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Report Title

Final Report for Harvard-lead phase of Multi--Qubit Systems Based on Electron Spins in Coupled Quantum Dots
Project Meeting

ABSTRACT

This is a final report for the IARPA MQCO Spin Qubits team ending in Dec. 2012, when the lead PI, Charles Marcus, moved from Harvard
University to University of Copenhagen to direct the Center for Quantum Devices there. The Spin Qubits team comprises experimental and
theoretical physicists, and materials scientists, working to realized gate confined multi-qubit systems in GaAs heterostructures. At the
completion of the phase covered by this report, two versions of two-qubit systems were in hand, based on both singlet-triplet qubits and
Loss-DiVincenzo qubits, but a successful system of three or more qubits had not been realized. The resonant exchange qubit, which allows
resonant and single-gate two-qubit operation, and also been demonstrated at the one qubit level, but not for two or more qubits.
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ARO Final Report - Harvard Lead Phase

Statement of the problem studied: During the Harvard-lead Phase, the ARO-IARPA MQCO team
investigated three types of spin qubits, both realized in coupled, gate-defined quantum dots in high-
mobility GaAs heterostructures. The first is the Loss-DiVincenzo (LD) qubit, where a single electron spin
defines the logical qubit. The second is the singlet-triplet (ST) qubit, where the two zero-spin-projection
subspace of two spins in two dots, the singlet and m=0 triplet—constitute the qubit. The third is the
exchange-only (EO) qubit comprising three spins, where exchange between electrons 1 and 2 gives one
rotation axis, and exchange between 2 and 3 gives a second axis. The Bloch spheres for the three qubits
are shown in Fig.1. Measurements are carried out by fast charge sensing using proximal charge detectors
or dispersive charge read-out. Conversion of spin states to charge readout takes advantage of the Pauli
principle preventing double occupancy of the ground orbital state of a dot. Experiment is performed in a
dilution refrigerator at millikelvin temperatures.

Fig. 1. Bloch spheres and elementary spin representations for Loss-Divincenzo (LD), Singlet-triplet
(ST) and Exchange Only (EO) qubits [from left to right]. The experimental needs for qubit control are
illustrated below.

The reason for all of these different versions is that the development of the qubit itself is under
development, given the early stage of the technology. ST qubits are the most advanced, EO qubits are the
least. All have some advantages and some weaknesses.

Pulses for initialization and manipulation are applied to electrostatic gates using room-temperature
arbitrary waveform generators (AWG’s). For the LD qubit, single qubit rotations are done using electric
dipole spin resonance (EDSR), which requires pulsed microwaves at frequencies roughly from 1 to 20
GHz. Charge state readout uses fast amplifiers, located either at the 4K stage of the refrigerator or room
temperature. For ST and EO qubits, ideally square voltage pulses on gates are used. Circuit boards for
bring GHz-scale pulses onto the chip have been the focus of considerable effort during this period. An
example of circuit board developed during the Harvard-lead period is shown in Fig. 3. All measurements
are carried out at low temperature (mK). A new cryogen-free refrigerator is shown in Fig. 4.
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Fig. 4. A cryogen-free dilution refrigerator (opened).



Summary of Accomplishments

Summary of

Measurement

Results

Notes

Accomplishments

3.1 Single LD Qubit

See Sec. 3.1

T; Measurement See Fig. 3.1.3 T1left=4.9+1.7 ms
T1 right =3.8 £ 0.7 ms
Full Control See Fig. 3.1.4
State Tomography In progress
3.2 Two LD Qubits
Universal Entangling See Figs. 3.2.1-3.2.2 Exchange gate:
Gate definition sqrt(SWAP)

State Tomography and
duration of gate

In progress

LD Readout

Pleft 0=0.950+0.5
Pleft1=0.780 £ 4
Pright 0 =0.957+ 0.4
Pright 1 =0.777+0.9

See notes in Sec. 3.2

Py 0,95
Po; 0,05
Pro 0,78
P 0,22

Detection Time

~ 2 ms for tunneling event

duration for gate

typical gate time ~ 10 ns

Detection Fidelity (ability | Upper bound for the
to distinguish between the | fidelity after a quarter
two qubit states) period (sqrt swap), is the
fourth root 0of 0.977, ~
0.994.
3.3 Single ST Qubit See Sec. 3.3
T Measurement 1-10 ms (See Fig. 3.3.2)
State Tomography and Fidelity 0.97 See Fig. 3.3.6

Process Tomography for
(/2) gate

Fidelity 95%

See Figs. 3.3.8 and 3.3.9

3.4 Two ST Qubits

See Sec. 3.4




Summary of Measurement Results Notes
Accomplishments
CPhase(m) Include Truth Table
ST Readout See Sec. 3.4
Poo 0,99 See Fig. 3.3.5
Py, 0,03 See Fig. 3.3.5
Pio 0,01 See Fig. 3.3.5
P 0,97 See Fig. 3.3.5
Detection Time 0.8 us
Detection Fidelity (ability | 0.98
to distinguish between the
two qubit states)
3.5 Single EO Qubit See Sec. 3.5
Readout Fidelty Singlet Fidelity 0.96
Triplet Fidelity 0.90
See Fig. 3.5.2
State Tomography Average fidelity = 0.75

See Fig. 3.5.3




3.1. Single LD Qubit

T1 measurement
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Fig. 3.1.1 (A) Charge stability diagram, with charge-sensing current I'qpc shown in color scale as a
function of voltages applied to gates LP and RP (a background plane has been subtracted). The
occupation in the left and right dots is indicated by numbers in brackets. (Inset) Scanning electron
micrograph of a device similar to the one used in our experiment. Gates LP and RP are connected to
high-frequency lines via bias-tees. The direction of Bext is indicated. (B) Electrochemical potential
diagrams showing the double-dot configuration in the two read-out stages [positions (1) and (2) in (A)].
Tunnel events that occur for a || state are indicated. From Ref. [1].




3.1. Single LD Qubit
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Fig. 3.1.2 (Left) Pulse sequence shown on charge stability diagram including the (2,0) charge region.
(Right) Energy diagram showing the pulse sequence. From Ref. [1].
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Fig. 3.1.3 (A) Single dot relaxation as a function of wait time. Grey lines are fits to p - e'™" + a. (B)
Histogram showing the distribution of the time Tyq it takes a spin-down electron to tunnel out. The red
line is an exponential fit from which we can find the decay rate. Inset: real time trace of one of the read
out stages indicating the detection time (T4) and the event time (Te). (C) Histogram showing the
distribution of the time Te it takes a spin-up electron to tunnel back into the empty dot. The red line is
an exponential fit from which we can extract the decay rate. From Supplemental Material to Ref. [1].



3.1. Single LD Qubit

Full Qubit Control
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Fig. 3.1.4 Ramsey signal as a function of the relative phase between the two rf bursts for T = 10ns
(crosses) and 150 ns (circles). Gray dashed line is a best fit of a cosine to the data. From [2].



3.2 LD Two Qubit Operation

Entangling operation: Exchange operation on two LD qubits.
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Fig. 3.2.1 (A to D) Two-qubit exchange gate on a full set of input states. The four panels correspond to
four different mixtures of initial states, as indicated, taken with otherwise identical settings. Again, spin-
down injection probabilities are below 50%. Gray lines are fits to damped oscillations, including a
correction for pulse imperfections. We first fit Py, in (A) and Py; in (B) and allow only the amplitude and
offset of the oscillations to change for the other probabilities in the respective panel. In (C) and (D), we
use the fit parameters of (A) and allow only amplitude and offset to change. The oscillations in (A) and
(B) run out of phase with each other for longer wait times. We attribute this to subtle distortions of the
pulses arriving at the sample due to the bias tees (22).
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experimental truth tables for a 1T rotation and a 21 rotation of the exchange oscillation. From Ref. [1].
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3.2 LD Two Qubit Operation

Entangling operation: Exchange gate with single qubit operations
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Fig. 3.2.2. (a) Scanning electron microscopy image of the device fabricated on top of an AIGaAs/GaAs
heterostructure showing the Ti=Au gates (light gray) and the split cobalt (Co) magnet (yellow)
separated from the gate contacts by a calixarene layer. Gates R (right) and L (left) control Nr and Ni; C
(center) controls the interdot tunnel coupling t. Fast voltage pulses are applied to the Co and PL gates.
A MW voltage Vac is applied to the upper part of the magnet. Garc is measured by modulating the PL
gate voltage VpL. (b) Cycle of the two qubit gate operation with source (S), drain (D), left (L), and right
(R) QDs. From Ref. [3]. (C) Pulsing voltages to demonstrate the quantum operation of the single-qubit
and two- qubit gate. The voltage pulses are applied to switch between: A—B—A (controlled single-spin
rotations, left panel) and A-B—C—B—A (quantum circuit comprising controlled single spin rotations
and exchange operation, right panel). The control cycle for the controlled single spin rotations consists
of initialization (A), spin rotation (B) and readout (A). The control cycle for the multiple-qubit gate
consists of initialization (A), spin rotation (8=31/2) (B), spin exchange or "SWAP" (C), spin rotation (6
=11/2) (B) and singlet readout (A).
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3.3 Single ST Qubit

T1 Relaxation

Fig. 3.3.1 Capacitively Coupled two-ST qubit device. From Ref. [4].
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Fig. 3.3.2 Qubit relaxation time T1 as a function of detuning into the measurement position.
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3.3 Single ST Qubit

Definition of Fidelity

In order to quantitatively interpret sensor values for state tomography, it is important to precisely
determine the RF sensor response that corresponds to a | Sy or a | T,) state. Because the state preparation
is imperfect, it is in general difficult to accurately measure these values experimentally. To provide exact
calibrations for | S) and | T,) , we exploit the fact that our sensor is capable of single shot readout.
Histograms of sensor values for typical measurements yield a double-peaked curve- one peak corresponds
to |7,) and one to | S) (Fig. 3.3.3). In order to calibrate the sensor we first measure “! at the
measurement point by preparing a state that is majority | 7,) (done with a n-pulse around the x-axis) and
fitting the sensor signal to a decaying exponential function of time elapsed during measurement (Fig.
3.3.3.a). We note that the measured value of 77 is a strong function of the power of the RF excitation used
to read the conductance of the sensing QD. With prior knowledge of 7, we use a procedure similar to that
described in Barthel et. al (14) to optimize the measurement time given our signal to noise ratios and 77.
This process is repeated several times per day to check for drift. We recalibrate the sensor signals that
correspond to | S) and | 7;) for each dataset (typically 10 minutes of acquisition time). For each set, we
prepare a histogram of all observed sensor values. The presence of several reference measurements in
each dataset guarantees that there will be a significant fraction of both | S) and | 7,) . We then fit this
double peaked curve to an analytic expression corresponding to a weighted sum of two Gaussians with
some filling in due to 7; decay during measurement (Fig. 3.3.3.b, purple line) as in ref. 14. From this, we
extract the expected sensor distribul To> tions for | S Y and | To> (blue and red lines in Fig. Slb,
respectively), as well as the fractions of |S) and |7,) present. The centers of the two distributions
correspond to the sensor signals that will be measured for pure | S) and pure | 7;) , and using these values
we can accurately scale the tomography data. We note that this procedure is insensitive to the percentages
of |S) and |7;) . In our state tomography only expectation values are needed, so the single-shot
capability of our readout is not necessary beyond this calibration. Nonetheless, we note that for the data
presented, we measured readout fidelities of 97% and 98% for the left and right qubits, respectively.

-

.
-~

i
——
w
——

Fig. 3.3.3. Singleshot Readout: a, The difference in sensor signal between \S> and ’To> is fit to a
decaying exponential to determine T4, which is used in calibration of sensor values. b, The histograms
of a mixture of \ S) and \ T0> states used to calibrate the sensor values. If we choose a threshold
Vthmh to distinguish between ]S) and we see a readout fidelity of 97%. Purple: fit to noisy
distribution including T+ decay from |7;)> to |S> . The deduced distribution for |S> (blue) is a

Gaussian, while that for |7;)> (red) has a tail due to T7 decay.
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3.3 Single ST Qubit

Crosstalk considerations

gt R
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Fig. 3.3.4. a, A schematic of the energy diagram as a function of € that describes the two qubits and
shows the regions of € where different operations are carried out. b, A schematic of the signal from
the RF charge sensor as a function of € for the two qubits. This signal reflects the charge distribution
of the two qubit states. For large positive € there is a region where | S) and |To> have the same
sensor signal (charge distribution), which is the foundation of the crosstalk-free readout scheme. c, A
schematic of the readout scheme that eliminates crosstalk. First, the left qubit is read while the right
qubit is “parked" in (0,2), and then the right qubit is read while the left qubit is “parked” in (0,2). d, A
two dimensional histogram of the RF sensor responses without (left panel) and with (right panel) this
crosstalk-free readout scheme. e, Histograms of sensor values without (top) and with (bottom) the
crosstalk-free readout. Without the crosstalk-free readout the sensor signal of one qubit depends on
the state of the other qubit.
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3.3 Single ST Qubit - Readout Fidelity

_ Integration time = 800ns

Histogram Counts

0.015 -0.01  -0.005 0 0.005  0.01

Probability of measuring S if we had a S=0.992
Probability of measuring S if we had a T= 0.027
Probability of measuring T if we had a S= 0.008

Probability of measuring T if we had a T=0.973

Fig. 3.3.5 We prepare |S> many times and measure it. We also prepare |T> many times (using
prepared hyperfine gradient dBz) and measure. We fit the sensor signal to a two peaked Gaussian,
allowing for T1 (measured independently) decay, and allowing for imperfect preparation of |T> (i.e.
some of the states that we initially assumed to be |T> were actually |S> for instance because of a bad
dBz pulse). We then pick the sensor threshold that optimally discriminates between a hypothetical
population of perfect singlets from perfect triplets and calculate error probabilities from the measured
distributions.
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3.3 Single ST Qubit

Single ST qubit state tomography
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Fig. 3.3.6 Calibrated versus uncalibrated state tomography: a, Data taken to calibrate the tomography
shows ripples in the length of the Bloch vector if we assume that the tomography projects the quantum
state on to Cartesian axes (inset). b-c, The paths around the Bloch sphere for the different evolutions
that are used for tomography calibration. If the tomography is assumed to project on to the Cartesian
axes there are points that lay outside the Bloch sphere, and the pure states are not at the north pole,
which is indicative of flawed state tomography. d, The ripples in the length of the Bloch vector are
diminished (compared to panel a) if the axes deduced from state tomography (inset) are used. e-f, The
paths around the Bloch sphere for the different evolutions that are used for state tomography. When
the correct axes are used, all the points lie inside the Bloch sphere and the pure are at the north pole.
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3.3 Single ST Qubit

Single qubit process tomography
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Fig. 3.3.7 Process tomography of a single ST qubit uses 6 initial states. Processes are
repeated many times, then Chi matrices are calculated which maximize the likelihood of an
observed process.

R_n/2
z

Fidelity 0.954

Fig. 3.3.8 For tuning up a Clifford set we use a set of axes that is rotated slightly compared
to the ST, up-down, axes because rotations around the z and x axes are challenging. Shown is
the n/2 process tomography, tuned around the new z-axis, which is the axis [.26, .03, .97]
instead of [0,0,1]. Using the procedure above, we calibrate a m/2 rotation around this axis and
find a process fidelity of 95%. Shown is the Chi matrix for this process in the normal S-T,
up-down/down-up, basis.
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3.3 Single ST Qubit

s din
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Fig. 3.3.9 Process Fidelity for Clifford gate set indicating the axes used for rotation. J is m/2
rotation around the designated z axis; H is Hadamard gate. Note example fidelities are in the

range > 0.94.
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3.4 Two ST Operations

Right Qubit Tomographic
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Fig. 3.4.1 The two-qubit pulse sequence used to entangle the qubits: initialize each qubit in the singlet
state; perform a 11/2 rotation around the x axis; allow the qubits to evolve under exchange for a time t/2;
perform a T rotation around the x axis, thereby decoupling the qubits from the environment but not
each other; evolve under exchange for t/2; and perform state tomography to determine the resulting

density matrix. From Ref. [4].

(a)

1
O _—.-.—.—.-.—J.—_l—__.v
1 . Rotated Data, t=140 ns, F=0.72
1 -

N I
A Expected State

PICFEE R R R

100!

100 80 60 40 20 O
de(uV)

-20

100 =
>
8o =.
3
60 5
T
40 I
)
20 =
<
0 2
N—

Fig. 3.4.2 (a) The elements of the Pauli set of the measured and expected states for T = 140 ns

(maximum Bell state fidelity 0.72). (b) Maximum fidelity and time for the entangling operation. From

Ref. [4].
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3.5 Single EO Operations

Fig. 3.5.1 Three electrons with controlled coupling 1-2 and 2-3 form an exchange only qubit [6]. The
two control axes are indicated on the Bloch sphere.

Max Visibility: 0.85
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Fig. 3.5.2 Readout fidelity of EO qubit. Singlet fidelity is 0.96. Triplet fidelity is 0.90, lowered because of

T4 processes.
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3.5 Single EO Operations

state tomography
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Fig. 3.5.3 Pulse sequences for the EO qubit state tomography.
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