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Attorney Docket No. 100559 

 

SYSTEM AND METHOD OF USE FOR NON-PARAMETRIC CIRCULAR 

AUTOCORRELATION FOR SIGNAL PROCESSING 

 

STATEMENT OF GOVERNMENT INTEREST 

[0001] The invention described herein may be manufactured and 

used by or for the Government of the United States of America 

for governmental purposes without the payment of any royalties 

thereon or therefor. 

 

CROSS REFERENCE TO OTHER PATENT APPLICATIONS 

[0002] None. 

 

BACKGROUND OF THE INVENTION 

(1) Field of the Invention 

[0003] The present invention generally relates to a signal 

processing system and more particularly, but not by way of 

limitation, to a system and method of use for non-parametric 

circular autocorrelation for signal processing. 
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(2) Description of the Prior Art 

[0004] In signal processing studies four important functions 

may be used to describe or model a finite stationary signal 

x(t),t≥0 whether it be periodic, transient or random, or based 

on a single source or multiple sources (an ensemble) of input 

data.  These functions are the mean square value, probability 

density function (PDF), autocorrelation function (ACF) and power 

spectral density (PSD). 

[0005] Autocorrelation is generally the cross-correlation of 

a signal with itself. It describes the dependence of a signal's 

value at one point with the value of the same signal at another 

time. The measure is designed to detect repeating patterns or 

trends in noise-corrupted nonlinear time series distributions 

(e.g., periodic, quasi-periodic, parabolic, etc.) and identify 

frequencies.  The ACF is one measure to determine whether the 

time waveform is random noise. The ACF is a basic building block 

of time series analysis. It has applications to diverse fields 

including signal processing, oceanography, astrophysics, finance 

& economics, quality control, physiology, epidemiology, 

demography, statistics and other applied areas of science and 

engineering. 
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[0006] The ACF is generally defined as: 

  ( )  
 [(    )(      )]

  
     ( )     (1) 

where E is the expected value operator, t is the discrete or 

continuous variable time, τ is the time lag, µ is the mean,    is 

the variance.    and µ are time independent. 

[0007] Various modifications are made to this formula 

depending upon the measurements (discrete or continuous) and 

other assumptions relating to stationarity, ergodicity, etc. For 

instance, in naval sonar signal processing with positive time t 

the definition of the ACF used for analysis of stationary random 

signals x(t),t≥0, takes the time average limiting form, 

    ( )        
 

 
∫  ( ) (   )  
 

 
 (1a) 

when the process is assumed to be ergodic—defined in one way as a 

positive recurrent aperiodic state of stochastic systems, or 

tending in probability to a limiting form that is independent of 

the initial conditions—a condition usually encountered in sonar 

signal studies. 

[0008] The autocorrelation function (discrete or continuous 

time models) has certain basic properties.  The autocorrelation 

function is a symmetric around 0 (or an even function for 
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continuous case), R(τ)=R(-τ). The autocorrelation function will 

have its largest value at the origin, when time lag τ = 0; R(0) ≥ 

R(τ). The autocorrelation of a periodic function will also be 

periodic with the same frequency. Other properties, well known to 

those skilled in the art, also exist. In addition, specific 

types of noise such as white and colored noise, and functional 

forms have documented characteristics. 

[0009] With respect to circular correlation, the normalized 

circular autocorrelation function for a discrete time process 

can be described as arising from the classical Pearson linear 

correlation function for a data set consisting of n bivariate 

pairs nn yxyxyx ,, 2211 . The linear correlation r for samples of size 

n can be expressed as a definition: 
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[0010] This definition of yxr ,  can be simplified to a well-

known computing formula: 
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where x  and y
 
are arithmetic means. 

[0011] The circular normalized 1  correlation coefficient is 

derived from index yxr ,  by a structured process that 

systematically recycles the input observations nn yxyxyx ,, 2211  in 

circular fashion of varying lag–length h.  That is, each vector 

of lagged data contains the same measurements structured in a 

circular pattern. For the first lag set 
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substitute 1ix  for iy  and, for the last pair, put 1x  for 1nx  in 

formula (3) above  to render the 1–lag circular correlation 

index, 
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[0012] Wald, A. and J. Wolfowitz, An exact test for 

randomness in the non–Parametric case based on serial 

correlation, Annals of Mathematical Statistics Vol. 14, No. 4, 

pages 378–388, 1943, (hereinafter “Wald and Wolfowitz”) provides 

a non-parametric permutations method such that if n is 

sufficiently large the 1–lag correlation of formula (4) above 

can be tested to determine if the distribution is random based 

on the statistic,




 
1

1

11

n

i

nii xxxx . Some researchers suggest that 75n  

is required for the theoretical assumptions of the test to be 

valid (Giles, S., Random–noise filter based on circular 

correlation, Southeastern Symposium Systems Theory, 2009. 

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=04806850; 

hereinafter “Giles”) while others suggest 50n  (Kay, S.M. and L. 

Pakula, Detection performance of the circular correlation 

coefficient receiver. IEEE Transactions on Acoustics, Speech, 

and Signal Processing, Vol. ASSP–34, no. 3, June 1986, pages 

399–404. Hereinafter “Kay et al.”) but many standard textbooks 

place a lower bound of 25. In accordance with the present 

disclosure, 25 may be selected as the minimum although truly 

random samples even as small as 15 can be detected for pure 

noise. This is a novel and efficient idea.  Non-circular 

autocorrelation methods, which typically assume a Gaussian 
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distribution, often analyze many more lags before a decision of 

“signal” or “noise” is made. 

[0013] In a similar fashion, to obtain the autocorrelation 

for an arbitrary lag of length h, the circular index can be 

calculated by the derived formula: 

 
.10;11               

,

,

1

2

12

1

2

1

1
,





















































nhR

n

x

x

n

x

xxxx

R

hxx

n

i

n

i

i

i

hn

i

n

i

ih

i

ihnihii

hxx

  (5) 

Application of the non-circular form of equation (5) omits the 

second term of  


 
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[0014] In some aspects, the same identical n data points are 

used in a wrap–around circular fashion for any lag in the 

computation of the ACF.  The standard discrete non–circular 

correlation index removes one observation with each lag 

calculation, a serious drawback for small samples, a condition 

for which the present disclosure models accurately and 

efficiently.   
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[0015] Wald and Wolfowitz generally describe the properties 

of hxxR ,  in the context of non–parametric (or distribution free) 

methods. To summarize the large sample non–parametric approach 

of Wald and Wolfowitz at page 378 provide:  

a sequence of variates Nxx ,,1   is said to be a 

random series, or to satisfy the condition of 

randomness, if Nxx ,,1   are independently 

distributed; i.e., if the joint cumulative 

distribution function (c.d.f.) of Nxx ,,1   is given 

by the product )()( 1 NxFxF   where )(xF  may be any 

c.d.f. 

 

[0016] This method has been adapted for application in signal 

processing studies of random signals to determine if the 

distribution is random and to document other properties of the 

signal structure such as periodicities or other trends.  The 

underlying distribution function may be continuous or discrete. 

[0017] Further, a number of prior art references address 

various aspects of signal processing methodologies/techniques. 

For example, U.S. Patent No. 7,369,961, to Castelli et al., 

relates to clustering structures of time sequences. Generally, 

the Castelli et al. patent discloses a system and method to 

discover potential periodicities of time series by examining 

power spectral density (PSD) and circular autocorrelation 

functions (ACFs).  Their ACF formula is designed to “estimate 

dominant periods of a time series.” (Col. 4, lines 55-56). The 
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present disclosure, however, uses an entirely different circular 

autocorrelation function and addresses a different purpose. 

[0018] Other prior art references include, for example, U.S. 

Patent Nos. 5,966,414 and 6,597,634, to O’Brien et al. (of the 

present disclosure). These patents generally relate to methods 

for distinguishing signal from noise in time-series data. 

However, these patents do not teach or suggest the present 

disclosure. For example, these patents can be distinguished in 

the dimensionality analyzed, the ensemble of statistical and 

probability methods for data analysis. Neither patent uses a 

circular autocorrelation method for signal/noise determination. 

[0019] In view of the above, there is a need for an improved 

system on non-parametric circular autocorrelation for signal 

processing and method of use, such as is described in the 

present disclosure.  

 

SUMMARY OF THE INVENTION 

[0020] Accordingly, it is an object of the present invention 

to provide an improved computer–aided means to detect a random 

process and characterize signal structure in a two–dimensional 

time–series or other in situ distributions. The present 

disclosure, in some aspects, comprises an improved system and 
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method to compute the one–dimensional, normalized, circular 

autocorrelation function in the analysis of synthetic or real 

signals when the distribution is unknown (Gaussian or non-

Gaussian).  The present disclosure presents a logical 

alternative to commonly available autocorrelation procedures 

such as provided by MATLAB™ and other data processing software 

systems including R, S+, SAS™, SPSS, Scilab, and the like. One 

characteristic of the present disclosure is the capability to 

provide the described functionality while handling moderately 

small data sets. 

[0021] The operation of the present disclosure may be 

structured to be as flexible as possible with multiple uses in 

mind, according to the philosophy that, in a black box real time 

operating system of inputs, it is judicious to examine the 

entire autocorrelation function for indications of randomness or 

trends (linear, nonlinear, and periodic). Analysis of a single 

lag can at most be a test of randomness in a time series; 

however, a single lag cannot detect periodic or quasi–periodic 

structure embedded in noise for a time limited or varying 

waveform.  Thus, the inventive method herein disclosed is as 

general as possible allowing the user wide discretion and 
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flexibility as to the uses to which the invention can be of 

service in military and commercial settings. 

[0022] In some aspects, the present disclosure may not be 

designed to distinguish random noise from deterministic noise 

although properties of the non-circular ACF have been documented 

in the case of strange attractors, and are well known to those 

skilled in the art.  Rather, the inventive method is designed, 

by way of example, to distinguish noise-corrupted signals from 

randomness (the absence of quantifiable useful signal 

information) regardless of the origination of the noise.  

[0023] With the above and other objects in view, a feature of 

the present disclosure is the provision of a computer-implemented 

method to characterize a signal structure. The method may 

comprise receiving, via a first data channel, a first set of 

time-dependent data vectors. Each of the data vectors may have 

an associated amplitude. The method may further comprise 

activating a signal characterization module that executes 

instructions. When executed, the instructions may cause the 

signal characterization module to: select a sample size of data 

vectors from the first set of data vectors; determine a minimum 

number of lags to process to characterize the first set of data 

vectors based on the sample size from the first set; calculate a 
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cross-product term for each data vector in the sample size for 

each lag, a mean value based on the sum of the cross-product 

term for each lag, and a variance value based on the sum of the 

cross-product term for each lag; calculate a circular 

correlation function for each lag; determine an upper and a 

lower correlation bound for the circular correlation based on 

the mean value, the variance value, and a desired false alarm 

rate; and characterize the signal structure based on the number 

of calculated circular correlation functions that exceed the 

upper or lower correlation bounds so as to generate a signal 

characterization data signal. Lastly, the method may further 

comprise providing the signal characterization data signal on a 

second data channel. 

[0024] In accordance with a further feature of the present 

disclosure, there is provided a signal structure 

characterization system. The system may comprise a first data 

channel configured to receive a first set of time-dependent data 

vectors, each data vector having an associated amplitude. The 

system may further comprise a processing system configured to 

read the first set of time-dependent data vectors and store the 

first set in a memory. The processing system may further 

comprise a signal characterization module configured to execute 
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instructions that, when executed, causes the processing system 

to: select a sample size of data vectors from the first set of 

data vectors; determine a minimum number of lags to process to 

characterize the first set of data vectors based on the sample 

size from the first set; calculate a cross-product term for each 

data vector in the sample size for each lag, a mean value based 

on the sum of the cross-product term for each lag, and a 

variance value based on the sum of the cross-product term for 

each lag; calculate a circular correlation function for each 

lag; determine an upper and a lower correlation bound for the 

circular correlation based on the mean value, the variance 

value, and a desired false alarm rate; and characterize the 

signal structure based on the number of calculated circular 

correlation functions that exceed the upper or lower correlation 

bounds so as to generate a signal characterization data signal. 

The system may even further comprise a second data channel 

configured to output the signal characterization data signal. 

[0025] In accordance with a still further feature of the 

present disclosure, there is provided a computer-implemented 

method to characterize a first set of time-dependent data 

vectors to identify one or more of a signal component or a noise 

component. The method may comprise receiving, via a first data 
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channel, a first set of time-dependent data vectors, each data 

vector having an associated amplitude. The method may comprise 

selecting a sample size of data vectors from the first set of 

data vectors. The method may comprise determining a minimum 

number of lags to process to characterize the first set of data 

vectors based on the sample size from the first set.  The method 

may further comprises calculating a cross-product term for each 

data vector in the sample size for each lag, a mean value based 

on the sum of the cross-product term for each lag, and a 

variance value based on the sum of the cross-product term for 

each lag. The method comprises calculating a circular 

correlation function for each of the determined minimum number 

of lags and determining an upper and a lower correlation bound 

for the circular correlation. The method may further comprise 

characterizing the signal structure based on the number of 

calculated circular correlation functions that exceed the upper 

or lower correlation bounds so as to generate a signal 

characterization data signal. Lastly, the method may even 

further comprise providing, via a second data channel, the 

signal characterization data signal. 

[0026] Other objects, features, and advantages of the present 

invention will be apparent to those having ordinary skill in the 
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art reading the instant specification, drawings, and appended 

claims.  

 

BRIEF DESCRIPTION OF THE DRAWINGS 

[0027] FIG. 1 is a table  including a random data set used to 

illustrate certain aspects of the present disclosure;  

[0028] FIG. 2 is a table showing the random series and 

summary statistics derived from the exemplary data set presented 

in the table of FIG. 1;   

[0029] FIG. 3 is a table illustrating a complete analysis of 

the data for the maximum number of lags permissible, in 

accordance with the present disclosure; 

[0030] FIG. 4 is a graph showing the pattern for an arbitrary 

lag or a max lag, in accordance with the present disclosure; 

[0031] FIG. 5 is an exemplary correlogram illustrating the 

ACF for the data set of FIG. 1 computed for all lags;  

[0032] FIG. 6 is a chart illustrating the distribution of the 

cross product term hR  by lag, 1h , in accordance with the 

present disclosure; 

[0033] FIG. 7 is an exemplary table showing the minimum 

number of lags for varying sample sizes, in accordance with 

certain aspects of the present disclosure; 
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[0034] FIG. 8 is a graph illustrating an example of a noise-

corrupted sinusoid and ACF evaluated as “signal” utilizing 

aspects of the present disclosure;  

[0035] FIG. 9 is a block diagram of an exemplary architecture 

of a system which may be adapted to practice aspects of the 

present disclosure; and 

[0036] FIG. 10 is a flowchart of an exemplary method to 

characterize a signal structure, in accordance with the present 

disclosure. 

 

DETAILED DESCRIPTION OF THE INVENTION 

[0037] Before explaining the presently disclosed and claimed 

inventive concepts in detail by way of exemplary embodiments, 

drawings, and appended claims, it is to be understood that the 

present disclosure is not limited in its application to the 

details of construction and the arrangement of the components 

set forth in the following description or illustrated in the 

drawings. The present disclosure is capable of other embodiments 

or of being practiced or carried out in various ways.  As such, 

the language used herein is intended to be given the broadest 

possible scope and meaning; and the embodiments are meant to be 

exemplary, not exhaustive.  It is to be understood that the 
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phraseology and terminology employed herein is for the purpose 

of description and should not be regarded as limiting.  Unless 

otherwise required by context, singular terms may include 

pluralities and plural terms may include the singular. 

[0038] To provide exemplary illustrations of certain aspects 

of the present disclosure, assume a data set containing 

measurements of a finite number of independent data points or 

vectors nxxx ,,, 21   of a time series. The non–parametric circular 

serial correlation (or autocorrelation) derived by Wald and 

Wolfowitz is an exact test of serial randomness in a sample in 

the time domain. The distributional structure of the data or 

underlying population from which the sample is drawn is assumed 

unknown. The statistic for a lag of length h, ,
11



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h

i

ihni

hn

i

hiih xxxxR  

is asymptotically normally distributed.   The measure hR  

possesses a theoretical mean and variance that can be used to 

test a binary hypothesis of signal–noise at the 5%, 1% or lower 

false alarm rate levels.   

[0039] A test against hR  for randomness (usually 1R ) is 

equivalent to a test that the correlation hxxR , , (usually 1, xxR ) is 

random (Wald and Wolfowitz, p. 380) as well as a test that the 

distribution is random without further testing being required.  
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In certain aspects, the equivalency between the two measures may 

be a primary theoretical basis of the present inventive method 

designed for non-large samples. 

[0040] In accordance with certain aspects, inventive 

formulations are derived and documented in the present 

disclosure, wherein said formulations may be adapted for 

implementation via a computer-implemented processing system.  

For example, the computing correlation index of equation (5) 

above may be derived from the definition given by Wald and 

Wolfowitz (p. 378).  Moreover, the present disclosure 

demonstrates that the discrete circular autocorrelation is 

symmetric with respect to the median value of the maximum lag of 

a discrete series on time .0t  This is different from the non–

circular case in which a defining property of the ACF is 

symmetry about 0 on time t,  t .  This finding results in 

the option to process only one half of the time series to 

characterize fully the correlational structure for samples of 

small to moderate size—or obtain an estimate of the ACF derived 

from a random sample of a large sample.  Overall, the inventive 

concepts recited in the present disclosure have found that the 

circular autocorrelation is a useful tool in two–dimensional 

space to detect and characterize a random process or signal in 
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the time domain regardless of the underlying distribution of the 

data/noise (Gaussian or non–Gaussian).   

[0041] For non-limiting illustration purposes, the present 

disclosure provides an example of the circular correlation 

function (circular ACF) for a quite small data set of 15 

discrete observations of random data mimicking a discrete–time 

random process.  Although this data set is less than the minimum 

of n=25, it is used for illustrative purposes only. We will use 

this data set to provide a demonstration of certain aspects of 

the inventive method and its application to two–dimensional time 

series typically encountered in signal processing and various 

other fields of engineering or science. It is to be understood 

that the present disclosure is not limited in its application to 

the data set discussed herein. 

[0042] Referring now to the drawings, and more particularly 

to FIG. 1, shown therein is a table 100 including a random data 

set used to illustrate certain aspects of the present 

disclosure. Generally, the table 100 shown in FIG. 1 illustrates 

a small random data set (n=15) taken from Hoel, P.J. et al., 

Introduction to  Statistical Theory, Houghton–Mifflin, Boston 

1971, chap. 6 (Hereinafter “Hoel, et al.”), page 180. Equations 

(5) through (9) generally comprise the classical approach for 
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assessing a noise hypothesis based on 1 lag of data commonly 

taught in statistical texts provided the sample size is large 

enough; e.g., Hoel et al., p. 178.  This example demonstrates 

that the method detects randomness for n of 15.  For this 

procedure, the simple binary hypothesis set is: 

noise)  (signal 0:H

(noise) 0:

1

0





R

RH

 

[0043] FIG. 2 is a table showing the random series and 

summary statistics derived from the exemplary data set presented 

in the table 100 of FIG. 1.  That is, the data presented in FIG. 

2 shows the real variable discrete circular correlation for one-

lag wherein n=15. The input data of FIG. 2 are labeled ix  and 

generally correspond to the data vectors presented in the data 

set of FIG. 1. Using alternative notation, the first–lag 

autocorrelation computed by equation (5), with h set to 1 is: 
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The values are constants carried across all h–lag correlations; 

only 121 ,...,,  nh RRRR  varies in the calculation of ., hxxR   To determine 

if the 1–lag correlation is “signal” or “noise,”  Wald and 

Wolfowitz’s method tests the statistic, 356001 R , for randomness 

in a permutation Central Limit Theorem normal approximation 

test, a procedure identical to testing the correlation value 

+.13 for randomness. A determination of 1R  being “signal” or 

“noise” carries the same determination for the correlation 

index, 1, xxR . With such a small sample size, it is unlikely that 

the asymptotic conditions are met to render a valid use of the 

Wald–Wolfowitz circular correlation permutation method.   

[0044] Wald and Wolfowitz, pages 381–383 provides that the 

product–measure R (of col. 3) has the theoretical properties:  
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[Note that, for equation (7), the   ;1RRE   i.e., 35486.29  35600.]  

This is as expected because the data are random (noise). Also 
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note that, with regards to equation (8),  
2
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with other quantities in the variance calculation, wherein 
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r SSxxxS   and 21   for 3n . 

[0045] Wald and Wolfowitz (pages 383 ff.) show that the 

following statistic   is Gaussian    ; i.e., )1,0(~ N . To 

test the first lag )1( h  correlation, 1, xxR =.13 for randomness, we 

get  
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[0046] 1R  is judged “random” by this test.  The conclusion is 

drawn that the first lag correlation, and hence the data set,  

is suggestive of “noise” at the 05.  false alarm rate level 

since p  where the probability p is obtained from the 

continuous standard Gaussian (normal) distribution: 
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where   means “absolute value” as commonly used in mathematics. 
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[0047] The p value is the probability of detecting noise.  

Another interpretation is that p represents the “belief” of the 

operator that the null hypothesis of random noise is true.  

Small values of p lead to rejection of the null hypothesis of 

noise only. For example, in the case of pure noise, 0 , and 

p=1. In the case of pure signal,    and p=0. The 

calculation of p, well known to those skilled in the art, is 

performed in a standard finite series expansion. 

[0048] The same mean )(RE  and variance )var(2 R  are constant 

terms used across all lags since they are defined for the entire 

sample by considering all possible permutations of the sample.  

The sample size n for lag h is always the same value unlike the 

standard non–circular correlation index which drops one 

observation per lag. FIG. 3 shows a table 300 illustrating a 

complete analysis of these data for the maximum number of lags 

permissible; 1 nh , i.e., a complete analysis for 14 lags 

(n=15) for the random data set of Hoel et al. shown in Table 100 

of FIG. 1. Table 300 shows that all correlations indicate 

“noise”  05.p  at the 5% false alarm level. The occurrence of 

identical results between the lower lags and upper lags will be 

explained below. 
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[0049] As noted, provided the sample size is large enough, 

equations (5) through (10) comprise the standard procedure for 

assessing a distributional noise hypothesis commonly taught in 

statistical texts.  Interestingly, a sample as small as 15 

observations-known a priori to be random—was detected to be a 

random series for the n  asymptotic method of Wald and 

Wolfowitz. It is doubtful, however, that engineers would accept 

as valid a 1–lag test for such a small sample.  More lags are 

needed to be certain the data does not possess hidden signal 

structures.  In accordance with certain aspects, the presently 

disclosed inventive methods and system addresses this need. The 

inventive aspects of the present disclosure has been verified by 

empirical investigation based on a number of computer runs using 

the currently disclosed algorithm and method steps on, for 

example, programs that run in the MATLAB™ environment. 

[0050] Researchers who have used this large sample one–lag 

randomness method for analysis include Giles who applied Wald 

and Wolfowitz’s method for the removal of high frequency random 

noise for serial electromagnetic pulse data, and Kay et al. who 

investigated the complex circular correlation detector for the 

case of a complex sinusoidal in complex white Gaussian noise. 
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Some refer to the statistic 1R  as “the correlation” but this 

terminology introduces confusion. 

[0051] Turning now to certain inventive aspects of the 

present disclosure, a new method and system based on the 

correlations, hxxR , , to assess an entire ACF for a predetermined 

number of lags of circular data in the time domain is described. 

Research has shown that the methods and systems implementing the 

current disclosure are useful for sample sizes smaller than 

recommended for asymptotic theory to work. As noted, in 

computing the circular serial correlation for any lag h by 

equation (5), only the cross–product term hR  changes, a 

computing formula for which can be expressed in summation 

notation as: 
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It is clear by the first summation term that 11  nhhn  and, 

by definition, 0h . Thus, 10  nh . The 0–lag correlation is 

always +1; by above relation,  
 
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0, by definition. Substitution of the term 2S  into equation 
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(5) shows 1R . Note though that, as pointed out by Wald and 

Wolfowitz, p. 378, the noncircular form of the autocorrelation 

test of randomness omits the second term of Eq. (11), 




h

i

ihni xx
1

. 

The wrap–around circular pattern of the cross–product term, 

i
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i

hni
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hiih xxxxR 
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 for the first four lags, 3,2,1,0h can be shown 

as: 
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[0052] Or more particularly, and referring now to FIG. 4, 

shown therein is the circular structure discussed above in 

tabular format, wherein the circular structure is more 

particularly identified by the corresponding cross-hatchings. 

The “circular” pattern of last values for a lag h, corresponding 
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to the second summation term of equation (11). Note that the h-

lag of the last column shown in FIG. 4 shows the pattern for an 

arbitrary lag or a max lag. 

[0053] In accordance with certain aspects, to test an overall 

hypothesis of “noise” for all h–lags in small samples the 

present disclosure determines the critical values for hxxh RR ,&  at 

the  5% false alarm rate level. Set the critical detection 

statistic to 

 

 signalH
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RERh
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  (13) 

and (a) first solve for hR  as a lower bound (
Lh

R ) and an upper 

bound (
Uh

R ), and (b) plug those values into the circular 

correlation index, hxxR ,  of Eq. (5), to determine the lower/upper 

noise bounds. Calculations will show for the exemplary data set 

shown in table 100 of FIG. 1, 
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[0054] Once 
Lh

R  and 
Uh

R are determined, use them to find the 

lower/upper critical bounds on the circular correlation, 
Lhxx

R ,  
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and 
Uhxx

R , . The critical lower bound on the circular serial 

correlation, hxxR , , will be by  equation (5):  

 Lhxx
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The critical upper bound on hxxR ,  will be:  

 Uhxx
R , =
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Note that the critical noise bounds )42.,56.(   are not symmetrical 

about 0.  However, if we use the average of 
Lh

R  & 
Uh

R  which 

equals )(RE  we obtain 07., hxxR  which is the average of the 

lower/upper bounds on hxxR , , suggesting that as n grows the 

correlation bounds will center around 0 (which is the WGN bounds 

of 51.1596.1  ). Note that, in a similar fashion, the 1% 

lower/upper bounds on hxxR ,  are computed to be  57.,72.  . For this 

calculation use 576.2  vice 96.1  in obtaining the bounds. 

[0055] The lower and upper bounds on the correlations can be 

plotted on a correlogram to show the results. For example, and 

referring now to FIG. 5, shown therein is a correlogram 500 
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illustrating the ACF for the Hoel et al. data set of FIG. 1 

computed for all lags.  The noise bounds of )42.,56.(   are 

indicated by the lines 505 and 510, respectively. As seen, every 

correlation value is contained within the critical boundary, 

indicating a noise distribution. Note the “W” shaped symmetric 

structure for lags 1 to 14 of the correlogram 500 indicates that 

the correlation of the first and last lags are identical, the 

second is identical to the next–to–last, etc.  The reason for 

this is seen by the symmetry of the matrix of hR  product values 

for corresponding lags created by the recycling process of the 

method for discrete time/lags, unique to the Wald–Wolfowitz 

circular correlation; continuous time measurements would not 

show the symmetry for the first quadrant of ACFs (p. 380, Wald 

and Wolfowitz);i.e.,    
2

,,2,1 ,laglag
h

kknk  , which means in 

general, for even or odd sample size n,  
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The values  
2

n
 and  

2

1n
 represent the “median” values of the ACF—

the point beyond which symmetry is reflected with lags up to 
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those points on the ACF. Turning now to FIG. 6, shown therein is 

a chart illustrating the distribution of the cross product term 

hR  by lag, 1h . The hnh RR   symmetry structure is identical to 

the pattern of correlation shown in FIG. 5. FIG. 6 shows the 

distribution of hR  values across all lags which bears out the 

hypothesis of Eq. (17). The reason for the symmetry is easy to 

show.  If hn   is substituted for h in equation (11), it follows 

that, 
hnR 









 
hn

i

hii

h

i

ihni xxxx
11  

which is identical to equation (11) 

since the summation terms are commutative.  Thus hnh RR   for 

11  nh . These relationships determine the symmetry of the 

correlations separated by a predictable lag length that are 

shown in FIG. 6. The lag–symmetry of the correlations is given 

by the expression, 

 
1,,,   hRR hnxxhxx  (18) 

where 1, xxR  by definition. This relation follows since only hR  

is variable in equation (5) and there is linear relationship 

between hxxh RR ,& . For example, lag 5 hR  for 15n  is: 
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For lag 10 hR  is .
10
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i

ii

i

ii xxxxR  Clearly the terms of the 

summations for each lag are equal as shown earlier.  Hence 105 RR   

and the correlations will be equal, 10,5,   xxxx RR . The symmetry is 

evident for all lags 1h  which satisfies the relation 

   
2

,,2,1 ,laglag
h

kknk   of equation (17). 

[0056] To further exemplify these relationships for various 

sample sizes,  

if 25n , .12,,2,1,25   hRR hh  

if 30n , 15,,2,1,30   hRR hh  

if 49n , 24,,2,1,49   hRR hh  

if 50n , 25,,2,1,50   hRR hh  

 

[0057] If sample size n is an odd number, symmetry occurs 

after the th
n

2

1
 lag and  nth

n
even 

2
. This suggests that when the 

ACF is computed on samples for 1 nh  lags, symmetrical or 

redundant information is plotted on the correlogram on either 

side of the median value of the max. lag; i.e.,    n
n

n
n

even 
2

, odd 
2

1
. 

For larger samples  22n  the complete symmetry will be less 

evident when the MATLAB default criterion determining the 
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maximum number of lags to process in an ACF analysis is used; 

i.e.,  1,20minmax  nh . 

[0058] In accordance with certain aspects of the present 

disclosure, the fundamental theoretical and programming 

implication of the foregoing is that only 21  the correlations 

are needed to completely characterize the ACF for 15n . Such an 

implication applies to studies with larger sample sizes.  FIG. 7 

is a table 700 that shows exemplary minimum number of lags for 

varying sample sizes.  As shown in table 700, for small samples 

 39n , fewer computations are needed and the same amount of 

information is extracted compared to the default MATLAB™ 

criterion, hmax , using the function, autocorr(Series,nLags,M, 

nSTDs). These sample sizes coincide with typical naval signal 

processing algorithms that process Filtered Integrated Data 

Units (FIDUs) in batch mode. 

[0059] Note, the choice of hmin , as opposed to hmax , in 

deciding how many lags to process is practical for non-large 

samples. It is impractical to plot 500 ACF values for 1000n ; 

however, a large data set can be randomly sampled once or 

resampled multiple times to obtain an estimate of the exact ACF 

of the entire sample by use of the hmin  criterion of the 

presently disclosed inventive method. 
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[0060] In accordance with certain aspects of the present 

disclosure, the complete ACF for noise–signal at the 5% level 

may be assessed by counting the integer number of times c the 

correlation values exceed the noise bounds for 1h . Then,  

 

".oisen"
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signal""
20

lags


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c

c

 (20) 

Fractional values of c may be rounded to the next higher 

integer. For the present data, c = 0, and noise""
20

lags
c .  Note 

that h=0 can be excluded since the circular correlation for the 

0–lag is always +1 regardless of sample size and is therefore 

not a value reflective of the strength of the relationships 

among the data. 

[0061] In the alternative, a user may assess the hypothesis 

by equation (20) based only on the number of non–redundant lower 

(or upper) lags of the ACF; in the case of n=15, the “lags” of 

equation (20) would be 7 in which case since c  was observed to 

be 0, the null hypothesis of noise only would be accepted. Note, 

to assess the complete ACF for noise–signal at the 1% level, the 

criterion for 1h  is: 
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[0062] Now, we compare the data analysis results of the exact 

circular correlation procedure for the 15 sample data set shown 

in table 100 of FIG. 1 with the standard normalized non–circular 

autocorrelation function. Autocorrelations were computed for the 

maximum number of lags.  The %5  WGN error band is constant 

for all lags at 51.
15

96.196.1


n
 and is symmetric around the ACF 

value of 0. While differences exist in individual values, all 

correlations show a “noise” distribution (i.e., )p , consistent 

with the data results for circular correlation, as described 

herein.  

[0063] The most significant difference is the lack of 

symmetry of the correlation values.  By comparison, the circular 

ACF of FIG. 5 requires only 7 values to render the decision 

“noise” because of the median–symmetry property.  It can also be 

reiterated that the drawback of losing one observation per lag 

with the non-circular autocorrelation method. 

[0064] The process and computer-implemented method steps 

described herein comprise the essential steps needed to arrive 
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at a decision of signal–noise for the entire discrete ACF, in 

accordance with the present disclosure. Exemplary and/or 

alternative measures are generally (a) the hR  of equation (11), 

(b) the h  and the rejection criterion of equation (13), and (c) 

probability p, equation (10). These statistics provide 

alternative means or variations, alone or in combination, to 

practice certain aspects of the present disclosure. For example, 

the 1–lag test of randomness requires (a), (b) and (c) to 

evaluate the hypothesis of noise only with the non–parametric 

circular correlation index provided n is sufficiently large.  As 

a second example, users who desire to use the noncircular form 

of the non-parametric test procedure of Wald and Wolfowitz for 

randomness assessment with lag 1 need to adjust the statistic hR  

by omitting the second term of equation (11), 




h

i

ihni xx
1

.  Users 

may desire that those statistics be made available with other 

aims in mind.  Moreover, to reduce computational memory load for 

large numbers, Wald and Wolfowitz (p. 383) suggest to transform 

the input data ix  by subtracting the mean, ,
1

1






n

i

ix
n

x  from each 

value of ix ; i.e., redefine 




n

i

iii x
n

xx

1

1
.  This makes 01 S  since 
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 



n

i

i xx
1

.0   Calculations for the mean and variance and other 

statistics are conducted on the transformed variate, xxi  .  If 

,01 S  calculations of )(RE  and )var(R  are simplified in equations 

(7) and (8).  The linear transformation changes the value of the 

cross–product term, hR , but the correlation indices, and values 

comprising the hypothesis testing certain steps of the disclosed 

procedure are unaffected by subtracting a constant; this follows 

by the rules for moments of linear combinations of random 

variables.   

[0065] As another alternative or variation, the present 

inventive method can be used to assist in randomness 

determination in patents to F. J. O’Brien, Jr. which are 

designed for two–dimensional Cartesian space.  These patents 

include: U.S. Pat. 6,983,222; U.S. Pat. 6,397,234; and U.S. Pat. 

5,966,414, the contents of which are incorporated herein by 

reference in their entirety. 

[0066] As a final alternative or variation, users may wish to 

run additional tests of randomness as confirmatory evidence of 

randomness in the case of fairly small samples ).25( n  One 

procedure that has been tested and found to particularly useful 

for small samples is the Wald–Wolfowitz Runs Test (pages 378–
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388). The above listed patents demonstrate this multi-stage 

noise discrimination procedure for small and large samples. 

[0067] From the above, it is clear that the herein described 

inventive concepts provide an improved system on non-parametric 

circular autocorrelation for signal processing and method of 

use. As discussed above, prior methods utilizing the Wald-

Wolfowitz one-lag ACF test, in certain instances, fail to make 

the correct signal/noise determination. A clear discussion of 

this, as well as the application of the present disclosure to 

overcome said failings is discussed below with respect to FIG. 

8. 

[0068] FIG. 8 is a graph illustrating an example of a noise-

corrupted sinusoid and ACF evaluated as “signal” utilizing 

aspects of the present disclosure. For the graph, the number of 

discrete data points or vectors is n=100. The false alarm rate 

was .001, or a confidence level of .999. The ACF in accordance 

with the present disclosure is identified with triangular data 

markers.  The input data, a sinusoid with noise is identified 

with square data markers.  The sinusoid is indicated with 

circular markers, and the time average limiting form of the ACF, 

Rxx, is indicated with diamond data markers.  The upper and lower 
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correlation bounds, as determined by the present disclosure, are 

identified by dashed lines above and below “0”.  

[0069] In the illustration shown in FIG. 8, a 160% noise 

signal was added to a sinusoidal signal, resulting in a signal-

to-noise that averaged nearly -12.6 dB over four simulation 

runs. It will be noticed that the early 3 lags are “noise”.  

This means that the standard circular non-parametric Wald-

Wolfowitz ACF procedure discussed above evaluates this 

distribution as “noise” based on lag–1.  But, in fact, it is a 

signal distribution in accordance with the currently described 

inventive method based on standard false alarm rate analysis. 

FIG. 8 is but one example demonstrating the inadequacy of a one–

lag only Wald-Wolfowitz signal test method in signal processing.  

In summary, the presently disclosed inventive methods illustrate 

that the Wald-Wolfowitz ACF test tends to fail to detect signal 

structure as the noise level increases for a fixed sample size 

and false alarm rate. 

[0070] Therefore, it is believed that engineers use the 

valuable Wald-Wolfowitz circular ACF test incorrectly when they 

analyze only the first lag (the standard approach as recommended 

in the original article by Wald and Wolfowitz) in order to 

determine whether the time series data is a  signal or noise. 
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Analyzing the first—lag can provide very misleading diagnostics. 

The commonly used procedure is not always correct in trapping a 

signal. The real signal in the time domain can go undetected 

when operating in a noisy signal processing environment.  This 

is considered to be a serious error. 

[0071] These and other function and implementation details 

regarding the systems and methods of the presently described and 

claimed inventive concepts will be described in greater detail 

below with reference to the FIGS. 9-10. 

[0072] It is to be understood that the presently disclosed 

inventive steps may be implemented using a wide variety of 

computerized devices(s), processing system(s), software 

application modules, and the like. Such systems may include 

hardware, software, or combinations thereof that, when executed, 

are configured to perform the herein disclosed inventive steps 

and methods.  

[0073] Referring now to FIG. 9, shown therein is an exemplary 

architecture of a system 900 which may be adapted to practice 

aspects of the present disclosure. That is, the exemplary 

architecture illustrated in FIG. 9 includes hardware, software, 

and/or combinations thereof, adapted to implement certain 

aspects of the presently disclosed and claimed inventive 
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concept(s). The exemplary architecture is provided by way of 

example only and is not intended to be limiting.  Changes and 

variations to the exemplary architecture illustrated in FIG. 9 

are considered within the scope of the present disclosure. 

[0074] A module (or application), as referenced in the 

present invention, should be generally understood as a 

collection of routines that perform various system-level 

functions and may be dynamically loaded and unloaded by hardware 

and device drivers as required. The modular software components 

described herein may also be incorporated as part of a larger 

software platform or integrated as part of an application 

specific component. Changes and variations to the exemplary 

architecture illustrated in FIG. 9 are considered within the 

scope of the present disclosure. 

[0075] The system 900 may include one or more processors 905 

and memory 910.  The memory 910 may store, in part, instructions 

and data for execution by the processor 905.  The memory 910 may 

store executable code when in operation. The memory 910 may 

include a data processing module 940 for processing data. The 

system 900 may further include a storage system 915, 

communication network interface 925, input and output (I/O) 

interface(s) 930, and display interface 935.  Data vectors can 
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be received from sensors at communication network interface 925.  

Signal characterization data can be provided as output through 

at least one of communication network interface 925, I/O 

interface 930 and display interface 935. The components shown in 

FIG. 9 are depicted as being communicatively coupled via a bus 

920.  The components may be communicatively coupled via one or 

more data transport means.  The processor 905 and memory 910 may 

be communicatively coupled via a local microprocessor bus, and 

the storage system 915 and display interface 935 may be 

communicatively coupled via one or more input/output (I/O) 

buses.  The communications network interface 925 may communicate 

with other digital devices (not shown) via a communications 

medium. 

[0076] The storage system 915 may include a mass storage 

device and portable storage medium drive(s).  The mass storage 

device may be implemented with a magnetic disk drive or an 

optical disk drive, which may be a non-volatile storage device 

for storing data and instructions for use by the processor 905.  

The mass storage device can store system software for 

implementing embodiments according to the present technology for 

purposes of loading that software into the memory 910.  Some 

examples of the memory 910 may include RAM and ROM.  A portable 
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storage device, as part of the storage system 915, may operate 

in conjunction with a portable non-volatile storage medium, such 

as a floppy disk, compact disk or digital video disc (DVD), to 

input and output data and code to and from the system 900 of 

FIG. 9.  System software for implementing various embodiments 

may be stored on such a portable medium and input to the system 

900 via the portable storage device. The memory and storage 

system of the system 900 may include a non-transitory computer-

readable storage medium having stored thereon instructions 

executable by a processor to perform, at least partially, a 

computer-implemented method for to characterize a signal 

structure, in accordance with the present disclosure. The 

instructions may include software used to implement modules 

discussed herein, and other modules. 

[0077] I/O interfaces 930 may provide a portion of a user 

interface, receive audio input, and provide audio output. The 

I/O interface 930 may include component(s), logic instructions, 

and/or combinations thereof, adapted to permit the user to 

interface with the system 900. The I/O interfaces 930 may 

include an alpha-numeric keypad, such as a keyboard, for 

inputting alpha-numeric and other information, or a pointing 

device, such as a mouse, trackball, stylus, or cursor direction 
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keys.  The display interface 935 may include a liquid crystal 

display (LCD) or other suitable display device.  The display 

interface 935 may receive textual and graphical information, and 

process the information for output to the display interface 935. 

[0078] The system 900 may include any computerized system 

that can implement a web browser application or other suitable 

applications adapted to request and provide information to and 

from the system 900 via a network.  Exemplary systems adapted to 

implement the system 900 include, but are not limited to, a 

general purpose computing system, a personal computer, a laptop 

computer, a netbook, a personal digital assistant (PDA), a smart 

phone, an e-reader, and/or equivalents thereof.  Exemplary 

software applications included on the system 900 include a web 

browser application, a word processor application, a time 

keeping/tracking application, a communication application, as 

well as a wide variety of applications understood by one having 

ordinary skill in the art. 

[0079] Broadly, the network discussed above may be adapted to 

provide a communications medium to permit one or more systems 

900 to communicate with other systems 900, or a remote 

processing system (not shown), and vice versa.  The network can 

be implemented via the World Wide Web (WWW), a wide area network 
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(WAN), a local area network (LAN), the Internet, an intranet, a 

wireless network, a cellular telephone network, and/or 

equivalents or combinations thereof. 

[0080] The system 900 may include component(s), logic 

instructions, and/or combinations thereof, adapted to implement 

at least a portion of the currently described and claimed 

inventive concept(s).  The system 900 may include instructions 

stored on non-transitory computer readable medium that when 

executed causes the processing system to implement the present 

technology.   

[0081] The system 900 may further include an applications 

module 945, which may include one or more of programs, 

applications, logic instructions, and computer executable code 

adapted to operate the system 900 as well as to carry out at 

least a portion of the currently described and claimed inventive 

concept(s). 

[0082] It is to be understood that the description provided 

above regarding the particularities of the exemplary 

architecture implementing the system 900 is provided by way of 

example and is not to be considered limiting. The system 900 may 

be implemented as described above or with a variety of 

modifications and/or changes to the architecture without 
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departing from the particular functions described herein.  For 

example, the system 900 may be implemented as a stand-alone 

server, as a web server, as a distributed server system, as an 

application server, in combination with a database server, etc.  

When the system 900 is implemented as a webserver, the system 

900 may communicate with other systems 900, via the network, 

through a series of web pages.  The system 900 may be 

implemented as a single web server or as a distributed 

processing system including a plurality of server(s) coupled to 

one or more databases, either locally or remotely.   

[0083] Turning now to FIG. 10, shown therein is a flowchart 

of an exemplary method 1000 to characterize a signal structure, 

in accordance with the present disclosure. The method 1000 may 

be computer-implemented using, for example, the system 900, 

combinations, or equivalents thereof. The method 1000 may 

include a step 1010 of receiving a fist set of time-dependent 

data vectors. The data vectors may be received via a first data 

channel. The first data channel may be a wired or a wireless 

channel, an optical channel, a radio-frequency channel, and the 

like, e.g., the bus 920, communications network interface 925. 

Generally, the input data vectors or time-dependent data vectors 

  , xt  where t is clock time 0t  and )(tx  is the amplitude measure 
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in the time domain, i.e., each of the data vectors may have an 

associated amplitude. The step 1010 may further include 

performing preprocessing conditioning, filtering, formatting, 

etc., as necessary. The method 1000 may also include a step 1020 

of selecting a discrete sample size n. That is, the step 1020 

may include selecting a sample size of the input data vectors n 

from the first set of data vectors. The step 1020 may be 

performed via a signal characterization module that executes 

instructions that, when executed, cause the signal 

characterization module to carry out at least a portion of the 

herein described steps. The signal characterization module may 

be implemented via, for example, the system 900 and/or the one 

or more application modules thereon. If required, the step 1020 

may further include time domain sampling, such as described 

herein. The inventive concepts recited in the present disclosure 

can easily handle sample sizes which coincide with typical naval 

signal processing algorithms that process Filtered Integrated 

Data Units (FIDUs) in batch mode. A large data set can be 

randomly sampled to obtain an estimate of the ACF of the entire 

sample by use of the hmin  criterion of the inventive method. 

Small sample sizes of about 100 or less may not need to be 

sampled in order to analyze the entire ACF.  
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[0084] Once any required sampling is accomplished, the method 

1000 may further include a step 1030 of determining a minimum 

number of lags to process to characterize the first set of data 

vectors. The minimum number of lags to process may be based on 

the sample size n from the first set of data vectors. The 

minimum number of lags to process may be determined with the 

criterion 

     






 
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[0085] The method 1000 may further include a step 1040 of 

calculating a cross-product term for each data vector in the 

sample size for each lag, a mean value based on the sum of the 

cross-product term for each lag, and a variance value. The cross 

product term may be calculated using equation (11) above. The 

mean value may be calculated using equation (7), above. The 

variance value may be calculated using equation (8), above. The 

method 1000 may further include a step 1050 of calculating a 

circular correlation function for each lag. The cross 

correlation function may be calculated using equation (5) above. 

The values hxxR .  may optionally be plotted on a correlogram.  

[0086] The method 1000 may further include a step 1060 of 

determining an upper and a lower correlation bound for the 
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circular correlation. The upper and lower correlation bounds may 

be based on the mean value, the variance value, and a desired 

false alarm rate. Generally, critical upper and lower noise 

bounds on the correlations,
UL hxxhxx RR  ,, , , are calculated first using 

equation (13) discussed above, wherein the constant 1.96 

represents a desired false alarm rate of five percent (5%), 

i.e., using the equations 
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and 
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Once the critical upper and lower noise bounds are determined, 

those values are inserted into equation (5) above in which 
Lh

R

replaces hR  for the lower correlation bound 
Lhxx

R , , and 
Uh

R

replaces hR  for the upper correlation bound 
Uhxx

R , . 

[0087] The method 1000 may further include a step 1070 of 

characterizing the signal structure based on the number of 

calculated circular correlation functions that exceed the upper 



  

49 

or lower correlation bounds. In certain aspects, a parameter c 

may be counted to ascertain the number of computed 

autocorrelation values which exceed the noise bounds.  

Fractional values of c may be rounded up to the next higher 

integer. The decision module (e.g., the signal characterization 

module) determines whether the ACF is signal or noise.  Eq. (20) 

makes this determination at the 5% false alarm level and Eq. 

(21) at the 1% false alarm level.  Other conclusions and 

decisions about the vector data set may be made about the 

structure of the time waveform such as periodicity or other 

trends to inform further analysis of the data set.  A signal 

characterization data signal may be generated which is 

indicative of whether the first set of data vectors include a 

signal component, a noise component, combinations thereof, and 

the like.  

[0088] The method 1000 may further include a step 1080 of 

outputting the signal characterization data signal on a second 

data channel. The second data channel may utilize the same or 

similar data channel as the first data channel or may be an 

independent data channel. The output signal characterization 

data signal may be output as an electronic or hard copy computer 

analysis (graphic or text). The output signal characterization 
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data signal may be provided to additional processing modules for 

further analysis. Additional exemplary analysis may include a 

power spectral density (PSD) analysis of the ACF to further 

characterize the signal information of non–random data, or noise 

reduction algorithms used to remove the identified noise, or 

Fishers’ classical test for periodicities, among other 

procedures, well known to those skilled in the art of this 

field.  

[0089] From the description discussed above, it is clear that 

the currently disclosed inventive method possesses several key 

advantages and new features over the standard autocorrelation 

method currently available to scientists and engineers for 

testing a signal-noise binary hypothesis—for example the popular 

MATLAB™ procedure with syntax, autocorr(Series,nLags,M,nSTDs). 

An important advantage of the current disclosure is that it 

makes no assumptions about the underlying distribution; that is, 

it is non–parametric.  This means the method can be used for 

Gaussian or non-Gaussian models and call “signal” or “noise” 

with high certainty. Second, the method can perform a complete 

analysis for the maximum number of lags in one–half the time the 

same data set is processed by the standard non–circular 

correlation method. This is due to the symmetry of the 
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correlations for h lags, as explained herein.   Third, the 

method does not lose “one observation per lag” as the standard 

non circular parametric method does. This is especially 

important for small samples in which the h
th
 lag may contain only 

a handful of observations which results in lower confidence in 

the estimates. 

[0090] It will be understood that many additional changes in 

the details, materials, steps and arrangement of parts, which 

have been herein described and illustrated in order to explain 

the nature of the invention, may be made by those skilled in the 

art within the principle and scope of the invention as expressed 

in the appended claims. The foregoing description of the 

preferred embodiments of the invention has been presented for 

purposes of illustration and description only.  It is not 

intended to be exhaustive nor to limit the invention to the 

precise form disclosed; and obviously many modifications and 

variations are possible in light of the above teaching.  Such 

modifications and variations that may be apparent to a person 

skilled in the art are intended to be included within the scope 

of this invention as defined by the accompanying claims. 
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SYSTEM AND METHOD OF NON-PARAMETRIC CIRCULAR 

AUTOCORRELATION FOR SIGNAL PROCESSING 

 

ABSTRACT OF THE DISCLOSURE 

 A computer-implemented method to characterize a signal 

structure is provided. The method may receive a first set of time-

dependent data vectors; select a sample size of data vectors; 

determine a minimum number of lags to process to characterize the 

first set of data vectors; calculate a cross-product term for each 

data vector in the sample size for each lag, a mean value and a 

variance value based on the sum of the cross-product term for each 

lag; calculate a circular correlation function for each lag; 

determine an upper and a lower correlation bound for the circular 

correlation based on the mean value, the variance value, and a 

desired false alarm rate; and characterize the signal structure 

based on the number of calculated circular correlation functions 

that exceed the upper or lower correlation bounds so as to 

generate a signal characterization data signal.  
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i xi xi+1 

R1= 
xi•xi+1 xi2 xi3 xi4 

1 45 41 1,845 2,025 91,125 4,100,625 
2 41 50 2,050 1,681 68,921 2,825,761 
3 50 41 2,050 2,500 125,000 6,250,000 
4 41 59 2,419 1,681 68,921 2,825,761 
5 59 57 3,363 3,481 205,379 12,117,361 
6 57 56 3,192 3,249 185,193 10,556,001 
7 56 47 2,632 3,136 175,616 9,834,496 
8 47 40 1,880 2,209 103,823 4,879,681 
9 40 42 1,680 1,600 64,000 2,560,000 

10 42 54 2,268 1,764 74,088 3,111,696 
11 54 44 2,376 2,916 157,464 8,503,056 
12 44 49 2,156 1,936 85,184 3,748,096 
13 49 52 2,548 2,401 117,649 5,764,801 
14 52 53 2,756 2,704 140,608 7,311,616 
15 53 45=xi 2,385 2,809 148,877 7,890,481 

SUM 730 730 35,600 36,092 1,811,848 92,279,432 
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MEASURE 
LAG h Rh Rx,x+h τ p 

1 35,600 0.13 0.80 0.42 
2 35,467 -0.11 -0.14 0.89 
3 35,298 -0.40 -1.33 0.18 
4 35,333 -0.34 -1.08 0.28 
5 35,423 -0.18 -0.45 0.65 
6 35,573 0.08 0.61 0.54 
7 35,710 0.32 1.58 0.11 
8 ALL DATA SAME AS LAG 7 
9 ALL DATA SAME AS LAG 6 
10 ALL DATA SAME AS LAG 5 
11 ALL DATA SAME AS LAG 4 
12 ALL DATA SAME AS LAG 3 
13 ALL DATA SAME AS LAG 2 
14 ALL DATA SAME AS LAG 1 
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SAMPLE SIZE 

n 
MINIMUM h MATLAB™ 

maxh=min[20,n-1] 
4 2 3 
5 2 4 
10 5 9 
15 7 14 
20 10 19 
25 12 20 
30 15 20 
35 17 20 
40 20 20 
45 22 20 
50 25 20 
55 27 20 

100 50 20 
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OVERALL, minh  

FIG. 7 



 
FI

G.
 8 

-4
.0

0 

-3
.0

0 

-2
.0

0 

-1
.0

0 

0.
00

 

1.
00

 

2.
00

 

3.
00

 

4.
00

 

5.
00

 

1 
5 
9 

13 
17 
21 
25 
29 
33 
37 
41 
45 
49 
53 
57 
61 
65 
69 
73 
77 
81 
85 
89 
93 
97 

VALUE 

 
TI

M
E 



900 

/905 v~20 /925 

COMMUNICATIONS 

PROCESSOR 
NETWORK 
INTERFACE 

/940 930\ 

DATA 1/0 INTERFACE 

PROCESSING 
MODULE 

935\ 
DISPLAY 

MEMORY INTERFACE 

910 

945......_ /915 
APPLICATIONS 

STORAGE MODULE 

SYSTEM 

FIG. 9 



( START ) 

~ 
1010-........ RECEIVING A FIRST SET OF 

TIME-DEPENDENT DATA VECTORS 

~ 
1020- SELECTING A SAMPLE SIZE OF DATA 

VECTORS 

~ 
/1000 

1030 DETERMINING A MINIMUM NUMBER OF 
LAGS TO PROCESS 

1040 
~ 

'\ CALCULATING A CROSS-PRODUCT TERM FOR EACH DATA 
VECTOR IN THE SAMPLE SIZE FOR EACH LAG, A MEAN 
VALUE BASED ON THE SUM OF THE CROSS-PRODUCT 

TERM FOR EACH LAG, AND A VARIANCE VALUE 

~ 
1050--........_ CALCULATING A CIRCULAR 

CORRELATION FUNCTION FOR EACH 
LAG 

~ 
1060-..._ DETERMINING AN UPPER AND LOWER 

BOUND FOR THE CIRCULAR 
CORRELATION 

~ 
CHARACTERIZING THE SIGNAL STRUCTURE BASED ON 

1070 '--......... THE NUMBER OF CALCULATED CIRCULAR 
CORRELATION FUNCTIONS THAT EXCEED THE UPPER 

OR LOWER CORRELATION BOUNDS 

~ 
1080--........_ PROVIDING THE SIGNAL 

CHARACTERIZATION DATA SIGNAL ON 
A SECOND DATA CHANNEL 

~ FIG. 10 
( END ) 


	100559DWG1
	100559FIG9
	100559FIG10.pdf

