from the root, which trims from the distribution tree any routers whose
forwarding states become empty after the leave operation.

6

5 Evaluation of Base Design

Here, we compare the basic Bayeux algorithm against IP multicast and naive unicast. By naive
unicast we mean a unicast star topology rooted at the source that performs one-to-one transmission
to all receivers.

5.1 Simulation Setup

To evaluate our protocol, we implemented Tapestry unicast routing and the Bayeux tree protocol as
a packet-level simulator. Our measurements focus on distance and bandwidth metrics, and do not
model the effects of any cross traffic or router queuing delays.

We use the Stanford Graph Base library [30] to access four different topologies in our simu-
lations (AS, MBone, GT-ITM and TIERS). The AS topology shows connectivity between Internet
autonomous systems (AS), where each node in the graph represents an AS as measured by the Na-
tional Laboratory for Applied Network Research [18] based on BGP routing tables. The MBone
graph presents the topology of the MBone as collected by the SCAN project at USC/ISI [28] on
February 1999. To measure our metrics on larger networks, we turned to the GT-ITM [12] pack-
age, which produces transit-stub style topologies, and the TIERS [34] package, which constructs
topologies by categorizing routers into LAN, MAN, and WAN routers. In our experiments, unicast
distances are measured as the shortest path distance between any two multicast members.

5.2 Performance Metrics

We adopt the two metrics proposed in [6] to evaluate the effectiveness of our application-level
multicast technique:

� Relative Delay Penalty, a measure of the increase in delay that applications incur while using
overlay routing. For Bayeux, it is the ratio of Tapestry unicast routing distances to IP unicast
routing distances. Assuming symmetric routing, IP Multicast and naive unicast both have a
RDP of 1.

� Physical Link Stress, a measure of how effective Bayeux is in distributing network load across
different physical links. It refers to the number of identical copies of a packet carried by a
physical link. IP multicast has a stress of 1, and naive unicast has a worst case stress equal to
number of receivers.

5.3 Snapshot Measurements

In this experiment, we used a topology generated by the transit-stub model consisting of 50000
nodes, with a Tapestry overlay using node namespace size of 4096, ID base of 4, and a multicast
group size of 4096 members. RDP is measured for all pairwise connections between nodes in
the network. Figure 3 plots the cumulative distribution of RDP on this network. The horizontal

7

1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

RDP

C
um

ul
at

iv
e

P
er

ce
nt

ag
e

of
 P

ai
rs

 o
f M

em
be

rs

<BASE 4, NAMESPACE SIZE 4096, GROUP SIZE 4096, transit−stub 50000>

Figure 3: Cumulative distribution of RDP

10
0

10
1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

Stress of Physical Link

of

 P
hy

si
ca

l L
in

ks

<BASE 4, NAMESPACE SIZE 4096, GROUP SIZE 4096, transit−stub 50000>

Unicast
Bayeux

Figure 4: Comparing number of stressed links between naive unicast and Bayeux using Log scale
on both axis.

8

0 2 4 6 8 10 12
0

1

2

3

4

5

6

7

8

Physical Delay (hop)

R
D

P

<BASE 4, NAMESPACE SIZE 4096, GROUP SIZE 4096, transit−stub 50000>

Maximum RDP
Average RDP

Figure 5: RDP vs. physical delay

axis represents a particular RDP and the vertical axis represents the cumulative fraction of sender-
receiver pairs for which the RDP is less than this value. As we can see, the RDP for a large majority
of connections is quite low. In fact, about 90% of pairs of members have a RDP less than 4.

A few sender-receiver pairs have a higher RDP, however, it can be seen in Figure 5 that the
maximum RDP of seven corresponds to a sender-receiver pair with a small physical delay of five
hops. This is because even though two nodes are physically close to each other, the digit-by-digit
nature of Tapestry routing still produces a path of the same number of overlay hops, which can
result in higher RDPs. However, the overlay delay between this sender-receiver pair is not very
high, which can be seen from Figure 6.

In Figure 4, we compare the variation of physical link stress in Bayeux to that under naive
unicast. We define the stress value as the number of duplicate packets going across a single physical
link. We pick random source nodes with random receiver groups, and measure the worst stress value
of all links in the tree built. We plot the number of links suffering from a particular stress level on
the Y-axis, against the range of stress levels on the X-axis. We see that relative to unicast, the overall
distribution of link stress is substantially lower. In addition, naive unicast exhibits a much longer
tail, where certain links experience stress levels up to 4095, whereas the Bayeux measurement shows
no such outliers. This shows that Bayeux distributes the network load evenly across physical links,
even for large multicast groups. While End System Multicast [6] also exhibits low physical link
stress, it only scales to receiver groups of hundreds.

9

0 2 4 6 8 10 12
0

5

10

15

20

25

30

35

40

45

Physical Delay (hop)

O
ve

rla
y

D
el

ay
 (

ho
p)

<BASE 4, NAMESPACE SIZE 4096, GROUP SIZE 4096, transit−stub 50000>

Maximum Overlay Delay
Average Overlay Delay

Figure 6: Overlay delay vs. physical delay

5.4 Effects of Tunable Parameters on Performance

In this section, we study the effects of varying parameters multicast group size, namespace size,
topology size, and base on the performance of Bayeux. The namespace of Tapestry nodes is defined
by fixed-length bit sequences represented by a common base. For instance, a Tapestry network
can support 4096 nodes using 12 bit identifiers represented as 3 hexadecimal digits. For all results
in the following sections, each data point is obtained by conducting 10 independent simulation
experiments, and we plot the mean and the standard deviation.

5.4.1 Group Size

In this experiment, we use topologies from the AS, MBone, TIERS, and transit-stub models, a
Tapestry namespace size of 4096, and a base of 4. Figure 7 plots the 90th percentile RDP versus
increasing group size for these four topologies. All the curves are close to each other except the AS
topology, which shows slightly higher RDPs. This is because the connectivity of a topology directly
affects the properties of the Tapestry overlay network built on top of it. Consider the difference
between AS and MBone topologies. The MBone is composed of islands that can directly support
IP multicast, where the islands are linked by virtual point-to-point tunnels whose endpoints have
support for IP multicast. The MBone topology is a combination of mesh at the backbone and star
at each regional network, however, the connectivity in the mesh is manually configured and ad-hoc.
In contrast, the AS topology is more structured and much better connected with increasing amount
of peering relationships in the recent years. Therefore, more nodes have higher fanouts in the AS
topology, which means that there are plenty of freedom in choosing the optimal route in shortest

10

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

0.5

1

1.5

2

2.5

3

3.5

4

Group Size

90
 P

er
ce

nt
ile

 R
D

P

<BASE 4, NAMESPACE SIZE 4096>

AS−Jan00 6474
MBone 4179
TIERS 5000
transit−stub 5000

Figure 7: 90 percentile RDP vs. group size for topologies from four models

path unicast routing. However, unicast routing in Tapestry is somewhat contrained in the sense that
routes have to follow the destination node identifiers, and thus cannot fully leverage the choice of
routes offered by the underlying topology, which offers some intuition why the AS topology tend
to have higher RDPs. Now we look at the overall variation in RDP as the group size increases from
16 to 4096. Figure 7 shows that the 90 percentile RDP remained more or less constant, which is
expected because increasing the group size only increases the fanouts of branching points, but does
not increase the height of the Bayeux tree, thus not affecting the RDP.

Next we study the effect of varying group size on worst case physical link stress. We only
consider the generated transit-stub model of 50000 nodes because the results are skewed in other
real topologies of about 5000 nodes since the multicast session density becomes too high for a group
size of 4096. Figure 8 plots the variation of the worst case physical link stress for the transit-stub
model. The worst case physical link stress increases sub-linearly as the group size increases from
16 to 4096. While for large group sizes of thousands, worst case stress may be higher, it is still
much lower than naive unicast.

5.4.2 Namespace Size

In this experiment, we examine the effect of varying the size of the Tapestry network on the RDP
and the worst case physical link stress. We use the topologies from the AS, MBone, TIERS, and
transit-stub models, and a Tapestry base of 4. Because we are only interested in the variation of
performance with respect to namespace size, we use a multicast group of 64 members to decrease
the amount of simulation time. Figure 9 and 10 plot the variations on RDP and worst case stress
as the Tapestry namespace size increases from 64 to 4096. For all topologies, we see a slight

11

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

10

20

30

40

50

60

70

80

90

Group Size

W
or

st
 C

as
e

P
hy

si
ca

l L
in

k
S

tr
es

s

<BASE 4, NAMESPACE SIZE 4096>

transit−stub 50000

Figure 8: Worst case physical link stress vs. group size for transit-stub 50000

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

0.5

1

1.5

2

2.5

3

3.5

4

Namespace Size

90
 P

er
ce

nt
ile

 R
D

P

<BASE 4, GROUP SIZE 64>

AS−Jan00 6474
MBone 4179
TIERS 5000
transit−stub 5000

Figure 9: 90 percentile RDP vs. Tapestry network size for topologies

12

0 500 1000 1500 2000 2500 3000 3500 4000
0

5

10

15

20

25

30

35

40

45

50

Namespace Size

W
or

st
 C

as
e

P
hy

si
ca

l L
in

k
S

tr
es

s

<BASE 4, GROUP SIZE 64>

AS−Jan00 6474
MBone 4179
TIERS 5000
transit−stub 5000

Figure 10: Worst case physical link stress vs. Tapestry network size for topologies

increase in the RDP and worst case stress. This is because we do not gain additional benefits by
adding more Tapestry nodes beyond the number of members in the multicast group. In fact, the
performance degrades because as the namespace size increases and the base is kept constant, a node
needs to traverse a longer overlay path in order to reach another node, which increases the end-to-
end latencies, and also causes unnecessary packet duplications. With respect to varying topologies,
we note from Figure 10 that the AS topology exhibits the lowest worst case stress. This is due to the
same reasons as why the AS topology has a higher RDP than the other topologies. In other words,
because of the higher fanout of nodes in the AS topology, more links share the responsibility of
multicast forwarding such that the amount of load on each individual link becomes lower, attaining
a load balancing effect.

5.4.3 Topology Size

In this section, we use a Tapestry namespace size of 64, a base of 4, and a multicast group size of 64.
We generate topologies from the transit-stub model of sizes varying from 100 nodes to 50000 nodes,
and evaluate the impact on Bayeux’s performance. Figure 11 plots the RDP against the topology
size, and Figure 12 plots the worst case stress against the topology size. We observe that both the
RDP and worst case stress decrease in general as the topology size increases. This is because in a
fixed physical space, the number of links increases as the topology becomes larger, which results in
better routes becoming available.

13

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500
0

0.5

1

1.5

2

2.5

3

Topology Size

90
 P

er
ce

nt
ile

 R
D

P

<BASE 4, NAMESPACE SIZE 64, GROUP SIZE 64>

transit−stub

Figure 11: 90 percentile RDP vs. topology size for topologies from the transit-stub model

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500
0

2

4

6

8

10

12

14

16

Topology Size

W
or

st
 C

as
e

P
hy

si
ca

l L
in

k
S

tr
es

s

<BASE 4, NAMESPACE SIZE 64, GROUP SIZE 64>

transit−stub

Figure 12: Worst case physical link stress vs. topology size for topologies from the transit-stub
model

14

0 2 4 6 8 10 12 14 16 18
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Base

90
 P

er
ce

nt
ile

 R
D

P

<NAMESPACE SIZE 4096, GROUP SIZE 64>

AS−Jan00 6474
MBone 4179
TIERS 5000
transit−stub 5000

Figure 13: 90 percentile RDP vs. base for topologies from the four models

0 2 4 6 8 10 12 14 16 18
0

10

20

30

40

50

60

70

Base

W
or

st
 C

as
e

P
hy

si
ca

l L
in

k
S

tr
es

s

<NAMESPACE SIZE 4096, GROUP SIZE 64>

AS−Jan00 6474
MBone 4179
TIERS 5000
transit−stub 5000

Figure 14: Worst case physical link stress vs. base for topologies from the four models

15

5.4.4 Base

Finally, we study the effect of variation of the Tapestry base, which determines the range of the
overlay fanout in the Bayeux tree. We consider topologies from the AS, MBone, TIERS, and transit-
stub models, a Tapestry namespace size of 4096, and a group size of 64. Figure 13 and 14 plot the
variations in RDP and worst case stress as Tapestry base increases. When the base increases and
the namespace is kept constant, the Bayeux tree height decreases, which causes RDP to decrease.
On the other hand, the overlay fanout increases as the base increases, which causes physical link
stress to increase because physical links near the branching nodes need to be shared by an increasing
number of overlay links.

5.5 Summary of Results

In this section, we summarize the evaluation results that we have presented in earlier sections.

Across a range of topology models, Bayeux achieves a low RDP for a wide range of group
sizes. Figure 7 shows that the 90 percentile RDP remained more or less constant as the group size
increases from 16 to 4096.

In addition, Bayeux results in a low worst case stress for a wide range of group sizes. Figure 8
shows that the worst case stress increases sub-linearly as the group size increases from 16 to 4096
for the transit-stub model of 50000 nodes. While for larger group sizes, worst case stress may be
higher, it is still much lower than unicast. For example, for a group of 4096 members, Bayeux
reduces worst case stress by a factor of 85 compared to unicast.

6 Scalability Enhancements

In this section, we demonstrate and evaluate optimizations in Bayeux for load-balancing and in-
creased efficiency in bandwidth usage. These enhancements,Tree PartitioningandReceiver Clus-
tering, leverage Tapestry-specific properties, and are unique to Bayeux.

6.1 Tree Partitioning

The source-specific service model has several drawbacks. First, the root of the multicast tree is a
scalability bottleneck, as well as a single point of failure. Unlike existing multicast protocols, the
non-symmetric routing in Bayeux implies that the root node must handle alljoin andleave re-
quests from session members. Second, only the session root node can send data in a source-specific
service model. Although the root can act as a reflector for supporting multiple senders [13], all
messages have to go through the root, and a network partition or root node failure will compromise
the entire group’s ability to receive data.

To remove the root as a scalability bottleneck and point of failure, Bayeux includes aTree Par-
titioning mechanism that leverages the Tapestry location mechanism. The idea is to create multiple

16

Receiver

Receiver

Receiver

Receiver

Receiver

Receiver

Receiver

Bayeux Dataflow

Tap. Location Ptrs

Root Search via Tap.

Root 3

Root 1

Tapestry
Location

Root

Receiver

Figure 15: Receivers self-configuring into Tree Partitions

root nodes, and partition receivers into disjoint membership sets, each containing receivers closest
to a local root in network distance. Receivers organize themselves into these sets as follows:

1. Integrate Bayeux root nodes into a Tapestry network.

2. Name an objectO with the hash of the multicast session name, and placeO on each root.

3. Each root advertisesO in Tapestry, storing pointers to itself at intermediate hops between it
and the Tapestry location root, a node deterministically chosen based onO.

4. OnJOIN , new memberM uses Tapestry location services to find and route aJOIN message
to the nearest root nodeR.

5. R sendsTREEmessage toM , now a member ofR’s receiver set.

Figure 15 shows the path of various messages in the tree partitioning algorithm. Each member
M sends location requests up to the Tapestry location root. Tapestry location services guarantee
M will find the closest such root with high probability [21, 36]. Root nodes then use Tapestry
routing to forward packets to downstream routers, minimizing packet duplication where possible.
The self-configuration of receivers into partitioned sets means root replication is an efficient tool for
balancing load between root nodes and reducing first hop latency to receivers when roots are placed
near listeners. Bayeux’s technique of root replication is similar in principle to root replication
used by many existing IP multicast protocols such as CBT [3] and PIM [7, 8]. Unlike other root
replication mechanisms, however, we do not send periodic advertisements via the set of root nodes,
and members can transparently find the closest root given the root node identifier.

We performed evaluation of our root replication algorithms by simulation. Our simulation re-
sults on four topologies (AS, MBone, Transit-stub and TIERS) are quite similar. Here we only
show the Transit-stub results for clarity. We simulate a large multicast group that self-organizes into
membership partitions, and examine how replicated roots impact load balancing of membership op-
erations such asjoin . Figure 16 plots the mean and the 5th and 95th percentiles of the number
of join requests handled per root as members organize themselves around more replicated roots.

17

0 5 10 15 20 25 30 35
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Number of Multicast Roots

A
ve

ra
ge

 N
um

be
r

of
 J

oi
ns

 H
an

dl
ed

 b
y

a
M

ul
tic

as
t R

oo
t

<BASE 4, NAMESPACE SIZE 4096, GROUP SIZE 4063>

transit−stub 5000

Figure 16: Membership Message Load Balancing by Roots

While the mean number of requests is deterministic, it is the 5th and 95th percentiles which show
how evenlyjoin requests are load-balanced between different replicated roots. As the number of
roots increases, the variation of the number ofjoin requests handled among the roots decreases
inversely, showing that load-balancing does occur, even with randomly distributed roots, as in our
simulation. One can argue that real-life network administrators can do much better by intelligently
placing replicated roots to evenly distribute the load.

6.2 Receiver Identifier Clustering

To further reduce packet duplication, Bayeux introduces the notion of receiver node ID clustering.
Tapestry delivery of Bayeux packets approaches the destination ID digit by digit, and one single
packet is forwarded for all nodes sharing a suffix. Therefore, a naming scheme that provides an
optimal packet duplication tree is one that allows local nodes to share the longest possible suffix.
For instance, in a Tapestry 4-digit hexadecimal naming scheme, a group of 16 nodes in a LAN
should be named by fixing the last 3 digits (XYZ), while assigning each node one of the 16 result
numbers (0XYZ, 1XYZ, 2XYZ, etc.) This means upstream routers delay packet duplication
until reaching the LAN, minimizing bandwidth consumption and reducing link stress. Multiples of
these 16-node groups can be further organized into larger groups, constructing a clustered hierarchy.
Figure 17 shows such an example. While group sizes matching the Tapestry ID base are unlikely,
clustered receivers of any size will show similar benefits. Also note that while Tapestry routing
assumes randomized naming, organized naming on a small scale will not impact the efficiency of a
wide-area system.

18

Root Nodes
Bayeux

Cluster of 16 Cluster of 16

Cluster of 16

Cluster of 16Cluster of 16

0200

nodes *200

**00 **29

1200, 2200...

0100

Cluster of 16
nodes *100

1100, 2100... 0629
1629, 2629...

nodes *629

nodes *429

0429
1429, 2429...

nodes *510

0510
1510, 2510...

**10

nodes *310

0310
1310, 2310...

Figure 17: Receiver ID Clustering according to network distance

0 0.2 0.4 0.6 0.8 1 1.2
0

10

20

30

40

50

60

70

80

90

Fraction of domains that use receiver identifier clustering

W
or

st
 C

as
e

P
hy

si
ca

l L
in

k
S

tr
es

s

<BASE 4, NAMESPACE SIZE 4096, GROUP SIZE 256, CLUSTER SIZE 16>

transit−stub 50000

Figure 18: Worst case physical link stress vs. fraction of domains that use receiver ID clustering for
the transit-stub model

19

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fraction of failed links

F
ra

ct
io

n
of

 r
ou

tin
g

co
nd

iti
on

s
A

, B
, C

, D
, E

<BASE 4, NAMESPACE SIZE 4096, GROUP SIZE 256, TIERS 5000>

A
B
C
D
E

Figure 19: Maximum Reachability via Multiple Paths vs. Fraction of Failed Links in Physical
Network

To quantify the effect of clustered naming, we measured link stress versus the fraction of lo-
cal LANs that utilize clustered naming. We simulated 256 receivers on a Tapestry network using
ID base of 4 and IDs of 6 digits. The simulated physical network is a transit stub modeled net-
work of 50000 nodes, since it best represents the natural clustering properties of physical networks.
Receivers are organized as 16 local networks, each containing 16 members. Figure 18 shows the
dramatic decrease in worst cast link stress as node names become more organized in the local area.
By correlating node proximity with naming, the duplication of a single source packet is delayed
until the local router, reducing bandwidth consumption at all previous hops. The result shows an
inverse relationship between worst case link stress and local clustering.

7 Fault-resilient Packet Delivery

In this section, we examine how Bayeux leverages Tapestry’s routing redundancy to maintain re-
liable delivery despite node and link failures. Each entry in the Tapestry neighbor map maintains
secondary neighbors in addition to the closest primary neighbor. In Bayeux, membership state is
kept consistent across Tapestry nodes in the primary path from the session root to all receivers.
Routers on potential backup routes branching off the primary path do not keep member state. When
a backup route is taken, the node where the branching occurs is responsible for forwarding on the
necessary member state to ensure packet delivery.

We explore in this section approaches to exploit Tapestry’s redundant routing paths for effi-
cient fault-resilient packet delivery, while minimizing the propagation of membership state among

20

Convergence vs Branch Position

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 1 2 3 4

Position of Branch Point

A
ve

ra
ge

H
op

s
B

ef
or

e
C

on
ve

rg
en

ce

Secondary Branch Tertiary Branch

Figure 20: Average Hops Before Convergence vs. Position of Branch Point

Tapestry nodes. We first examine fault-resilient properties of the Tapestry hierarchical and redun-
dant routing paths, then present several possible protocols and present some simulation results.

7.1 Infrastructure Properties

A key feature of the Tapestry infrastructure is its backup routers per path at every routing hop.
Before examining specific protocols, we evaluate the maximum benefit such a routing structure can
provide. To this end, we used simulation to measure maximum connectivity based on Tapestry
multi-path routes. At each router, every outgoing logical hop maintains two backup pointers in
addition to the primary route.

Figure 19 shows maximum connectivity compared to IP routing. We used a topology gener-
ated by the TIERS model consisting of 5000 nodes and 7084 links. Results are similar for other
topologies. We used a Tapestry node identifer namespace size of 4096, a base of 4, and a multicast
group size of 256 members. Links are randomly dropped, and we monitor the reachability of IP
and Tapestry routing. As link failures increase, region A shows probability of successful IP and
Tapestry routing. Region C shows cases where IP fails and Tapestry succeeds. Region E represents
cases where the destination is physically unreachable. Finally, region B shows instances where IP
succeeds, and Tapestry fails; and region D shows where both protocols fail to route to a reachable
destination. Note that regions B and D are almost invisible, since the multiple paths mechanism
in Tapestry finds a route to the destination with extremely high probability, if such a route exists.
This result shows that by using two backup pointers for each routing map entry, Tapestry achieves
near-optimal maximum connectivity.

Another notable property of the Tapestry routing infrastructure is its hierarchical nature [36]. All
possible routes to a destination can be characterized as paths up to a tree rooted at the destination.
With a random distribution of names, each additional hop decreases the expected number of next
hop candidates by a factor equal to the base of the Tapestry identifier. This property means that

21

with evenly distributed names, paths from different nodes to the same destination converge within
an expected number of hops equal toLogb(D), whereb is the Tapestry digit base, andD is number
of nodes between the two origin nodes in the network.

This convergent nature allows us to intentionally fork off duplicate packets onto alternate paths.
Recall that the alternate paths from a node are sorted in order of network proximity to it. The
expectation is that a primary next hop and a secondary next hop will not be too distant in the
network. Because the number of routers sharing the required suffix decreases quickly with each
additional hop, alternate paths are expected to quickly converge with the primary path. We confirm
this hypothesis via simulation in Figure 20. On a transit-stub topology of 5000 nodes, Tapestry IDs
with base 4, where the point to point route has 6 logical hops, we see that convergence occurs very
quickly. As expected, an earlier branch point may incur more hops to convergence, and a secondary
route converges faster than a tertiary route.

7.2 Fault-resilient Delivery Protocols

We now examine more closely a set of Bayeux packet delivery protocols that leverages the redundant
route paths and hierarchical path reconvergence of Tapestry. While we list several protocols, we only
present simulation results for one, and continue to work on simulation and analysis of the others.
The protocols are presented in random order as follows:

1. Proactive Duplication:Each node forwarding data sends a duplicate of every packet to its
first backup route. Duplicate packets are marked, and routers on the secondary path cannot
duplicate them, and must forward them using their primary routers at each hop.

The hypothesis is that duplicates will all converge at the next hop, and duplication at each
hop means any single failure can be circumvented. While incurring a higher overhead, this
protocol also simplifies membership state propagation by limiting traffic to the primary paths
and first order secondary nodes. Membership state can be sent to these nodes before the
session. This protocol trades off additional bandwidth usage for circumventing single logical
hop failures.

2. Application-specific Duplicates:Similar to previous work leveraging application-specific
data distilling [20], this protocol is an enhancement toProactive Duplication, where an
application-specific lossy duplicate is sent to the alternate link. In streaming multimedia,
the duplicate would be a reduction in quality in exchange for smaller packet size. This pro-
vides the same single-failure resilience as protocol 1, with lower bandwidth overhead traded
off for quality degradation following packet loss on the primary path.

3. Prediction-based Selective Duplication:This protocol calls for nodes to exchange periodic
UDP probes with their next hop routers. Based on a moving history window of probe arrival
success rates and delay, a probability of successful delivery is assigned to each outgoing link,
and a consequent probability calculated for whether a packet should be sent via each link.
The weighted expected number of outgoing packets per hop can be varied to control the use
of redundancy (e.g., between 1 and 2).

22

When backup routes are taken, a copy of the membership state for the next hop is sent along
with the data once. This protocol incurs the overhead of periodic probe packets in exchange
for the ability to adapt quickly to transient congestion and failures at every hop.

4. Explicit Knowledge Path Selection:This protocol calls for periodic updates to each node from
its next hop routers on information such as router load/congestion levels and instantaneous
link bandwidth utilization. Various heuristics can be employed to determine a probability
function which choose the best outgoing path for each packet. Packets are not duplicated.

5. First Reachable Link Selection:This protocol is a relatively simple way to utilize Tapestry’s
routing redundancy. Like the previous protocol, a node receives periodic UDP packets from
its next hop routers. Based on their actual and expected arrival times, the node can construct
a brief history window to predict short-term reliability on each outgoing route. Each incom-
ing data packet is sent on the shortest outgoing link that shows packet delivery success rate
(determined by the history window) above a threshold. No packet duplication takes place.
When a packet chooses an alternate route, membership state is sent along with the data. This
protocol is discussed more in Section 7.3.

Note that several of these protocols (1, 2, 3) may send additional packets down secondary or ter-
tiary routes in addition to the original data. As we have shown in Figure 20, the bandwidth overhead
of those protocols is limited, since the duplicates quickly converge back on to the primary path, and
can be suppressed. This gives us the ability to route around single node or link failures. Duplicate
packet supression can be done by identifying each packet with a sequential ID, and keeping track of
the packets expected but not received (in the form of a moving window) at each router. Once either
the original or the duplicate packet arrives, it is marked in the window, and the window boundary
moves if appropriate. All packets that have already been received are dropped.

7.3 First Reachable Link Selection

Each of the above protocols has advantages and disadvantages, making them best suited for a variety
of different operating conditions. We present here our evaluation of First Reachable Link Selection
(FRLS), by first examining its probability of successful packet delivery, and then simulating the
increasing latency associated with sending membership state along with the data payload.

Figure 21 shows that FRLS delivers packets with very high success rate despite link failures.
The regions are marked similarly to that of Figure 19, where region A represents successful routing
by IP and Tapestry, region B is where IP succeeds and Tapestry fails, region C is where IP fails and
Tapestry succeeds, region D is where a possible route exists but neither IP nor Tapestry find it, and
region E is where no path exists to the destination. When compared to Figure 19, we see that by
choosing a simple algorithm of taking the shortest predicted-success link, we gain almost all of the
potential fault-resiliency of the Tapestry multiple path routing. The end result is that FRLS delivers
packets with high reliability in the face of link failures.

FRLS delivers packets with high reliability without packet duplication. The overhead comes in
the form of bandwidth used to pass along membership state to a session’s backup routers. FRLS
keeps the membership state in each router on the primary path that the packets traverse. The size

23

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fraction of failed links

F
ra

ct
io

n
of

 r
ou

tin
g

co
nd

iti
on

s
A

, B
, C

, D
, E

<BASE 4, NAMESPACE SIZE 4096, GROUP SIZE 256, TIERS 5000>

A
B
C
D
E

Figure 21: Fault-resilient Packet Delivery using First Reachable Link Selection

Packet Delivery Latency vs. Link Failures

0

5

10

15

20

25

30

35

40

45

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

0.
14

0.
16

0.
18

0.
20

0.
22

0.
24

0.
26

0.
28

0.
30

0.
32

0.
34

0.
36

0.
38

0.
40

0.
42

0.
44

0.
46

0.
48

0.
50

% of Failed Links

A
ve

ra
ge

P
ac

ke
tD

el
iv

er
y

La
te

nc
y

Tap.ID Base 8 Tap.ID Base 4

Figure 22: Bandwidth Delay Due to Member State Exchange in FRLS

24

of membership state transmitted decreases for routers that are further away from the data source
(multicast root). For example, a router with ID “475129 ” that is two hops away from the root
keeps a list of all members with Tapestry IDs ending in29 , while another router420629 two
hops down the multicast tree will keep a list of all members with IDs ending in0629 . When a
backup route is taken and routing branches from the primary path, the router at the branching point
forwards the relevant portion of its own state to the branch taken, and forwards it along with the
data payload. This causes a delay for the multicast data directly proportional to the size of member
state transmitted.

We plot a simulation of average delivery latency in FRLS, including the member state trans-
mission delay, on a transit-stub 5000 node topology, using both base 4 and base 8 for Tapestry IDs.
Note that average time to delivery does not include unreachable nodes as failure rate increases. Fig-
ure 22 shows that as link failures increase, delivery is delayed, but not dramatically. The standard
deviation is highest when link failures have forced half of the paths to resort to backup links, and it
spikes again as the number of reachable receivers drops and reduces the number of measured data
points.

8 Related Work

There are several projects that share the goal of providing the benefits of IP multicast without requir-
ing direct router support ([5, 6, 10, 14, 19, 23, 27]). End System Multicast [6] is one such example
targeted towards small-sized groups such as audio and video conferencing applications, where every
member in the group is a potential source of data. However, it does not scale to large-sized multi-
cast groups because every member needs to maintain a complete list of every other member in the
group. The Scattercast work by Chawathe et al. [5] is similar to the End System Multicast approach
except in the explicit use of infrastructure service agents, SCXs. Both Scattercast and End System
Multicast build a mesh structure across participating nodes, and then construct source-rooted trees
by running a standard routing protocol. On the other hand, Yallcast [10] directly builds a spanning
tree structure across the end hosts without any intermediate mesh structure, which requires expen-
sive loop detection mechanisms, and is also extremely vulnerable to partitions. The CAN multicast
work by Ratnasamy et al. [23] and the SCRIBE work by Rowstron et al. [27] are similar to Bayeux
in that they achieve scalability by leveraging the scalable routing infrastructure provided by systems
like CAN [22], Pastry [26], and Tapestry respectively. However, these systems have not focused on
fault-tolerant packet delivery as a primary goal.

In terms of the service model, EXPRESS [13] also adopts a source-specific paradigm, and
augments the multicast class D address with a unicast address of either the core or the sender.
This eliminates the address allocation problem and provides support for sender access control. In
contrast, Bayeux goes one step further and eliminates the class D address altogether. Using only the
UID and session name to identify the group makes it possible to provide additional features, such
as native incremental deployability, and load balancing at the root.

The idea of root replication shows a promising approach of providing anycast service at the
application level. Recently, IP-anycast has been proposed as an infrastructure service for multicast
routing. For example, Kim et al. use anycast to allow PIM-SM to support multiple rendezvous

25

points per multicast tree [15]. However, there is a lack of a globally deployed IP-anycast service.
There are several proposals for providing an anycast service at the application layer ([4, 9, 11, 17,
29]), which attempt to build directory systems that return the nearest server when queried with
a service name and a client address. Although our anycast service is provided at the application
layer, server availability is discovered by local Tapestry nodes and updated naturally as a part of the
Tapestry routing protocol. Therefore, our mechanism may potentially provide an anycast service
that is easier to deploy than IP-anycast, yet avoids several complications and scalability problems
associated with directory-based application layer anycast. We believe that the application layer
anycast provided by the Tapestry overlay network described herein forms an interesting topic for
future research.

Finally, there are several recent projects focusing on similar goals as Tapestry. Among them are
Chord [32] from MIT/Berkeley, Content-Addressable Networks (CAN) [22] from AT&T/ACIRI
and Pastry [26] from Rice and Microsoft Research. These research projects have also produced de-
centralized wide-area location and routing services with fault-tolerant properties, but only Tapestry
provides explicit correlation between overlay distance and underlying network distance.

9 Future Work

In this report, we have studied the properties of the First Reachable Link Selection (FRLS) proto-
col, it will be worthwhile to explore and understand the performance and tradeoffs involved in the
alternative fault-resilient delivery protocols discussed in Section 7. In particular, it will be useful
to look at the effect of different parameters on each protocol, and their performance under varying
operating conditions.

The Streaming Media Systems Group at HP Labs has developed a multiple state video en-
coder/deoder and a path diversity transmission system [1, 2], which sends different subsets of pack-
ets over different paths. The multiple state video codec seem to fit well with our packet duplication
techniques onto alternate paths, and is an interesting area for future research.

Finally, it will be worthwhile to conduct large scale Internet experiments with emphasis on
studying the dynamics of Bayeux, and effects of packet loss and cross-traffic.

10 Conclusion

In conclusion, we have presented an architecture for Internet content distribution that leverages
Tapestry, an existing fault-tolerant routing infrastructure. Simulation results show that Bayeux
achieves scalability, efficiency, and highly fault-resilient packet delivery. We believe Bayeux shows
that an efficient network protocol can be designed with simplicity while inheriting desirable prop-
erties from an underlying application infrastructure.

26

11 Acknowledgements

I would like to thank Ben Y. Zhao, Anthony D. Joseph, Randy H. Katz, and John D. Kubiatowicz,
who were co-authors on the NOSSDAV 2001 paper on which this technical report extended upon.
I would also like to thank Almudena Konrad, Lakshminarayanan Subramanian, Helen Wang, and
Koichi Yano for their many helpful suggestions and discussions.

This work was supported in part by grants from Ericsson, Intel, Sprint, and Motorola, by
DARPA under contract DABT63-98-C-0038, by the State of California under the MICRO pro-
gram, and by NSF Research Infrastructure grant CDA-94-01156. Shelley Zhuang is supported by a
Department of Defense NDSEG grant.

References

[1] A POSTOLOPOULOS, J. G. Reliable video communication over lossy packet networks using
multiple state encoding and path diversity. InProceedings of Visual Communications and
Image Processing(2001), IEEE.

[2] A POSTOLOPOULOS, J. G.,AND WEE, S. J. Unbalanced multiple description video commu-
nication using path diversity. InProceedings of International Conference on Image Processing
(October 2001), IEEE.

[3] BALLARDIE , A. Core based trees (CBT) multicast routing architecture. Internet Request
for Comments RFC 2201, September 1997.http://www.landfield.com/rfcs/
rfc2201.html .

[4] BHATTACHARJEE, S., AMMAR , M., ZEGURA, E., SHAH, N., AND FEI, Z. Application
layer anycasting. InProceedings of IEEE INFOCOM(June 1997).

[5] CHAWATHE, Y., MCCANNE, S., AND BREWER, E. A. An architecture for internet content
distribution as an infrastructure service.http://www.cs.berkeley.edu/˜yatin ,
1999.

[6] CHU, Y. H., RAO, S. G.,AND ZHANG, H. A case for end system multicast. InProceedings
of SIGMETRICS(June 2000).

[7] ESTRIN, D., FARINACCI, D., HELMY, A., THALER, D., DEERING, S., HANDLEY, M.,
JACOBSON, V., LIU, C., SHARMA , P.,AND WEI, L. Protocol independent multicast - sparse
mode (pim-sm): Protocol specification. Internet Request for Comments RFC 2117, June 1997.

[8] ESTRIN, D., FARINACCI, D., JACOBSON, V., LIU, C., WEI, L., SHARMA , P.,AND HELMY,
A. Protocol independent multicast - dense mode (pim-dm): Protocol specification.

[9] FEI, Z., BHATTACHARJEE, S., AMMAR , M. H., AND ZEGURA, E. W. A novel server
technique for improving the response time of a replicated service. InProceedings of IEEE
INFOCOM (June 1998).

27

[10] FRANCIS, P. Yallcast: Extending the internet multicast architecture, September 1999.http:
//www.yallcast.com .

[11] FRANCIS, P., JAMIN , S., PAXON, V., ZHANG, L., GRYNIEWICZ, D. F., AND JIN, Y. An
architecture for a global host distance estimation service. InProceedings of IEEE INFOCOM
(June 1998).

[12] Georgia tech internet topology model.http://www.cc.gatech.edu/fac/Ellen.
Zegura/graphs.html .

[13] HOLBROOK, H. W., AND CHERITON, D. R. Ip multicast channels: EXPRESS support for
large-scale single-source applications. InProceedings of SIGMETRICS(August 1999).

[14] JANNOTTI, J., GIFFORD, D. K., JOHNSON, K. L., KAASHOEK, M. F., AND JAMES

W. O’TOOLE, J. Overcast: Reliable multicasting with an overlay network. InProceedings of
OSDI (October 2000).

[15] KIM , D., MEYER, D., KILER, H., AND FARINACCI, D. Anycast RP mechanism using PIM
and MSDP, 2000. Internet-Draft,http://www.join.uni-muenster.de/drafts/
draft-ietf-mboned-anycast-rp-05\%.txt .

[16] KUBIATOWICZ, J.,ET AL. Oceanstore: An architecture for global-scale persistent storage. In
Proceedings of ASPLOS(November 2000).

[17] MYERS, A., DINDA , P., AND ZHANG, H. Performance characteristics of mirror servers on
the internet. InProceedings of IEEE INFOCOM(June 1999).

[18] National laboratory for applied network research. http://moat.nlanr.net/
Routing/rawdata/ .

[19] PENDARAKIS, D., SHI, S., VERMA, D., AND WALDVOGEL, M. ALMI: An application level
multicast infrastructure. InProceedings of USITS(March 2001).

[20] PERKINS, C. S., HUDSON, O., AND HARDMAN , V. Network adaptive continuous-media
applications through self-organised transcoding. InProceedings of Network and Operating
Systems Support for Digital Audio and Video(Cambridge, UK., July 1998), ACM.

[21] PLAXTON , C. G., RAJARAMAN , R., AND RICHA, A. W. Accessing nearby copies of repli-
cated objects in a distributed environment. InProceedings of the Ninth Annual ACM Sympo-
sium on Parallel Algorithms and Architectures(SPAA)(June 1997).

[22] RATNASAMY, S., FRANCIS, P., HANDLEY, M., KARP, R., AND SCHENKER, S. A scalable
content-addressable network. InProceedings of SIGCOMM(August 2001), ACM.

[23] RATNASAMY, S., HANDLEY, M., KARP, R., AND SCHENKER, S. Application-level multi-
cast using content-addressable networks. InProceedings of NGC(November 2001), ACM.

[24] REKHTER, Y., AND LI, T. An architecture for IP address allocation with CIDR. RFC 1518,
http://www.isi.edu/in-notes/rfc1518.txt , 1993.

28

[25] ROBSHAW, M. J. B. MD2, MD4, MD5, SHA and other hash functions. Tech. Rep. TR-101,
RSA Labs, 1995. version 4.0.

[26] ROWSTRON, A., AND DRUSCHEL, P. Pastry: Scalable, decentralised object location and
routing for large-scale peer-to-peer systems. Middleware, 2001.

[27] ROWSTRON, A., KERMARREC, A.-M., CASTRO, M., AND DRUSCHEL, P. Scribe: The
design of a large-scale event notification infrastructure. InProceedings of NGC(November
2001), ACM.

[28] The SCAN project.http://www.isi.edu/scan/ .

[29] SESHAN, S., STEMM, M., AND KATZ, R. SPAND: Shared passive network performance
discovery. InProceedings of USITS(March 1997).

[30] The stanford graph base (SGB) package.ftp://labrea.stanford.edu/pub/sgb/ .

[31] Source-specific multicast (SSM) working group at IETF.http://sith.maoz.com/SSM .

[32] STOICA, I., MORRIS, R., KARGER, D., KAASHOEK, M. F., AND BALAKRISHNAN , H.
Chord: A scalable peer-to-peer lookup service for internet applications. InProceedings of
SIGCOMM(August 2001), ACM.

[33] STOICA, I., NG, T. S. E., AND ZHANG, H. REUNITE: A recursive unicast approach to
multicast. InProceedings of INFOCOM(March 2000).

[34] Tiers. http://www.isi.edu/haldar/topogen/tiers1.0.tar.gz .

[35] YANO, K., AND MCCANNE, S. The breadcrumb forwarding service: A synthesis of PGM
and EXPRESS to improve and simplify global IP multicast.ACM Comp. Comm. Review 30,
2 (2000).

[36] ZHAO, B. Y., KUBIATOWICZ, J. D., AND JOSEPH, A. D. Tapestry: An infrastructure for
fault-tolerant wide-area location and routing. Tech. Rep. UCB/CSD-01-1141, University of
California at Berkeley, Computer Science Division, April 2001.

29

A Appendix

In this appendix, we discuss the setup of our simulator used to carry out the experimental analysis
described earlier. We implemented Tapestry unicast routing and the Bayeux tree protocol by extend-
ing the Stanford Graph Base library (SGB) [36], which is a platform for combinatorial computing.
The SGB library contains routines to manipulate graph structures, such as file formats, input/output
functions and shortest path calculations. We describe the various components of the simulator in
the following sections.

A.1 SGB Modification

gb graph.w 9 extra vertex utility fields and 4 extra arc utility fields are added. This file need to be
put into the SGB source code directory before installing SGB.

A.2 Generic Functions

cluster.c functions that implement the Receiver Clustering scalability enhancement discussed in
Section 6.2.

fault.fc,hg functions that inject link and node failures into the underling physical network

graph.fc,hg functions that interacts with the SGB graph structures

hop.fc,hg functions that measure routing delays

max conn.c functions that measure Maximum Reachability via Multiple Paths discussed in Sec-
tion 7.1.

nodeid.fc,hg functions that implement various Tapestry node ID conversions

pick.fc,hg functions that pick vertices from the Tapestry network

protocol.c functions that implement the FRLS protocol discussed in Section 7.3

route.fc,hg functions that build the Tapestry routing table for every node

stack.fc,hg functions that implement the stack data structure

stat.fc,hg functions that implement various statistic routines

stress.fc,hg functions that measure stress on physical links

tree partition.c functions that implement the Tree Partitioning scalability enhancement discussed
in Section 6.1.

util.fc,hg functions that implement various utility routines

30

A.3 Experimental Main Loop

exp.fc,hg functions that implement the initialization and running of the experiments

main.c functions that setup and run the experiments

A.4 Post Processing

read.fc,hg functions that read delay and stress values for post processing

post proc.c functions that post process experimental results

31

