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ABSTRACT

In this paper, we propose a novel method for

characteristic patterns discovery in time series. This method,
called SAX-VSM, is based on two existing techniques - Symbolic
Aggregate approXimation and Vector Space Model. SAX-VSM is
capable to automatically discover and rank time series patterns

by their importance to the class, which not only creates wellperforming
classifiers and facilitates clustering, but also provides

an interpretable class generalization. The accuracy of the method,
as shown through experimental evaluation, is at the level of the
current state of the art. While being relatively computationally
expensive within a learning phase, our method provides fast,
precise, and interpretable classification.



SAX-VSM:
Interpretable Time Series Classification
Using SAX and Vector Space Model
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Abstract—In this paper, we propose a novel method for ~ The paper is structured as follows. Sectioh Il provides
characteristic patterns discovery in time series. This métod, packground into the existing algorithms and discusses- rele
called SAX-VSM, is based on two existing techniques - Symhiol 5t work. SectiofiTll, provides background for a proposed

Aggregate approXimation and Vector Space Model. SAX-VSM is . . . . .
capable to automatically discover and rank time series pa#rns algorithm. In Sectiori IV, we describe our algorithm, and in

by their importance to the class, which not only creates well SectiorlV, we evaluate its performance. Finally, we form our
performing classifiers and facilitates clustering, but ale provides conclusions and discuss future work in Secfionl VII.

an interpretable class generalization. The accuracy of thenethod,

as shown through experimental evaluation, is at the level ofhe Il. PRIOR AND RELATED WORK

current state of the art. While being relatively computationally

expensive within a leaming phase, our method provides fast Almost all of the existing techniques for time series clas-

precise, and interpretable classification. sification can be divided in two major categories [2]. The
first category of classification techniques is based on shape
l. INTRODUCTION based similarity metrics - where distance is measured ttjirec

Time series classification is an increasingly popular aré&tween time series points. Classical example of methods
of research providing solutions to the wide range of fieldsom this category is a nearest neighbor classifier builtrupo
including data mining, image and motion recognition, sign&uclidean distance [5] or SpADE![6]. The second category con
processing, environmental sciences, health care, and ahesists of classification techniques based on structuralasiityi
metrics. Within last decades, many time series represemtetrics which employ some high-level representationsméti
tions, similarity measures, and classification algoritwese series based on their global or local features. Examples fro
proposed following the rapid progress in data collectiod arhis category include classifier based on Discrete Fouring-
storage technologies|[1]. Nevertheless, to date, the hest oform [7] and a classifier based on Bag-Of-Patterns reprasent
all performing classifier in the field is a nearest-neighbdion (BOP) [8]. The development of these distinct categorie
algorithm (1NN), that can be easily tuned for a particulazan be explained by differences in their performance: while
problem by the choice of a distance measure, an approximatghape-based similarity methods virtually unbeatable artsh
technique, or smoothin@l[4]. As pointed by dozens of pagerspften pre-processed time series data [3], they usuallyofail
simple “lazy” nearest neighbor classifier is accurate abdst long and noisy data sets|[9], where structure-based sakitio
depends on a very few parameters and requires no training fflfmonstrate a superior performance.

[3], [4], [13]. However, while possessing these qualitieN As possible alternatives to these two categories, two aalev
technique has a number of significant disadvantages, whaveour work techniques, were recently proposed. The first
the major shortcoming is that it does not offer any insighechnique is the time series shapelets algorithm, that was
into the classification results. Another limitation is iteed introduced in[[10] and is featuring a superior interprdtgbi

for a significantly large training set, that represents a<slaand a compactness of delivered solution. A shapelet is & shor
variance, in order to achieve a good accuracy. Finally, avhitime series “snippet”, that is a representative of class bem
having trivial initialization, 1NN classification is comfation- ship and is used for a decision tree construction facititati
ally expensive. Thus, the demand for a simple, efficient, awcthss identification and interpretability [11]. In orderfiod a
interpretable classification technique capable of praegssf branching shapelet, the algorithm exhaustively searchiea f
large data collections remains. best discriminatory shapelet on data split via an infororati

In this work, we address outlined above limitation bygain measure. The algorithm’s classification is built uploa t
proposing an alternative to 1NN algorithm that provides similarity measure between a branching shapelet and a full
superior interpretability, learns efficiently from a smtadlining time series, defined as a distance between the shapelet and a
set, and has a low computational complexity in classificatioclosest subsequence in the series when measured by the nor-



malized Euclidean distance. This technique, potentialtyn- is a high-level symbolic representation of time series dEft&
bines the superior precision of shape-based exact sitgilagecond technique is a well known in Information Retrieval
methods, and the high-throughput classification capacity a(IR) Vector Space Mode[ [15]. By utilizing a sliding window
efficiency of feature-based approximate techniques. Hewewsubsequence extraction and SAX, our algorithm transforms
while demonstrating a superior interpretability, robess labeled time series into collections of SAX words (terms).
and similar to kNN algorithms performance, shapelets-thasat the following step, it utilizestfsidf terms weighting for
algorithms are computationally expensiv@(¢*m?), where a classifier construction. The SAX-VSM classification relie
n IS a number of objects ang: is the length of a longest on cosine similarity metric.
time series), which makes difficult its adoption for many- SAX algorithm, however, requires two parameters to be
class classification problemnis [12]. While a better soluti@s provided as an input, and as per today, there is no efficient
recently proposedd(nm?)), it is an approximate algorithm, solution for parameters selection known to the best of our
that is based on iSAX approximation and indexihg![18].  knowledge. To solve this problem, we employ a global opti-
The second relevant to our work approach is the 1NMization scheme based on the divided rectangles (DIRECT)
classifier built upon the Bag-Of-Patterns (BOP) repregemta algorithm that does not require any parameters [16]. DIRECT
of time-series [[B]. BOP representation of a time series is a derivative-free optimization process that possesses |
equated to IR “bag of words” concept, and is obtained nd global optimization properties. It converges reldjive
extraction, symbolic approximation with SAX, and countingjuickly and yields a deterministic, optimized solution.
of occurrence frequencies of short overlapping subseasenc i o
(patterns) along the time series. By applying this proceduft- Symbolic Aggregate approXimation (SAX)
to a training set, algorithm converts the data into the wecto Symbolic representation of time series, once introduced
space, where each of the original time series is represéyted14], has attracted much attention by enabling an apptioati
a pattern (a SAX word) occurrence frequency vector. Thesénumerous string-processing algorithms, bioinfornstand
vectors are classified with 1NN classifier built upon Eudide text mining tools to temporal data. The method provides a
distance, or Cosine similarity on raw frequencies or withkignificant reduction of the time series dimensionality and
tfxidf ranking. It was shown by the authors, that BOP hdew-bounding to Euclidean distance metric, which guaraste
several advantages: it has a linear complexifyn{n)), it no false dismissal [17]. These properties are often lewetag
is rotation-invariant and considers local and global stes by other techniques, which embed SAX representation in
simultaneously, and it provides an insight into pattersgritiu- their algorithms for indexing and approximation. For exam-
tion through frequency histograms. Through an experintentde, adoption of SAX indexing allowed significant shapelets
evaluation the authors concluded, that the best classificatdiscovery speed improvement in Fast-Shapelets [18] (bdema
accuracy of BOP-represented time series is achieved by usihe algorithm approximate).
1NN classifier based on Euclidean distance between frequencConfigured by two parameters - a desired word sizend
vectors. an alphabet sizet, SAX produces a symbolic approximation
Our proposed algorithm has similarities with aforemenf a time-serieq” of a lengthn by compressing it into a string
tioned techniques. Similarly to shapelet-based appro#chof the lengthw (usuallyw << n), whose letters are taken from
finds time series subsequences which are characteristie-refhe alphabet. (jo| = A). At the first step of the algorithny;
sentatives of a whole class, thus enabling superior intéaipil- is z-normalized (to unit of standard deviation) [19]. At the
ity. However, instead of recursive search for discrimimgti second step, a dimensionality of the normalized time series
shapelets, our algorithm ranks by importance all potential reduced fromn to w by obtaining its Piecewise Aggregate
candidate subsequencasoncewith a linear computational Approximation (PAA) [20]; for this, the normalized time g5
complexity of O(nm). To achieve this, similarly to BOP,is divided intow equal-sized segments and mean values for
SAX-VSM converts all of the training time series into theoints within each segment are computed. The aggregated
vector space and computesitff ranking. But instead of sequence of these mean values forms PAA approximatiah of
building of n bags (for each of the training time series), oufinally, each ofw PAA coefficients is converted into a letter
algorithm builds asingle bag of words for each of classéisat of an alphabetv by the use of the lookup table. This table
effectively provides a compact solution of weight vectors is pre-built by defining a set of breakpoints that divide the
(N is the number of classes] << n), and a fast classification normalized time series distribution space iat@quiprobable
time of O(m). regions. The design of these tables rests on the assumption
As we shall show, these distinct features: the generadizatithat normalized series tend to have Gaussian distribufidh [
of the class’ patterns with a single bag andidf ranking,
allow SAX-VSM to achieve high accuracy, and tolerate noi
in data. Following its introduction, SAX was shown to be an
efficient tool for solving problems of finding motifs and
1. BACKGROUND discords in time series [17]_[22]. The authors employed a
SAX-VSM is based on two well-known techniques. The firsgliding window-based subsequence extraction techniqae an
technique is Symbolic Aggregate approXimationl[14], whichugmented data structures (hash table[in [22] and trie in

&3. Bag of words representation of time series



[L7]) in order to build SAX words “vocabularies”. Further, Class 1 Class 2 Unlabeled series

by analyzing words frequencies and locations, they were abNWMW W _______

to capture frequent and rare SAX words representing motit.—.—

; ; sax “sax ' s
and discords subsequences. Later, the same technique based@ I D gk
on the combination of sliding window and SAX was used in (accbb, cdaaa, cdaaa, ... acabb, cbedc,ddba,... ccbaa, ccbba, cbbba...
thg numerous works, most notably in time series classifinati ( STE*IDF — 1
using bag of patterns|[8].

We also use this sliding window technique to convertatime — __, class1 Class label =
seriesT of a lengthn into the set ofm SAX words, where vectors | Zcob(002s argmax (fidf * freq, upeeas
m = (n —1s) +1 and i, is the sliding window length. By el where i € (1,2)
ca | 0.

sliding a window of length, across time serieg, extracting
subsequences, converting them to SAX words, and placing
these words into an unordered collection, we obtainltag Fig. 1.  An overview of SAX-VSM algorithm: at first, labeledtte series

of Wordsrepresentation of the original time serigés are converted into bags of words using SAX; secondlyidf statistics
is computed resulting in a single weight vector per ftrainiclgss. For

. classification, an unlabeled time series is converted interan frequency
C. Vector Space Model (VSM) adaptation vector and assigned a label of a weight vector which yieldsagimal cosine

- similarity value. This igitc.nnnweighting schema in SMART notatioh _[23].
We use Vector space model exactly as it is known in y ghing 23]

information retrieval (IR)[[15]. Similarly to IR, we defineé \where v is the cardinality of corpu® (the total number of
use termsdocumentbag of words corpus andsparse matrix classes) and the denominator @ a number of documents
in our workflow. Note however, that we use terbeg of words \here the termt appears.

and documentfor abbreviation of an unordered collection of Then,tfsidf value for a ternt in the document of a corpus
SAX words interchangeably, while in IR these usually beap is defined as

different meaning, where documentsually presumes certain ¢ 4 : _ ; _ N

words ordering (semantics). Although, similar definitiosisch *1df (t,d, D) = the.a xidfe.p = log(1 + Te.a) X logag df, (?)
asbag of featuresr bag of patternswere previously proposed fr the all cases where.§ > 0 and df > 0, or zero otherwise.
for techniques built upon SAX[8], we usmg of wordssince ©Once all terms of a corpus are weighted, the columns of

it reflects our workflow precisely. The teraorpusis used for @ SParse matrix are used afss term weights vectorthat
a structured collection of bags of words. facilitate the classification using cosine similarity.

Given a training set, SAX-VSM builds bags of SAX- Cosine similarity measure between two vectors is based on
’ their inner product. For two vectoks andb that is:

generated words representing each of the training clasgks b
a-

assembles them into a corpus. This corpus, by its construc- similarity(a, b) = cos(0) = TR (4)
tion, is a sparseerm frequency matrixRows of this matrix llall - 118l
correspond to the set of all SAX words found atl classes IV. SAX-VSM CLASSIFICATION ALGORITHM

while each column of the matrix denotes a class of the trginin As many other classification techniques, SAX-VSM con-
set. Each element of this matrix is an observed frequency sits of two parts - the training phase, and the classificatio
a word in a class. Many elements of this matrix are zeroprocedure.
because words extracted from one class are often not fo%d
in others (Figuré}). By its design, this sparse term frequen =~ ) . o
matrix is a dictionary of all SAX words extracted from all At first, algorithm transforms all labeled time series into
time series of a training set, which accounts for frequenci@ymbolic representation. For this, it converts time seirgs
of each word in each of the training classes. SAX representation configured by four parameters: therlg|_d|
Following to the common in IR workflow, we employ theVindow length W), the number of PAA frames per win-
tf«idf weighting scheme for each element of this matrix ifOW (P), the SAX alphabet sizeA), and by the numerosity
order to transform a frequency value into the weight coedfici "eduction strategy §) (the choice of these parameters we
The thidf weight for a term is defined as a product of twhall discuss later). Each of the subsequences, extragted w

factors: term frequencytf) and inverse document frequency?Verlapping sliding window, is normalized to unit standard

(idf). For the first factor, we use logarithmically scaled terf{€viation before being processed with PAA|[19]. If, however
frequency [23]: the standard deviation value falls below a fixed threshdid, t

Training phase

. normalization procedure is not applied in order to avoid a
tfog = log(1 +fra), if fea >_0 (1) possible over-amplification of a background noise.
' 0, otherwise By applying this conversion procedure to all time series
wheret is the term,d is a bag of words (alocument), and from N training classes, algorithm builds a corpusiags,
f.,a is a frequency of the term in a bag. to which, in turn, it appliesfidf ranking. These steps result

The inverse document frequency we compute as usual: in N real-valued weight vectors of equal length representing
|D| — log N @) N training classes.
|de D:ted 10 df, As shown, because of the need to scan the whole training set,
training of SAX-VSM classifier is computationally experssiv

idft,D = log,,



(O(nm)). However, there is no need to maintain an index of
training series, or to keep any of them in the memory at a”
runtime: the algorithm simply iterates over all trainingné |
series incrementally building a single bag of SAX words fof" "
each of training classes. Once built and processed tftif,
corpus is also discarded - only a resulting seiNofeal-valued
weight vectors is retained for classification.

e L. Fig. 2. Parameters optimization with DIRECT f&yntheticControldata
B. Classification phase set (6 classes). Left panel shows all points sampled by DIREChe space

. . . AAxWindowx* Alphabet where red points correspond to high error values
In order to ClaSSIfy an unlabeled time-series, SAX'VS'\ﬁ cross-validation experiments, while green points iaticlow error values.

transforms it into the terms frequency vector using exactlote the green points concentrationVét=42. Middle panel shows an error-
the same sliding window technique and SAX parameters thafe heat map when the sliding window size is fixed to 42; tiyaré was
were used within the training phase. Then, it computes eos ;a(')ngni%j g;ng?éeéecicsgmogli"’ln"gﬁﬁepggtifngf g;?jg;g?%féjfgs
similarity values between this terms frequency vector and was found by sampling of 43 points.
tf«idf weight vectors representing the training classes. The
unlabeled time series is assigned to the class whose vedtme series, as well, as to recover a signal from partially
yields the maximal cosine similarity value. corrupted or altered by noise.

Thirdly, the tf«idf statistics naturally “highlights” terms

C. Sliding window size and SAX parameters selection unique to a class by assigning them higher weights, while

At this point of SAX-VSM classification algorithm develop{€ms observed in multiple classes are assigned weights in-
ment, it requires a sliding window size and SAX paramete¥§'Sely proportional to their interclass presence frequen
to be specified upfront. Currently, in order to select optimd NiS Weighting scheme improves the selectivity of classifi-
parameters values while knowing only a training data s&tion by lowering a contribution of “confusive” multi-cla
we use a common cross-validation scheme and DIREEGSMS Wwhile increasing a contribution of class’ “defining”

(Dlviding RECTangles) algorithm, which was introduced if€"Ms t0 a final similarity value. _ _
[26]. DIRECT optimization algorithm is designed to search WWhen combined, these features make SAX-VSM time series

for global minima of a real valued function over a boung'assification approach unique. Ultimately, algorithm pames

constrained domain, thus, we use the rounding of a reporf?e&et of subsequences extracted from an unlabeled time serie

solution values to th’e nea,rest integer. with a weighted set of all characteristic subsequences rep-
DIRECT algorithm iteratively performs two procedures r_esgnting a thle of a traiping (_:Iass. Thus, u.nknown time

partitioning the search domain, and identifying potemialse”es is classified by its similarity not to a given number

optimal hyper-rectangles (i.e., having potential to con¢ggpod of “qeighbors” (as in kNN or BOP classifiers), or to a
solutions). It begins by scaling the search domain to a p{_e—ﬁxed number of characteristic features (as in shapelet

dimensional unit hypercube which is considered as poﬂQntiabaSEd classifiers), but by its combined similarity to all \wno

optimal. The error function is then evaluated at the Centg*s_cr]mmatlve subsequences found in a whole class during
of this hypercube. Next, other points are created at orrel-thFra";]'_ng' hall sh i h I lassi
of the distance from the center in all coordinate directions | S @ We shall show, contributes to the excellent classi-
The hypercube is then divided into smaller rectangles theat 4/Cation performance on temporal data sets where time series
identified by their center point and their error functionuel havk()a 3 vr(]ary Iow_m_traclaﬁs sllmllantyb at the full length, but
This procedure continues interactively until error fuonti embed charactenistic to the class subsequences.

converges. For brevity, we omit the detailed explanatiothef V. RESULTS

algorithm, and refer the interested readel td [16] for adil

details. Figure[R2 illustrates the application of DIRECT tg We have proposed a novel_algqnthm f_or time series classifi-
. cation based on SAX approximation of time series and Vector
SyntheticControtlata set problem.

Space Model called SAX-VSM. Here, we present a range
D. Intuition behind SAX-VSM of experiments assessing its performance in classification

and clustering and show its ability to provide insight into
First of all, by combiningall SAX words extracted from c¢|assification results.

all time series of single class into @ngle bag of words,

SAX-VSM manages not only to capture observed intraclads Analysis of the classification accuracy

variability, but to efficiently “generalize” it through smthing To evaluate our approach, we selected thirty three data

with PAA and SAX. sets. Majority of the data sets was taken from the UCR time
Secondly, by partially discarding the original ordering o$eries repository [27], the Ford data set was downloaded fro

time series subsequences and through subsequence noiBBE World Congress on Computational Intelligence website

ization, SAX-VSM is capable to capture, and to recogniZ28], the ElectricDevices data set was downloaded from sup-

characteristic subsequences in distorted by rotation dt stporting website for [[12]. Overall, SAX-VSM classification



Table | Classification error Classification runtime
Classifiers error rates comparison.

Error, %
Time, sec,

Fast Bag 1
Nb. of INN- INN- SAX-

Data set classes Euclidean DTW Shapelet  Of VSM N

Tree Patterns
Adiac 37 0.389 0.396 0515 0.432 0.381 ’ " TRAN datasetsize e ’ ' TRAN dataset size o
Beef 5 0.467 0.467 0.447 0.400 0.033 NN Euclidean # SAX-VSM NN Euclidian = SAX-VSM # SAX-VSM with Train
CBF 3 0.148 0.003 0.053 0.013 0.002
Coffee 2 0250 0180  0.067  0.036 0.0  Fijg 3. Comparison of classification precision and run tiri&saX-VSM
ECG200 2 0120 0230 0227  0.140  0.140 and 1NN Euclidean classifier on CBF data. SAX-VSM perforngmiicantly
FaceAll 14 0286 0192 0402 0219  0.207 petter with limited amount of training samples (left pan&ljhile SAX-VSM
FaceFour 4 0216 0170  0.089  0.011 0.0 s faster in time series classification, its performancecisygarable to 1NN
Fish 7 0.217 0.167 0.197 0.074 0.017  Euclidean classifier when training time is accounted faghfripanel).
Gun-Point 2 0.087 0.093 0.060 0.002 0.007
Lightning2 2 0.246 0.131 0.295 0.164 0.196
Lightning7 7 0.425 0.274 0.403 0.466 0.301 sl
Olive Oil 4 0133 0133 0213 0133  0.100 VSM_ was found_ fco be significantly more accurate than 1NN
OSU Leaf 6 0483 0409 0359 0236 0.107 Euclidean classifier. However, by the time we had more than
Syn.Control 6 0120 0.007 0081 0037 0010 500 time series in our training set, there was no statigfical
?;’;ﬁg"‘eaf 145 g‘gig %%10 0%‘5;0 06138 0'02%1 significant difference in accuracy (Figl 3, left). As per the
Two pattens 4 0090 00 0113 0129 0.004 running time cost, due to the comprehensive training, SAX-
Wafer 2 0.005  0.020  0.004  0.003 0.0006 VSM was found to be more expensive than 1NN Euclidean
Yoga 2 0170 0164 0249 0170 0164  |assifier on small training sets, but outperformed 1NN on

large training sets. However, SAX-VSM allows to perform
performance was found to be at the level of 1NN classifietsining offline and loadf«idf weight vectors when needed. If
based on Euclidean distance, DTW, or BOP, and a shapefeis option can be utilized, our method performs classificat
tree. This result is not surprising taking in account “Nod-resignificantly faster than 1NN Euclidean classifier (Fig. 3,
Lunch theorems”[[29], which assert, that there will not be aght).

single dominant classifier for all TSC problems. In another series of experiments we investigated the scala-
Table [ compares the performance of SAX-VSM angjjity of our algorithm with unrealistic training set sizesp to

four competing classifiers: two state-of-the-art INN dlé&ss e million of instances of each of CBF classes. As expected,
based on Euclidean distance and DTW, the classifier based @, the grows of a training set size, the curve for a total

the recently proposed Fast-Shapelets technigue [18], &ad §,mper of distinct SAX words and curves for dictionary sizes
classifier based on BOPI[8]. We selected these particuléif tégt each of CBF classes reflected a significant saturation (Fig
niques in order to position SAX-VSM in terms of accuracy angl |eft). For the largest of training sets - one million instas
interpretability. The presented comparison data SetSBBIE o aach class - the size of the dictionary peaked at 67324 of
is limited to the number of previously published or providegistinct words (which is less than 10% of all possible words
by th_e. authors benchmark results for all of four competing length 7 from an alphabet of 7 letters), and the longest
classifiers. The performance of SAX-VSM for the rest of,igf vector accounted for 23'569 values (FIg. 4, right). In
the data setsvill be made online along with our reference,r opinion, this result reflects two specificities: the fiist
implementation if accepted _ _ that the diversity of words which are possible to encounter i
In our evaluation, we followed train/test split of the dat@BF gataset is quite limited by its classes configuration and
(exactly as provided by UCR or other sources). We excluyswqu our choice of SAX parameters (smoothing). The second
used train data in cross—validatiop experiments for S@BCt_specificity is that IDF (Inverse Document Frequency, Equati
of SAX parameters and numerosity reduction strategy Usip§ efficiently limits the growth of dictionaries by elimiriag
our DIRECT implementation. Once selected, the optimal sglyge words, which are observed in all of them.
of parameters was used to assess SAX-VSM classification
accuracy which is reported in the last column of the Table

Il

Terms count evolution for CBF classes Terms counts and distribution for 1M of CBF series

Funnel

B. Scalability analysis

507 10332
; 4658

s, 10°

For synthetic data sets, it is possible to create as many ... Toucs 1581
instances as one needs for experimentation. We used[CBF [30],,. g&—"""° sas
. . . 33 12682
in order to investigate and compare the performance of SAX- " —
VSM and 1NN Euclidean classifier on increasingly large data TRAN dataset iz, 10°
Sets All terms Cylinder -#- Bell Funnel

In one series of experlments, we varied a_tralnlng §|ze fr,OHb. 4. Left panel: illustration of dictionaries size evidun for CBF with
ten to one thousand, while test data set size remained fixggleasingly large training set size. Right panel: distiitn of SAX terms in

to ten thousands instances. For small training data set&; SABF corpus for training set of one million series of each slas



Classification error vs noise Classification error vs data loss
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Fig. 5. Classification performance with added noise (leftgbathe random . i ’ A~
noise level varies up to 100% of the signal value, and withgaadiloss (right “'-:'g' 6. An example of the heatmap-like visualization of @ence

; oo VY Mimportance” to a class identification. Here, for three CBRe series from
fpoe:neegéﬁpé's\éSSMA)? F;)t;L:ravrﬁZtg?srr((evs\lzorrzstgir:z?jugscloatg;lf?:g with optlmlzeda training set, a color value of each point was obtained byhbtoimy tfxidf

weights of all patterns which cover the point. If a patterrsvi@und in a SAX-
VSM-built dictionary corresponding to the time-seriessslawe added its
C. Robustness to noise weight, if, however, a pattern was found in another dictignawve subtracted
. . . its weight. Highlighted by the visualization features esponding to a sudden

In our experimentation with many data sets, we observeide, plateau, and a sudden drop in Cylinder; increasimgtie Bell; and to

that the growth of a dimensionality af«idf Weight vectors @ SI_Jdden rise followed b_y a gradual drop in Funnel, align tixagith the
continuously follows the growth of a training set size, whic design of these classes [30].

indicates that SAX-VSM is actively learning from class vari . o _ . .
ability. This observation, and the fact that a weight of eacrﬁsolutlon and intuition into the interpretability of ciaica-

of the overlapping SAX words is contributing only a smalf'o"- Howeyer, as thg authors noted, a time cost of mu|t|pl_e
fraction to a final similarity value, prompted an idea tha%hapelets discovery in many class problems could be very sig

SAX-VSM classifier might be robust to the noise and to th'%iﬁcant' Co_nrt]rary, SAX'XdS'\(/jl extrac}rshand w eighltds g" pﬁmsar |
partial loss of a signal in test time series. Intuitively,sach at once, without any added cost. Thus, it could be the only

a case, the cosine similarity between high dimensional meigch0|ce for interpretable classification in many class peotd.

vectors might not degrade significantly enough to cause al) Heatmap-like visualization:Since SAX-VSM builds

misclassification. tfxidf weight vectors using all subsequences extracted from

While we plan to perform more exploration, current expeft raining set, it is possible to find out the weight of any
imentation with CBF data set revealed promising results. fiPitrary selected subsequence. This feature enables & nov
one series of experiments, by fixing a training set size to tWsualization technique that can be us?d to gain an immediat
hundred fifty time series, we varied the standard deviatidsight into the layout of “important” class-charactengi
of Gaussian noise in CBF model (whose default value f&iPsequences as shown at Fiddre 6. _
about 17% of a signal level). We found, that SAX-VSM 2) Gun Point data set:Following previously mentioned
increasingly outperformed 1NN Euclidean classifier wite thShapelet-based work [10], [12], we used a well-studBash-
growth of a noise level (Figl5 Left). Further improvemerﬁ’omt data set[[31] to explore the interpretability of classifi-
of SAX-VSM performance was achieved by fine tuning o_q‘:ation results. This data set contains two classes: t_irriesse
smoothing - through a gradual increase of the size of SAR Gun class correspond to the actors’ hands motion when
sliding window proportionally to the growth of a noise levefirawing a replicate gun from a hip-mounted holster, po@tin
(Fig[H Left, SAX-VSM Opturve).

In another series of experiments, we randomly replaced 1
to fifty percent of a span of an unlabeled time series with
random noise. Again, SAX-VSM performed consistently brette
than 1NN Euclidean classifier regardless of a training s&t, si
which we varied from five to one thousand. TBAX-VSM
Opt curve at Fid.b (Right) depicts the case with fifty training
series when the sliding window size was decreased inverse
proportionally to the growth of a signal loss.

Gun time series annotation Best pattern, Gun Second best pattern, Gun

"\ Steady
N pointing

\\ Hand moving to
\ shoulder level
Hand moving
down to grasp gun

“\. Hand moving

above holster
— Hand at rest

Point time serieé aﬁnotation Best pattern, Point Second best pattern, Point

Steady

pointing / ‘ ’ \

““Hand moving to
shoulder level

D. Interpretable classification

While the classification performance results in previous se gt et

tions show that SAX-VSM classifier has a very good potential, I
its major strength is in the level of allowed interpretalilbf o ) (figh ot lbes) d g
. Fig. 7. Best characteristic subsequences (right paneld,lines) discovere
cIassuﬁs:atlon r.esultg.. . by SAX-VSM in Gun/Point data set. Left panel shows actor’s stills and
Previously, in original shapelets work [10], [11], it wasime series annotations made by an expert, right panels $beations of
shown that the resulting decision trees provide interjpieta characteristic subsequences. Note, that while the upwardretion found to
e P . e be more “important” inGun class (gun retrieval and aiming), the downward
ClaSSIflcathn and offer an mSIth into the data Sp?CIfld:u‘EE. arm motion better characterizéoint class (an “overshoot” phenomena in
In successive work based on shapeléts [12], it was shoppless arm return). This result aligns with previous wiii®] and [12].

that the discovery of multiple shapelets provides evenebettStills and annotation used with a permission from E. Keogh)




it at a target for a second, and returning the gun to thefcer Circunatum - Acer Glabrum Quercus Garryana

holster; time-series irPoint class correspond to the actors "/ \ AW NN~
hands motion when pretending of drawing a gun - the actors—/ \ A WA

point their index fingers to a target for about a second, ana

then return their hands to their sides. SN N/

Similarly to previously reported results [10], [12], SAX- AN N | | DI
VSM was able to capture all distinguishing features as show=
at the Figurd]7. The most weighted by SAX-VSM pattern:
in Gun class corresponds to fine extra movements require
to lift and aim the prop. The most weighted SAX pattern ir
Point class corresponds to the “overshoot” phenomena whic
is causing the dip in the time series. Also, similarly to the
original work [31], SAX-VSM highlighted as second to the
best patterns irfPoint class the lack of distinguishing subtle

extra movements required for lifting a hand above a holstel. 8. Best characteristic subsequences (top panels, linels) discovered
and reaching down for the gun. by SAX-VSM in OSULeaf data setThese patterns align with well known
. o in botany discrimination techniques by lobe shapes, senstand leaf tip
3) OSU Leaf data setAccording to the original data sourcetypes [33].

Ashid Grandhi [[32], with the current growth of digitized

data, there iS a huge demand for automatic management al Best class-characteristic subsequences - Chlorogenic acid Aiaxl.)ica

. - . . /\/\ A T~
retrieval of various images. ThH@SULeafdata set consist of o i /
curves obtained by color image segmentation and boundai ABA /{\/M‘\\ /YN = o

. . . . : . . }/ A/ ‘ t

extraction (in the anti-clockwise direction) from digiid A >4 O}S\i,\
leaf images of six classegicer Circinatum, Acer Glabrum, /.,/ |
Acer Macrophyllum, Acer Negundo, Quercus Garryana and B £ —
Quercus KelloggllThe authors were able to solve the problem Second to best class-characteristic subsequences - Caffeine Arabica

of leaf boundary curves classification by use of DTW, achiev
ing 61% of classification accuracy. However, as we pointec
above, DTW provided a very little information about why it |3
succeeded of failed.

In contrast, SAX-VSM application yielded a set of class- * = wanumios -

specific characteristic patterns for each of six leavessekls a9 Best characteristic sub (et 1, ls) cf g
P 1. 9. est characteristic subsequences (left panels, S) discovere

from OSULeafdata.set. These character|§t|c_patterns C|OSQJ993AX-VSM in Coffee data set. Right panels show zoom-in viswthese

match known techniques of leaves classification based dn le@sequences in Arabica and Robusta spectrograms. Thesémiiative

shape and margin [33]. Highlighted by SAX-CSM featureg!bsequences correspond to chlorogenic acid (best sumsmjuand to

include th lightl -| bed sh d te ti f A caffeine (second to best) regions of spectra. This resghislwith the original

'n_cu_ e the shghtly lobed shape and acuté ups o Clork based on PCA [34] exactly.

Circinatum leaves, serrated blade of Acer Glabrum leabes, t

acuminate tip and characteristic serration of in Acer Macro VI. CLUSTERING

phyllum leaves, pinnately compound leaves arrangement“ofcmstering is a common tool used for data partitioning, visu

Acer Negundo, the incised leaf margin of Quercus Kelloggg jzation, exploration, and serves as an important subreirn
and a lobed leaf structure of Quercus Garryana. Fi@lreng ' '

shows a subset of these characteristic patterns and driginlézny (_Jlata mining algorlthms._Typ|caIIy, clustering alglonis
. SR . are built upon a distance function, and the overall perforrea
leaf images with highlighted corresponding features.

of an algorithm is highly dependent on a performance of

4) Coffee data set:Another illustration of interpretable the chosen function. Thus, an experimental evaluation of
classification with SAX-VSM is based on the analysis of itthe proposed technique in clustering provides an additiona
performance on Coffee dataset|[34]. The curves in this datagerspective on its performance and applicability beyore th
correspond to spectra obtained with diffuse reflectionairdd ¢|assification.

Fourier transform (DRIFT) and truncated to 286 data points ] .

in the region 800-1900 crt. The two top-ranked by SAX- A. Hierarchical clustering

VSM subsequences in both datasets correpond to spectrografrobably, one of the most used clustering algorithms is
intervals of Chlorogenic acid (best) and Caffeine (secorderarchical clustering which requires no parameters to be
to best). These two chemical compounds are known to bpecified [[35]. It computes pairwise distances between all
responsible for the flavor differences in Arabica and Rabusbbjects and produces a nested hierarchy of clusters afferin
coffees; moreover, these spectrogram intervals were tegbora great data visualization power.

as discriminative when used in PCA-based technique by thePreviously, it was shown that the bag-of-patterns time
authors of the original work [34]. series representation and Euclidean distance provideeaaisup

V),
\r” \

~

Robusta

N /"“\/\/ \\k




Eulidean pTW SAX-VSM VII. CONCLUSION AND FUTURE WORK
" pwen /R In this paper, we have proposed a novel interpretable
= A : technique for time series classification based on charatiter
vl W patterns discovery. We have shown, that our approach is
© el competitive with, or superior to, other techniques on aetgri

of classic data mining problems. In addition, we described
several advantages of SAX-VSM over existing structureetas
similarity measures, emphasizing its capacity to discaret
rank short subsequences by their class characterizatimarpo
The current limitations of our SAX-VSM implementation
suggest a number of future work directions. First of all,
while Vector space model naturally supports processing of
bags of words composed of terms of variable length, our
current “stable” implementation lacks this capacity. linsg by

clustering performance [8]. For comparison, we performédhe recently reported superior performance of multi-sketpe
similar experiments which differ in time series represtata Pased classifiers [12], we prioritize this developmentoBelty,

and distance metric - we relied dhidf weight vectors and as mentioned before, DIRECT optimization it is designed for
cosine similarity. Affirming the previous work, we foundath @ function of a real variable. By using rounding in our im-
the combination of SAX and Vector space model outperfornpéementation, we have observed DIRECT iteratively sangplin
classical shape-based distance metrics. For examplegfigigdundant locations in suboptimal neighborhood, thus, eemo
[10 depicts the result of hierarchical clustering of a sulnfet aPpropriate optimization scheme is needed. Finally, we are
SyntheticControtiata. As one can see, SAX-VSM is superioflesigning and experimenting with an extension of SAX-VSM
in clustering performance to Euclidean and DTW distand@ multidimensional time series. Currently we are evahgti
metrics in this particular setup - it produced a hierarchycwh two candidate implementations: the first is based on a single

properly partitions the data set into three branches. bag of words accommodating all dimensions for a class (by
prefixing SAX words extracted from different dimensions);
while the second is based on the use of a single bag of words
per each of dimensions. The preliminary results on syrtheti
Another popular choice for data partitioning is k-MeangggisetS look promising and we expect to report our finding
clustering algorithm [[36]. The basic intuition behind this ’
algorithm is that through the iterative reassignment ooty

into different clusters the intra-cluster distance is miizied.

As was shown, k-Means algorithm scales much better thih
hierarchical partitioning techniques [37]. Fortunatélys clus-
tering technique is well studied in IR field. Previously, in
[38], the authors extensively examined seven differemecan
functions for partitional document clustering and fourtgtt (3]
k-prototypes partitioning with cosine dissimilarity dedig an
excellent performance.

Following this work, we implemented a similar to_[39]
spherical k-means algorithrand found, that algorithm con-
verges quickly and delivers a satisfactory partitioningsbort
synthetic data sets. Further, we evaluated our techniqulen

i

Fig. 10. An comparison of hierarchical clustering applwatto a subset of
three SyntheticControlclassesNormal, Decreasing trendand Upward shift
Euclidean distance, Dynamic time warping, SAX-VSM and Cteteplinkage
were used to generate these plots. Only SAX-VSM was ablertdipa series

properly.

B. k-Means clustering
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