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Introduction 
 
        Case study inverse thermal analyses of Ti-6Al-4V deep penetration welds are presented. 
These analyses provide a parameterization of temperature histories for prediction of properties 
within the Heat Affected Zone (HAZ) of welds for the regime considered. These analyses 
employ a procedure that is in terms of numerical-analytical basis functions for steady state 
energy deposition in plate structures. The formal structure of the numerical methodology 
underlying this procedure follows from a specific definition of the inverse heat transfer problem, 
which is well posed for inverse analysis of heat deposition processes. This definition is based on 
the assumption of the availability of information concerning spatially distributed boundary and 
constraint values. The present study represents another extension of an inverse thermal analysis 
procedure applied in previous studies. This extension provides for the incluion of constraint 
conditions associated with both solidification and phase transformation boundaries. For the 
present study, which considers Ti-6Al-4V deep penetration welds, the phase transformation 
boundary adopted for temperature-field constraint conditions is that of the α  to β  phase 
transformation. 
      The results of the case study presented provide parametric representations of weld 
temperature histories that can be adopted as input data to various types of computational 
procedures, such as those for prediction of solid-state phase transformations and associated 
software implementations. In addition, these weld temperature histories can be used for 
construction of numerical basis functions that can be adopted for inverse analysis of welds 
corresponding to other process parameters or welding processes whose process conditions are 
within similar regimes. The construction of temperature fields according to spatially and 
temporally distributed constraint conditions using linear combinations of optimal basis functions 
represents a highly convenient approach to inverse analysis of energy deposition processes. Basis 
functions can be terms of function representations that are analytical, numerical and numerical-
analytical, and these function representations in linear combination. 
    The rigorous mathematical foundation of the inverse analysis method used for calculation of 
temperature histories in this study is that of least-squares parameter optimization [1-4]. The 
elegance of the formalism underlying the inverse analysis methodology applied in this study may 
convey the notion of approximation or oversimplification in terms of model representation 
relative to models formulated using finite element, finite volume and finite difference methods, 
which are structured for first-principles based simulation. This is indeed not the case in that a 
significant aspect of least-squares parameter optimization is choice of a sufficiently complete set 
of basis functions. A sufficiently complete set of basis functions implies that all possible modes 
of a given heat deposition process can be represented by a linear combination of these functions. 
The use of Green’s functions corresponding to various types of fundamental solutions to the heat 
conduction equation establishes that the basis functions used for inverse heat deposition analysis 
are equipped with trend characteristics associated with diffusion, advection in the weld melt pool 
and relative motion of the workpiece. In addition, the formal structure of least-squares based 
methods establishes that all forms of experimental information can be embedded directly as 
constraints conditions on the parameters (or coefficients) to be optimized. 
    Models that are formulated in terms of basic theory are difficult to apply for quantitative weld 
analysis in that most material properties needed for this type of modeling are not available. The 
inverse modeling approach compensates for this lack of information. For example, one goal of 
models formulated in terms of basic theory, for the case of deep-penetration welding, is 
simulation of the coupling of keyhole formation, melting, fluid flow in the weld melt pool and 
________________
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heat transfer from the solidification boundary into the heat effected zone (HAZ). It is important 
to note that with respect to practical analysis the purpose of modeling these influences, in 
particular, would be generation of the solidification boundary, the surface from which heat is 
transferred into the HAZ, the region of most probable weld failure. The inverse analysis 
approach adopts information concerning the solidification boundary as “model input” and thus 
compensates for the lack information associated with underlying physical mechanisms. 
Accordingly, the information content of the inverse analysis methodology applied in the present 
study, in principle, exceeds that of a direct problem approach for calculation of the solidification 
boundary.   
    Models that are formulated in terms of basic theory, whose structure is for the inclusion of 
underlying physical mechanisms are inherently complex and thus require large-scale 
calculations, which in many cases are at the limit of computational capabilities. As a result, the 
computational cost of direct modeling is prohibitive with respect to calculation of temperature 
histories, which is the focus the present study. It is important to note, however, that true insight 
into the nature of underlying mechanisms can only be achieved using direct modeling, which in 
turn establishes what are reasonable parametric representations for inverse modeling, e.g., the 
Green’s functions used in the present study.   
    Next, although the mathematical foundation of inverse modeling is both elegantly formulated 
and well defined in terms of least-squares parameter optimization, it should be appreciated that 
fitting inverse model parameters does in itself pose a difficult problem. Accordingly, further 
investigation should be applied to the development of more efficient algorithms for parameter 
optimization with respect to a wide range of different types measurements associated with 
welding processes. 
     Finally, it must be noted that a fundamental aspect of inverse analysis is that there does not 
exist a unique model representation for purposes of inversion. In practice, inverse models are 
typically structured for the specific quantity or parameter to be determined, including material 
properties. For example, reference [5] presents an inverse analysis using numerical simulations 
related to direct modeling for the determination of unknown variables. Reference [6] addresses 
the mathematical property that, because of the non-uniqueness of inverse models, every inverse 
problem is to be associated with an “inverse model space” rather than a unique inverse model. 
The inverse method presented in this manuscript is for the purpose of calculating temperature 
histories, and as indicated above has various advantages for this specific purpose. 

The organization of the subject areas presented here are as follows. First, a brief description of 
the general procedure for inverse analysis of heat deposition processes is presented. Second, 
results of inverse thermal analyses of Ti-6Al-4V deep penetration welds (laser and electron 
beam) are presented. These results provide a quantitative parametric representation of 
temperature histories for these welds and for any welds associated with similar welding process 
conditions. Third, a discussion is presented concerning aspects of the inverse analysis 
methodology that are relevant to its further development. Finally, a conclusion is given.  
 

Inverse Analysis Procedure 
 
        Following the inverse analysis approach [7-17], a parametric representation based on a 
physical model provides a means for the inclusion of information concerning the physical 
characteristics of a given energy deposition process. It follows then that for heat deposition 
processes involving the deposition of heat within a bounded region of finite volume, consistent 
parametric representations of the temperature field are given by 
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where 
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Tk ( ˆ x , ˆ x k ,κ ,t)  and wk represent an effectively complete set of basis functions and their 
weighting coefficients, respectively, for represention of the temperature field within a region 
bounded by specified inner and outer surfaces 

€ 

Si and 

€ 

So , respectively. The quantity TA is the 
ambient temperature of the workpiece and the locations 

€ 

ˆ x n
c  and temperature values 

€ 

Tn
c  specify 

constraint conditions on the temperature field. The functions 

€ 

Tk ( ˆ x , ˆ x k ,κ ,t) represent an optimal 
basis set of functions for given sets of boundary conditions and material properties. The 
quantities ( , , )k k k kx x y z=

 , k=1,…,Nk, are the locations of the elemental source or boundary 
elements. The sum defined by Eq.(1a) can for certain systems specify numerical integration over 
discrete elements of a distribution of sources or boundary elements. Selection of an optimal set 
of basis functions is based on a consideration of the characteristic model and data spaces [6] of 
heat deposition processes and subsequently isolating those regions of the model space 
corresponding to parameterizations that are both physically consistent and sufficiently general in 
terms of their mathematical representation and mapping from data to model space. Although heat 
deposition processes may be characterized by complex coupling between the heat source and 
workpiece, as well as complex geometries associated with either the workpiece or deposition 
process, in terms of inverse analysis the general functional forms of the temperature fields 
associated with all such processes are within a restricted class of functions, i.e., optimal sets of 
basis functions. Accordingly, a sufficiently optimal set of basis functions can be constructed 
using numerically-integrated analytic solutions to heat conduction equation for a finite set of 
boundary conditions [18]. The present study utilizes basis functions that are numerical-analytical 
solutions to the heat conduction equation. Parameterizations that are based on this set of 
functions are both sufficiently general and convenient relative to optimization. 
       The formal procedure underlying the inverse method considered here entails the adjustment 
of the temperature field defined over the entire spatial region of the sample volume at a given 
time t. This approach defines an optimization procedure where the temperature field spanning the 
spatial region of the sample volume is adopted as the quantity to be optimized. The constraint 
conditions are imposed on the temperature field spanning the bounded spatial domain of the 
workpiece by minimization of the value of the objective functions defined by 
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weight coefficients that specify relative levels of influence associated with constraint conditions 
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      The input of information into the inverse model defined by Eqs. (1) and (2), i.e., the mapping 
from data to model space, is effected by: the assignment of individual constraint values to the 
quantities 

€ 

Tn
c ; the form of the basis functions adopted for parametric representation; and 

specifying the shapes of the inner and outer boundaries, Si and So, respectively, which bound the 
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temperature field within a specified region of the workpiece. The constraint conditions and basis 
functions, i.e., 

€ 

T ( ˆ x n
c ,tn

c ) = Tn
c  and 

€ 

Tk ( ˆ x , ˆ x k ,κ ,t) , respectively, provide for the inclusion of 
information that can be obtained from both laboratory and numerical experiments.  
     Within the context of the numerical method presented, a set of basis functions is considered 
effectively complete if these functions provided reasonably optimal fitting to boundary and 
constraint conditions. Before proceeding it is significant to note that in principle the set of basis 
functions adopted by Eq.(1) can be defined in terms of either analytical or numerical function 
representations. The numerical method that is developed here employs both analytical and 
numerical function representations of basis functions, which are to be adopted for the calculation 
of temperature fields within bounded domains for which constraint conditions are specified. 
Finally, the interrelation between analytical and numerical basis function representations is an 
important aspect of the numerical method applied in this analysis, which underlies it flexibility 
for convenient inverse analysis.  
      It follows then that a consistent representation Eq.(1) of the temperature field for heat 
deposition within structures characterized by a finite thickness, in terms of analytical basis 
functions, i.e., analytical solutions to the heat conduction equation [18] adopted as Green’s 
functions, is   
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and                                                       
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∑ ) .                                               (Eq 5) 

 
where 

€ 

Q( ˆ x k ) is the value of the discrete source function at location 

€ 

ˆ x k . The quantities 

€ 

κ , V and l 
are the thermal diffusivity, welding speed and plate thickness, respectively. The procedure for 
inverse analysis defined by Eqs.(2)-(5) entails adjustment of the parameters 

€ 

C( ˆ x k ) , 

€ 

ˆ x k  and

€ 

Δt  
defined over the entire spatial region of the workpiece.  
     It should be noted that the inverse analysis methodology defined by Eq.(2) through (5) is 
based on a parametric numerical-analytical model, which combines numerical integration with 
optimization of linear combinations of analytical Greens functions. In particular, Eq.(3a) defines 
a discrete numerical integration over time, where the time step 

€ 

Δt  is specified according to the 
average energy deposited during the time 

€ 

Δt , for transition of the temperature field to steady 
state. Further, for constrained least-squares parameter optimization of the linear combination 
Eq.(3a), the analytical Green’s functions are adopted as basis functions, and should not be 
misinterpreted as being associated with any form of direct model representation. 
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      Further, it should be noted that the formulation of the inverse analysis methodology defined 
by Eq.(2) through (5) is equipped with a mathematical structure in terms of Green’s functions 
and adjustable parameters, which satisfies all boundary conditions associated with welding of 
plate structures. This follows first from Eq.(4), which includes as a factor the Green’s function, 
in terms of a Fourier series representation, for two parallel boundary surfaces having zero 
diffusion gradient, and second from Eq.(3b), which adopts the constraint conditions 

€ 

T ( ˆ x n
c ,tn

c ) = TM  
and TTB, where TM and TTB are the melt temperature (at the solidification boundary) and start 
temperature for transformation (approximately at the transformation boundary), respectively.    

 
Case Study Analyses of Ti-6Al-4V Deep Penetration Welds  

 
         The procedure for construction of numerical basis functions adopted in this case study 
entails calculation of the steady state temperature field for a specified range of sizes and shapes 
of the inner surface boundary 

€ 

Si defined by the solidification and transformation boundaries for a 
range of welding process parameters. For this system, the parameter values assumed are 

€ 

κ = 1.07 
x 10-5 m2s-1, TM =1605 oC, TTB = 885 oC and the values of l defined in Eqn. (3) are given in the 
figures below. The upstream boundary constraints on the temperature field, Tc

 = TM and TTB for 
(yc,zc), defined in Eqn. (3), are given in Tables 1 and 2, respectively. These constraints are such 
that the calculated temperature field satisfies the conditions T (x̂, t)< TM  and T (x̂, t)< TTB . The 
transformation temperature TTB was given the value of 885 oC, which is approximately the start 
temperature of the α  to β  phase transformation for Ti. As discussed further below, reasonable 
estimates of values for 

€ 

κ , TM and TTB are sufficient for the present analysis. Given in Tables 3 
through 8 are values of the discrete source function that have been calculated according to the 
constraint conditions and weld process parameters given in Table 1. The relative location of each 
discrete source is specified according to Fig.1. Given in Tables 9 through 14 are values of the 
discrete source function that have been calculated according to the constraint conditions and 
weld process parameters given in Table 2. Again, the relative location of each discrete source is 
specified according to Fig.1. Shown in Figs. 2 through 31 are experimentally measured 
transverse weld cross sections of solidification and transformation boundaries (see references 
[19] and [20]), and different planar slices of the steady state temperature field that have been 
calculated according to the constraint conditions given in Tables 1 and 2. Referring to the planar 
slices of the calculated temperature fields, it can be seen that all boundary conditions are 
satisfied, namely the condition 

€ 

T ( ˆ x ,t) = TM  and T (x̂, t) = TTB  at the solidification and transformation 
boundaries, respectively, and 

€ 

∇T ⋅ ˆ n = 0 at surface boundaries, where 

€ 

ˆ n  is normal to the surface.   
 
 

Discussion 
 
         The general procedure for inverse thermal analysis of welds as described in this study 
includes interpolation between constrained isothermal boundaires, e.g., TTB and TM. A specific 
procedure for interpolation, however, has not been considered. For the present study, the close 
proximity of the isotherms considered (see Figs. 6, 11, 16, 21, 26 and 31) implies that relatively 
simple interpolation procedures can be applied, e.g., linear one-dimesional interpolation. In 
general, however, this should not be the case. For example, the inclusion of constrained 
isothermal surfaces associated thermocouple measurements may require three-dimensional 
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interpolation procedures. Accordingly, further investigation is needed to determine a general and 
optimal procedure for interpolation between constrained isothermal surfaces in three dimensions. 
       An important aspect of the inverse thermal analysis methodology applied here is that only a 
reasonable estimate of the diffusivity 

€ 

κ  is needed. In particular, the quantity κΔt  assumes the 
role of an adjustable parameter, in combination with the source values Ck, for generation of 
isothermal surfaces. The embedding of constrained isothermal surfaces within the calculated 
temperature field, which are based on experimental measurements, in principle, compensates for 
errors due to estimated values of the diffusivity function, which are in fact a function of 
temperature. This follows in that two or more embedded isothermal surfaces, which are 
sufficiently distributed volumetrically, represent implicitly the dependence of diffusivity on 
temperature. Accordingly, for the purpose of considering more accurately the temperature 
dependence of the thermal diffusivity, the procedure of embedding constrained isothermal 
surfaces can be extended to include more than two surfaces. This extension, however, as 
expected, increases the complexity of the procedure with respect to parameter optimization. 
Thus, the follwing must be emphasized. 
       Although the mathematical foundation of the inverse thermal analysis methodology 
presented is both elegantly formulated and well defined in terms of least-squares parameter 
optimization, it should be appreciated that fitting inverse model parameters does in itself pose a 
difficult problem. The continuing evolution of this methodology to include more, as well as 
different types of constraint conditions, based on experimental measurements, poses the problem 
of multi-parameter optimization. Accordingly, further investigation will be needed for 
development of more efficient algorithms for parameter optimization with respect to a wide 
range of different types measurements associated with welding processes. 
        It is emphasized that the results of this study are “initial parameter estimations for inverse 
thermal analysis of Ti-6Al-4V deep penetration welds.” These estimates provide a starting point 
for further parameter optimization with respect to additional information, which would include 
both experimental measurements and results of numerical simulations employing detailed 
physical model representations. Accordingly, these parameter estimates are based on 
approximate values of the thermal diffusivity, solidus temperature TM and start temperature TTB of 
the α  to β  phase transformation in Ti-6Al-4V. The level of approximation assumed for 
estimated parameter values is consistent with the fact that exact locations of solidification and α  
to β  transformation boundaries are difficult to determine experimentally [19, 20]. 
 

Conclusion 
 
         This report describes an inverse thermal analysis of Ti-6Al-4V deep penetration welds 
using multiple constraint conditions, which demonstartes the extension an inverse thermal 
analysis procedure applied in previous studies. The weld temperature histories obtained by this 
inverse analysis could in practice be used to predict not only solid-state phase transitions, but 
time and temperature within localized spatial regions associated with the evolution of plastic and 
elastic strains, resulting in distortion and residual stresses. The inverse analysis presented here 
concerns construction of a temperature field T( x̂ ,t,

€ 

κ ,V, SM, STB, l), where it is assumed that the 
quantities

€ 

κ ,V, SM, STB and l are known, and that T( x̂ ) = TM and TTB for all x̂ on SM and STB, 
respectively. As emphasized in previous studies, there are quantities other than the solidification 
boundary that are experimentally observable. In particular, the temperature fields extending over 
the top and bottom surfaces of the workpiece represent conveniently available data to be used for 
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inverse analysis. It is typical for the measurement of temperature histories at surfaces of 
workpieces to use thermocouples. In the case of relatively large welding speeds, the use of 
thermocouple measurements may require an additional adjustable parameter associated with 
thermocouple time delay.  
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Figures 
 

 
              
 
                  
 
 
 
 
 

 Fig. 1 Indexing scheme for 
relative locations of discrete 
sources , k=1,...,Nk. 

 

Figure 2. Experimentally 
measured transverse weld cross 
sections of solidification and 
transformation boundaries 
(WELD 1). 

 

Figure 3. Two-dimensional 
slices, at half workpiece top 
surface and longitudinal cross 
section at symmetry plane, of 
three-dimensional temperature 
field (oC) calculated using 
cross section information 
given in Table 1 for 
solidification boundary 
(WELD 1). 
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Figure  4. Temperature history (oC) of transverse cross section of weld calculated using cross 
section information given in Table 1 for solidification boundary, where = /V,  = (2.4/60) 
mm and V = 16.9 cm/s (WELD 1). 
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Figure 5. Two-dimensional slices, at half workpiece top surface and longitudinal cross section at 
symmetry plane, of three-dimensional temperature field (oC) calculated using cross section 
information given in Table 2 for the transformation boundary (WELD 1). 
 
 
 

                                       
 
Figure 6. Temperature field (oC) of transverse cross section of weld at given time calculated 
using cross section information given in Tables 1 and 2 for solidification and transformation 
boundaries, respectively, where = /V,  = (2.4/60) mm and V = 16.9 cm/s (WELD 1). Δt
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Figure 7. Experimentally measured transverse weld cross sections of solidification and 
transformation boundaries (WELD 2). 
 
 

                
 
Figure 8. Two-dimensional slices, at half workpiece top surface and longitudinal cross section at 
symmetry plane, of three-dimensional temperature field (oC) calculated using cross section 
information given in Table 1 for solidification boundary (WELD 2). 
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Figure 9. Temperature history (oC) of transverse cross section of weld calculated using cross 
section information given in Table 1 for solidification boundary, where = /V,  = (3.2/60) 
mm and V = 16.9 cm/s (WELD 2). 
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Figure 10. Two-dimensional slices, at half workpiece top surface and longitudinal cross section 
at symmetry plane, of three-dimensional temperature field (oC) calculated using cross section 
information given in Table 2 for the transformation boundary (WELD 2). 
 
 

                                    
 
Figure 11. Temperature field (oC) of transverse cross section of weld at given time calculated 
using cross section information given in Tables 1 and 2 for solidification and transformation 
boundaries, respectively, where = /V,  = (3.2/60) mm and V = 16.9 cm/s (WELD 2). Δt
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Figure 12. Experimentally measured transverse weld cross sections of solidification and 
transformation boundaries (WELD 3). 
 
 

                        
 
Figure 13. Two-dimensional slices, at half workpiece top surface and longitudinal cross section 
at symmetry plane, of three-dimensional temperature field (oC) calculated using cross section 
information given in Table 1 for solidification boundary (WELD 3). 
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Figure 14. Temperature history (oC) of transverse cross section of weld calculated using cross 
section information given in Table 1 for solidification boundary, where = /V,  = (3.8/60) 
mm and V = 16.9 cm/s (WELD 3). 
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Figure 15. Two-dimensional slices, at half workpiece top surface and longitudinal cross section 
at symmetry plane, of three-dimensional temperature field (oC) calculated using cross section 
information given in Table 2 for the transformation boundary (WELD 3). 
 
 

                                      
 
Figure 16. Temperature field (oC) of transverse cross section of weld at given time calculated 
using cross section information given in Tables 1 and 2 for solidification and transformation 
boundaries, respectively, where = /V,  = (3.8/60) mm and V = 16.9 cm/s (WELD 3). Δt
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Figure 17. Experimentally measured transverse weld cross sections of solidification and 
transformation boundaries (WELD 4). 
 
 

               
 
Figure 18. Two-dimensional slices, at half workpiece top surface and longitudinal cross section 
at symmetry plane, of three-dimensional temperature field (oC) calculated using cross section 
information given in Table 1 for solidification boundary (WELD 4). 
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Figure 19. Temperature history (oC) of transverse cross section of weld calculated using cross 
section information given in Table 1 for solidification boundary, where = /V,  = (3.1/60) 
mm and V = 16.9 cm/s (WELD 4). 
 

                        
 
Figure 20. Two-dimensional slices, at half workpiece top surface and longitudinal cross section 
at symmetry plane, of three-dimensional temperature field (oC) calculated using cross section 
information given in Table 2 for the transformation boundary (WELD 4). 

Δt

€ 

Δl

€ 

Δl



 

20 

                                         
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

 
 
                   
 
 
 
  

  

Figure 21. Temperature field 
(oC) of transverse cross 
section of weld at given time 
calculated using cross section 
information given in Tables 1 
and 2 for solidification and 
transformation boundaries, 
respectively, where = /V, 

 = (3.1/60) mm and V = 
16.9 cm/s (WELD 4). 

 

Figure 22. Experimentally 
measured transverse weld cross 
sections of solidification and 
transformation boundaries 
(WELD 5). 

Figure 23. Two-dimensional 
slices, at half workpiece top 
surface and longitudinal cross 
section at symmetry plane, of 
three-dimensional temperature 
field (oC) calculated using cross 
section information given in 
Table 1 for solidification 
boundary (WELD 5). 
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Figure 24. Temperature field (oC) of transverse cross section of weld at a given time calculated 
using cross section information given in Table 1 for solidification boundary, where = /V, 

 = (6.0/60) mm and V = 16.9 cm/s (WELD 5). 
 
 

                              
 
Figure 25. Two-dimensional slices, at half workpiece top surface and longitudinal cross section 
at symmetry plane, of three-dimensional temperature field (oC) calculated using cross section 
information given in Table 2 for the transformation boundary (WELD 5). 
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Figure 26. Temperature field (oC) 
of transverse cross section of 
weld at given time calculated 
using cross section information 
given in Tables 1 and 2 for 
solidification and transformation 
boundaries, respectively, where 

= /V,  = (6.0/60) mm and 
V = 16.9 cm/s (WELD 5). 

 

Figure 27. Experimentally 
measured transverse weld 
cross sections of 
solidification and 
transformation boundaries 
(WELD 6). 

Figure 28. Two-
dimensional slices, at half 
workpiece top surface and 
longitudinal cross section at 
symmetry plane, of three-
dimensional temperature 
field (oC) calculated using 
cross section information 
given in Table 1 for 
solidification boundary 
(WELD 6). 

 



 

23 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                        

Figure 29. Temperature history (oC) 
of transverse cross section of weld 
calculated using cross section 
information given in Table 1 for 
solidification boundary, where =

/V,  = (3.1/60) mm and V = 
16.9 cm/s (WELD 6). 
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Figure 30. Two-dimensional slices, at half workpiece top surface and longitudinal cross section 
at symmetry plane, of three-dimensional temperature field (oC) calculated using cross section 
information given in Table 2 for the transformation boundary (WELD 6). 
 
 

                                                 
 
Figure 31. Temperature field (oC) of transverse cross section of weld at given time calculated 
using cross section information given in Tables 1 and 2 for solidification and transformation 
boundaries, respectively, where = /V,  = (3.1/60) mm and V = 16.9 cm/s (WELD 6). 
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Tables 
Table 1 Temperature field constraint conditions at positions (yc,zc) at solidification boundaries 
on transverse cross sections of Ti-6Al-4V welds 
 
 

 
WELD 4 (550 W) WELD 5 (1114 W) WELD 6 (1500 W) 
(yc mm, zc mm) (yc mm, zc mm) (yc mm, zc mm) 
(0.7086, 0.0886) (0.667, 0.1667) (1.321, 0.1016) 
(0.620, 0.2657) (0.500, 0.833) (1.219, 0.4064) 
(0.531, 0.531) (0.467, 2.333) (1.118, 0.6096) 
(0.443, 0.974) (0.3333, 3.667) (0.9144, 0.8128) 
(0.3543, 1.683) (0.0833, 5.333) (0.7112, 1.118) 
(0.2657, 2.037)  (0.6096, 1.219) 
(0.1771, 2.303)  (0.508, 1.524) 
(0.0886, 2.569)  (0.4064, 2.134) 
  (0.3048, 2.439) 
  (0.1016, 2.642) 

 
Table 2 Temperature field constraint conditions at positions (yc,zc) at transformation boundaries 
on transverse cross sections of Ti-6Al-4V welds 
 
 

WELD 1 (720 W) WELD 2 (1100 W) WELD 3 (1400 W) 
(yc mm, zc mm) (yc mm, zc mm) (yc mm, zc mm) 
(1.172, 0.0558) (1.393, 0.3096) (1.489, 0.103) 
(1.060, 0.279) (1.187, 0.516) (1.438, 0.308) 
(0.949, 0.5022) (1.032, 0.722) (1.335, 0.514) 
(0.725, 0.725) (0.877, 0.929) (1.130, 0.719) 
(0.670, 0.837) (0.826, 1.135) (0.976, 0.924) 
(0.558, 1.172) (0.774, 1.238) (0.873, 1.130) 
(0.502, 1.395) (0.722, 1.548) (0.770, 1.440) 
(0.502, 1.620) (0.671, 1.754) (0.668, 1.644) 
(0.335, 1.840) (0.619, 2.167) (0.668, 1.850) 
(0.112, 2.065) (0.516, 2.374) (0.668, 2.055) 
 (0.310, 2.580) (0.616, 2.260) 
 (0.155, 2.683) (0.565, 2.671) 
  (0.462, 2.876) 
  (0.257, 3.080) 

WELD 1 (720 W) WELD 2 (1100 W) WELD 3 (1400 W) 
(yc mm, zc mm) (yc mm, zc mm) (yc mm, zc mm) 
(1.507, 0.279) (1.548, 1.135) (1.386, 1.850) 
(1.395, 0.502) (1.393, 1.342) (1.284, 2.055) 
(1.283, 0.7254) (1.290, 1.548) (1.181, 2.260) 
(1.172, 0.9486) (1.187, 1.754) (1.080, 2.465) 
(0.949, 1.395) (1.084, 1.960) (0.976, 2.671) 
(0.780, 1.620) (0.980, 2.167) (0.873, 2.876) 
(0.670, 1.840) (0.877, 2.374) (0.719, 3.080) 
(0.558, 2.065) (0.774, 2.580) (0.514, 3.285) 
(0.223, 2.288) (0.568, 2.786) (0.308, 3.388) 
 (0.310, 2.890)  
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Table 2 (continued) 
WELD 4 (550 W) WELD 5 (1114 W) WELD 6 (1500 W) 
(yc mm, zc mm) (yc mm, zc mm) (yc mm, zc mm) 
(1.240, 0.886) (1.333, 0.500) (2.235, 0.1016) 
(1.151, 0.3543) (1.000, 1.333) (2.184, 0.3048) 
(1.063,0.620) (0.8333, 2.00) (2.032, 0.508) 
(0.974,0.8857) (0.8333, 2.833) (1.930, 0.7112) 
(0.8857, 1.240) (0.667, 3.833) (1.829, 0.9144) 
(0.797, 1.417) (0.333, 5.167) (1.626, 1.219) 
(0.7086, 1.771) (0.1667, 5.833) (1.422, 1.524) 
(0.620, 2.126)  (1.118, 1.930) 
(0.531, 2.303)  (0.9144, 2.235) 
(0.4333, 2.480)  (0.7112, 2.540) 
(0.0886, 2.834)  (0.1016,2.845) 

 
 
Table 3 Volumetric source function  calculated according to solidification-boundary 
constraint conditions given in Table 1 for input power of 720 W, where  = (2.4/60) mm 
(WELD 1), and xk = yk =0 for k = 1 to 12. 
 
 

 
 

 
 
 
 
 
 

€ 

C( ˆ x k )
Δt

    k        Ck/0.9      zk    ( ) 
    1        0.031        1 
    2        0.013        5 
    3        0.011       10 
    4        0.011       15 
    5        0.011       20 
    6        0.011       25 
    7        0.015       30 
    8        0.023       35 
    9        0.033       40 
   10        0.033       45 
   11        0.033       50 
   12          0.022       55 

     k          Ck         xk    (  )       yk    ( )      zk    ( ) 
   13        0.033       -15.0        0.0        1 
   14        0.008       -25.0        0.0        1 
   15        0.033        15.0        0.0        1 
   16        0.008        25.0        0.0        1 
   17        0.033         0.0       -15.0        1 
   18        0.008         0.0       -25.0        1 
   19        0.033         0.0        15.0        1 
   20        0.008         0.0        25.0        1 

Δt

Δt Δt Δt
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Table 4 Volumetric source function  calculated according to solidification-boundary 
constraint conditions given in Table 1 for input power of 1100 W, where  = (3.2/60) mm 
(WELD 2) and xk = yk =0 for k = 1 to 12. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
Table 5 Volumetric source function  calculated according to solidification-boundary 
constraint conditions given in Table 1 for input power of 1400 W, where  = (3.8/60) mm 
(WELD 3) and xk = yk =0 for k = 1 to 12. 
 
 

 
 

€ 

C( ˆ x k )
Δt

€ 

C( ˆ x k )
Δt

    k        Ck/1.6      zk    ( ) 
    1        0.031        1 
    2        0.020        5 
    3        0.019       10 
    4        0.017       15 
    5        0.017       20 
    6        0.025       25 
    7        0.029       30 
    8        0.029       35 
    9        0.031       40 
   10        0.034       45 
   11        0.033       50 
   12          0.013       55 

    k          Ck       xk    (  )       yk    ( ) zk    ( ) 
   13        0.033       -15.0        0.0        1 
   14        0.031       -25.0        0.0        1 
   15        0.033        15.0        0.0        1 
   16        0.031        25.0        0.0        1 
   17        0.033         0.0       -15.0        1 
   18        0.031         0.0       -25.0        1 
   19        0.033         0.0        15.0        1 
   20        0.031         0.0        25.0        1 

    k        Ck/2.2      zk    ( ) 
    1        0.031        1 
    2        0.020        5 
    3        0.020       10 
    4        0.025       15 
    5        0.025       20 
    6        0.026       25 
    7        0.027       30 
    8        0.027       35 
    9        0.032       40 
   10        0.034       45 
   11        0.033       50 
   12          0.013       55 

Δt

Δt Δt Δt

Δt
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Table 5 (continued) 
 
 
 
 
 
 
 
 
 
 
 
 

 
Table 6 Volumetric source function  calculated according to solidification-boundary 
constraint conditions given in Table 1 for input power of 550 W, where  = (3.1/60) mm 
(WELD 4) and xk = yk =0 for k = 1 to 14. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

€ 

C( ˆ x k )
Δt

    k          Ck       xk    (  )       yk    ( )      zk    ( ) 
   13        0.033       -15.0        0.0        1 
   14        0.052       -25.0        0.0        1 
   15        0.033        15.0        0.0        1 
   16        0.052        25.0        0.0        1 
   17        0.033         0.0       -15.0        1 
   18        0.052         0.0       -25.0        1 
   19        0.033         0.0        15.0        1 
   20        0.052         0.0        25.0        1 

    k       Ck/2.2      zk    ( ) 
    1        0.031        1 
    2        0.015        5 
    3        0.015       10 
    4        0.025       15 
    5        0.025       20 
    6        0.026       25 
    7        0.027       30 
    8        0.027       35 
    9        0.032       40 
   10        0.034       45 
   11        0.022       50 
   12          0.022       55 
   13        0.024       60 
   14        0.032       65 

    k          Ck       xk    (  )       yk    ( )      zk    ( ) 
   15        0.030       -15.0        0.0        1 
   16        0.030        15.0        0.0        1 
   17        0.030         0.0       -15.0        1 
   18        0.030         0.0        15.0        1 

Δt Δt Δt

Δt

Δt Δt Δt



 

29 

 
Table 7 Volumetric source function  calculated according to solidification-boundary 
constraint conditions given in Table 1 for input power of 1114 W, where  = (6.0/60) mm 
(WELD 5) and xk = yk =0 for k = 1 to 14. 
 
 

 
 

 
Table 8 Volumetric source function  calculated according to solidification-boundary 
constraint conditions given in Table 1 for input power of 1500 W, where  = (3.1/60) mm 
(WELD 6) and xk = yk =0 for k = 1 to 13. 
 
 

 
 

 
 

€ 

C( ˆ x k )
Δt

€ 

C( ˆ x k )
Δt

    k       Ck/2.5      zk    ( ) 
    1        0.1        1 
    2        0.1        5 
    3        0.1       10 
    4        0.1       15 
    5        0.1       20 
    6        0.1       25 
    7        0.1       30 
    8        0.1       35 
    9        0.1       40 
   10        0.1       45 
   11        0.1       50 
   12          0.1       55 
   13        0.1       60 
   14        0.1       65 

    k          Ck      zk    ( ) 
    1        0.1        1 
    2        0.1        5 
    3        0.1       10 
    4        0.1       15 
    5        0.055       20 
    6        0.05       25 
    7        0.05       30 
    8        0.048       35 
    9        0.048       40 
   10        0.05       45 
   11        0.062       50 
   12          0.085       55 
   13        0.083       60 

    k          Ck       xk    (  )       yk    ( )      zk   ( ) 
   14        0.071       -25.0        0.0        1 
   16        0.071        25.0        0.0        1 
   17        0.071         0.0       -25.0        1 
   19        0.071         0.0        25.0        1 

Δt

Δt

Δt Δt Δt
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Table 9 Volumetric source function  calculated according to transformation-boundary 
constraint conditions given in Table 2 for input power of 720 W, where  = (2.4/60) mm 
(WELD 1) and xk = yk =0 for k = 1 to 13. 
 
 

 
 

 
 
 
Table 10 Volumetric source function  calculated according to transformation-boundary 
constraint conditions given in Table 2 for input power of 1100 W, where  = (3.2/60) mm 
(WELD 2) and xk = yk =0 for k = 1 to 12. 
 
 

€ 

C( ˆ x k )
Δt

€ 

C( ˆ x k )
Δt

    k        Ck/0.51      zk    ( ) 
    1        0.031        1 
    2        0.014        5 
    3        0.014       10 
    4        0.014       15 
    5        0.014       20 
    6        0.015       25 
    7        0.016       30 
    8        0.020       35 
    9        0.032       40 
   10        0.034       45 
   11        0.034       50 
   12          0.022       55 
   13        0.022       60 

    k          Ck       xk    (  )       yk    ( )      zk    ( ) 
   14        0.033       -15.0        0.0        1 
   15        0.008       -25.0        0.0        1 
   16        0.033        15.0        0.0        1 
   17        0.008        25.0        0.0        1 
   18        0.033         0.0       -15.0        1 
   19        0.008         0.0       -25.0        1 
   20        0.033         0.0        15.0        1 
   21        0.008         0.0        25.0        1 

    k        Ck/1.1      zk    ( ) 
    1        0.031        1 
    2        0.020        5 
    3        0.020       10 
    4        0.025       15 
    5        0.025       20 
    6        0.026       25 
    7        0.027       30 
    8        0.027       35 
    9        0.032       40 
   10        0.034       45 
   11        0.033       50 
   12          0.010       55 

Δt

Δt Δt Δt

Δt
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Table 10 (continued) 
 
 

 
 
 
Table 11 Volumetric source function  calculated according to transformation-boundary 
constraint conditions given in Table 2 for input power of 1400 W, where  = (3.8/60) mm 
(WELD 3) and xk = yk =0 for k = 1 to 11. 
 
 

 
 

 
 
 
 
 
 

€ 

C( ˆ x k )
Δt

    k          Ck       xk    (  )       yk    ( )      zk    ( ) 
   13        0.033       -15.0        0.0        1 
   14        0.031       -25.0        0.0        1 
   15        0.033        15.0        0.0        1 
   16        0.031        25.0        0.0        1 
   17        0.033         0.0       -15.0        1 
   18        0.031         0.0       -25.0        1 
   19        0.033         0.0        15.0        1 
   20        0.031         0.0        25.0        1 

    k        Ck/1.6      zk    ( ) 
    1        0.031        1 
    2        0.030        5 
    3        0.030       10 
    4        0.030       15 
    5        0.030       20 
    6        0.030       25 
    7        0.030       30 
    8        0.030       35 
    9        0.032       40 
   10        0.034       45 
   11        0.033       50 

    k          Ck       xk    (  )       yk    ( )      zk    ( ) 
   13        0.033       -15.0        0.0        1 
   14        0.052       -25.0        0.0        1 
   15        0.033        15.0        0.0        1 
   16        0.052        25.0        0.0        1 
   17        0.033         0.0       -15.0        1 
   18        0.052         0.0       -25.0        1 
   19        0.033         0.0        15.0        1 
   20        0.052         0.0        25.0        1 

Δt Δt Δt

Δt

Δt Δt Δt
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Table 12 Volumetric source function  calculated according to transformation-boundary 
constraint conditions given in Table 2 for input power of 550 W, where  = (3.1/60) mm 
(WELD 4) and xk = yk =0 for k = 1 to 14. 
 
 

 
 

 
Table 13 Volumetric source function  calculated according to transformation-boundary 
constraint conditions given in Table 2 for input power of 1114 W, where  = (6.0/60) mm 
(WELD 5) and xk = yk =0 for k = 1 to 14. 
 
 

€ 

C( ˆ x k )
Δt

€ 

C( ˆ x k )
Δt

    k       Ck/1.4      zk    ( ) 
    1        0.032        1 
    2        0.031        5 
    3        0.031       10 
    4        0.031       15 
    5        0.031       20 
    6        0.031       25 
    7        0.031       30 
    8        0.031       35 
    9        0.032       40 
   10        0.034       45 
   11        0.022       50 
   12          0.022       55 
   13        0.015       60 
   14        0.015       65 

    k         Ck       xk    (  )       yk    ( )      zk    ( ) 
   15        0.030       -15.0        0.0        1 
   16        0.030        15.0        0.0        1 
   17        0.030         0.0       -15.0        1 
   18        0.030         0.0        15.0        1 

    k       Ck/1.4      zk    ( ) 
    1        0.2        1 
    2        0.2        5 
    3        0.15       10 
    4        0.15       15 
    5        0.15       20 
    6        0.15       25 
    7        0.1       30 
    8        0.1       35 
    9        0.1       40 
   10        0.1       45 
   11        0.1       50 
   12          0.1       55 
   13        0.1       60 
   14        0.1       65 

Δt

Δt Δt Δt

Δt
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Table 14 Volumetric source function  calculated according to transformation-boundary 
constraint conditions given in Table 2 for input power of 1500 W, where  = (3.1/60) mm 
(WELD 6) and xk = yk =0 for k = 1 to 12. 
 
 

 
 

€ 

C( ˆ x k )
Δt

    k        Ck      zk    ( ) 
    1        0.1        1 
    2        0.1        5 
    3        0.1       10 
    4        0.1       15 
    5        0.055       20 
    6        0.05       25 
    7        0.05       30 
    8        0.048       35 
    9        0.048       40 
   10        0.05       45 
   11        0.062       50 
   12          0.027       55 

    k        Ck       xk    (  )       yk    ( )      zk    ( ) 
   13        0.1       -25.0        0.0        1 
   14        0.1        25.0        0.0        1 
   15        0.1         0.0       -25.0        1 
   16        0.1         0.0        25.0        1 

Δt

Δt Δt Δt
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