
USING STATE MERGING AND STATE PRUNING TO ADDRESS THE PATH

EXPLOSION PROBLEM FACED BY SYMBOLIC EXECUTION

THESIS

Patrick T. Copeland, Civilian

AFIT-ENG-T-14-J-3

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the United States Air Force, the Department of Defense, or the United
States Government.

This material is declared a work of the U.S. Government and is not subject to copyright
protection in the United States.

AFIT-ENG-T-14-J-3

USING STATE MERGING AND STATE PRUNING TO ADDRESS THE PATH

EXPLOSION PROBLEM FACED BY SYMBOLIC EXECUTION

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Cyber Operations

Patrick T. Copeland, B.A.C.S.

Civilian

June 2014

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

AFIT-ENG-T-14-J-3

USING STATE MERGING AND STATE PRUNING TO ADDRESS THE PATH

EXPLOSION PROBLEM FACED BY SYMBOLIC EXECUTION

Patrick T. Copeland, B.A.C.S.
Civilian

Approved:

/signed/

Gilbert L. Peterson, PhD (Chairman)

/signed/

Maj Thomas E. Dube, PhD (Member)

/signed/

Barry E. Mullins, PhD (Member)

02 Jun 2014

Date

30 May 2014

Date

30 May 2014

Date

AFIT-ENG-T-14-J-3
Abstract

Symbolic execution is a promising technique to discover software vulnerabilities and

improve the quality of code. However, symbolic execution suffers from a path explosion

problem where the number of possible paths within a program grows exponentially with

respect to loops and conditionals. New techniques are needed to address the path explosion

problem. This research presents a novel algorithm which combines the previously

researched techniques of state merging and state pruning. A prototype of the algorithm

along with a pure state merging and pure state pruning are implemented in the KLEE

symbolic execution tool with the goal of increasing the code coverage. Each algorithm

is tested over 66 of the GNU COREUTILS utilities. State merging combined with

state pruning outperforms the unmodified version of KLEE on 53% of the COREUTILS.

These results confirm that state merging with pruning has viability in addressing the path

explosion problem of symbolic execution.

iv

For my beautiful fiancée and loving parents.

v

Acknowledgments

I would like to thank all those who have made this work possible. A special thanks

goes to my fiancée and my parents who have supported me every step of the way.

I would also like to thank my research advisor, Dr. Gilbert Peterson, for agreeing to

take on this work so late in the game and providing the necessary support and guidance.

Patrick T. Copeland

vi

Table of Contents

Page

Abstract . iv

Dedication . v

Acknowledgments . vi

Table of Contents . vii

List of Figures . xi

List of Tables . xii

List of Acronyms . xiii

I. Introduction . 1

1.1 Motivation . 1
1.2 Research Objectives . 2

1.2.1 Primary Objective 1 . 2
1.2.2 Primary Objective 2 . 2
1.2.3 Primary Objective 3 . 2
1.2.4 Primary Objective 4 . 2

1.3 Methodology . 3
1.4 Assumptions and Limitations . 3
1.5 Thesis Structure . 3

II. Background . 4

2.1 Symbolic Execution . 4
2.1.1 Path Explosion Problem . 5

2.2 KLEE . 6
2.2.1 KLEE Architecture . 6
2.2.2 KLEE Searcher . 7
2.2.3 Measuring code coverage . 7

2.3 Path Explosion Mitigation Techniques . 7
2.3.1 Search Heuristics . 7

2.3.1.1 User-guided . 8
2.3.1.2 Depth-First Search . 8

vii

Page

2.3.1.3 Breadth-First Search . 8
2.3.1.4 Best-First Search . 9
2.3.1.5 Random Path Selection 9
2.3.1.6 Generational Search . 10
2.3.1.7 Fitness-Guided . 11

2.3.2 State Pruning . 12
2.3.3 State Merging . 12
2.3.4 Concolic Testing . 14
2.3.5 Compositional Analysis . 16
2.3.6 Parallel Execution . 17

2.4 Summary . 18

III. Methodology . 20

3.1 Problem Definition . 20
3.1.1 Goals and Hypothesis . 20
3.1.2 Approach . 21

3.2 State Merging . 22
3.2.1 Dynamic State Merging . 22

3.2.1.1 State Fast Forwarding 23
3.2.2 Costs and benefits of merging . 25

3.3 State Pruning . 25
3.4 Combining state merging and state pruning 26
3.5 System Boundaries . 27

3.5.1 KLEE Flags . 27
3.5.2 Reducing non-determinism . 29

3.6 Workload . 30
3.6.1 GNU COREUTILS . 30

3.7 Performance Metrics . 31
3.7.1 Code coverage . 33
3.7.2 Instruction reduction . 33
3.7.3 Path reduction . 34
3.7.4 Average query cost . 34
3.7.5 Merge time . 34
3.7.6 Fast forward time . 34

3.8 System Parameters . 35
3.9 Factors . 36
3.10 Evaluation Technique . 38
3.11 Experimental Design . 38
3.12 Methodology Summary . 38

viii

Page

IV. Results and Analysis . 39

4.1 Overview . 39
4.2 KLEE-BASE . 40
4.3 Merging Results . 40

4.3.1 KLEE-MERGE-5 . 41
4.3.1.1 Code Coverage . 42
4.3.1.2 Instruction Reduction 43
4.3.1.3 Average Query Cost . 43
4.3.1.4 SMT Solver Time . 43
4.3.1.5 Merge and Fast-Forward Success 43

4.3.2 KLEE-MERGE-20 . 44
4.3.2.1 Code Coverage . 44
4.3.2.2 Instruction Reduction 46
4.3.2.3 Average Query Cost . 46
4.3.2.4 SMT Solver Time . 46
4.3.2.5 Merge and Fast-Forward Success 46

4.3.3 KLEE-NO-FF-MERGE-5 . 47
4.3.3.1 Code Coverage . 47
4.3.3.2 Instruction Reduction 48
4.3.3.3 Average Query Cost . 49
4.3.3.4 SMT Solver Time . 49
4.3.3.5 Merge Success . 49

4.3.4 KLEE-NO-FF-MERGE-20 . 49
4.3.4.1 Code Coverage . 49
4.3.4.2 Instruction Reduction 50
4.3.4.3 Average Query Cost . 50
4.3.4.4 SMT Solver Time . 51
4.3.4.5 Merge Success . 52

4.3.5 Merging Summary . 52
4.4 Pruning Results . 52

4.4.1.1 Code Coverage . 53
4.4.1.2 Instruction Reduction 53
4.4.1.3 Average Query Cost . 54
4.4.1.4 SMT Solver Time . 55
4.4.1.5 Pruned States . 55

4.4.2 Pruning Summary . 55
4.5 Pruning Combined with Merging Results 55

4.5.1.1 Code Coverage . 55
4.5.1.2 Instruction Reduction 56
4.5.1.3 Average Query Cost . 57
4.5.1.4 SMT Solver Time . 58

ix

Page

4.5.1.5 Merge and Fast-Forward Success 58
4.5.1.6 Pruned States . 58

4.5.2 Pruning Combined with Merging Summary 58
4.6 Results Summary . 58

V. Conclusions and Future Work . 60

5.1 Contributions . 60
5.1.1 Primary Contribution . 60
5.1.2 Secondary Contributions . 60

5.2 Limitations . 61
5.3 Future Work . 61

Appendix A: Code Coverage (%) for all COREUTILS 62

Appendix B: LOC and #include count for all COREUTILS 71

Bibliography . 72

x

List of Figures

Figure Page

2.1 Example symbolic execution from Pǎsǎreanu, et al. [1]. 5

2.2 KLEE Workflow. 6

2.3 Example program from Godefroid, et al. [2]. 10

2.4 State space tree for example program in Figure 2.3 from Godefroid, et al. [2]. . 11

2.5 Simple state merging example. 13

2.6 Example of a situation with repeated calls to the same function. 16

3.1 Merging two states together. 23

3.2 System Under Test (SUT). 29

3.3 Histogram of lines of code (LOC) for COREUTILS [3]. 32

4.1 Coverage Increases over COREUTILS for KLEE-MERGE-5. 42

4.2 Coverage Increases over COREUTILS for KLEE-MERGE-20. 45

4.3 Coverage Increases over COREUTILS for KLEE-NO-FF-MERGE-5. 48

4.4 Coverage Increases over COREUTILS for KLEE-NO-FF-MERGE-20. 51

4.5 Coverage Increases over COREUTILS for KLEE-PRUNE. 54

4.6 Coverage Increases over COREUTILS for KLEE-PRUNE-MERGE. 57

xi

List of Tables

Table Page

2.1 Summary of Path Mitigation Techniques. 19

3.1 List of GNU COREUTILS tested. 31

3.2 Experimental Factors. 37

4.1 Summary of Coverage Results for All Algorithms. 40

4.2 Impact of KLEE-MERGE-5 on Average Code Coverage, Instructions, Queries,

Query Constructs, Average Query Cost, Successful Merges, and Successful

Fast-Forward. 41

4.3 Impact of KLEE-MERGE-20 on Average Code Coverage, Instructions,

Queries, Query Constructs, Average Query Cost, Successful Merges, and

Successful Fast-Forward. 44

4.4 Impact of KLEE-NO-FF-MERGE-5 on Average Code Coverage, Instructions,

Queries, Query Constructs, Average Query Cost, SMT Solver Time and

Successful Merges. 47

4.5 Impact of KLEE-NO-FF-MERGE-20 on Average Code Coverage, Instructions,

Queries, Query Constructs, Average Query Cost, SMT Solver Time and Suc-

cessful Merges. 50

4.6 Impact of KLEE-PRUNE on Average Code Coverage, Instructions, Queries,

Query Constructs, Average Query Cost, SMT Solver Time and Pruned States. . 53

4.7 Impact of KLEE-PRUNE-MERGE on Average Code Coverage, Instructions,

Queries, Query Constructs, Average Query Cost, SMT Solver Time, Successful

Merges, Successful Fast-Forward and Pruned States. 56

xii

List of Acronyms

Acronym Definition

ASLR address space layout randomization

CFG control flow graph

SMT Satisfiability Modulo Theories

NURS non-uniform random search

DFS depth-first search

BFS Breadth-first search

SPD Symbolic Program Decomposition

LLVM low-level virtual machine

SUT system under test

CUT component under test

CFG control flow graph

KLOC thousands (kilo) of lines of code

LOC lines of code

xiii

USING STATE MERGING AND STATE PRUNING TO ADDRESS THE PATH

EXPLOSION PROBLEM FACED BY SYMBOLIC EXECUTION

I. Introduction

1.1 Motivation

Distribution of computer software with latent security vulnerabilities sadly remains

the norm throughout the industry. The recently disclosed “Heartbleed” vulnerability in the

OpenSSL library is a prime example of vulnerabilities having wide ranging consequences

[4]. Software with vulnerabilities ultimately threatens developers’ reputations and costs

users and developers time and money. Thus, the need for improved software testing

methods is urgent and compelling. Recent efforts in this area automate program analysis

techniques using model checking and symbolic execution [2, 5–7]. These methods often

find subtle software bugs missed by other techniques. Yet, despite their success, these

methods suffer from scalability issues, one of which is the so-called path explosion

problem. That is, as the complexity of the program grows, the number of possible paths

within the program grows too large for effective analysis.

The primary challenge to scaling symbolic execution techniques is the number of

possible paths within the program. The number of possible paths through a program

is a function of the conditionals and loops contained within the program. Consider a

simple if-else control structure. If the given condition is true, the symbolic execution

tool executes the if-block. This represents one possible path within the program. The

else-block represents a second path. Each additional if-else statement adds additional

paths. In general, the number of paths in a program grows exponentially in relation to

the number of conditional statements. A naı̈ve, exhaustive approach to the path explosion

1

problem is infeasible for any nontrivial program. Applications often contain millions of

lines of code. Successful symbolic execution tools must address path explosion, and several

recent techniques show promising results.

1.2 Research Objectives

1.2.1 Primary Objective 1.

Provide a thorough analysis of the effects of state merging on symbolic execution.

State merging has the potential to save the symbolic execution tool a great deal of work

by reducing the occurrence of redundant path exploration. However, the result of two

merged states is a single, child state where the path constraint is a disjunction of the two

parent states’ path constraints, which creates additional strain on the Satisfiability Modulo

Theories (SMT) solver.

1.2.2 Primary Objective 2.

Provide a thorough analysis of the effects of state pruning on symbolic execution.

State pruning is an additional method of reducing the state space during symbolic

execution. The reduction of duplicate states can lead to an increase in overall coverage.

1.2.3 Primary Objective 3.

Introduce a novel algorithm that combines the ideas of state merging and state

pruning.

This research introduces a novel state reduction algorithm to address the path

explosion problem of symbolic execution. The new algorithm combines the previously

researched techniques state merging and state pruning.

1.2.4 Primary Objective 4.

Provide a thorough analysis of the effects of the novel state merging and pruning

algorithm.

This research implements a prototype of the state merging and state pruning algorithm

in the KLEE symbolic execution tool [7]. The prototype is tested on 66 of the GNU

2

COREUTILS [3], a widely used suite of utilities in Unix/Linux systems. A performance

analysis of the prototype is provided focusing on the changes in code coverage with respect

to the unmodified version of KLEE.

1.3 Methodology

This research attempts to identify an effective method to mitigate the current path

explosion problem faced by the symbolic execution tools. The system under test (SUT)

is the KLEE program analysis tool and the component under test (CUT) is the path

explosion mitigation technique. The techniques tested are state merging and state pruning.

A prototype of each algorithm is implemented with the KLEE symbolic execution tool.

The effectiveness of the each algorithm is measured in terms of code coverage, SMT solver

time, average query cost, merge time, and fast forward time.

1.4 Assumptions and Limitations

This research does not use KLEE in the optimal configuration with respect to code

coverage. The unmodified version of KLEE used to compare the path mitigation algorithms

uses the built-in coverage oriented search. The optimal configuration is the coverage search

interleaved with a random path search. The random path search is omitted to reduce non-

determinism and allow for a more direct comparison between the base version of KLEE

and the algorithm prototypes.

1.5 Thesis Structure

This thesis follows the below structure. Chapter 2 provides the necessary background

information, as well as a review of the current literature relating to symbolic execution.

Chapter 3 describes the algorithm that this work evaluates, describes the main factors used

to modify the algorithm and the metrics used to evaluate performance. Chapter 4 is a

thorough analysis of the resulting data from the algorithm. Chapter 5 summarizes the

contributions of this work and provides suggestions for future work.

3

II. Background

This work introduces a novel algorithm which combines state merging and state

pruning to achieve an increase in code coverage. The testing is done on the GNU

COREUTILS [3].

This chapter provides the necessary background information regarding symbolic

execution and the KLEE symbolic execution tool. The chapter concludes with a review

of current techniques to address the path explosion problem of symbolic execution.

2.1 Symbolic Execution

Symbolic execution has been proposed as an effective way to find software

vulnerabilities within a program [2, 5–7]. Symbolic execution evaluates a program using

symbolic values as substitutes for the actual, concrete values. As the program executes,

symbolic expressions represent values within the program. The symbolic execution tool

must maintain program state information for each active state during exploration. This

includes call stack, memory, registers, and all symbolic values. For each active state,

the tool must maintain a path constraint. A path constraint is a first order, quantifier free

formula over symbolic expressions [8]. Figure 2.1 provides an example execution. When

the program encounters a branching statement with symbolic data, the tool generates new

constraints. The symbolic execution tool conjuncts the new constraints with the current

path constraint. This can be seen in the transition from State 1 to State 5. For a given path

to remain feasible, the path constraint must be satisfiable. That is, for a given formula to be

satisfiable, there must be a binding of true and false values to the variables in the formula

which result in the entire formula being true.

Stepping through Figure 2.1, each box corresponds to a statement within the program.

The variables x, y begin as unconstrained values X,Y . As execution continues, the values

4

Figure 2.1: Example symbolic execution from Pǎsǎreanu, et al. [1].

are updated, as well as the path constraint. Notice that the conditional statements on line

1 and line 5 create a new branch in the execution tree. Each branch statement generates a

new condition within the path constraint that must be satisfied for exploration of the path to

continue. The path constraint generated is then passed to the SMT solver to determine if a

binding of values exist to make the expression true. After line 5, since X > Y and Y−X > 0

cannot both be true at the same time, no binding of values exist to make the left branch of

the tree’s path constraint satisfiable. Thus, the branch is unsatisfiable and exploration of

that branch halts.

2.1.1 Path Explosion Problem.

When exploring the entire state space of a real-world application, a symbolic execution

tools face a path explosion problem. In general, the number of paths within a program

grows exponentially with respect to conditionals and loops [9]. A naı̈ve approach to

5

searching the state space will fail to achieve high code coverage due to the exponential

growth of paths.

2.2 KLEE

KLEE is a symbolic execution tool designed to work with C source files [7, 10]. KLEE

has been used to perform a variety of tasks including high code coverage of real-world

applications and bug finding. The original work was tested on the GNU COREUTILS and

BUSY-BOX utility suites.

2.2.1 KLEE Architecture.

To use KLEE on C source files, the files must first be compiled into low-level virtual

machine (LLVM) bitcode. KLEE acts as an interpreter for the LLVM bitcode. To produce

LLVM bitcode, the user must compile C source files using either the llvm-gcc [11]

compiler or clang [12] compiler. Figure 2.2 presents a sample KLEE workflow.

Figure 2.2: KLEE Workflow.

6

2.2.2 KLEE Searcher.

The KLEE Searcher class handles the selection of the next state to execute during

exploration of the state space. KLEE’s modular design allows KLEE to implement different

search strategies. The base version of KLEE includes the following search strategies:

random path, depth-first search (DFS), and other weighted heuristics geared towards code

coverage, depth, query cost and instruction count [13].

2.2.3 Measuring code coverage.

For each path that is explored by KLEE, the tool writes out a test file as a .ktest with

values that represent a path. Included with KLEE is a command line utility, klee-replay

that takes a compiled C program and KLEE test files and executes the program with the

given input. An external test coverage tool is required to gather actual code coverage. The

original KLEE work uses the GNU gcov utility [14]. After executing a specific utility with

each test case generated by KLEE, gcov provides a percentage of lines of code executed.

2.3 Path Explosion Mitigation Techniques

An effective symbolic execution tool for real world applications must address the path

explosion problem. This section describes how current tools overcome the path explosion

problem and categorizes the tools into the following classes: search heuristics [2, 5, 6, 9,

15–17], state merging [18–20], state pruning [21], concolic testing [2, 5, 6, 16, 22, 23],

compositional analysis [24–26], and parallel execution [27].

2.3.1 Search Heuristics.

Search heuristics use knowledge about a given state to make an informed decision

about the next appropriate action. Heuristics-based searches are common in artificial

intelligence applications where the search space is too large for an exhaustive search.

A search heuristic often tries to maximize a given value. For symbolic execution, path

coverage or exploration of interesting paths are two values a tool may try to maximize.

7

2.3.1.1 User-guided.

A user-guided search heuristic uses the skill of a human being to guide the execution

of a program. With a skilled operator, a user-guided approach can be effective at

picking interesting paths that could possibly lead to a vulnerability. However, the lack

of automation and the required reverse code engineering skill of a human places a limit on

this approach.

A tool which implements the user-guided search is Jiseki [9]. Jiseki is a bounded

model checking tool for x86 binary programs developed at the Air Force Institute of

Technology (AFIT). Jiseki creates a bit-vector logic model based on x86 binaries and uses

the model to reason about the given program. The operator uses a GUI-based plug-in with

IDA, a disassembly and debugging tool, to view the exploration of the state space and guide

the program down interesting paths.

2.3.1.2 Depth-First Search.

Depth-first search (DFS) is a straightforward search strategy that has many applica-

tions across different domains. DFS will continue down the same path until reaching a

terminal state. After reaching a terminal state, DFS recurses up the search tree and ex-

plores a new branch. Since DFS will explore the same path until termination, the algorithm

excels at exploring a given path neighborhood but does poorly in overall path coverage.

Many of the older symbolic execution tools use a depth-first search [5, 16].

2.3.1.3 Breadth-First Search.

Breadth-first search (BFS) is an additional search strategy used in many different

domains. BFS attempts to explore all states at a given depth before moving deeper into

the search tree. In the symbolic execution domain, this provides an exhaustive exploration

of shallow paths. However, bugs that occur deep within the search tree will be missed.

KLEE [7] includes functionality for BFS.

8

2.3.1.4 Best-First Search.

Best-first search looks at the possible children of a given state and chooses the child

node which maximizes a specified value. Depending on the goal of the algorithm, “best”

can have many different meanings. For symbolic execution, the maximized value could be

the likelihood that a child state will lead to a bug. Maximizing a value that represents “most

likely to lead to a bug” is similar to the what a reverse code engineer does. The human

operator runs a mental best-first search using prior reverse code knowledge to identify

certain calls that have the potential to induce vulnerabilities. Developing an algorithm to

capture this human intuition is difficult.

Alternatively, the best child state could be the least explored child. By placing a

high value on unexplored paths, the tool is trying to increase overall code coverage by

forcing exploration down neglected paths. EXE [6], a symbolic execution tool developed

at Stanford University, implements a best-first search, which defines “best” as those

unexplored paths. EXE demonstrates an improvement over traditional fuzzing tools.

KLEE [7] implements a suite of best-first searches as non-uniform random search

(NURS). Instead of a uniform distribution, NURS are weighted towards a specific goal.

The options for goals include: code coverage, depth, minimum distance to uncovered

instruction, and a query cost estimate. KLEE’s highest performing configuration with

respect to code coverage is the search strategy that switches between a random-path search

and a best-first search maximizing code coverage. This round-robin switching prevents the

possibility of one search strategy completely dominating and getting “stuck” in a certain

area of code.

2.3.1.5 Random Path Selection.

A uniform random path search policy gives each state an equal chance of being

selected next. While this technique is not sufficient by itself for real world applications,

the combination of the random search and an additional search strategy can be beneficial.

9

Cadar, et al. [7] combine a random search strategy with a coverage oriented strategy. The

advantage of including a random search is that the random search avoids getting stuck in

small segments of code. While a best-first search may heavily favor a small subset of the

execution tree, the random search forces different sections of the tree to be explored with

equal probability.

2.3.1.6 Generational Search.

Generational search is a strategy designed specifically for symbolic execution by

Godefroid, et al. [2]. To ensure better code coverage, generational search systematically

negates each constraint within a given path constraint. By negating each constraint, the

algorithm explores execution down as many different paths as possible.

SAGE (Scalable, Automated, Guided Execution) [2, 28] is a symbolic execution tool

developed by Microsoft, which implements a generational search algorithm. SAGE is

regularly used to test Microsoft applications and succeeds in finding many bugs missed

by other testing methods [28]. SAGE also makes use of an additional technique, concolic

testing, discussed later in this section.

Figure 2.3: Example program from Godefroid, et al. [2].

Consider the example in Figure 2.3 and Figure 2.4. The leftmost path is the first

path explored. To force execution down a separate path, the generational search negates

10

Figure 2.4: State space tree for example program in Figure 2.3 from Godefroid, et al. [2].

the final constraint, input[3] == ‘!’. The next execution will satisfy the input[3] ==

‘!’ condition and explore a new path. The generational search will explore all possible

expressions of the path constraint.

2.3.1.7 Fitness-Guided.

Pex [23] is an additional symbolic execution tool designed by Microsoft specifically

for .NET applications. To improve the performance of Pex, Xie, et al. [15] developed a

new search strategy, Fitnex. Fitnex is a fitness-guided search strategy that computes fitness

values that are used to guide the execution of the program.

Fitness-based searches attempt to recreate biological phenomenons, such as natural

selection and mutation. Fitnex is similar to a best-first search where the algorithm chooses

a target (primarily exploring new paths) and computes a fitness value for each path. The

fitness values represents how close the given path is to reaching the desired target. Test

11

results comparing Pex with and without Fitnex show a four times improvement in code

coverage when using Fitnex.

2.3.2 State Pruning.

In traditional symbolic execution, when a given path splits into two distinct paths,

evaluation of those paths occurs separately until termination. State pruning aims to take

advantage of the fact that two separate paths could be equivalent. Showing equivalence of

two states allows the tool to prune one of the states, which prevents duplicate work.

The difficulty with state pruning is determining equivalence. In most cases, proving

complete equivalence is too computationally expensive to reap any benefit. Therefore, an

approximation of equivalence is made. When two states meet a closeness threshold, the

symbolic execution tool combines the threads of execution. By estimating equivalence, the

tool may under- or over-approximate the system depending on joining procedures. That

is, by not exploring both paths, the tool may fail to capture all of the program’s behavior

or introduce a capability that does not exist within the program. Any under-approximation

may lead to bugs being missed, while an over-approximation could lead to false positives.

Bugrara and Engler [21] introduce a redundant state detector algorithm and build a

prototype in KLEE. The focus of Bugrara and Engler’s work is high-code coverage testing.

As such, they decide that two states are equivalent if they will execute the same lines of

code. On 55 of the 66 COREUTILS tested, Bugrara and Engler’s work achieved at least

the same code coverage as the base version of KLEE.

2.3.3 State Merging.

As with state pruning, state merging attempts to reduce redundancy in the exploration

of the state space. If two states happen to arrive at the same program counter, there is

the potential of merging the two states into one. This is done by disjuncting the two path

constraints.

12

Figure 2.5 demonstrates that when two states are at the same program point, S 3 and

S 4, combining the two states, there is the potential for pruning a significant amount of the

search space.

Figure 2.5: Simple state merging example.

It is sometimes the case that the additional complexity of the disjuncted path constraint

may be more computationally expensive than exploring each states separately.

Recent work [18, 19] explores the tradeoff between the additional overhead of state

merging and consequences of approximation with the benefit of reduced paths. Work by

Hansen, et al. [18] provides mixed results, giving an improvement on a small subset of

programs. As the system becomes more complex, traditional symbolic execution overtakes

the state merging method.

RWSet [19] is an additional algorithm that implement state merging. Boonstoppel, et

al. describe the motivating ideas behind RWSet as:

1. two states are equivalent if they produce the same effects, and

13

2. values that differ between states that are never read in subsequent states can be

ignored.

To implement this approach, RWSet maintains a cache of visited states. Whenever

there is a cache hit [19], RWSet records the path constraint and generates an input to reach

the halting state. The most important feature of RWSet is a method to determine “live

variables.” When trying to decide if a variable is still alive, RWSet does a DFS from the

given state and records any calls to read the variable. RWSet is implemented in conjunction

with the concolic testing tool, EXE [6] (discussed in the following section) and has shown

significant reduction in time required to reach similar branch coverage as EXE without

RWSet.

Kuznetsov, et al. [20] represents the most recent work on state merging. Kuznetsov,

et al. provide a novel approach to estimate the cost of merging two states, query cost

estimation. Two states merge only when the estimated cost of doing so is less than the

expected gain. By adding the cost metric, the Kuznetsov, et al. method demonstrates

orders of magnitude speedup over alternative methods.

2.3.4 Concolic Testing.

Traditional symbolic execution relies solely on symbolic values when examining a

system. Strictly using symbolic values can be cumbersome when dealing with complex

data structures and pointers. Additionally, path constraints can grow very large, which

slows the work of the SMT solver. A proposed alternative to pure symbolic execution

is concolic testing. The concolic approach combines symbolic execution with actual

execution of the code, concrete execution. The motivation for using a mixed approach

is to:

• reduce the complexity of reasoning about complex data structures and pointers,

• take advantage of the speed of concrete execution, which does not rely upon an SMT

solver, and

14

• use symbolic execution to guide execution of the program.

As the code is executed concretely, the tool generates symbolic constraints which are

used to create a new concrete input into the program to increase the chances that execution

on the input will force exploration down a different path.

Because of the difficulty of symbolically representing complex data structures, many

of the early symbolic execution tools use concolic testing. These tools include DART [5],

CUTE [16], EXE [6], PEX [23], and SAGE [2]. Test results show a significant increase in

path depth and an improvement of path coverage over strict symbolic execution.

The SAGE example shown in Figures 2.3 and 2.4 demonstrate the concolic execution

process. The string “good” is concrete input given to the function. As the program executes

on the string “good”, SAGE maintains the path constraint of symbolic values based on

the four conditional statements. To generate a new concrete input, SAGE negates the

last constraint and feeds the new concrete input “goo!”. SAGE continues systematically

negating each constraint in the path constraint, generating new concrete inputs to guide

execution down different paths.

Majumdar, et al. [22] provide a variation on concolic testing where the algorithm

switches between two modes: random fuzzing and concolic testing. The hybrid concolic

algorithm operates in a fuzzing mode until a given area of the tree is well explored. When

the algorithm senses that fuzz testing is no longer exploring new paths, the algorithm

switches to concolic testing mode and forces execution of new paths. The motivation of

the hybrid approach is taking advantage of the speed of generating random inputs, and a

strength of fuzz testing, which is the ability to explore a given neighborhood of the state

tree. A weakness of fuzz testing is the tendency to get stuck re-exploring a small subset

of the state space. By adding concolic execution, the search forces execution down a new

path. Majumdar, et al. implemented the hybrid approach on top of CUTE, finding a 4 times

15

increase in code coverage over pure fuzz testing and 2 times increase in code coverage over

concolic testing.

2.3.5 Compositional Analysis.

Compositional analysis attempts to alleviate the path explosion problem by breaking

a large program into smaller, logical pieces (i.e. functions) and reasoning about pieces

individually. After reasoning about a function, the tool generates a summary of the function

that each subsequent call utilizes. By using the function summary, instead of stepping

through the function’s state space, large branches of the overall state space can be pruned.

To see the potential savings, consider the code snippet in Figure 2.6. Additionally,

assume there are n different paths through the function foo. The program could potentially

call the function foo a bound number of times, resulting in n×bound possible paths through

the program. The preferred method is executing foo once and capturing the effects of the

function call in a function summary. In subsequent calls to foo, the function summary

would be used and exploration of foo would be unnecessary, reducing the amount of

redundant work.

Figure 2.6: Example of a situation with repeated calls to the same function.

A difficulty with this approach is computing the function summary which captures

all the functions behavior. As with computing equivalence of states, an approximation is

required. Depending upon how the approximation is made, the function summary could

under- or over-estimate the system’s functionality.

16

Godefroid, et al. [24] explore the compositional approach in the SMART (Systematic

Modular Automated Random Testing) algorithm. SMART works by testing a function and

expressing the function summary as precondition inputs to the function and postcondition

outputs of the function. Godefroid, et al. prove the correctness of SMART with respect

to DART. That is, any path explored by the DART algorithm will also be explored by the

SMART algorithm using composition. The primary advantage of SMART is the scalability

to large applications.

Santelices, et al. [26] introduce a technique called Symbolic Program Decomposition

(SPD). SPD utilizes composition based on path families instead of functions. A path family

is “a group of paths that share common control dependencies” [26]. The approach of SPD

is similar to a state merging approach. SPD attempts to capture the behavior as of a path

family as a whole.

SPD also contains unique features that allows the algorithm to scale to large

applications. As SPD executes, the algorithm allows the “dropping” of constraints,

resulting in an under-approximation in the path constraint which corresponds to an over-

approximation of the entire system. Decreasing the number of constraints in the path

constraint reduces the amount of work required from the SMT solver, which improves

overall performance.

2.3.6 Parallel Execution.

The final approach receiving attention from the research community is a parallel

implementation of symbolic execution strategy. In general, more workers are able to

accomplish more work. The path explosion is a large problem that could benefit from

more workers. Parallel symbolic execution aims to take advantage of increases in cheap

and powerful computational tools.

In order to maximize the benefit of many workers concurrently using symbolic

execution to examine a program, the amount of duplicate work must be minimized. That is,

17

multiple workers exploring the same path does not provide any improvement over a single

worker. The difficulty of parallelizing symbolic execution is the lack of:

• an effective method to partition the state space, and

• a system for worker processes to communicate during execution.

Staats, et al. [27] propose a parallel approach to symbolic execution called Simple

Static Partitioning. The method partitions the state space using predetermined conditions.

The conditions are generated by first performing a round of symbolic execution which

gathers initial path conditions. Simple static partitioning takes the pre-conditions and

partitions the state to eliminate overlap of the conditions. After partitioning the state, the

algorithm starts the worker processes using the Java Pathfinder Framework (JPF) [29],

which includes a symbolic execution plugin, to explore the partitions.

The framework proposed by Staats, et al. does not require explicit communication

between the worker nodes. The approach does allow for communication via remote listener

workers. The listener workers maintain a “cache” of explored paths and are able to signal

a worker process to terminate execution of previously explored path. The results show a

decrease in the amount of time to reach similar path coverage as the JPF [29].

2.4 Summary

The current techniques to address the path explosion problem include search

heuristics, state merging, state pruning, concolic, compositional analysis, and parallel

execution. Table 2.1 groups the current research efforts into their respective categories. The

next chapter presents a novel algorithm that combines the state merging and state pruning

techniques together.

18

Table 2.1: Summary of Path Mitigation Techniques.

Strategies Examples

Search Heuristic [2, 5, 6, 9, 15–17]

State Merging [18–20]

State Pruning [21]

Concolic [2, 5, 6, 16, 22, 23]

Compositional Analysis [24–26]

Parallel Execution [27]

19

III. Methodology

The program analysis of symbolic execution suffers from a path explosion technique.

This research attempts to identify effective means of overcoming this problem and increase

overall code coverage of tested software.

This chapter provides the problem definition as well as the goals and hypotheses. A

description of the algorithms under test is given, along with the experimental design for

this research.

3.1 Problem Definition

KLEE [7] is a program analysis tool that uses symbolic execution to test C code.

KLEE is chosen for this research because it is an open-source project with an active

developer community. Also, KLEE has been used in previous symbolic execution research.

As with other symbolic execution tools, KLEE suffers from a path explosion problem.

That is, the number of possible paths within a program grows extremely large due to the

number of loops and conditionals contained within the program. To efficiently analyze

real applications, an improved method of addressing the path explosion problem is needed.

Adopting the notation of Bugrara and Engler [21], this research refers to the unmodified

version of KLEE as KLEE-BASE.

3.1.1 Goals and Hypothesis.

The goal of this research effort is to measure and compare the effectiveness of the novel

algorithm state merging combined with state pruning. To help assess the effectiveness state

merging and state pruning are also tested separately.

State merging attempts to reduce the amount of duplicate work done by the symbolic

execution tool. If two states arrive at the same program point, the path constraint for

20

each parent state is disjuncted together, resulting in a single child state. This allows the

exploration of a single, more complex state.

Like state merging, state pruning reduces the amount of duplicate work by exploiting

the fact that two separate paths may be identical. That is, if execution of a state branches

into two separate states at point A and those states converges at point B, the instructions

executed between point A and point B may not change the states with respect to the

symbolic expression. In the case where the two resulting states are equivalent, only one

of the paths must be explored further.

State merging combined with state pruning will attempt to apply both of the reductions

from each individual algorithm. During exploration of the state space, the algorithm looks

for opportunities to both merge and prune. The two algorithms complement one another

since they both can only occur when two states arrive at the same program point.

It is hypothesized that each techniques will improve the performance of the KLEE

tool by reducing the amount of duplicate work required to analyze a given program.

The reduced work should allow deeper exploration of paths, as well as exploration of

new paths that would not be reached by the base program in the same amount of time.

This additional exploration will increase the overall code coverage. The addition of each

technique introduces overhead not required by the unmodified KLEE tool, but because of

the large number of paths within a program, this overhead is expected to be overcome by

the efficiency of the technique.

3.1.2 Approach.

The approach to achieve the above goals is to compare the performance of the

symbolic execution tool while analyzing the GNU COREUTILS [3]. To perform testing,

both the state merging and state pruning are implemented as instances of the KLEE

Searcher class. The different symbolic execution configurations are KLEE-BASE, KLEE

with the addition of a state merging (KLEE-MERGE), KLEE with the addition of a state

21

pruning (KLEE-PRUNE), and KLEE with the additions of state pruning and state merging

(KLEE-PRUNE-MERGE).

3.2 State Merging

State merging attempts to address the path explosion problem by reducing the number

of states that must be explored by combining states that arrive at the same program point

into a single, more complex state. States are merged by disjuncting the path constraints for

each state. Figure 3.1 illustrates this concept. Notice, the path constraint in the final state

is a disjunction of the two previous path constraints.

The state merging strategy is referred to as KLEE-MERGE. In the context where

a maximum number of merges is associated with state merging, the strategy is referred

to as KLEE-MERGE-〈max merges〉. When fast-forwarding functionality (discussed in

Section 3.2.1.1) is disabled, the state merging strategy is referred to as KLEE-NO-FF-

MERGE. Again, in the context where a maximum number of merges is associated with

state merging, the strategy with no fast-forwarding is referred to as KLEE-MERGE-〈max

merges〉.

Algorithm 3.1 provides state merging in algorithmic notation.

3.2.1 Dynamic State Merging.

State merging can be done either statically or dynamically. Static state merging

requires the building and traversal of a control flow graph (CFG) [20]. When traversing

the CFG, the algorithm identifies all join points and attempts to merge at all join points.

Part of the issue with using a CFG is that it may model behavior that is not possible for the

program to execute. This research chooses to avoid the preprocessing steps of building and

searching a CFG by using a dynamic approach.

Kuznetsov, et al. [20] propose the idea of dynamic state merging as an alternative

to static state merging. Dynamic state merging requires an arbitrary, underlying search

22

Figure 3.1: Merging two states together.

strategy that implements a pickNextState function. While any strategy can be used, some

are less effective at achieving the goals of state merging. For example, a DFS will follow a

single path until termination, removing the possibility of merging. This research uses the

underlying best-first search maximizing code coverage search included with KLEE.

3.2.1.1 State Fast Forwarding.

States must be at the same program point in order to merge. Kuznetsov, et al.

[20] introduce the idea of state fast-forwarding. With state fast-forwarding, the searcher

maintains a history of previous program states. A state is a candidate for fast-forwarding

if the state could have been merged with a state in the history of another active state.

Kuznetsov, et al. propose that two states that could have merged in the past will likely

be able to merge in the near future. The state is given priority and stepped forward a

bounded number of times. Not all candidates for fast-forward will successfully merge. It

is possible that the fast-forward state branches in a different direction, diverging from the

potential merge candidate.

23

This research adopts a similar strategy for fast-forwarding; however, instead of

maintaining a history of execution states and checking whether a state is a candidate to

merge based on another state’s history, this research takes a more simplified approach and

maintains a history of program points. The idea being that if two states executed the same

instruction, they are likely in the same area of the search space and this distance between

two states is sufficiently small to allow for fast forwarding. Notice that by maintaining only

program points, there is no way of knowing if past states could have merged. Instead this

fast-forward approach only attempts to force states to the same program point.

Algorithm 3.1 State Merging - selectState()
Require: baseSearcher

1: // fastForwardState - state selected to be fast-forwarded
2:
3: if f astForwardCount > 0 then
4: state← f astForwardS tate
5: else
6: state← baseSearcher.selectState()
7: end if
8: for all states s at state.inst do
9: // Returns true if state and s can merge

10: if canMerge(state, s) then
11: // Merges s into state
12: doMerge(state, s)
13: // Disable fast-forward mode
14: f astForwardMode← 0
15: Delete s
16: return state
17: end if
18: end for
19: if f astForwardCount ≤ 0 then
20: // Returns true if state is found in the history of another active state
21: if canFastForward(state) then
22: f astForwardCount ← 10
23: end if
24: end if
25: return state

24

3.2.2 Costs and benefits of merging.

As previously mentioned, the primary reason for state merging is to reduce duplicate

work. The best candidates for merging have very similar path constraints. When path

constraints vary greatly, the resulting symbolic expression places stresses upon the SMT

solver. The symbolic expressions are not only larger, but also contain disjunctions. SMT

solvers perform poorly on symbolic expressions containing disjunctions.

To assess the effects of merging, this research enforces a limit on the number of states

that can merge into a single state. The two levels tested in this work are 5 states and

20 states. It is expected that at a certain point the symbolic expressions will become too

complex to experience a benefit from merging.

3.3 State Pruning

State pruning attempts to reduce the amount of duplicate work performed during

exploration. If two states arrive at the same program point and are equivalent, only one

state must be explored further. Depending on the objective of the specific task, varying

levels of strictness can be applied to determine the equivalence of two states. By relaxing

equivalence requirements, the tool may under-approximate the behavior of the system. That

is, two states that would exercise different areas of code may be deemed to be equivalent;

thus, a portion of code would go unexplored. This may be acceptable in the case where

exhaustive exploration is infeasible. While the under-approximation would prevent a

specific area of code to go unexplored, the pruning may allow the symbolic execution

tool to reach other areas of code that would have been otherwise impossible. This research

explores this tradeoff in Chapter 4.

For this research, two states are equivalent if

1. the path constraints for each state are the same,

2. the call stacks for each state are the same, and

25

3. memory is the same.

The motivation for these criterion is that if two states have the same symbolic

constraints, the two states will exercise the same portion of code. Therefore, only one

state must be explored further.

The way this research implements state pruning is by maintaining a history of each

state visited during execution. To reduce space requirements, a snapshot of the state is

taken before adding it to the history. Snapshots only include the information relevant for

determining if two states are equivalent is stored.

The state pruning technique is referred to as KLEE-PRUNE in the remainder of this

work.

Algorithm 3.2 provides state pruning in algorithmic notation.

Algorithm 3.2 State Pruning - selectState()
Require: baseSearcher

1: // snapshotHistory - snapshot of all states visited
2:
3: state← baseSearcher.selectState()
4: stateS napshot ← createSnapshot(state)
5: if snapshotHistory.contains(stateS napshot) then
6: prune(state)
7: return selectState()
8: else
9: snapshotHistory.add(stateS napshot)

10: return state
11: end if

3.4 Combining state merging and state pruning

The techniques of state merging and state pruning are not mutually exclusive. That is,

the two different strategies can be combined with the hope of additional reduction to the

state space. When two states arrive at the same program point, the algorithm first checks to

see if the states are equivalent. If the states are equivalent, one of the states can be pruned.

26

If the states are not equivalent, the algorithm then checks to see if the two states can be

merged. Note, pruning occurs first because it leads to the greatest reduction. In addition,

once states have merged it is very likely that they will be pruned in the future because of

the added complexity of the path constraint.

Based on results from pilot testing, state merging with pruning is only tested with

the maximum number of merges set at 5 for a single state and fast-forward functionality

enabled.

The combined techniques of state merging and state pruning is referred to as KLEE-

PRUNE-MERGE in the remainder of this work. Algorithm 3.3 provides state merging with

pruning in algorithmic notation.

3.5 System Boundaries

The SUT is the KLEE symbolic execution tool shown in Figure 3.2. The workload

submitted to the system is the GNU COREUTILS utility suite and symbolic input for the

utility to process. The system performs the analysis and returns statistics relating to the

search and per path test cases to reproduce the given execution path.

3.5.1 KLEE Flags.

The flags used were chosen in an attempt to mimic the results of the original KLEE

paper [7]. Due to changes in the KLEE tool, the following commands are the closest to the

original test [30].

klee --output-dir <output_dir> --simplify-sym-indices \

--write-cvcs --write-cov --output-module \

--max-memory=4096 --disable-inlining --optimize \

--use-forked-solver --use-cex-cache --libc=uclibc \

--posix-runtime --allow-external-sym-calls \

--only-output-states-covering-new --environ=test.env \

--run-in=/tmp/sandbox --max-sym-array-size=4096 \

--max-instruction-time=30. --max-time=3600 --watchdog \

--max-memory-inhibit=false --max-static-fork-pct=1 \

--max-static-solve-pct=1 --max-static-cpfork-pct=1 \

27

Algorithm 3.3 State Merge combinded with State Pruning - selectState()
Require: baseSearcher

1: // fastForwardState - state selected to be fast-forwarded
2: // snapshotHistory - snapshot of all states visited
3:
4: if f astForwardCount > 0 then
5: state← f astForwardS tate
6: else
7: state← baseSearcher.selectState()
8: end if
9: stateS napshot ← createSnapshot(state)

10: if snapshotHistory.contains(stateS napshot) then
11: prune(state)
12: return selectState()
13: end if
14: for all states s at state.inst do
15: if canMerge(state, s) then
16: // Merges s into state
17: doMerge(state, s)
18: // Disable fast-forward mode
19: f astForwardMode← 0
20: Delete s
21: return state
22: end if
23: end for
24: if f astForwardCount ≤ 0 then
25: // Returns true if state is found in the history of another active state
26: if canFastForward(state) then
27: f astForwardCount ← 10
28: end if
29: end if
30: return state

28

Figure 3.2: System Under Test (SUT).

--switch-type=internal --write-sym-paths <searcher> \

./<utility>.bc --sym-args 0 1 10 --sym-args 0 2 2 \

--sym-files 1 8 --sym-stdout

3.5.2 Reducing non-determinism.

To allow for a more direct comparison of the path mitigation techniques with KLEE-

BASE and reduce the number of experiment replications needed, this research attempts to

remove as much non-determinism from the KLEE system as possible. Sources of non-

determinism include:

• address space layout randomization (ASLR)

• --randomize-fork flag

• random path selection used by the KLEE Searcher

29

This research disables ASLR on the host operating system. This allows memory

allocations to occur in a more deterministic fashion. Thus, replications of the experiments

should experience less variance.

The --randomize-fork flag forces to the tool to randomly switch the true and false

states at a fork [13]. This change removes an additional source of non-determinism and is

not expected to drastically change the performance of KLEE.

The optimal configuration for KLEE-BASE is an interleaved search strategy that

switches between a NURS algorithm favoring code coverage and a random path searcher.

To increase the deterministic behavior of the system, KLEE-BASE is run without the

random path searcher. This causes KLEE-BASE to perform below its maximum potential

but allows for better comparison between the path mitigation techniques under test.

3.6 Workload

The workload submitted to the system for this research is the GNU COREUTILS

6.10 utility suite [3]. COREUTILS suite is chosen because it is used in the original KLEE

research [7]. The utility under analysis directly affects the performance of the KLEE tool.

Large applications are inherently more complex. That is, the number of possible paths and

the length of the paths is larger, and so KLEE must do more work to explore the state space.

3.6.1 GNU COREUTILS.

The COREUTIL suite of tools represent real-world code that are used on a daily basis

by Unix/Linux users. The utility suite includes a variety of different classes of utilities

including file utilities, text utilities and shell utilities. Table 3.1 shows the exact utilities

submitted to the SUT.

30

Table 3.1: List of GNU COREUTILS tested.

base64 dd id mv rm touch

chcon df join nice rmdir tr

chgrp dircolors kill nohup seq tsort

chmod du link od setuidgid tty

chown env ln paste shred uname

cksum expand logname patchk shuf unexpand

comm factor ls pinky sleep uniq

cp fmt mkdir pr split unlink

csplit fold mkinfo printf stty wc

cut head mknod ptx tail who

date hostid mktemp readlink test whoami

The COREUTILS suite includes a variety of applications ranging from 47 LOC to

3247 LOC. For the purposes of this research, a LOC is defined to be a single line that

contains at least one program statement (comments and white space is excluded from the

LOC count). Figure 3.3 provides a histogram for individual utilities in the suite. The total

line count for the utilities tested is 33.4 thousands (kilo) of lines of code (KLOC).

3.7 Performance Metrics

The primary objective of this research is to assess the effectiveness of state merging

and state pruning in regards to increasing KLEE’s ability to address the path explosion

problem.

31

Lines of C Code

C
ou

nt

0
2

4
6

8
10

12

0 500 1000 1500 2000 2500 3000 3500

Figure 3.3: Histogram of LOC for COREUTILS [3].

The system is evaluated based on the following performance metrics: code coverage,

instruction reduction, path reduction, average query cost, merge time, and fast forward

time.

32

3.7.1 Code coverage.

The methodology this research uses to compare code coverage differs from the

previous KLEE work. The KLEE tool writes out a test case containing concrete values

for each path that will reproduce the given path. However, when merging states, KLEE

will only write out a test case that guides execution down one of the many potential paths

that are merged together. Since this research is concerned with a comparison of KLEE-

BASE with the path mitigation techniques and is not interested in the maximum possible

code coverage of a specific application, a different approach is taken.

This work uses the LLVM bitcode instructions for measuring the performance of the

different algorithms. Code coverage, as a percentage, is the unique number of LLVM

bitcode instructions executed divided by the total number of LLVM bitcode instructions in

the compiled utility.

When concerned with absolute code coverage, this method is problematic because

the compiled LLVM bitcode includes any libraries required by the application. Thus, code

from the external libraries that will never be called is included in the overall size of the code.

This will result is lower than expected code coverage percentages. However, since this

research is concerned with a relative comparison between algorithms and not an absolute

value for code coverage, this is deemed acceptable.

3.7.2 Instruction reduction.

While overall an increase in code coverage is the main objective of the path reduction

techniques, instruction reduction provides insight into the amount of savings gained by

merging and pruning states. KLEE maintains the total number of instructions executed

during a run. Note, this count is not unique instructions. Therefore, a reduction in the

number of instructions executed with an increase in code coverage demonstrates a reduction

in duplicate instructions during execution.

33

3.7.3 Path reduction.

As with instruction reduction, path reduction provides insight into the amount of

savings gained by merging and pruning states. A reduction in the number of paths executed

with an increase in code coverage demonstrates a reduction in duplicate paths explored

during execution.

3.7.4 Average query cost.

The average query cost is the total number of constraints that are added during

execution divided by the total number of queries sent to the SMT solver. This is a measure

of the additional stress placed on the solver by state merging.

3.7.5 Merge time.

Determining if two states are suitable for merging is an additional overhead not

experienced by KLEE-BASE. The merge time is the time spent checking if two states

can be merged and the subsequent time to merge the states. Successful merges reduce

the number of paths the symbolic execution tool must track. In this way, the overhead of

successful merges can be overcome by the reduction in paths. All failed merges are pure

overhead. That is, the time spent processing a failed merge is completely wasted time. For

an algorithm to be effective, the merge success rate and especially the merge failure time

must be low with respect to the total run time.

3.7.6 Fast forward time.

Two states must be at the same program point to attempt a merge. The fast-forward

functionality searches for states that have executed the same instruction in the near past.

This is an additional overhead not experienced by KLEE-BASE. Unlike a failed merge, a

failed fast-forward is not pure overhead. Giving priority to a single state for a period of time

will override the underlying search heuristic, such as code coverage. However, execution

continues to move forward even with a failed fast-forward attempt.

34

3.8 System Parameters

The system parameters for this study are as follows:

• Size of symbolic data

KLEE must be provided with some amount of symbolic data to begin exploring the

state space. The original KLEE work uses the following command for symbolic

input into the majority of the COREUTILs: --sym-args 0 1 10 --sym-args

0 2 2 --sym-files 1 8 --sym-stdout. This represents one long option, two

small options, and two small input streams (stdin and one file). This amount of

symbolic data is expected to be sufficient to achieve high code coverage [30].

The original KLEE research determined that the above symbolic input does not

produce satisfactory coverage for the COREUTILs listed below [7, 30]. The modified

symbolic input is taken from the original KLEE work and is listed below.

dd : --sym-args 0 3 10 --sym-files 1 8

--sym-stdout

dircolors : --sym-args 0 3 10 --sym-files 2 12

--sym-stdout

mknod : --sym-args 0 1 10 --sym-args 0 3 2

--sym-files 1 8 --sym-stdout

od : --sym-args 0 3 10 --sym-files 2 12

--sym-stdout

pathchk : --sym-args 0 1 2 --sym-args 0 1 300

--sym-files 1 8 --sym-stdout

printf : --sym-args 0 3 10 --sym-files 2 12

--sym-stdout

35

• Global timeout

KLEE provides a global timeout mechanism for the testing of a given utility.

A timeout is required for cases where KLEE is unable to perform a complete

exploration of the state space. This research follows the original KLEE research

[7] and fixes the global timeout at one hour. Note, KLEE is able to complete the

testing of some applications under the one hour time limit.

• Instruction timeout

KLEE provides a timeout for each instruction that the tool handles. Most often, the

majority of this time will be spent in the SMT solver. To prevent a single instruction

from dominating the exploration, this research follows the original KLEE research

and fixes the per instruction timeout at 30 seconds.

• Maximum memory

Symbolic execution is computationally expensive from a memory requirement

perspective. KLEE refuses to fork when the maximum memory capacity is met.

For this research, the maximum memory is set at 4GB.

• Path mitigation technique

The path mitigation technique is the plugin specifically designed to address the path

explosion problem. Changing the technique affects overhead within the system, as

well as potential improvements in performance by reducing duplicate work.

3.9 Factors

This research identifies three factors to measure the performance of each path

mitigation technique. Table 3.2 summarizes the factors and their levels.

36

• Path mitigation technique

Four path mitigation techniques are used: KLEE-BASE (no mitigation), state

merging, state pruning and state merging with state pruning. The path mitigation

techniques require additional overhead not faced by the baseline configuration and

are weighed against any benefit gained from the individual technique.

• Max merges

For the tests using state merging, the algorithm uses two different levels for the

maximum number of merges per state: 5 states and 20 states. These levels are

chosen to approximate an optimal balance between reduction in the state space and

complexity introduced by merging states.

• Fast-forward

A fast-forward strategy attempts to increase the chances of arriving at a potential

merge point. Each execution state maintains a history of its past program points.

Each newly selected state searches the history of all active execution states to look

for a match. If a match is found, the state is put into fast-forward mode. To test the

effectiveness of fast-forward strategy, this research tests the state merging algorithm

with and without the fast-forwarding strategy.

Table 3.2: Experimental Factors.

Level I Level II Level III Level IV

Path mitigation KLEE-BASE State pruning State merging
State merging with

state pruning

Max merges per state - - 5 20 5

Fast-forward - - yes no yes

37

3.10 Evaluation Technique

The evaluation technique used for this study is direct measurement of the KLEE

symbolic execution tool. Direct measurement of the system is used since this research

focuses on the performance of KLEE on real-world applications. The test equipment for

the experiment consists of a Windows 7 host computer, VMWare 10.1. and Ubuntu 12.04.1

LTS Guest.

3.11 Experimental Design

This research employs a full factorial design. Given the factors levels, 7 unique

experiments are needed. Based on pilot studies, the variation between experiments is

expected to be low. For that reason, 3 repetitions of each experiment is conducted.

This yields 3 repetitions × 7 unique experiments = 21 experiments. Since 66 unique

COREUTILS are submitted to the system and run for one hour each, testing lasts 21 ×

66 = 1386 hours.

3.12 Methodology Summary

This research proposes a method to mitigate the current path explosion problem faced

by the symbolic execution tools. The System Under Test (SUT) is the KLEE program

analysis tool, and the Component Under Test (CUT) is the path explosion mitigation

technique. The techniques tested are state merging and state pruning. The research

approach is to submit symbolic input to various COREUTILS utilities. The effectiveness

of each path mitigation technique is measured by code coverage, SMT solver time, average

query cost, merge time, and fast-forward time.

38

IV. Results and Analysis

This research introduces a novel algorithm to address the path explosion problem

of symbolic execution. The novel algorithm combines the previously researched state

reduction techniques of state merging [20] and state pruning [21]. This research

implements a prototype of each algorithm within KLEE [10]. The algorithm prototypes

run on 66 GNU COREUTILS [3] for one hour.

This chapter reports the results of the path mitigation techniques and provides an

analysis of the techniques with respect to KLEE-BASE. The different experiments are

compared based on overall code coverage of LLVM instructions, solver time, average query

cost and overhead time introduced by merging and pruning.

4.1 Overview

This research tests four algorithms: unmodified KLEE (KLEE-BASE), state merging

(KLEE-MERGE), state pruning (KLEE-PRUNE), and state merging combined with state

pruning (KLEE-PRUNE-MERGE). The state merging algorithms require two additional

parameters: maximum number of merges allowed for a single state and fast-forward

functionality. The levels chosen for the maximum number of merges are 5 and 20. Fast-

forward functionality attempts to increase the probability that two states arrive at the same

program point. KLEE-MERGE-5 refers to the state merging algorithm with a maximum

of 5 merges into a single state and fast-forward functionality enabled. KLEE-MERGE-20

refers to the state merging algorithm with a maximum of 20 merges into a single state and

fast-forward functionality enabled. KLEE-NO-FF-MERGE-5 refers to the state merging

algorithm with a maximum of 5 merges into a single state and fast-forward functionality

disabled. KLEE-NO-FF-MERGE-20 refers to the state merging algorithm with a maximum

of 20 merges into a single state and fast-forward functionality disabled. Table 4.1 provides

39

a summary of the coverage results for each algorithm. Note, the code coverage and

instructions results are in terms of the compiled LLVM bitcode instructions.

Appendix A provides the code coverage for each COREUTIL and algorithm pair

compared to KLEE-BASE. In general, the algorithms perform poorly with respect to code

coverage on the same COREUTILs. The utilities that the algorithms perform poorly on are

from each class of utilities: file system, process, text and shell.

Table 4.1: Summary of Coverage Results for All Algorithms.

Statistic Average Lowest Highest

Cov. (%) Cov. (%) Cov. (%)

KLEE-BASE 19.27 6.98 33.7

KLEE-MERGE-5 20.42 4.91 33.7

KLEE-MERGE-20 19.55 4.89 33.6

KLEE-NO-FF-MERGE-5 19.32 6.77 34.4

KLEE-NO-FF-MERGE-20 18.65 6.61 33.1

KLEE-PRUNE 20.69 6.63 33.6

KLEE-PRUNE-MERGE 19.43 5.06 29.9

4.2 KLEE-BASE

This research uses KLEE-BASE, an unmodified version of KLEE, as the baseline

measurement for each COREUTIL. KLEE-BASE uses the coverage oriented search

heuristic (-search=nurs:covnew).

4.3 Merging Results

The four state merging algorithms outperform KLEE-BASE on 51 of the 66

COREUTILS. KLEE-MERGE-5 is the only merging algorithm to average better code

40

coverage than KLEE-BASE. KLEE-NO-FF-MERGE-20 performs worse than all of the

other merging algorithm and also performs worse than KLEE-BASE. This supports the

idea that over merging states can create too much complexity for the SMT solver to achieve

a performance increase. Appendix A shows the merging algorithms do not excel at a

particular class of utilities with respect to code coverage. Instead, the improvements over

KLEE-BASE come from each class of utilities.

4.3.1 KLEE-MERGE-5.

KLEE-MERGE-5 is the state merging algorithm with a maximum of five merges per

state and fast-forward functionality enabled. This algorithm performs the best of the state

merging algorithms with respect to code coverage.

Table 4.2 provides a summary of the results. Note, negative values in the reduction

column corresponds to an increase rather than a reduction in the particular statistic.

Table 4.2: Impact of KLEE-MERGE-5 on Average Code Coverage, Instructions, Queries,

Query Constructs, Average Query Cost, Successful Merges, and Successful Fast-Forward.

Statistic KLEE-BASE KLEE-MERGE-5 Reduction (%)

Average Coverage (%) 19.27 20.42 -

Instructions 63,214,630 57,082,827 9.7

Queries 920,246 580,014 37.0

Query Constructs 486,143,051 885,297,982 -82.1

Average Query Cost 528.28 1,526.34 -189

SMT Solver Time (%) 97.8 97.0 0.82

Successful Merges - 86.9 -

Merge Time (%) - 1.44 -

Successful Fast-Forward - 67.9 -

Fast-Forward Time (%) - 0.25 -

41

4.3.1.1 Code Coverage.

−
20

−
15

−
10

−
5

0
5

10
15

COREUTILS utility

C
ov

er
ag

e
In

cr
ea

se
 (

%
)

Figure 4.1: Coverage Increases over COREUTILS for KLEE-MERGE-5.

KLEE-MERGE-5 outperforms KLEE-BASE on 39 of the 66 COREUTILS (∼59%).

The average coverage increase for KLEE-MERGE-5 is 20.42% of the LLVM bitcode

instructions. Figure 4.1 shows the coverage increase for each COREUTIL.

42

4.3.1.2 Instruction Reduction.

The average over the runs shows a 9.7% reduction in the number of total instructions

executed. The merging of two states reduces the amount of duplicate instructions executed.

Two separate states that execute over the same portion of code will require each instruction

to be handled twice. By merging the two states together when possible, the instructions

must only be handled once.

4.3.1.3 Average Query Cost.

The number of queries sent to the SMT solver decreased by 37%. However, the

average query cost for KLEE-MERGE-5 was higher than KLEE-BASE. Therefore, while

the number of queries sent to the SMT solver decreased, the queries sent by KLEE-

MERGE-5 are larger and more complex. This result supports the notion that state merging

creates more complex states. As shown above, this complexity is overcome in ∼59% of the

COREUTILS.

4.3.1.4 SMT Solver Time.

KLEE-MERGE-5 spent 97.0% of the execution time in the SMT solver, which is 0.8%

less time than KLEE-BASE. Note, due to execution that finished very quickly and led to

outlier values, 97.0% is obtained by taking the average of the median values for each run.

This result is somewhat unexpected due to the complexity introduced by merging states.

However, the reduction in overall queries sent to the SMT solver accounts for the decrease

in time spent inside the solver.

4.3.1.5 Merge and Fast-Forward Success.

KLEE-MERGE-5 averaged 86.9 merges per utility and 67.9 successful fast-forward

attempts. The time to check if two states are eligible to merge and to perform the merge

on states that are eligible accounts for 1.44% of the total execution time. The time

spent searching for fast-forward candidates accounts for even less time, 0.25% of the

total execution time. This indicates that the algorithm itself does not introduce too much

43

overhead looking for opportunities and trying to merge. Note, this overhead is different

from the overhead introduced to the SMT solver by more complex states.

4.3.2 KLEE-MERGE-20.

KLEE-MERGE-20 is the state merging algorithm with a maximum of twenty merges

per state and fast-forward functionality enabled. Table 4.3 provides a summary of the

results.

Table 4.3: Impact of KLEE-MERGE-20 on Average Code Coverage, Instructions, Queries,

Query Constructs, Average Query Cost, Successful Merges, and Successful Fast-Forward.

Statistic KLEE-BASE KLEE-MERGE-20 Reduction (%)

Average Coverage (%) 19.27 19.55 -

Instructions 63,214,630 17,026,253 73.1

Queries 920,246 281,005 69.5

Query Constructs 486,143,051 906,872,707 -86.5

Average Query Cost 528.28 3,227.25 -511

SMT Solver Time (%) 97.8 98.0 -0.2

Successful Merges - 286 -

Merge Time (%) - 2.5 -

Successful Fast-Forward - 219.73 -

Fast-Forward Time (%) - 0.11 -

4.3.2.1 Code Coverage.

KLEE-MERGE-20 outperforms KLEE-BASE on 35 of the 66 COREUTILS. The

average code coverage for KLEE-MERGE-20 is 19.55% of the LLVM bitcode instructions,

44

−
20

−
15

−
10

−
5

0
5

10
15

COREUTILS utility

C
ov

er
ag

e
In

cr
ea

se
 (

%
)

Figure 4.2: Coverage Increases over COREUTILS for KLEE-MERGE-20.

marginally higher than KLEE-BASE. Figure 4.2 shows the coverage increase for each

COREUTIL.

45

4.3.2.2 Instruction Reduction.

The average over the runs shows a 73.1% reduction in the number of instructions

executed. The reduction in instructions by KLEE-MERGE-20 is significantly higher than

that of KLEE-MERGE-5. This is supported by the increase in successful merges with

KLEE-MERGE-20 at 286 and KLEE-MERGE-5 at 86.9. That is, the increased number of

merges reduces the number of executions of duplicate instructions.

4.3.2.3 Average Query Cost.

The number of queries sent to the SMT solver decreased by 69.5%. However, the

average query cost for KLEE-MERGE-20 was higher than KLEE-BASE. Therefore, while

the number of queries sent to the SMT solver decreased, the queries sent by KLEE-

MERGE-20 are larger and more complex. This result supports the notion that state merging

creates more complex states. As shown above, this complexity is overcome in 53% of the

COREUTILS.

4.3.2.4 SMT Solver Time.

KLEE-MERGE-20 spent 98.0% of the execution time in the SMT solver, which is

0.2% more time than KLEE-BASE. Since the tests were run for an hour, this difference

amounts to approximately 0.12 seconds. This result differs from KLEE-MERGE-5, where

the percentage of time spent in the SMT solver was lower than that of KLEE-BASE.

4.3.2.5 Merge and Fast-Forward Success.

KLEE-MERGE-20 averaged 286 merges per utility and 219.73 successful fast-

forward attempts. The time to check if two states are eligible to merge and to perform

the merge on states that are eligible accounts for 2.5% of the total execution time. The time

spent searching for fast-forward candidates accounts for even less time, 0.11% of the total

execution time. The increase in successful merges is due to the increase in the maximum

number of states allowed to merge into one from 5 to 20. Therefore, it is likely KLEE-

46

BASE-5 tried to merge but failed because the maximum limit had been reached and not

because the two states were incompatible.

4.3.3 KLEE-NO-FF-MERGE-5.

KLEE-NO-FF-MERGE-5 is the state merging algorithm with a maximum of five

merges per state and fast-forward functionality disabled. Table 4.4 provides a summary

of the results.

Table 4.4: Impact of KLEE-NO-FF-MERGE-5 on Average Code Coverage, Instructions,

Queries, Query Constructs, Average Query Cost, SMT Solver Time and Successful Merges.

Statistic KLEE-BASE KLEE-NO-FF-MERGE-5 Reduction (%)

Average Coverage (%) 19.27 19.32 -

Instructions 63,214,630 20,127,369 68.2

Queries 920,246 649,544 29.4

Query Constructs 486,143,051 1,133,119,093 -133.1

Average Query Cost 528.28 1,744.48 -230.2

SMT Solver Time (%) 97.8 98 -0.2

Successful Merges - 170.3 -

Merge Time (%) - 1.2 -

4.3.3.1 Code Coverage.

KLEE-NO-FF-MERGE-5 outperforms KLEE-BASE on 38 of the 66 COREUTILS.

The average KLEE-NO-FF-MERGE-5 is 19.32% of the LLVM bitcode instructions,

slightly lower than KLEE-BASE. Figure 4.3 shows the coverage increase for each

COREUTIL.

47

−
15

−
10

−
5

0
5

10

COREUTILS utility

C
ov

er
ag

e
In

cr
ea

se
 (

%
)

Figure 4.3: Coverage Increases over COREUTILS for KLEE-NO-FF-MERGE-5.

4.3.3.2 Instruction Reduction.

The average over the runs shows a 68.2% reduction in the number of instructions

executed. These results are slightly higher than KLEE-MERGE-5, which is unexpected

since KLEE-MERGE-5 would most likely have more successful merges with the addition

48

of the fast-forward functionality. However, that is not the case. KLEE-NO-FF-MERGE-5

averaged 170.3 merges per utility while KLEE-MERGE-5 averaged 86.9 merges per utility.

4.3.3.3 Average Query Cost.

The number of queries sent to the SMT solver decreased by 29.4%. However, the

average query cost for KLEE-MERGE-5 was higher than KLEE-BASE. These results are

very similar to KLEE-BASE-5.

4.3.3.4 SMT Solver Time.

KLEE-NO-FF-MERGE-5 spent 98.0% of the execution time in the SMT solver, which

is 0.2% more time than KLEE-BASE.

4.3.3.5 Merge Success.

KLEE-NO-FF-MERGE-5 averaged 170.3 merges per utility. This is higher than

KLEE-MERGE-5, which averaged 86.9 merges per utility. This is unexpected due to

the fact that KLEE-MERGE-5 uses fast-forward functionality that is designed specifically

to increase the chances of a merge occurring. This research is unable to explain this

discrepancy, although it may be due to the non-determinism of the system.

4.3.4 KLEE-NO-FF-MERGE-20.

KLEE-NO-FF-MERGE-20 is the state merging algorithm with a maximum of twenty

merges per state and fast-forward functionality disabled. Table 4.5 provides a summary of

the results.

4.3.4.1 Code Coverage.

KLEE-NO-FF-MERGE-20 outperforms KLEE-BASE on 24 of the 66 COREUTILS.

The average code coverage for KLEE-NO-FF-MERGE-20 is 18.65% of the LLVM

bitcode instructions. KLEE-NO-FF-MERGE-20 was the lowest performing merging

algorithm with respect to code coverage. Figure 4.4 shows the coverage increase for each

COREUTIL.

49

Table 4.5: Impact of KLEE-NO-FF-MERGE-20 on Average Code Coverage, Instructions,

Queries, Query Constructs, Average Query Cost, SMT Solver Time and Successful Merges.

Statistic KLEE-BASE KLEE-NO-FF-MERGE-20 Reduction (%)

Average Coverage (%) 19.27 18.65 -

Instructions 63,214,630 6,028,078 90.5

Queries 920,246 267,285 71

Query Constructs 486,143,051 662,659,108 -36.3

Average Query Cost 528.28 2,479.22 -369.3

SMT Solver Time (%) 97.8 98.3 -0.5

Successful Merges - 324.4 -

Merge Time (%) - 0.77 -

4.3.4.2 Instruction Reduction.

The average over the runs shows a 90.5% reduction in the number of instructions

executed. KLEE-NO-FF-MERGE-20 achieved the highest reduction of both instructions

and paths out of all state merging techniques. However, as shown above, KLEE-NO-FF-

MERGE-20 only increased overall code coverage on 24 of the 66 COREUTILS.

4.3.4.3 Average Query Cost.

The number of queries sent to the SMT solver decreased by 71%. , KLEE-NO-FF-

MERGE-20 experienced the largest reduction in queries sent to SMT solver. KLEE-NO-

FF-MERGE-20 also had the largest average query cost. So while the total number of

queries sent decreased, the complexity of the queries that were sent was significantly higher

than the other algorithms.

50

−
15

−
10

−
5

0
5

10
15

COREUTILS utility

C
ov

er
ag

e
In

cr
ea

se
 (

%
)

Figure 4.4: Coverage Increases over COREUTILS for KLEE-NO-FF-MERGE-20.

4.3.4.4 SMT Solver Time.

KLEE-NO-FF-MERGE-5 spent 98.3% of the execution time in the SMT solver, which

is 0.5% more time than KLEE-BASE. This follows from the increase in average query cost,

which represents more difficult queries of the SMT solver.

51

4.3.4.5 Merge Success.

KLEE-NO-FF-MERGE-20 averaged 324.4 merges per utility. Again, the merging

strategy without fast-forwarding functionality was able to successfully merge more states;

KLEE-MERGE-20 averaged 286 merges per utility.

4.3.5 Merging Summary.

At least one of the state merging techniques performed better than KLEE-BASE on

51 of the 66 COREUTILS. All four merging techniques were successful in reducing both

the number of instructions executed and paths explored. However, the two algorithms that

achieved the higher reduction in instructions and paths, KLEE-MERGE-20 and KLEE-NO-

FF-MERGE-20, were also the worst performing. This is a result of the extra stress placed

upon the SMT as shown by the average query cost of each algorithm. With a naı̈ve merging

technique that merges any eligible state without regard for the complexity of the resulting

state, a maximum number of merges per state of 20 states is too large to experience an

improvement over KLEE-BASE.

The fast-forward functionality proved to be unsuccessful in increasing the number of

successful merges. The large number of fast-forward attempts had a low success rate and

did not increase the number of successful merges. However, this research did not expect

the difference between the number successful merges for the algorithms with and without

the fast-forward functionality to be so large. This is most likely due to non-determinism

within the system. Since this is the primary concern of this research, more testing is needed

to verify this result.

4.4 Pruning Results

KLEE-PRUNE is an implementation of the state pruning algorithm. KLEE-PRUNE

performed the best of the algorithms tested in this research. Appendix A shows that KLEE-

PRUNE performed especially well on file system ownership manipulation (chown, chmod,

52

chgrp). This does not translate to all file manipulation commands. For example, KLEE-

PRUNE performed much worse than KLEE-BASE on mv and ls.

Table 4.6: Impact of KLEE-PRUNE on Average Code Coverage, Instructions, Queries,

Query Constructs, Average Query Cost, SMT Solver Time and Pruned States.

Statistic KLEE-BASE KLEE-PRUNE Reduction (%)

Average Coverage (%) 19.27 20.69 -

Instructions 63,214,630 32,375,332 48.8

Queries 920,246 810,350 11.9

Query Constructs 486,143,051 523,194,126 -7.6

Average Query Cost 528.28 645.64 -22.2

SMT Solver Time (%) 97.8 93.4 4.5

Pruned States - 1,142 -

Prune Time(%) - 4.03 -

4.4.1.1 Code Coverage.

As shown in Table 4.6, KLEE-PRUNE outperforms KLEE-BASE on 40 of the 66

COREUTILS. The average code coverage for KLEE-PRUNE is 20.69% of the LLVM

bitcode instructions. KLEE-PRUNE performed the best of all algorithms tested with

respect to code coverage. Figure 4.5 shows the coverage increase for each COREUTIL.

4.4.1.2 Instruction Reduction.

The average over the runs shows a 48.8% reduction in the number of instructions

executed. This reduction in instructions is a result of pruned states. The pruned states

reduce the number of duplicate instructions executed.

53

−
15

−
10

−
5

0
5

10
15

20
25

COREUTILS utility

C
ov

er
ag

e
In

cr
ea

se
 (

%
)

Figure 4.5: Coverage Increases over COREUTILS for KLEE-PRUNE.

4.4.1.3 Average Query Cost.

The number of queries sent to the SMT solver decreased by 11.9%. The average query

cost for KLEE-PRUNE was higher than KLEE-BASE.

54

4.4.1.4 SMT Solver Time.

KLEE-PRUNE spent 93.4% of the execution time in the SMT solver, which is 4.4%

less time than KLEE-BASE. This result is also lower than the merging techniques.

4.4.1.5 Pruned States.

KLEE-PRUNE prunes an average of 1,142 states per utility during exploration.

Pruning accounts for 4.03% of the the execution time. This pruning is especially beneficial

because unlike merging, pruning does not add additional strain to the SMT solver.

4.4.2 Pruning Summary.

KLEE-PRUNE performed the best with respect to code coverage of all the algorithms

implemented. KLEE-PRUNE was able to successfully reduce the number of duplicate

instructions executed by pruning redundant states, allowing for better code coverage on 40

of 66 COREUTILS. KLEE-PRUNE did especially well on the COREUTILS dealing with

file system manipulation, as shown by Appendix A.

4.5 Pruning Combined with Merging Results

KLEE-PRUNE-MERGE is an implementation of the novel algorithm introduced in

this research that combines state merging and pruning techniques. KLEE-PRUNE-MERGE

did not perform as well as the individual KLEE-MERGE and KLEE-PRUNE algorithms

with respect to code coverage. More work is needed to improve the synergy of the two

separate techniques. KLEE-PRUNE-MERGE did perform well on COREUTILs from the

class of text utilities (expand, fmt, join, seq). The remainder of this section presents the

individual metrics for KLEE-PRUNE-MERGE.

4.5.1.1 Code Coverage.

As shown in Table 4.7, KLEE-PRUNE-MERGE outperforms KLEE-BASE on 36 of

the 66 COREUTILS. The average code coverage for KLEE-PRUNE-MERGE is 19.46%

55

Table 4.7: Impact of KLEE-PRUNE-MERGE on Average Code Coverage, Instructions,

Queries, Query Constructs, Average Query Cost, SMT Solver Time, Successful Merges,

Successful Fast-Forward and Pruned States.

Statistic KLEE-BASE KLEE-PRUNE-MERGE Reduction (%)

Average Coverage (%) 19.27 19.46 -

Instructions 63,214,630 40,938,388 35.2

Queries 920,246 641,973 30.2

Query Constructs 486,143,051 1,037,482,453 -113.4

Average Query Cost 528.28 1,616.08 -205.9

SMT Solver Time (%) 97.8 95.2 2.7

Successful Merges - 84.2 -

Merge Time (%) - 1.02 -

Successful Fast-Forward - 67.1 -

Fast-Forward Time (%) - 0.14 -

Pruned States - 37.5 -

Prune Time (%) - 0.17 -

of the LLVM bitcode instructions. Figure 4.6 shows the coverage increase for each

COREUTIL.

4.5.1.2 Instruction Reduction.

The average over the runs shows a 35.2% reduction in the number of instructions

executed. KLEE-PRUNE-MERGE does not achieve a high of an instruction reduction as

KLEE-PRUNE. This suggests that merging states together into a single state decreases the

probability of pruning that state in the future.

56

−
20

−
15

−
10

−
5

0
5

10
15

COREUTILS utility

C
ov

er
ag

e
In

cr
ea

se
 (

%
)

Figure 4.6: Coverage Increases over COREUTILS for KLEE-PRUNE-MERGE.

4.5.1.3 Average Query Cost.

The number of queries sent to the SMT solver decreased by 30.2%. However, the

average query cost for KLEE-PRUNE-MERGE was higher than KLEE-BASE.

57

4.5.1.4 SMT Solver Time.

KLEE-PRUNE-MERGE spent 95.2% of the execution time in the SMT solver, which

is 2.6% more time than KLEE-BASE.

4.5.1.5 Merge and Fast-Forward Success.

KLEE-PRUNE-MERGE averaged 84.2 merges per utility and 67.1 successful fast-

forward attempts. The time to check if two states are eligible to merge and to perform the

merge when possible accounts for 1.02% of the total execution time.

4.5.1.6 Pruned States.

KLEE-PRUNE-MERGE averaged 37.5 pruned states per utility. This reduction is

more significant than merging because the pruned state is removed from the system

completely, whereas, when two states are merged, information for both states is maintain in

the system through the disjunction of the constraints, creating a more complex state. KLEE-

PRUNE-MERGE was able to prune far fewer states than KLEE-PRUNE, 37.5 compared to

1142. This is likely due to the fact that once states are merged together, they are much less

likely to be pruned in the future because of the added complexity of the path constraint.

4.5.2 Pruning Combined with Merging Summary.

KLEE-PRUNE-MERGE outperformed KLEE-BASE with respect to code coverage

on 36 of the 66 COREUTILS. However, KLEE-PRUNE-MERGE was outperformed by

the individual KLEE-MERGE and KLEE-PRUNE algorithms. KLEE-PRUNE-MERGE

was unable to prune the same number of states as KLEE-PRUNE, negatively impacting

the overall code coverage. Since KLEE-PRUNE-MERGE merges states together, this is a

potential cause for the reduction in the number of pruned states.

4.6 Results Summary

This section presents the results of each state merging and state pruning algorithm.

No single algorithm completely dominated over another. The results show that naı̈vely

merging 20 states into a single state creates too much computational complexity for the

58

SMT solver to improve the code coverage over KLEE-BASE. The merging strategies where

the maximum merge limit is 5 performed better than KLEE-BASE for more than 50% of

the COREUTILS.

The results show that state merging combined with state pruning is a viable strategy

to increase code coverage. However, KLEE-PRUNE-MERGE did not perform as well as

the KLEE-PRUNE or KLEE-MERGE-5. This suggests more work is needed to increase

the synergy between state merging and state pruning when combined.

59

V. Conclusions and Future Work

Software vulnerabilities place sensitive personal and financial information at risk.

The need to produce quality software, free of bugs is compelling. Symbolic execution

is a promising technique for improving the overall quality of software and reducing

the occurrence of vulnerabilities. Current symbolic execution tools suffer from a path

explosion problem where the possible number of paths grows exponentially with respect to

loops and conditionals.

This research explored two state reduction techniques, state merging and state pruning,

to address the path explosion problem of symbolic execution. This research also introduced

a novel algorithm that combines dynamic state merging with dynamic state pruning.

5.1 Contributions

5.1.1 Primary Contribution.

This research proposes a novel algorithm to address the path explosion problem

of symbolic execution. A prototype of the algorithm was implemented in the KLEE

symbolic execution tool. Analysis of the prototype showed mix results. On 35 of the

66 COREUTILS, the prototype outperformed KLEE-BASE.

5.1.2 Secondary Contributions.

This research implemented prototypes of both state merging and state pruning

techniques and provides analysis including changes to code coverage. No single algorithm

completely dominated over another. It was clear from the results, that a maximum of 20

states merging together was too high for a naı̈ve state merging algorithm that merged at

every possible chance. The complexity introduced by merging this large number of states

together is too much for the SMT solver to overcome.

60

5.2 Limitations

The state merging and state pruning algorithms were implemented within the KLEE

symbolic execution tool. While the algorithms are general enough to apply other symbolic

execution tools, the results of this work are highly dependent upon the KLEE architecture.

Additionally, each algorithm was compared against a sub-optimal configuration of

KLEE. Namely, the random path searcher was excluded from the KLEE-BASE test. This

choice was made in order to more directly compare the effects of state merge and state

pruning.

5.3 Future Work

Future work includes testing the state merging and state pruning algorithm in

additional symbolic execution tools to verify that the properties hold over different tools.

Secondly, the state merging and state pruning algorithms proposed are naı̈ve

algorithms used to demonstrate the possibility of combining state merging and state

pruning. More sophisticated state merging techniques [20] exist that use additional

knowledge of the system, including static passes prior to execution, to determine the

estimated cost and benefit of merging. Thus, this technique can reduce the stress placed

on the SMT solver. In addition, more sophisticated state pruning techniques [21] exist that

are able to determine when two states are functionally equivalent and increase the amount

pruning done during the search process.

61

Appendix A: Code Coverage (%) for all COREUTILS

UTILITY ALGORITHM COVERAGE (%) DIFFERENCE ― ALGORITHM AND KLEE_BASE

KLEE-MERGE-5 0.0119

KLEE-MERGE-20 0.0612

KLEE-NO-FF-MERGE-5 0.0353

KLEE-NO-FF-MERGE-20 0.0185

KLEE-PRUNE 0.0346

KLEE-PRUNE-MERGE 0.0896

KLEE-MERGE-5 0.0078

KLEE-MERGE-20 -0.0184

KLEE-NO-FF-MERGE-5 -0.0054

KLEE-NO-FF-MERGE-20 -0.0063

KLEE-PRUNE -0.0071

KLEE-PRUNE-MERGE -0.0202

KLEE-MERGE-5 -0.0019

KLEE-MERGE-20 -0.0517

KLEE-NO-FF-MERGE-5 -0.0338

KLEE-NO-FF-MERGE-20 -0.0369

KLEE-PRUNE 0.0708

KLEE-PRUNE-MERGE -0.0704

KLEE-MERGE-5 -0.0362

KLEE-MERGE-20 -0.0276

KLEE-NO-FF-MERGE-5 0.0255

KLEE-NO-FF-MERGE-20 -0.0048

KLEE-PRUNE 0.0388

KLEE-PRUNE-MERGE -0.0604

KLEE-MERGE-5 -0.0344

KLEE-MERGE-20 -0.0178

KLEE-NO-FF-MERGE-5 0.0004

KLEE-NO-FF-MERGE-20 -0.0017

KLEE-PRUNE 0.1394

KLEE-PRUNE-MERGE -0.0175

KLEE-MERGE-5 -0.0006

KLEE-MERGE-20 -0.0014

KLEE-NO-FF-MERGE-5 0.0000

KLEE-NO-FF-MERGE-20 -0.1331

KLEE-PRUNE -0.0086

KLEE-PRUNE-MERGE -0.1643

KLEE-MERGE-5 0.0762

KLEE-MERGE-20 0.0997

KLEE-NO-FF-MERGE-5 0.0064

KLEE-NO-FF-MERGE-20 0.0630

KLEE-PRUNE 0.0172

KLEE-PRUNE-MERGE 0.0478

KLEE-MERGE-5 0.0006

KLEE-MERGE-20 0.0188

KLEE-NO-FF-MERGE-5 -0.0010

KLEE-NO-FF-MERGE-20 -0.0019

KLEE-PRUNE 0.0101

KLEE-PRUNE-MERGE 0.0614

comm

cp

base64

chcon

chgrp

chmod

chown

cksum

62

UTILITY ALGORITHM COVERAGE (%) DIFFERENCE ― ALGORITHM AND KLEE_BASE

KLEE-MERGE-5 -0.0158

KLEE-MERGE-20 -0.0182

KLEE-NO-FF-MERGE-5 -0.0018

KLEE-NO-FF-MERGE-20 -0.0037

KLEE-PRUNE 0.0134

KLEE-PRUNE-MERGE 0.0385

KLEE-MERGE-5 0.0100

KLEE-MERGE-20 -0.0346

KLEE-NO-FF-MERGE-5 -0.0285

KLEE-NO-FF-MERGE-20 -0.0298

KLEE-PRUNE 0.0876

KLEE-PRUNE-MERGE -0.0093

KLEE-MERGE-5 0.0431

KLEE-MERGE-20 -0.0517

KLEE-NO-FF-MERGE-5 -0.0182

KLEE-NO-FF-MERGE-20 0.0414

KLEE-PRUNE -0.0099

KLEE-PRUNE-MERGE 0.0013

KLEE-MERGE-5 -0.0259

KLEE-MERGE-20 0.0346

KLEE-NO-FF-MERGE-5 0.0075

KLEE-NO-FF-MERGE-20 0.0096

KLEE-PRUNE 0.0081

KLEE-PRUNE-MERGE 0.0021

KLEE-MERGE-5 0.0240

KLEE-MERGE-20 -0.0380

KLEE-NO-FF-MERGE-5 -0.0044

KLEE-NO-FF-MERGE-20 0.0026

KLEE-PRUNE -0.0003

KLEE-PRUNE-MERGE 0.0362

KLEE-MERGE-5 0.0116

KLEE-MERGE-20 0.0183

KLEE-NO-FF-MERGE-5 0.0152

KLEE-NO-FF-MERGE-20 -0.0062

KLEE-PRUNE 0.0653

KLEE-PRUNE-MERGE 0.0218

KLEE-MERGE-5 -0.1775

KLEE-MERGE-20 -0.1571

KLEE-NO-FF-MERGE-5 -0.0152

KLEE-NO-FF-MERGE-20 -0.0846

KLEE-PRUNE -0.0637

KLEE-PRUNE-MERGE -0.1872

KLEE-MERGE-5 -0.0607

KLEE-MERGE-20 -0.1195

KLEE-NO-FF-MERGE-5 -0.1056

KLEE-NO-FF-MERGE-20 -0.0960

KLEE-PRUNE 0.0034

KLEE-PRUNE-MERGE -0.1062

df

dircolors

du

env

csplit

cut

date

dd

63

UTILITY ALGORITHM COVERAGE (%) DIFFERENCE ― ALGORITHM AND KLEE_BASE

KLEE-MERGE-5 0.0027

KLEE-MERGE-20 -0.0219

KLEE-NO-FF-MERGE-5 0.0087

KLEE-NO-FF-MERGE-20 0.0761

KLEE-PRUNE 0.0223

KLEE-PRUNE-MERGE 0.0875

KLEE-MERGE-5 0.0482

KLEE-MERGE-20 0.0064

KLEE-NO-FF-MERGE-5 -0.0275

KLEE-NO-FF-MERGE-20 -0.0265

KLEE-PRUNE -0.0094

KLEE-PRUNE-MERGE 0.0165

KLEE-MERGE-5 0.0680

KLEE-MERGE-20 0.0539

KLEE-NO-FF-MERGE-5 0.0004

KLEE-NO-FF-MERGE-20 0.0011

KLEE-PRUNE 0.1110

KLEE-PRUNE-MERGE 0.0393

KLEE-MERGE-5 0.0265

KLEE-MERGE-20 0.0817

KLEE-NO-FF-MERGE-5 -0.0008

KLEE-NO-FF-MERGE-20 -0.0008

KLEE-PRUNE 0.0802

KLEE-PRUNE-MERGE 0.0532

KLEE-MERGE-5 -0.0339

KLEE-MERGE-20 0.1116

KLEE-NO-FF-MERGE-5 0.0001

KLEE-NO-FF-MERGE-20 0.0360

KLEE-PRUNE 0.0554

KLEE-PRUNE-MERGE -0.0165

KLEE-MERGE-5 0.0274

KLEE-MERGE-20 0.0640

KLEE-NO-FF-MERGE-5 0.0504

KLEE-NO-FF-MERGE-20 -0.0413

KLEE-PRUNE 0.0886

KLEE-PRUNE-MERGE -0.0413

KLEE-MERGE-5 0.0740

KLEE-MERGE-20 -0.0248

KLEE-NO-FF-MERGE-5 0.0006

KLEE-NO-FF-MERGE-20 -0.0167

KLEE-PRUNE 0.0154

KLEE-PRUNE-MERGE -0.0057

KLEE-MERGE-5 -0.0197

KLEE-MERGE-20 0.0000

KLEE-NO-FF-MERGE-5 0.0078

KLEE-NO-FF-MERGE-20 -0.0025

KLEE-PRUNE -0.0013

KLEE-PRUNE-MERGE 0.0501

fmt

fold

head

hostid

id

join

expand

factor

64

UTILITY ALGORITHM COVERAGE (%) DIFFERENCE ― ALGORITHM AND KLEE_BASE

KLEE-MERGE-5 0.0548

KLEE-MERGE-20 0.0538

KLEE-NO-FF-MERGE-5 0.0059

KLEE-NO-FF-MERGE-20 0.0252

KLEE-PRUNE -0.0325

KLEE-PRUNE-MERGE 0.0530

KLEE-MERGE-5 -0.0228

KLEE-MERGE-20 0.0546

KLEE-NO-FF-MERGE-5 -0.0274

KLEE-NO-FF-MERGE-20 -0.0365

KLEE-PRUNE -0.0232

KLEE-PRUNE-MERGE 0.0099

KLEE-MERGE-5 0.0184

KLEE-MERGE-20 0.0138

KLEE-NO-FF-MERGE-5 -0.0311

KLEE-NO-FF-MERGE-20 -0.0195

KLEE-PRUNE -0.0269

KLEE-PRUNE-MERGE -0.0070

KLEE-MERGE-5 0.0260

KLEE-MERGE-20 0.0064

KLEE-NO-FF-MERGE-5 0.0228

KLEE-NO-FF-MERGE-20 0.0280

KLEE-PRUNE -0.0398

KLEE-PRUNE-MERGE 0.0312

KLEE-MERGE-5 0.0458

KLEE-MERGE-20 0.0083

KLEE-NO-FF-MERGE-5 0.0072

KLEE-NO-FF-MERGE-20 -0.0529

KLEE-PRUNE -0.1068

KLEE-PRUNE-MERGE -0.1165

KLEE-MERGE-5 0.0171

KLEE-MERGE-20 0.0273

KLEE-NO-FF-MERGE-5 0.0090

KLEE-NO-FF-MERGE-20 0.0024

KLEE-PRUNE 0.0148

KLEE-PRUNE-MERGE -0.0153

KLEE-MERGE-5 -0.0101

KLEE-MERGE-20 -0.0881

KLEE-NO-FF-MERGE-5 0.0174

KLEE-NO-FF-MERGE-20 -0.0254

KLEE-PRUNE -0.0264

KLEE-PRUNE-MERGE -0.0090

KLEE-MERGE-5 0.0804

KLEE-MERGE-20 0.0410

KLEE-NO-FF-MERGE-5 0.0514

KLEE-NO-FF-MERGE-20 0.0825

KLEE-PRUNE 0.0212

KLEE-PRUNE-MERGE 0.0145

mkfifo

mknod

kill

link

ln

logname

ls

mkdir

65

UTILITY ALGORITHM COVERAGE (%) DIFFERENCE ― ALGORITHM AND KLEE_BASE

KLEE-MERGE-5 0.0887

KLEE-MERGE-20 -0.0665

KLEE-NO-FF-MERGE-5 -0.0201

KLEE-NO-FF-MERGE-20 -0.0266

KLEE-PRUNE -0.0680

KLEE-PRUNE-MERGE 0.0518

KLEE-MERGE-5 -0.1497

KLEE-MERGE-20 -0.1440

KLEE-NO-FF-MERGE-5 -0.1257

KLEE-NO-FF-MERGE-20 -0.1360

KLEE-PRUNE -0.1214

KLEE-PRUNE-MERGE -0.2088

KLEE-MERGE-5 0.0573

KLEE-MERGE-20 0.0692

KLEE-NO-FF-MERGE-5 0.0782

KLEE-NO-FF-MERGE-20 0.0737

KLEE-PRUNE 0.0711

KLEE-PRUNE-MERGE 0.1428

KLEE-MERGE-5 0.1200

KLEE-MERGE-20 0.1203

KLEE-NO-FF-MERGE-5 0.1223

KLEE-NO-FF-MERGE-20 0.0072

KLEE-PRUNE 0.1113

KLEE-PRUNE-MERGE 0.1264

KLEE-MERGE-5 -0.0080

KLEE-MERGE-20 -0.0087

KLEE-NO-FF-MERGE-5 0.0080

KLEE-NO-FF-MERGE-20 0.0020

KLEE-PRUNE 0.0167

KLEE-PRUNE-MERGE 0.0933

KLEE-MERGE-5 0.2022

KLEE-MERGE-20 0.1604

KLEE-NO-FF-MERGE-5 0.2114

KLEE-NO-FF-MERGE-20 0.2061

KLEE-PRUNE 0.2716

KLEE-PRUNE-MERGE 0.2343

KLEE-MERGE-5 0.0484

KLEE-MERGE-20 0.0471

KLEE-NO-FF-MERGE-5 0.0574

KLEE-NO-FF-MERGE-20 0.0409

KLEE-PRUNE 0.0549

KLEE-PRUNE-MERGE 0.0379

KLEE-MERGE-5 -0.0129

KLEE-MERGE-20 -0.0266

KLEE-NO-FF-MERGE-5 -0.0099

KLEE-NO-FF-MERGE-20 -0.0345

KLEE-PRUNE -0.0190

KLEE-PRUNE-MERGE -0.0516

od

paste

pathchk

pinky

mktemp

mv

nice

nohup

66

UTILITY ALGORITHM COVERAGE (%) DIFFERENCE ― ALGORITHM AND KLEE_BASE

KLEE-MERGE-5 -0.0781

KLEE-MERGE-20 -0.1295

KLEE-NO-FF-MERGE-5 -0.0969

KLEE-NO-FF-MERGE-20 -0.0431

KLEE-PRUNE -0.0998

KLEE-PRUNE-MERGE -0.0925

KLEE-MERGE-5 -0.1034

KLEE-MERGE-20 -0.0982

KLEE-NO-FF-MERGE-5 -0.0735

KLEE-NO-FF-MERGE-20 -0.0837

KLEE-PRUNE -0.0538

KLEE-PRUNE-MERGE -0.0810

KLEE-MERGE-5 -0.1504

KLEE-MERGE-20 -0.1506

KLEE-NO-FF-MERGE-5 -0.1317

KLEE-NO-FF-MERGE-20 -0.1322

KLEE-PRUNE -0.1331

KLEE-PRUNE-MERGE -0.1488

KLEE-MERGE-5 0.0883

KLEE-MERGE-20 0.0470

KLEE-NO-FF-MERGE-5 0.0165

KLEE-NO-FF-MERGE-20 0.0555

KLEE-PRUNE 0.0882

KLEE-PRUNE-MERGE 0.0211

KLEE-MERGE-5 0.0226

KLEE-MERGE-20 -0.0266

KLEE-NO-FF-MERGE-5 -0.0317

KLEE-NO-FF-MERGE-20 -0.0542

KLEE-PRUNE -0.0326

KLEE-PRUNE-MERGE -0.0215

KLEE-MERGE-5 0.0105

KLEE-MERGE-20 0.0213

KLEE-NO-FF-MERGE-5 -0.0070

KLEE-NO-FF-MERGE-20 -0.0197

KLEE-PRUNE -0.0075

KLEE-PRUNE-MERGE 0.0185

KLEE-MERGE-5 0.0181

KLEE-MERGE-20 -0.0210

KLEE-NO-FF-MERGE-5 -0.0685

KLEE-NO-FF-MERGE-20 -0.0497

KLEE-PRUNE 0.0288

KLEE-PRUNE-MERGE -0.0071

KLEE-MERGE-5 0.0595

KLEE-MERGE-20 -0.0714

KLEE-NO-FF-MERGE-5 0.0231

KLEE-NO-FF-MERGE-20 0.0284

KLEE-PRUNE -0.0287

KLEE-PRUNE-MERGE 0.0047

ptx

readlink

rm

rmdir

seq

setuidgid

pr

printf

67

UTILITY ALGORITHM COVERAGE (%) DIFFERENCE ― ALGORITHM AND KLEE_BASE

KLEE-MERGE-5 -0.0350

KLEE-MERGE-20 0.0725

KLEE-NO-FF-MERGE-5 -0.0225

KLEE-NO-FF-MERGE-20 -0.0054

KLEE-PRUNE 0.0029

KLEE-PRUNE-MERGE 0.0778

KLEE-MERGE-5 -0.0512

KLEE-MERGE-20 -0.1405

KLEE-NO-FF-MERGE-5 -0.0771

KLEE-NO-FF-MERGE-20 -0.1005

KLEE-PRUNE -0.1849

KLEE-PRUNE-MERGE -0.0584

KLEE-MERGE-5 0.0917

KLEE-MERGE-20 -0.0011

KLEE-NO-FF-MERGE-5 0.0589

KLEE-NO-FF-MERGE-20 0.0361

KLEE-PRUNE 0.0129

KLEE-PRUNE-MERGE 0.1081

KLEE-MERGE-5 0.0883

KLEE-MERGE-20 0.1047

KLEE-NO-FF-MERGE-5 0.0197

KLEE-NO-FF-MERGE-20 0.0187

KLEE-PRUNE 0.0329

KLEE-PRUNE-MERGE 0.0879

KLEE-MERGE-5 -0.0632

KLEE-MERGE-20 -0.0420

KLEE-NO-FF-MERGE-5 -0.0482

KLEE-NO-FF-MERGE-20 -0.0916

KLEE-PRUNE -0.0559

KLEE-PRUNE-MERGE -0.1565

KLEE-MERGE-5 -0.0894

KLEE-MERGE-20 -0.0611

KLEE-NO-FF-MERGE-5 -0.0455

KLEE-NO-FF-MERGE-20 -0.0570

KLEE-PRUNE 0.0081

KLEE-PRUNE-MERGE -0.1044

KLEE-MERGE-5 0.1028

KLEE-MERGE-20 0.0768

KLEE-NO-FF-MERGE-5 0.1224

KLEE-NO-FF-MERGE-20 0.1066

KLEE-PRUNE 0.0482

KLEE-PRUNE-MERGE 0.0706

KLEE-MERGE-5 -0.0819

KLEE-MERGE-20 -0.0629

KLEE-NO-FF-MERGE-5 -0.0910

KLEE-NO-FF-MERGE-20 -0.0917

KLEE-PRUNE -0.0547

KLEE-PRUNE-MERGE -0.0678

test

touch

shred

shuf

sleep

split

stty

tail

68

UTILITY ALGORITHM COVERAGE (%) DIFFERENCE ― ALGORITHM AND KLEE_BASE

KLEE-MERGE-5 0.0622

KLEE-MERGE-20 0.0316

KLEE-NO-FF-MERGE-5 -0.0255

KLEE-NO-FF-MERGE-20 0.0081

KLEE-PRUNE 0.0067

KLEE-PRUNE-MERGE -0.0547

KLEE-MERGE-5 -0.0356

KLEE-MERGE-20 -0.0750

KLEE-NO-FF-MERGE-5 0.0101

KLEE-NO-FF-MERGE-20 -0.0018

KLEE-PRUNE -0.0059

KLEE-PRUNE-MERGE -0.0402

KLEE-MERGE-5 0.0935

KLEE-MERGE-20 0.0754

KLEE-NO-FF-MERGE-5 0.0758

KLEE-NO-FF-MERGE-20 0.0370

KLEE-PRUNE 0.0543

KLEE-PRUNE-MERGE 0.1015

KLEE-MERGE-5 0.0844

KLEE-MERGE-20 0.1163

KLEE-NO-FF-MERGE-5 0.0866

KLEE-NO-FF-MERGE-20 0.0834

KLEE-PRUNE 0.0874

KLEE-PRUNE-MERGE 0.1080

KLEE-MERGE-5 -0.0701

KLEE-MERGE-20 -0.0063

KLEE-NO-FF-MERGE-5 -0.0890

KLEE-NO-FF-MERGE-20 -0.0997

KLEE-PRUNE 0.0315

KLEE-PRUNE-MERGE -0.0786

KLEE-MERGE-5 -0.0136

KLEE-MERGE-20 0.0093

KLEE-NO-FF-MERGE-5 0.0177

KLEE-NO-FF-MERGE-20 -0.0734

KLEE-PRUNE -0.0246

KLEE-PRUNE-MERGE -0.0678

KLEE-MERGE-5 0.0992

KLEE-MERGE-20 0.1239

KLEE-NO-FF-MERGE-5 0.0752

KLEE-NO-FF-MERGE-20 0.0753

KLEE-PRUNE 0.1085

KLEE-PRUNE-MERGE 0.0974

KLEE-MERGE-5 -0.0238

KLEE-MERGE-20 0.0256

KLEE-NO-FF-MERGE-5 -0.0774

KLEE-NO-FF-MERGE-20 0.0286

KLEE-PRUNE 0.1253

KLEE-PRUNE-MERGE 0.0669

unexpand

uniq

unlink

wc

tr

tsort

tty

uname

69

UTILITY ALGORITHM COVERAGE (%) DIFFERENCE ― ALGORITHM AND KLEE_BASE

KLEE-MERGE-5 0.0389

KLEE-MERGE-20 -0.0024

KLEE-NO-FF-MERGE-5 -0.0082

KLEE-NO-FF-MERGE-20 -0.0073

KLEE-PRUNE 0.0292

KLEE-PRUNE-MERGE -0.0213

KLEE-MERGE-5 -0.0014

KLEE-MERGE-20 0.0203

KLEE-NO-FF-MERGE-5 0.0129

KLEE-NO-FF-MERGE-20 0.0163

KLEE-PRUNE -0.0204

KLEE-PRUNE-MERGE 0.0159

who

whoami

70

Appendix B: LOC and #include count for all COREUTILS

UTIL LOC #include UTIL LOC #include UTIL LOC #include

base64 236 10 id 297 13 rm 272 14

chcon 437 13 join 714 13 rmdir 150 7

chgrp 243 13 kill 293 8 seq 319 9

chmod 400 14 link 62 8 setuidgid 172 12

chown 252 11 ln 427 14 shred 790 15

cksum 224 5 logname 58 8 shuf 329 11

comm 194 10 ls 3247 38 sleep 105 11

cp 818 17 mkdir 159 12 split 437 14

csplit 1085 13 mkfifo 107 9 stty 1630 10

cut 617 11 mknod 183 10 tail 1232 20

date 459 13 mktemp 230 10 test 642 10

dd 1278 13 mv 358 16 touch 325 15

df 708 14 nice 139 9 tr 1314 10

dircolors 393 11 nohup 156 13 tsort 370 10

du 709 20 od 1394 10 tty 82 7

env 103 7 paste 338 6 uname 283 9

expand 295 8 pathchk 302 8 unexpand 365 8

factor 151 14 pinky 453 11 uniq 421 14

fmt 646 8 pr 1712 13 unlink 57 8

fold 234 8 printf 537 11 wc 542 12

head 760 12 ptx 1336 12 who 608 11

71

Bibliography

[1] C. S. Pǎsǎreanu and W. Visser, “A survey of new trends in symbolic execution
for software testing and analysis,” International Journal on Software Tools for
Technology Transfer (STTT), vol. 11, no. 4, pp. 339–353, 2009. DOI: 10.1007/s10009-
009-0118-1

[2] P. Godefroid, M. Y. Levin, and D. Molnar, “Automated whitebox fuzz testing,” in
Proceedings of Network and Distributed Systems Security (NDSS), 2008, pp. 151–
166.

[3] “Coreutils,” http://www.gnu.org/software/coreutils.

[4] Common Vulnerabilities and Exposures, “CVE-2014-0160,” http://cve.mitre.org/

cgi-bin/cvename.cgi?name=CVE-2014-0160.

[5] P. Godefroid, N. Klarlund, and K. Sen, “DART: directed automated random testing,”
in Proceedings of the 2005 ACM SIGPLAN Conference on Programming Language
Design and Implementation. New York, NY, USA: ACM, 2005, pp. 213–223. DOI:
10.1145/1065010.1065036

[6] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Engler, “EXE: Auto-
matically generating inputs of death,” ACM Transactions on Information and System
Security (TISSEC), vol. 12, no. 2, pp. 1–38, 2008. DOI: 10.1145/1455518.1455522

[7] C. Cadar, D. Dunbar, and D. Engler, “KLEE: unassisted and automatic generation
of high-coverage tests for complex systems programs,” in Proceedings of the 8th
USENIX Conference on Operating Systems Design and Implementation, Berkeley,
CA, USA, 2008, pp. 209–224.

[8] C. Cadar, P. Godefroid, S. Khurshid, C. S. Păsăreanu, K. Sen, N. Tillmann, and
W. Visser, “Symbolic execution for software testing in practice: preliminary assess-
ment,” in Proceedings of the 33rd International Conference on Software Engineering,
New York, NY, USA, 2011, pp. 1066–1071. DOI: 10.1145/1985793.1985995

[9] W. Kimball, “On model checking of binary programs,” Ph.D. dissertation, Air Force
Institute of Technology (AFIT), 2013.

[10] “The KLEE symbolic virtual machine,” http://klee.github.io/klee/.

[11] “llvm-gcc - LLVM C front-end,” http://llvm.org/releases/2.9/docs/CommandGuide/

html/llvmgcc.html.

[12] “clang: a C language family frontend for LLVM,” http://clang.llvm.org/.

72

[13] “High level overview of KLEE,” http://www.doc.ic.ac.uk/∼dsl11/klee-doxygen/

overview.html.

[14] “gcov: a test coverage program,” http://gcc.gnu.org/onlinedocs/gcc/Gcov.html.

[15] T. Xie, N. Tillmann, P. de Halleux, and W. Schulte, “Fitness-guided path exploration
in dynamic symbolic execution,” in Proceedings the 39th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN 2009), 2009,
pp. 359–368.

[16] K. Sen, D. Marinov, and G. Agha, “CUTE: a concolic unit testing engine for C,” in
Proceedings of the 10th European Software Engineering Conference held jointly with
13th ACM SIGSOFT International Symposium on Foundations of Software Engineer-
ing, New York, NY, USA, 2005, pp. 263–272. DOI: 10.1145/1081706.1081750

[17] X. Xiao, X. Zhang, and X. Li, “New approach to path explosion problem of symbolic
execution,” in Proceedings of the 2010 First International Conference on Pervasive
Computing, Signal Processing and Applications, Washington, DC, USA, 2010, pp.
301–304. DOI: 10.1109/PCSPA.2010.80

[18] T. Hansen, P. Schachte, and H. Søndergaard, “State Joining and Splitting for the
Symbolic Execution of Binaries,” in Runtime Verification, S. Bensalem and D. A.
Peled, Eds. Berlin, Heidelberg: Springer-Verlag, 2009, vol. 5779, ch. State Joining
and Splitting for the Symbolic Execution of Binaries, pp. 76–92.

[19] P. Boonstoppel, C. Cadar, and D. Engler, “RWset: attacking path explosion
in constraint-based test generation,” in Proceedings of the Theory and Practice
of Software, 14th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems. Berlin, Heidelberg: Springer-Verlag, 2008,
pp. 351–366.

[20] V. Kuznetsov, J. Kinder, S. Bucur, and G. Candea, “Efficient state merging in symbolic
execution,” in Proceedings of the 33rd ACM SIGPLAN Conference on Programming
Language Design and Implementation, New York, NY, USA, 2012, pp. 193–204.
DOI: 10.1145/2254064.2254088

[21] S. Bugrara and D. Engler, “Redundant state detection for dynamic symbolic
execution,” in Presented as part of the 2013 USENIX Annual Technical Conference
(USENIX ATC 13), San Jose, CA, 2013, pp. 199–211.

[22] R. Majumdar and K. Sen, “Hybrid concolic testing,” in Proceedings of the 29th
International Conference on Software Engineering. Washington, DC, USA: IEEE
Computer Society, 2007, pp. 416–426. DOI: 10.1109/ICSE.2007.41

[23] N. Tillmann and J. De Halleux, “Pex: White box test generation for .NET,” in
Proceedings of the 2nd International Conference on Tests and Proofs. Berlin,
Heidelberg: Springer-Verlag, 2008, pp. 134–153.

73

[24] P. Godefroid, “Compositional dynamic test generation,” in Proceedings of the
34th Annual ACM SIGPLAN-SIGACT Ssymposium on Principles of Program-
ming Languages. New York, NY, USA: ACM, 2007, pp. 47–54. DOI:
10.1145/1190216.1190226

[25] Z. Wan and B. Zhou, “Effective code coverage in compositional systematic
dynamic testing,” in Information Technology and Artificial Intelligence Conference
(ITAIC), 2011 6th IEEE Joint International, vol. 1, 2011, pp. 173 –176. DOI:
10.1109/ITAIC.2011.6030179

[26] R. Santelices and M. J. Harrold, “Exploiting program dependencies for scalable
multiple-path symbolic execution,” in Proceedings of the 19th International Sympo-
sium on Software Testing and Analysis. New York, NY, USA: ACM, 2010, pp.
195–206. DOI: 10.1145/1831708.1831733

[27] M. Staats and C. Pǎsǎreanu, “Parallel symbolic execution for structural test
generation,” in Proceedings of the 19th International Symposium on Software
Testing and Analysis. New York, NY, USA: ACM, 2010, pp. 183–194. DOI:
10.1145/1831708.1831732

[28] P. Godefroid, M. Y. Levin, and D. Molnar, “SAGE: whitebox fuzzing for security
testing,” Queue, vol. 10, no. 1, pp. 20–27, 2012. DOI: 10.1145/2090147.2094081

[29] W. Visser, C. S. Pǎsǎreanu, and S. Khurshid, “Test input generation with Java
PathFinder,” in Proceedings of the 2004 ACM SIGSOFT International Symposium
on Software Testing and Analysis, New York, NY, USA, 2004, pp. 97–107. DOI:
10.1145/1007512.1007526

[30] “Coreutils experiments,” http://klee.github.io/klee/CoreutilsExperiments.html.

74

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

19–06–2014 Master’s Thesis Oct 2013–Jun 2014

Using State Merging and State Pruning to Address the Path Explosion
Problem Faced by Symbolic Execution

Copeland, Patrick T., Civilian

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB, OH 45433-7765

AFIT-ENG-T-14-J-3

Intentionally left blank

12. DISTRIBUTION / AVAILABILITY STATEMENT

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

13. SUPPLEMENTARY NOTES

This work is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

14. ABSTRACT

Symbolic execution is a promising technique to discover software vulnerabilities and improve the quality of code.
However, symbolic execution suffers from a path explosion problem where the number of possible paths within a
program grows exponentially with respect to loops and conditionals. New techniques are needed to address the path
explosion problem. This research presents a novel algorithm which combines the previously researched techniques of
state merging and state pruning. A prototype of the algorithm along with a pure state merging and pure state pruning
are implemented in the KLEE symbolic execution tool with the goal of increasing the code coverage. Each algorithm
is tested over 66 of the GNU COREUTILS utilities. State merging combined with state pruning outperforms the
unmodified version of KLEE on 53% of the COREUTILS. These results confirm that state merging with pruning has
viability in addressing the path explosion problem of symbolic execution.

15. SUBJECT TERMS

symbolic execution, state merging, state pruning, path explosion, program analysis

U U U UU 89

Dr. Gilbert L. Peterson (ENG)

(937) 255-3636 x4281 gilbert.peterson@afit.edu

	Abstract
	Dedication
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Motivation
	Research Objectives
	Methodology
	Assumptions and Limitations
	Thesis Structure

	Background
	Symbolic Execution
	KLEE
	Path Explosion Mitigation Techniques
	Summary

	Methodology
	Problem Definition
	State Merging
	State Pruning
	Combining state merging and state pruning
	System Boundaries
	Workload
	Performance Metrics
	System Parameters
	Factors
	Evaluation Technique
	Experimental Design
	Methodology Summary

	Results and Analysis
	Overview
	KLEE-BASE
	Merging Results
	Pruning Results
	Pruning Combined with Merging Results
	Results Summary

	Conclusions and Future Work
	Contributions
	Limitations
	Future Work

	Appendix A: Code Coverage (%) for all COREUTILS
	Appendix B: LOC and #include count for all COREUTILS
	Bibliography

