
 
 

 
 AFRL-SA-WP-TR-2013-0021 

 
 

Noninvasive Intracranial 
Pressure Monitoring Using 

Advanced Machine 
Learning Techniques 

 
 
 
 

Peter Hu, PhD; Shiming Yang, PhD; Hegang Chen, PhD; 
Lynn Stansbury, MD; Catriona Miller, PhD; Katharine 
Colton; Kostas Kalpakis, PhD; Col Raymond Fang, MD; 

Deborah M. Stein, MD, MPH, FACS 
 
 
 

November 2013 
 
 
 

Final Report 
for August 2012 to August 2013 

 

Air Force Research Laboratory 
711th Human Performance Wing 
School of Aerospace Medicine 
Air Force Expeditionary Medical Skills Inst 
C-STARS Baltimore 
2510 Fifth St. 
Wright-Patterson AFB, OH 45433-7913 

Distribution A:  Approved for public 
release; distribution is unlimited. 
Case Number:  88ABW-2014-1766,  
17 Apr 2014 
 



 
 
 

NOTICE AND SIGNATURE PAGE 
 
 
 
 
 
Using Government drawings, specifications, or other data included in this document for any 
purpose other than Government procurement does not in any way obligate the U.S. Government.  
The fact that the Government formulated or supplied the drawings, specifications, or other data 
does not license the holder or any other person or corporation or convey any rights or permission 
to manufacture, use, or sell any patented invention that may relate to them. 
 
Qualified requestors may obtain copies of this report from the Defense Technical Information 
Center (DTIC) (http://www.dtic.mil). 
 
 
 
AFRL-SA-WP-TR-2013-0021 HAS BEEN REVIEWED AND IS APPROVED FOR 
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT. 
 
 
 
 
 
                      //SIGNATURE//     //SIGNATURE// 
___________________________________  __________________________________ 
Col Raymond Fang, USAF, MC, FS  Col Benjamin A. Harris, USAF, MC, SFS 
Chief, C-STARS Baltimore    Chair, AF Expeditionary Medical Skills Inst 
 
 
 
 
 
 
 
This report is published in the interest of scientific and technical information exchange, and its 
publication does not constitute the Government’s approval or disapproval of its ideas or findings. 

http://www.dtic.mil/


REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and 
maintaining the data needed, and completing and reviewing this collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including 
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, 
Suite 1204, Arlington, VA  22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of 
information if it does not display a currently valid OMB control number.  PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1.  REPORT DATE (DD-MM-YYYY) 
1 Nov 2013 

2.  REPORT TYPE 
Final Technical Report 

3.  DATES COVERED (From – To) 
August  2012 – August 2013 

4.  TITLE AND SUBTITLE 
Noninvasive Intracranial Pressure Monitoring Using Advanced Machine Learning 
Techniques 
  

5a.  CONTRACT NUMBER 
FA8650-11-2-6142 
5b.  GRANT NUMBER 
 
5c.  PROGRAM ELEMENT NUMBER 
 

6.  AUTHOR(S) 
Peter Hu, PhD; Shiming Yang, PhD; Hegang Chen, PhD; Lynn Stansbury, MD; 
Catriona Miller, PhD; Katharine Colton;  Konstantinos Kalpakis, PhD; Col Raymond 
Fang, MD; Deborah M. Stein, MD, MPH, FACS 

5d.  PROJECT NUMBER 
 
5e.  TASK NUMBER 
 
5f.  WORK UNIT NUMBER 
 

7.  PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
USAF School of Aerospace Medicine 
Air Force Expeditionary Medical Skills Institute 
C-STARS Baltimore  
2510 Fifth St. 
Wright-Patterson AFB, OH 45433-7913 

8.  PERFORMING ORGANIZATION REPORT 
     NUMBER 
 
AFRL-SA-WP-TR-2013-0021 
     

9.  SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
 

10.  SPONSORING/MONITOR’S ACRONYM(S) 
 

11.  SPONSOR/MONITOR’S REPORT 
       NUMBER(S) 
 

12.  DISTRIBUTION / AVAILABILITY STATEMENT 
 
Distribution A:  Approved for public release; distribution is unlimited.  Case Number:  88ABW-2014-1766, 17 Apr 2014 
 
13.  SUPPLEMENTARY NOTES 
 
14.  ABSTRACT 
This project explored the use of advanced machine learning techniques to noninvasively estimate real-time intracranial pressure (ICP) 
in traumatic brain injury patients from continuous electronic physiological monitoring data.  We hypothesized that advanced machine 
learning techniques could process and analyze electronic vital signs data collected noninvasively and, when correlated with central 
nervous system-invasive ICP monitoring data, could provide a valid analytic platform for the noninvasive monitoring of ICP for 
defined periods and clinical needs. We developed a machine learning algorithm that, using noninvasive vital signs features alone, 
could estimate the current ICP of a patient with an accuracy of ±4.6 mmHg.  We further developed algorithms that are capable of 
predicting patient future ICP with ±1.5 mmHg 5 minutes into the future and ±5 mmHg standard deviation 2 hours into the future 
using the continuous recordings of heart rate, systolic blood pressure, mean arterial pressure, and ICP. Realization of this analytic 
platform will support translation of this work into robust, field-ready clinical instrumentation that permits high-quality ICP 
monitoring in austere care environments not suitable for central nervous system-invasive ICP monitoring.   

15.  SUBJECT TERMS 
Advanced machine learning techniques, intracranial pressure, vital signs, monitoring, noninvasive monitoring 

16.  SECURITY CLASSIFICATION OF: 17.  LIMITATION 
 OF ABSTRACT 
 

SAR 

18.  NUMBER 
OF PAGES 
 

30 

19a.  NAME OF RESPONSIBLE PERSON 
Col Raymond Fang 

a.  REPORT 
U 

b.  ABSTRACT 
U 

c.  THIS PAGE 
U 

19b.  TELEPHONE NUMBER (include area 
code) 
 

 Standard Form 298 (Rev. 8-98) 
 Prescribed by ANSI Std. Z39.18 

 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This page intentionally left blank. 



TABLE OF CONTENTS 
 

Section           Page 
 
LIST OF FIGURES ...............................................................................................................    iii 
 
1.0  EXECUTIVE SUMMARY .......................................................................................      1 
 
2.0  INTRODUCTION .....................................................................................................      2 
 
3.0  BACKGROUND .......................................................................................................      3 
 
  3.1 Trauma Epidemiology  ........................................................................................      3 
  3.2 Clinical Application and Pitfalls ..........................................................................      3 
  3.3 Preliminary Studies ..............................................................................................      3 
   
4.0  METHODS ................................................................................................................      4 
 
  4.1 Data Sources: Patient Selection  ..........................................................................      4 
  4.2 Data Sources: Patient Records .............................................................................      5 
  4.3 High-Resolution Automated Data Collection ......................................................      5 
  4.4 Data Pre-Processing .............................................................................................      5 
  4.5 Time Series Analysis of ICP  ...............................................................................      6 

4.5.1 Auto-Correlation Study .........................................................................      6 
4.5.2 Cross-Correlation Study........................................................................      7 
4.5.3 Vital Signs Variable Dependency Test .................................................      7 

  4.6 Estimate ICP Via Low-Rank Matrix Completion ................................................      8 
  4.7 ICP Prediction Via Nearest Neighbor Regression ...............................................    10 
    4.7.1 Predictions with Past ICP Measurement ...............................................    10 
    4.7.2 Predictions with Noninvasive Vital Signs Measurement......................    11 
  4.8 Evaluation of Drug Treatment and ICP Change ..................................................    11 
     
5.0  RESULTS ..................................................................................................................    12 

 
5.1 Time Series Analysis ...........................................................................................    12 
5.2 Hankel Matrix Completion ..................................................................................    12 
5.3 Prediction with Nearest Neighbor Regression .....................................................    13 
5.4 Drug Treatment and Its Impact on ICP ................................................................    16 

 
  

i 
 

Distribution A: Approved for public release; distribution is unlimited. Case Number: 88ABW-2014-1766, 17 Apr 2014 



 
 

TABLE OF CONTENTS (concluded) 
 

Section           Page 
 
6.0  DISCUSSION ............................................................................................................    18 
 
7.0  CONCLUSIONS........................................................................................................    19 
 
  7.1 Immediate Support ...............................................................................................    19 
  7.2 Cost and Ease of Use ...........................................................................................    19 
  7.3 Limitations ...........................................................................................................    20 
 
8.0  REFERENCES ..........................................................................................................    20 
 
LIST OF ABBREVIATIONS AND ACRONYMS ..............................................................    22 
  

ii 
 

Distribution A: Approved for public release; distribution is unlimited. Case Number: 88ABW-2014-1766, 17 Apr 2014 



 
 

LIST OF FIGURES 
 

Figure            Page 
 
     1 Real-Time Bedside and Telemetric Critical Care Monitoring Display .....................      4 
 
     2 Auto-Correlation Function with Respect to Different Lags for  
  One Patient’s ICP .......................................................................................................      6  
 
     3 Jitter Plot of 113 Patients’ ICP Auto-Correlation, with Maximum Lag of 2 h 
  (24 evaluation time points with 5 min each) ..............................................................      7 
 
     4 Cross-Correlation Function with Respect to Different Lags for One Patient’s  
  ICP and HR ................................................................................................................      7 
  
     5 Pairwise Relationships of VS, Measured by MIC and Pearson’s (Linear)  
  Correlation Coefficient  .............................................................................................      8 
 
     6 Example Hankel Matrix for a Sequence of m=3 VS Using a  
  Sliding Window of Size w=7 (k=2) ...........................................................................      9 
 
     7 Illustration of Searching Nearest Neighbors Given the Current System State  
  of a New Patient .........................................................................................................    10 
 
     8 Scatter Plot of Performance of Data Imputation Methods .........................................    13 
 
     9 Bland-Altman Plots of Performance of Data Imputation Methods ...........................    14 
 
   10 Performance of Comparison of Prediction for Different Prediction Horizons  
  (5 min, 1 h, and 2 h) of the NNR Using Past ICP ......................................................    15 
 
   11 1.96 SD and Bias of ICP Predictions of NNR, Regression Tree, and  
  Most Recent ICP Carry-On ........................................................................................    16 
 
   12 PTD20 in the Hours Before, During, and After Treatment Administration  
  for Different Types of Drugs .....................................................................................    17 
 
   13 PTI20 in the Hours Before, During, and After Treatment Administration 
  for Different Types of Drugs  ....................................................................................    18 
  

iii 
 

Distribution A: Approved for public release; distribution is unlimited. Case Number: 88ABW-2014-1766, 17 Apr 2014 



 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This page intentionally left blank. 

iv 
 

Distribution A: Approved for public release; distribution is unlimited. Case Number: 88ABW-2014-1766, 17 Apr 2014 



1.0  EXECUTIVE SUMMARY 
 

The vast amounts of high-quality continuous electronic data garnered by modern 
physiologic monitoring systems have the potential to provide an unprecedented view of dynamic 
physiologic response to injury, illness, and intervention. We hypothesized that advanced machine 
learning techniques could process and analyze electronic vital signs (VS) data collected 
noninvasively and, when correlated with invasive intracranial pressure (ICP) monitoring data, 
provide a valid analytic platform for the noninvasive monitoring of ICP for defined periods and 
clinical needs.  The primary aim of this project was to demonstrate the correlation between ICP 
data derived from invasive systems with VS data from non-central nervous system-invasive 
systems in the prediction of immediately subsequent periods of ICP using advanced machine 
learning techniques.  To accomplish this aim, we had three objectives: 

 
1. Establish a validated patient database and pool of testing data from the continuous, 

automated electronic monitoring network in our neurotrauma critical care units and 
identify, using multivariate, nonlinear regression methods, those time-and-sequence 
segments of continuous electronic VS data, so-called features, of potential utility in 
prediction models. 

2. Using the subset of critical features identified in the above work and three well-described 
structured machine learning methods—decision tree, support vector machines, and 
entropy—construct machine learning models that correlate previous periods of invasively 
derived ICP data and previous periods of noninvasively derived VS data with 
immediately subsequent periods of invasively derived ICP. 

3. Cross-validate the above results using three established techniques—leave-one-out, k-
fold, and receiver operating characteristics area under the curve analysis—to estimate the 
prediction error of each model without overfitting the model 
  
Between 2008 and 2010, there were 207 cases of traumatic brain injury patients admitted 

to the R Adams Cowley Shock Trauma Center in which continuous ICP monitors were placed 
and continuous electronic physiologic data were recorded; 191 of these patients were older than 
18 years of age and eligible for this study. There are more than 50 types of vital signs routinely 
collected on all patients admitted to the Shock Trauma Center neurotrauma critical care units, 
including continuous ICP, heart rate, systolic blood pressure, and end tidal carbon dioxide.  
Additional data collected included patient demographics, injury types, drug treatments, and 
outcome data.  

Because of the large size and complexity of the patient dataset, the dataset was pre-
processed to remove noise and to explore the nature of the dataset prior to building estimation or 
prediction models. First, the dataset was refined by removing outliers and highly noisy ICP 
segments. With the remaining high-quality patient dataset, we applied various time series 
methods to study the predictability of ICP and its correlation with other noninvasive vital signs. 
Next, we developed a novel approach to real-time estimate ICP levels in incomplete datasets 
with gaps of missing values from the stream of continuous physiological electronic monitoring 
data by constructing sequences of Hankel matrices from VS data streams and utilizing the low-
rank matrix completion method from compressive sensing to estimate ICP. Our approach 
substantially outperformed other popular fill-in methods, such as k-nearest neighbors and 
expectations maximization.  
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We also developed methods for ICP estimation and near-term ICP prediction by training 
regression models using VS features for given time durations. Our regression model of 
minimally invasive ICP monitoring predicts ICP in clinically useful timeframes and may support 
development of noninvasive and/or minimally invasive ICP monitoring systems, earlier 
intervention strategies, and better patient outcomes.  We developed a machine learning algorithm 
that, using noninvasive VS features alone, could estimate the current ICP of a patient with an 
accuracy of ±4.6 mmHg.  We further developed algorithms that are capable of predicting patient 
future ICP within ±1.5 mmHg 5 minutes into the future and ±5 mmHg standard deviation 2 
hours into the future using the current continuous recordings of heart rate, systolic blood 
pressure, mean arterial pressure, and ICP.  

Although our estimation and prediction results are encouraging, the prediction accuracy 
was found to decrease as the prediction horizon extends.  A major contributor to the reduced 
prediction capability of our regression models is the clinical care of the patient, as many clinical 
interventions and treatments occur that are not adjusted for in the regression models. To address 
this, we added drug treatment variables to our regression models to improve the accuracy of 
estimation of ICP.  Ninety-eight patients with a collective 664 treatment instances of hypertonic 
saline, mannitol, barbiturates, propofol, or fentanyl were identified and characterized to study 
whether intervention information, such as drug treatment, could be included into the estimation 
models for improving accuracy.  
 
2.0 INTRODUCTION 
 

Combat-related TBI is an important cause of death and persistent disability in the current 
conflicts [1-3].  Estimates suggest that approximately 20% of all military personnel serving in 
the current conflicts in the Middle East have suffered some form of traumatic brain injury (TBI), 
and recent calls for combat casualty care research have specifically targeted advancing TBI care 
at all echelons of care. Analysis of U.S. military deaths occurring after arrival at a medical 
facility found that 9% of potentially survivable and 83% of non-survivable “died of wounds” 
combat deaths were due to combat-related TBI.  Among those who survive the initial trauma, 
additional post-injury secondary physiologic insults begin to accumulate almost immediately, 
chiefly manifested as brain swelling or intracranial hypertension (ICH), which has a high 
correlation with poor outcome.  Management of severe TBI aims to mitigate secondary insults, 
and most interventions are directed at controlling intracranial pressure (ICP) and preventing ICH.  
The current gold standard of treatment involves direct measurement of ICP and ICH, which is 
invasive and associated with bleeding, infection, and misplacement; requires neurosurgical 
expertise and an advanced facility; and is not suitable for deployment in austere environments.  
For these reasons, identification of robust, accurate, reliable, and noninvasive methods for 
monitoring ICP and secondary injury is a high priority. 

Casualties with severe TBI (Glasgow Coma Scale—GCS—8 or less) are particularly 
vulnerable to the stressors of long-distance air evacuation [4,5], and evacuation itself is not 
without specific risks for additive injury. Having valid, reliable prognostic information on 
casualties within the first 12 hours after severe TBI will help optimize triage and evacuation 
times and improve long-term outcomes for these patients.  
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3.0 BACKGROUND 
 
3.1 Trauma Epidemiology 
 
 Traumatic brain injury is the most common cause of emergency care admission and of 
trauma-related death in the U.S. civilian population [6] and a major cause of death and disability 
in combat casualties [7].  For TBI patients, ICP, the pressure measured inside of the closed box 
of the skull, is of special importance [8]. Even relatively brief periods of elevated ICP are 
associated with adverse outcomes, and marked elevation of ICP or elevation unresponsive to 
medications may require risky life-saving surgery. Because of the highly invasive and hazardous 
nature of direct ICP monitoring and because the management of ICP is a central focus of 
neurotrauma critical care [9], much research has focused on the development of early-warning 
decision assist systems that could maximize the potential for timely therapeutic interventions to 
improve long-term clinical outcomes by estimation and prediction of ICP.  
  
3.2 Clinical Application and Pitfalls  
 
 Three clinical application scenarios have been identified that would greatly benefit from 
noninvasive ICP estimation and ICP prediction based on previous ICP measurements:  
 

1. In austere environments, such as warzones, natural disaster areas, or rural areas, invasive 
ICP monitoring can be difficult or impossible. 

2. Even in patients with invasive ICP monitors installed, various technical complications 
leading to interruption of ICP measurement are inevitable, such as the limitations of 
intraventricular catheters capable of ICP measurement or cerebrospinal fluid drainage 
requiring removal to prevent infection or to allow computed tomography scan.   

3. If clinicians had the ability to predict near-future ICP trends, they could initiate timely 
therapeutic interventions to limit or even prevent secondary injury. 

 
 In applying advanced machine learning techniques to continuous electronic physiological 
monitoring data for the real-time estimation and near-future prediction of ICP, there are two 
potential pitfalls. First, our patient dataset may be limited due to the technical challenges and 
sporadic nature of continuous monitoring data, which could limit our ability to build specific 
models. Second, due to the complexity of the human brain and our incomplete understanding of 
TBI physiology, we may have limited ability to describe and interpret the interrelationship of 
ICP with other vital signs (VS). In the following study, we seek to develop a machine learning 
framework designed to address both potential pitfalls. 
 
3.3  Preliminary Studies 
 
 The study team previously demonstrated the superiority of automated VS data collection 
and processing systems compared to manual VS recording in providing data on patients with 
severe TBI and the power of calculating a pressure-times-time “dose” (PTD) of ICP and cerebral 
perfusion pressure (CPP) [8,10]. Using receiver operating characteristic techniques, prognostic 
algorithms were developed correlating VS-related features derived from routine neurotrauma 
critical care unit (NTCCU) electronic monitoring with 30-day mortality and Glasgow Outcome 
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Score-Extended [11] scores at 3 and 6 months. These algorithms were then incorporated into 
real-time graphic displays of ongoing calculations of Shock Index [SI=systolic blood pressure 
(SBP)/heart rate (HR)] and Brain Trauma Index (BTI=[CPP/ICP])*time [12]. This prototype 
patient monitoring video display system is now deployed on a translational basis throughout the 
R Adams Cowley Shock Trauma Center (STC) in Baltimore, MD (Figure 1). 

 

 The BTI graph, shown in the second row from the top in Figure 1, allows for the tracking 
and visual display of head injury status. Data point clusters under the dotted red line (ICP<20 
mmHg and CPP>60 mmHg) are associated with the best outcomes; points between the red and 
yellow lines correlate with relatively poor outcomes, while the poorest outcomes are seen when 
data points cluster above the yellow line (ICP≥20 mmHg and CPP<60 mmHg). This display 
allows clinicians to track and monitor shifts in patients’ status over the previous 12 and 24 hours 
in a single real-time display, linked to predicted outcome rather than just conventional single-
parameter threshold readouts. As well as the two indices noted, SI and BTI, VS thresholds of 
interest in this work were SBP, mean arterial pressure (MAP), HR, ICP, CPP, and oxygen 
saturation (SpO2). 
 
4.0 METHODS 

  
4.1 Data Sources: Patient Selection 

 
This work was undertaken as part of the protocol approved by the University of Maryland 

School of Medicine Human Research Protections Office and the Air Force Research 
Laboratory’s Institutional Review Board for intensive monitoring after severe TBI. Included 
were adult patients (older than 17 years) admitted to the STC with GCS <9 and a clinically 
determined requirement for ICP monitoring. The nature of these patients’ injuries precluded 
personal informed consent; therefore, informed consent was secured from a legally authorized 
representative prior to study inclusion and from the patient as soon as and if that became 

          Figure 1. Real-Time Bedside and Telemetric Critical Care 
                    Monitoring Display 
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possible. Patients with severe multi-trauma (more than one non-head Abbreviated Injury Score 
>3) were excluded. 

 
4.2 Data Sources: Patient Records  

 
Demographic, injury, and injury scoring data; admission VS; and laboratory data are 

recorded by our trauma registry on all trauma patients admitted to the STC.  Therapeutic 
interventions were abstracted from written patient charts and the electronic medical record. 

 
4.3 High-Resolution Automated Data Collection  

 
Vital signs data collection for this project was initiated when an ICP monitoring device 

was placed either in the trauma resuscitation unit or in the intensive care unit (ICU) between 
2008 and 2010. Continuous, high-resolution, automated electronic VS data were collected over 
the course of hospitalization from severe TBI patients. A total of 207 TBI patients required ICP 
monitoring, of which 191 were eligible for the study, i.e., adults (>17 years old; 42 female and 
149 male). Details of the electronic data capture, storage, and data point assembly procedures 
used in general by this study team to construct VS signal sequences for analysis have been 
published previously [13] and are summarized here. All ICU patient monitors at the STC capture 
incoming electronic data every 6 seconds.  The networked ICU monitors compress the data 
stream and transfer it to a centralized VS data recorder server through a secured intranet. 
Potential artifacts and defined extreme outliers are filtered via a moving median window process.  

Two types of devices are used to monitor ICP at STC.  The Camino® intraparenchymal 
monitor (Integra LifeSciences Corp., Plainsboro, NJ) directly measures ICP in the brain 
parenchyma or the subarachnoid space after surgical implantation and provides continuous 
pressure measurements [14]. The intraventricular catheter (IVC) provides dual but not 
simultaneous function by both monitoring ICP and allowing drainage of cerebrospinal fluid from 
the ventricles; however, ICP readings are only accurate when the external drainage system is 
clamped.  ICP clamping and measurement are performed hourly in stable patients and more often 
in sicker patients. In this study, we need continuous and accurate measurement at almost all time 
points, which only the Camino ICP monitor could provide. 

 
4.4 Data Pre-Processing  

 
The 6-second high-resolution electronic monitoring data contain noise, outliers, and 

missing values. As mentioned before, ICP can be monitored using the Camino® ICP and IVC 
ICP. Because of the intermittent nature of IVC ICP measurement, as well as our requirement for 
continuously measured ICP, we removed IVC ICP segments by reviewing all the ICP sequences 
with assistance of nurse records.    

Using a 5-minute-long moving window, we smoothed the continuous VS waveform by 
averaging the values inside the window. This approach reduces the impact of noise and outliers. 

Nearest neighbor regression was a special type of pre-processing that we implemented 
and will be discussed further in later sections.  Nearest neighbor regression was used to do in-
variable normalization to compensate for the different ranges of the various VS variables. For 
example, HR usually varies from 60-120 bpm, while the SI often locates at the interval of 0 to 2. 
In some distance (i.e., Euclidian distance) calculations, variables with wide ranges are likely to 
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dominate the calculation.  Small-scale variables are less important in the distance calculation. 
For the observations of each variable, we transformed them to be zero-mean with a covariance of 
one, so that all variables are in the range of -1 to 1. 
  
4.5 Time Series Analysis of ICP 

 
To estimate or predict ICP, we must first examine the correlation of ICP data sequence 

data to current and past values of the other VS. We can view the sequentially collected ICP and 
VS as samples from random variables that are manipulated by some underlying systems. Using 
auto-correlation and cross-correlation tools with the time series analysis, we can measure the 
linear predictability of a time point [15], i.e., if a sequence of observation is simply generated 
from a random process and if a linear model is sufficient to estimate and predict the variable 
being observed. In addition to auto-correlation and cross-correlation, which measure the linear 
predictability of one time series using its past or another time series, there are correlations to 
measure the functional dependency between variables. The maximum information coefficient 
(MIC) is a new measure to assess a wide range of correlations between two variables. 

 
4.5.1 Auto-Correlation Study. Using past ICP measurements, we can predict future ICP.  An 
autoregressive model can establish a linear function to estimate current ICP using past ICPs with 
lag t from a sequence of past patient ICP measurements. Knowing a reasonable duration of t 
could help us to develop a simple function in which past values have a strong influence on 
current ICP. Figure 2 shows the auto correlation of ICP in one patient with respect to different 
time lags. In the most recent 15 minutes, the auto-correlation is significantly different from zero. 
Figure 3 illustrates the auto-correlation of a group of 113 patients’ ICP with lags from 5 minutes 
to 2 hours and demonstrates that the influence of past ICP varies among patients. However, most 
patients’ ICPs do not have significant correlation to their own ICP 20 minutes in the past. 

 

 

     Figure 2. Auto-Correlation Function with Respect to Different Lags 
               for One Patient’s ICP 
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4.5.2 Cross-Correlation Study. To estimate ICP noninvasively from other VS readings, we 
needed to study how strongly ICP readings are correlated with the current and past 
measurements of the electronically monitored VS. Cross-correlation was used to characterize the 
relationship. Figure 4 shows the correlation of ICP and HR in one TBI patient with respect to 
different time lags. Within the past 15 minutes, the ICP is significantly correlated with patient 
HR.  

 

4.5.3 Vital Signs Variable Dependency Test. The MIC is a new method to assess a wide range 
of correlations and functional dependency between two variables [16]. MIC takes real values 
between zero and 1, representing the non-relationship (two ends) and noise-free relationship of 
linear or nonlinear form, respectively. With the dataset described above, the MIC and the 
Pearson (linear) correlation coefficients were calculated for 15 pairs of six VS (ICP, CPP, SI, 
HR, SpO2, SBP) for each patient. In Figure 5, MIC scores were plotted against Pearson 
coefficients to show the strength of linear and nonlinear relations. There are some interesting 

     Figure 3. Jitter Plot of 113 Patients’ ICP Auto-Correlation, with 
               Maximum Lag of 2 h (24 evaluation time points with  
               5 min each) (most patients’ ICP has little correlation 
               after 20 min) 
 

    Figure 4. Cross-Correlation Function with Respect to Different Lags 
              for One Patient’s ICP and HR 
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observations that can be made from this plot. First, most of the VS pairs show relationships, i.e., 
the same color dots in the plot cluster in closed regions. Second, most pairs of variables show 
weak correlations, with MIC and Pearson coefficients both being close to zero. Third, both the 
MIC and Pearson coefficients suggest that CPP versus HR and CPP versus SpO2 have relatively 
strong linear relationships. The above observations suggest that there is no simple linear 
relationship between ICP and other VS. Moreover, this relationship may vary between patients.  

 

 
4.6 Estimate ICP Via Low-Rank Matrix Completion 

 
In ICP monitoring of TBI patients, data collection is often not complete and continuous 

due to various technical and clinical care issues.  We intend to develop machine learning 
algorithms that have the ability to estimate missing ICP values to ensure continuous patient care 
[17].  Patient data consist of continuous ICP, HR, SBP, mean blood pressure (MBP), and carbon 
dioxide (CO2).  Incomplete datasets are a pervasive problem in medical research. Ten patients 
who had 12 hours of ICP and VS without any missing ICP values and less than 5% missing 
values for the HR, SBP, MBP, and end tidal CO2 (EtCO2) were identified, only five of whom 
survived. We compared various methods of imputing missing data: Hankel matrix, nearest 
neighbor (k=1), nearest neighbor (k-5), and the regularized expectation maximization (EM) to 
fill in the gaps. The performance of methods was assessed and compared by comparing the 
relative error and the normalized mean square error (NMSE).        

Traditional and intuitive methods to address estimation of missing data include filling 
with the mean or median [18] and/or the last observation carried forward [19]. These methods 
are simple but tend to give biased estimates. Moreover, they ignore information from other 
variables and knowledge of the system.  To address these shortcomings, model-based methods 
have been developed, including both regression models and neural networks. These methods 
treat the variables with missing values in deterministic ways. However, in many applications, it 
makes more sense to consider variables in a probabilistic approach, as it better represents natural 
randomness. The maximum likelihood method such as the EM is a very successful probabilistic 
approach applied in missing data analysis [20,21]. 

        Figure 5. Pairwise Relationships of VS, Measured by MIC and 
                  Pearson’s (Linear) Correlation Coefficient  
                  (each dot represents one patient) 
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Inspired by the matrix completion method [22,23], we constructed block Hankel matrices 
from VS data streams with missing values. We continuously estimated the missing values within 
a sliding window using matrix completion techniques and performed moving-window 
smoothing. Consider a sequence of observations St-w+1, St-w, …, St for m data stream variables 
within a sliding window of length w that ends at time t, so that 𝑆𝑖 ∈ R𝑚 is the vector of values of 
these variables at time i. The km×l block Hankel matrix Ht at time t is constructed through a 
partition-and-stacking process as follows:  

 

, 
 
where l=w-k+1. In constructing matrix Ht, a moving window of size w over the data stream 
variables is used. Within this window, the sliding sequence of length k (e.g., slices) forms the 
columns of Ht. Figure 6 illustrates a small example Hankel matrix constructed from 3 vital signs 
with a sliding window size of w=7 and k=2. 

The 10 TBI patients (5 survived and 5 died in the hospital) identified above had greater 
than 12 hours of continuous every 6-second VS data streams without any missing ICP data and 
less than 5% missing values for HR, SBP, MBP, and EtCO2. We constructed a sequence of 
30×30 Hankel matrices with one matrix for each sampling step using the sliding window 
method. In determining the size of Hankel matrices for experiments, we tested different sizes, 
15×15, 30×30, and 60×60. We chose a 30×30 Hankel matrix, as there was a noticeable 
improvement when going from 15 to 30 but not from 30 to 60. 

 

 

We hypothesized that the vital signs would not change significantly in a short time 
duration and used our constructed Hankel matrices, which mostly dwell in a low dimensional 
space. Hence, we can find a complete matrix such that its elements are equal to the original 
matrix at places where there are observed values and values that have rank as small as possible at 
missing values. This problem can be mathematically described as a convex optimization problem 
and CAN be solved efficiently with off-the-shelf software. 

          Figure 6. Example Hankel Matrix for a Sequence of m=3 VS 
                    Using a Sliding Window of Size w=7 (k=2) 
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The Hankel matrix completion method is limited by its requirement for variables to be 
only randomly missing and is suited for current ICP estimation, but not prediction.  
 
4.7 ICP Prediction Via Nearest Neighbor Regression 
  
4.7.1 Predictions with Past ICP Measurement. In this section, we will discuss the commonly 
used regression method to estimate and predict ICP with or without ICP measurement. 

In the noninvasive ICP monitoring scenario, ICP values for training a regression model 
are scarce due to the relative inability to obtain ICP measurements; this absence of ICP values 
excludes the use of supervised learning methods.  One way to resolve this sample quantity issue 
is to find “similar” patients whose physiological status is close to the new patient, assuming that 
human cerebral hemodynamics have common mechanisms between individuals, with some 
individual variation.  This assumption would imply that two patients with similar responses to 
external stimulus and internal regulations should have similar trends of some physiological 
statuses after treatment.  When matching patients with similar physiological status, there are two 
important challenges: (1) definition of a system state space and (2) definition of a distance metric 
to determine nearest neighbors of historical observation to the current conditions. After matching 
a set of nearest neighbors, we selected a forecast generation method, which captured the system 
characteristics for prediction of a short future horizon. Figure 7 depicts the idea of “borrowing” 
training ICP values from a historic dataset, by means of similarity.  

 

System state similarity is measured by the distance between two system states. Hence, we 
need to select a set of variables to capture the characteristics of the system. In this study, we 
selected HR, SBP, SI, pulse pressure (PP), and ICP in the current and past 5, 10, 15, and 20 
minutes. For a new patient with the above VS measured in the past 20 minutes, we search in our 
patient dataset for other patients to gather sufficient training points by measuring the distances 
between the new state and all other states. The top k nearest states (neighbors), as well their next 
5-minute to 2- hour ICPs, are used as a training set to build the regression models for different 
prediction horizons. 

After finding similar system states and their corresponding future ICP records, we used 
regression methods to build prediction models. Due to our limited knowledge of the 
physiological mechanisms by which past VS correlate with and/or influence ICP, it was difficult 
to design an explicit model. Therefore, instead of providing an explicit regression model with 
coefficients, we adopted the Gaussian process regression method to estimate the function values 
at each variable. This approach relaxes the parameter space into an infinite space. However, 

       Figure 7. Illustration of Searching Nearest Neighbors Given the 
                 Current System State of a New Patient 
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other regression methods can also fit into this framework, such as generalized linear regression, 
etc. 

Using the same training data found by the nearest neighbor method, we also applied the 
regression tree method, incorporating age, gender, and neural GCS as extra features. In most 
situations, the ICP changes slowly without any sharp jumps within a short time period. To some 
extent, the most recent ICP can be used as a rough estimation of near future ICP. To examine the 
performance of this simple estimation, we made shifts of ICP sequence by increasing intervals 
from 5 minutes up to 2 hours. 
 
4.7.2 Predictions with Noninvasive Vital Signs Measurement. In the last section, we discussed 
a framework of building dynamic, local, and patient-specific models for ICP prediction using 
current and past invasive ICP measurements in the system state to sketch a patient’s physiologic 
status together with other noninvasive VS.  Although this setting is still useful for predicting 
future ICP, we hoped to make the entire process completely noninvasive.  Within our 
framework, if we remove ICP from the system state in the similarity searching, no ICP 
measurement is demanded for the new patient. The only issue is that the new system state 
similarity between two patients may not be as good as when ICP is included. Therefore, it is 
necessary to select combinations of noninvasive VS that can clearly distinguish different 
physiologic conditions, especially the ICP. Results from this noninvasive setting are reported in 
the Results section below. 
  
4.8 Evaluation of Drug Treatment and ICP Change 

 
To improve our estimation or prediction accuracy of current and near-future ICP, we built 

drug treatment into our prediction models.  During NTCCU care, patients receive various 
treatments, many of which are intended to manage ICP.  

Many different sedatives, analgesics, and neuromuscular blocking agents are used to 
prevent, manage, and/or treat ICP elevations.  Hyperosmolar agents like hypertonic saline (HTS) 
and mannitol are common first-line treatments for ICH.  While many sedative and analgesic 
agents have been studied for efficacy and effect on outcome after TBI, there is little published or 
studied on the very short-term effects that are actually observed at the bedside and used to guide 
management. 

We utilized high-frequency automated VS recording to examine ICP changes before and 
after treatment with the most commonly utilized pharmacologic interventions for ICH used at 
our institution. We calculated cumulative PTD (mmHg×hr) and the portion of each hour spent 
with ICP >20 mmHg (PTI) in the hours before, during, and after intervention. 

Patients with severe TBI admitted to the STC are admitted to a dedicated NTCCU and 
managed according to a standardized tiered protocol in accordance with the Brain Trauma 
Foundation Guidelines [24]. Treatment targets the maintenance of ICP <20 mmHg and CPP >60 
mm Hg. We identified 98 patients out of the 191 available cases. In total, 890 treatments were 
administered when ICP >20 mmHg for at least 5 minutes, per continuously recorded ICP.  These 
include 158 “small” and 71 “large” doses of HTS, respectively, 7 doses of mannitol, 325 dose 
escalations of propofol, 216 of fentanyl, and 89 of both propofol and fentanyl. There were also 
23 administrations of a discrete dose of a barbiturate. 

ICP changes after treatment in the 1-hour to 4-hour range were compared statistically.  
Demographic data were summarized as percentages or means with standard deviation (SD) and 
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medians with interquartile range.  The Student’s t-test was used to compare means.  A statistical 
mixed model was applied to PTD and PTI values after treatment administration to account for 
multiple sampling.  Probability values for results being due to chance (p) of <0.05 were 
considered statistically significant. 
 
5.0 RESULTS 
 
5.1 Time Series Analysis 
 

In this study, we analyzed the correlation or dependency between current ICP 
measurements and past ICP or other VS measurements. Auto-correlation analysis for ICP shows 
two major observations: (1) adjacent ICPs have high correlation, but their correlation generally 
drops below 0.2 after 15 to 20 minutes (Figure 2), and (2) different patients presented various 
correlations of their current ICP to ICP in the past (Figure3). In studying correlation of ICP with 
another vital sign, we found similar results for ICP correlation with other VS. Based on this auto-
correlation and cross-correlation study, we determined that VS measurements in the previous 15 
to 20 minutes may be sufficient for estimating current ICP. 
 
5.2 Hankel Matrix Completion  
 

Ten patients were identified who had 12 hours of continuous (every 6 seconds) ICP and 
VS without any missing ICP values and less than 5% missing values for HR, SBP, MBP, and 
EtCO2; five survived to discharge. Note that there are five variables in our data stream. We 
constructed a sequence of 30×30 Hankel matrices, one matrix for each sampling step using the 
sliding window method discussed in the last section. Note that each Hankel matrix contains data 
spanning about 3 minutes.  

We use the relative error and the NMSE to assess the performance of methods in filling 
in missing values. The NMSE is the mean square error divided by the product of the means of 
the estimated value and the true value for the missing values. 

In the first experiment, to represent commonly seen gaps in clinical data collection, 25% 
of ICP data points were randomly deleted, while leaving the VS data intact.  A sequence of 
30×30 Hankel matrices was constructed to estimate all missing values. If one missing ICP value 
appears multiple times in the same Hankel matrix, its final estimated value is calculated as the 
arithmetic average of all its occurrences. 

Figure 8 shows a scatter plot of the true vs. the estimated value obtained from the four 
different fill-in methods (Hankel matrix, nearest neighbor (k=1), nearest neighbor (k-5), and the 
regularized EM) [25].  Points closer to the y=x line indicate a smaller difference between 
estimated and true values.  The estimates of our Hankel matrix approach (red stars) are more 
accurate than those of the other methods. Next, we partitioned the range of ICP values into three 
intervals of clinical importance: ICP values less than 20 mmHg (normal), ICP between 20 and 30 
mmHg (high pressure), and ICP greater than 30 mmHg (potentially lethal; requires prompt 
corrective action). Clinical protocols for TBI aim to keep ICP <20 mmHg by medical 
interventions as necessary. Figure 9 shows that our method still performs better than other 
methods even for those rare instances of high ICP values. With these experiment results, we 
demonstrated that a few singular values are sufficient to capture most of the nuclear norm of 
Hankel matrices, which suggests that they are low-rank matrices perturbed with high-rank noise. 
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Figure 8. Scatter Plot of Performance of Data Imputation Methods 
 

We compared our approach with commonly used data imputation methods, k-nearest neighbors 
(k=1, 5) and the regularized EM method, and demonstrated that our approach provides better 
estimates of missing values for important VS variables like ICP than these other methods. 
 

5.3 Prediction with Nearest Neighbor Regression 
 

We evaluated our method of ICP prediction with the nearest neighbor regression (NNR) 
method. We compared NNR performance at ICP prediction with the regression tree method and 
a simple estimation way using the most recent ICP measurements using Bland-Altman plots to 
evaluate the agreement between the estimated values and the observed ICP sequence. 

We identified a subset of 132 adult patients from the larger dataset of 191 adult patients.  
Continuous, automated VS data were available.  All patients had severe TBI requiring the 
placement of a clinically necessary intraparenchymal ICP monitor (Camino).  The mean age for 
the study group was 40.2 (SD=18.9). Patients were predominantly male (104/132). Most patients 
(103/132) had GCS scores of <9, the threshold often used to define severe TBI. ICP, HR, SBP, 
MAP, and PP were available at 5-minute temporal resolution continuously for >3 hours. This 
pool provided 65,600 data points, the equivalent of 5,466 hours and 40 minutes of VS 
monitoring. The prediction horizon ranged from 5 minutes to 2 hours. Two machine learning 
methods were used to create prediction models: NNR and regression tree. In training the models, 
only past and present VS measurements were used. The predicted ICP values then were 
compared against measurements for evaluation. 
 We applied the NNR method to predict ICP values over the next 2 hours, in sequential 5-
minute segments. When we predicted ICP values for a patient, we assumed that all the rest of the 
patient’s data were available. From the VS time series, data segments with continuous ICP, HR, 
SBP, PP, HR volatility, PP volatility, and MAP measurements available for more than 3 hours 
were used. We calculated similarity during each 30-minute period.  
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Figure 9. Bland-Altman Plots of Performance of Data Imputation Methods 
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 The Bland-Altman plots in Figure 10 show agreement between measured and predicted 
ICP at 5-minute, 1-hour, and 2-hour prediction horizons in the Gaussian process regression. 
Figure 11 compares the 1.96 SD and mean of predicted values against the measurement from the 
Bland-Altman plots of the NNR (red curves), the regression tree (blue curves), as well as the 
simple shifting estimation (green curves). 
 
 

 

 

 
 
 

 

          Figure 10. Performance of Comparison of Prediction for 
                     Different Prediction Horizons (5 min, 1 h,  
                     and 2 h) of the NNR Using Past ICP 
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 In the absence of ICP monitoring data for a patient, the real-time estimation performance 
of the algorithm’s t (for current time) declined (bias -0.2 mmHg and SD 4.6 mmHg), when  
calculating the similarity between new patient and the historic dataset. This suggests that the past 
ICP measurement alone dominates the physiologic system state matching algorithms. In light of 
this, we considered another potential clinical scenario in which we have a new patient’s past ICP 
measurement but need to stop invasive monitoring. In this case, we know the past 20 minutes of 
the new patient’s ICP and use it to calibrate the estimation model, which has a bias of 0.002 
mmHg and an SD of 1.7 mmHg, which is close to the previous result of predicting the next 5- 
minute ICP (SD 1.5 mmHg).  
 
5.4 Drug Treatment and Its Impact on ICP 
 
 Various events can introduce unpredictable factors into ICP prediction. Passive 
manipulation of the sedated patient, such as bed transfers, can temporarily raise ICP levels. The 
corresponding ICP readings are real, but their significance is probably negligible. Unfortunately, 
such occurrences are impossible to predict and build into our machine learning models.  A far 
more important event is clinical intervention to control elevated ICP. According to standard TBI 
patient management protocols, clinicians give drugs or perform other physical actions or 
therapies when the ICP is observed to be above certain thresholds as well as to treat other 
comorbidities. Any of these actions may change ICP and make ICP less predictable. Although 
precise prediction of the need for intervention and its potential impact is difficult, protocols 
calling for standard interventions under specific circumstances are available, and general 
predictions regarding their effects can potentially be incorporated into our models. 

Ninety-eight patients met inclusion criteria [26]. Patients were primarily male (80.6%) 
with an average age of 39.2 ± 17.8 and a median post-resuscitation GCS score of 6; 35.7% of 
patients required a craniotomy for hemorrhage evacuation or a craniectomy for treatment of 
cerebral edema.  Overall in-hospital mortality was 19.4%. 

Eight hundred and ninety treatments were administered when ICP >20 mmHg for at least 
5 minutes in these 98 patients.  Treatments included 158 “small” and 71 “large” doses of HTS, 
respectively, 7 doses of mannitol, 325 dose escalations of propofol, 216 of fentanyl, and 89 of 

  Figure 11. 1.96 SD and Bias of ICP Predictions of NNR, Regression Tree, 
             and Most Recent ICP Carry-On 
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both propofol and fentanyl. There were also 23 administrations of a discrete dose of a 
barbiturate. 

Figure 12 shows the PTD of ICP >20 mmHg (PTD20) in the hours before, during, and 
after treatment administration. Values from 1-4 hours after administration reflect a statistical 
mixed model to account for the effect of multiple sampling in some patients. PTD20 values in 
the hour of treatment administration with both dose sizes of HTS, propofol, fentanyl, and 
propofol+fentanyl were statistically the same, while the baseline values for mannitol and 
barbiturates were approximately 5 and 2.5 times higher, respectively.  A small dose of HTS 
reduced PTD20 by 34.0% in the first hour, but by the second hour the PTD20 was not different 
from baseline.  A large dose of HTS reduced PTD by 56.3%, 78.6%, and 41.4% after hours one, 
two, and three, respectively.  PTD did not change significantly after administration of propofol, 
fentanyl, or a combination of the two. No change was seen in PTD20 after administration of a 
dose of barbiturates. 

The percentage of time per hour with ICP >20 mmHg (PTI20) before and after treatment 
can be seen in Figure 13. During the hour of treatment, patients spent an average of 33.6% 
(before fentanyl) to 78.0% (before mannitol) of the hour with ICP >20 mmHg.  Baseline PTI20 
was statistically comparable before administration of HTS, propofol, fentanyl, or propofol and 
fentanyl, while patients receiving barbiturates or mannitol showed significantly higher values. 
PTI20 was 36.5% lower 1 hour after a small dose of HTS and remained 30.8% lower than 
baseline at 2 hours. PTI20 decreased by 36.8% and 83.0% 1 or 2 hours after administration of a 
large dose of HTS, respectively.  PTI20 remained significantly depressed for 4 hours after 
administration of either dose of HTS. As seen in Figure 13, PTI showed modest but significant 
reductions after treatment with propofol or fentanyl. There were no significant changes after 
treatment with mannitol or a barbiturate. 
 

 

 

      Figure 12. PTD20 in the Hours Before, During, and After Treatment 
                 Administration for Different Types of Drugs (asterisk  
                 over the bar means it has significant difference to  
                 the baseline) 
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6.0 DISCUSSION 
 

The work described here demonstrated a framework of machine learning techniques 
aimed at estimating and predicting ICP, which is of great clinical importance. Intracranial 
pressure is the critical nexus of diagnostics, monitoring, clinical decision-making, and 
therapeutics for severe TBI, but current ICP monitoring instrumentation is highly invasive, 
fragile, difficult to use, and completely unsuitable to pre-advanced care or transport use. If 
successful and successfully translated into field-ready instrumentation, the work proposed here 
will provide clinicians with an important new, noninvasive tool for assessing ICP and critical 
changes in ICP over time. There is no generally accepted and widely used noninvasive ICP 
monitoring technique.   

In this work, we experimentally showed how noninvasive monitoring of routine patient 
vital signs could help to estimate and predict ICP in patients with severe TBI. First, we used 
methods from time series analysis to study the correlation and dependency of ICP on its past or 
on other noninvasive vital signs. Second, under different assumptions on past ICP availability, 
we proposed a Hankel matrix completion method to estimate missing ICP measurements by 
sequentially solving an optimization problem. This method has proven useful when we need to 
impute missing ICP during continuous ICP monitoring of a patient with TBI. To implement 
completely noninvasive ICP monitoring, we created a historic dataset with invasive ICP 
measured from 191 other patients. With noninvasive vital signs measured for a new patient, we 
matched physiologic similar system states from the dataset and pulled out a subset of ICP values 
that are likely to be the ICP value if the similar physiologic system state is observed.  
  

     Figure 13. PTI20 in the Hours Before, During, and After Treatment 
                Administration for Different Types of Drugs (asterisk  
                over the bar means it has significant difference to  
                the baseline) 
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As a framework, the nearest neighbor method is flexible enough to include new 
information, such as a new vital sign that can better approximate the physiologic similarity. It 
can also make use of patients’ past ICP measurements, if available.  This method could 
eventually provide ICP estimation completely noninvasively for new patients. In the meantime, it 
can be used to build patient-specific models that are adaptive to new physiologic changes as they 
occur. We suggest that the noninvasive ICP estimation with nearest neighbor regression would 
be particularly helpful if we have a short duration (20 minutes) of ICP measurement to calibrate 
our algorithm. 

Clinical interventions often have significant impact on vital signs or ICP trajectory. In the 
drug treatment study, we identified a set of drugs commonly used in ICP management that have 
statistical significance in changing ICP for up to 4 hours after administration. If the estimation 
model can incorporate drug treatment given a few hours previously, the estimation of current 
ICP could be adjusted and be more accurate.   
 
7.0 CONCLUSIONS 
 

With exploratory time series analysis and experiments, we found that noninvasive vital 
signs potentially can be used to estimate current ICP values or predict near-future ICP values.  
The estimation and prediction framework described above allows us to use a historic patient 
dataset with ICP monitoring to develop an algorithm that can complete noninvasive ICP 
monitoring for new patients. The framework is flexible to incorporate new variables that are 
strongly correlated to ICP and hence improve the accuracy and can run on field-deployable 
devices to provide real-time ICP estimation and decision support software, given other 
noninvasive vital signs.   
 
7.1 Immediate Impact  
 

The noninvasive ICP monitoring framework can be applied to our additional projects 
funded by or in consideration by the U.S. Air Force. “Fit to Fly” (FA8650-12-2-6D09) examines 
the correlation between biomarker cytokines and adverse ICP or ICH-related events in 6- to 12-
hour intervals from the time of TBI patient admission through the first 72 hours. Noninvasive 
ICP monitoring can be used during the transportation of patients or as a decision assist method 
for determining when to transfer a patient. “A Prospective Study of the Use of First 12-hour 
Intracranial Pressure Data to Provide Long-Term Prognosis after Severe Traumatic Brain Injury” 
is currently under review at the 711th Human Performance Wing. This pre-proposal proposes to 
test the algorithms developed in the current work against a prospective, novel dataset.  

 
7.2 Cost and Ease of Use 
    

The noninvasive ICP monitoring framework proposed in this study relies on automated, 
continuous (noninvasive) vital signs monitoring and on an existing high-quality historic dataset 
that can represent relationships between ICP and other vital signs. These are commonly available 
in modern neurocritical care units.  These algorithms can run on mainstream computers or could 
be optimized for running efficiency and embedded into industrial vital signs monitoring devices. 
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This framework does not require probe devices beyond those used in routine care. It 
displays the ICP estimations.  However, the algorithms may also provide confidence intervals to 
show the uncertainty of the estimation or prediction, which may add extra information to the 
display. 
 
7.3 Limitations 
    

Although this ICP monitoring framework is very flexible for estimation (current) or 
prediction (future), its performance is limited by some factors. First, the method depends on a 
historic dataset (like a dictionary), and the quality of data in that dataset has huge impact on the 
estimation accuracy. Second, finding a similar system state between a new patient and the dataset 
relies on selection of a set of relevant noninvasive vital signs. Our study shows that additional 
work is needed to identify a good combination of those vital signs for improved accuracy. Third, 
as we discussed above, intervention information may help to improve estimation. However, it 
requires extra effort to capture the relevant intervention events and to incorporate them into the 
models. 
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LIST OF ABBREVIATIONS AND ACRONYMS 
 
BTI  Brain Trauma Index 

CO2  carbon dioxide 

CPP  cerebral perfusion pressure 

EM  expectation maximization 

EtCO2  end tidal carbon dioxide 

GCS  Glasgow Coma Scale 

HR  heart rate 

HTS  hypertonic saline 

ICH  intracranial hypertension 

ICP  intracranial pressure 

ICU  intensive care unit 

IVC  intraventricular catheter 

MAP  mean arterial pressure 

MBP  mean blood pressure 

MIC  maximum information coefficient 

NMSE  normalized mean square error 

NNR  nearest neighbor regression 

NTCCU neurotrauma critical care unit 

PP  pulse pressure 

PTD  pressure-times-time dose 

PTI  portion of each hour spent with ICP >20 mmHg 

SD  standard deviation 

SpO2  oxygen saturation 

SBP  systolic blood pressure 

SI  Shock Index 

STC  R Adams Cowley Shock Trauma Center 

TBI  traumatic brain injury 

VS  vital signs 
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