
A FORMAL APPROACH TO THE PROVABLY CORRECT
SYNTHESIS OF MISSION CRITICAL EMBEDDED SOFTWARE FOR
MULTI CORE EMBEDDED PLATFORMS

VIRGINIA POLYTECHNIC INSTITUTE

APRIL 2014

FINAL TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

AFRL-RI-RS-TR-2014-083

 UNITED STATES AIR FORCE  ROME, NY 13441 AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose
other than Government procurement does not in any way obligate the U.S. Government. The fact that
the Government formulated or supplied the drawings, specifications, or other data does not license the
holder or any other person or corporation; or convey any rights or permission to manufacture, use, or
sell any patented invention that may relate to them.

This report is the result of contracted fundamental research deemed exempt from public affairs security
and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and AFRL/CA policy
clarification memorandum dated 16 Jan 09. This report is available to the general public, including
foreign nationals. Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RI-RS-TR-2014-083 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN
ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE DIRECTOR:

/ S /
WILLIAM MCKEEVER
Work Unit Manager

/ S /
MARK H. LINDERMAN
Technical Advisor, Computing
& Communications Division
Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

APRIL 2014
2. REPORT TYPE

FINAL TECHNICAL REPORT
3. DATES COVERED (From - To)

OCT 2010 – OCT 2013
4. TITLE AND SUBTITLE

A FORMAL APPROACH TO THE PROVABLY CORRECT SYNTHESIS
OF MISSION CRITICAL EMBEDDED SOFTWARE FOR MULTI CORE
EMBEDDED PLATFORMS

5a. CONTRACT NUMBER

5b. GRANT NUMBER
FA8750-11-1-0042

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

S. Shukla, M. Nanjundappa, M. Anderson, B. Jose, M. Kracht, and
J.Ouy

5d. PROJECT NUMBER
T2CS

5e. TASK NUMBER
VT

5f. WORK UNIT NUMBER
CC

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Virginia Polytechnic Institute
1880 Pratt Drive STE 2006
Blacksburg, VA 24060-6750

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RITA
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)

AFRL/RI
11. SPONSOR/MONITOR’S REPORT NUMBER

AFRL-RI-RS-TR-2014-083
12. DISTRIBUTION AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited. This report is the result of contracted fundamental research deemed
exempt from public affairs security and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and
AFRL/CA policy clarification memorandum dated 16 Jan 09.
13. SUPPLEMENTARY NOTES
14. ABSTRACT

This is the final report on the findings of the AFRL funded project “A Formal Approach to the Provably Correct Synthesis
of Mission Critical Embedded Software for Multi-core Platforms”. In this work we enhanced the theory of a formal
modeling language based specifications, namely MRICDF. We demonstrated an implementation of a software
specification and code synthesis tool based on MRICDF. The work entails new synthesis algorithms, characterization of
specifications, formal proof techniques for proving the correctness preservation property of the refinement steps in our
step-wise refinement oriented synthesis technique, multi-core code synthesis, endowing the specification with platform
specific worst case execution times to check real-time schedulability, and some case studies.

15. SUBJECT TERMS
Software Engineering, Software Producibility, Component-based software design, behavioral types, behavioral type
inference, Polychronous model of computation, Prime Implicates, Boolean Abstraction, real-time embedded software,
software synthesis, correct by construction software design, model-driven software design, high-assurance software
16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

ABSTRACT

UU

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON
WILLIAM McKEEVER

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
315-330-2897

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

94

Table of Contents
LIST OF FIGURES .. II
LIST OF TABLES .. II
FOREWORD ... III
PREFACE .. V

1 SUMMARY ... 1

MAJOR HIGHLIGHTS .. 2
DISAPPOINTMENTS ... 4

2 INTRODUCTION .. 5

2.1 STRUCTURING OF THE REPORTED RESULTS ... 5

3 METHODS, ASSUMPTIONS AND PROCEDURES ... 6

3.1 PROGRAMMING MODEL, AND SYNTHESIS TECHNIQUE.. 6
3.2 BOOLEAN THEORY AND PRIME IMPLICATES .. 7

4 RESULT AND DISCUSSION ... 9

4.1 APECS: AN AADL AND POLYCHRONY BASED EMBEDDED COMPUTING SYSTEMS DESIGN ENVIRONMENT 9
4.1.1 Introduction .. 9
4.1.2 APECS Methodology ... 12
4.1.3 Code Synthesis from MRICDF ... 22

4.2 A NEW MULTI-THREADED CODE SYNTHESIS METHODOLOGY AND TOOL FOR CORRECT-BY-CONSTRUCTION SYNTHESIS FROM
POLYCHRONOUS SPECIFICATIONS ... 27

4.2.1 Introduction .. 27
4.2.2 Definitions and Overview of Concepts .. 31
4.2.3 Concurrent Implementability .. 34
4.2.4. Experimental Evaluation and Discussions .. 42
4.2.5. Related Work ... 44
4.2.6. Conclusion and Future Work .. 44

4.3 SYNTHESIZING EMBEDDED SOFTWARE WITH SAFETY WRAPPERS THROUGH POLYHEDRAL ANALYSIS IN A POLYCHRONOUS
FRAMEWORK ... 46

4.3.1 SMT based safety property checking .. 46
4.3.2 Polyhedra based safety property checking ... 47

4.4 REAL-TIME EXTENSION AND IMPROVED SCHEDULABILITY ANALYSIS FOR REAL-TIME CODE GENERATION FROM POLYCHRONOUS
SPECIFICATIONS .. 53

4.4.1 Introduction .. 53
4.4.2 Intro to Prelude ... 55
4.4.3 Conditional Task Graph ... 60
4.4.4 Implementation in EmCodeSyn/MRICDF .. 69
4.4.5 Results, Future Work, and Conclusion .. 72

5 CONCLUSIONS & RECOMMENDATIONS ... 76

6 APPENDIX: PUBLICATIONS, TECHNICAL REPORTS, DISSERTATIONS SUPPORTED BY THE PROJECT 83

LIST OF ACRONYMS ... 84

i

List of Figures
Figure 1: AADL Microcontroller Code .. 12
Figure 2: Microcontroller Layout ... 13
Figure 3 End to End Flow ... 13
Figure 4: Latch .. 14
Figure 5: Source Code Binding... 14
Figure 6: Floor Model .. 15
Figure 7: Door Model .. 16
Figure 8: Control Interface .. 16
Figure 9: Complete System Model ... 17
Figure 10: Elevator Car State Machine .. 19
Figure 11: Door State Machine.. 20
Figure 12: Door Controller MRICDF ... 21
Figure 13: Source Code Binding ... 22
Figure 14: Instance Tree .. 22
Figure 15: Generated Thread .. 23
Figure 16: Associating Thread Behavior ... 23
Figure 17: Top-Level System ... 24
Figure 18: Clock Trees .. 24
Figure 19: Periodic Controller... 25
Figure 20 (a) MRICDF model, (b) simplified clock tree ... 35
Figure 21 (a)Pyramid structure of clock tree and (b)forest of clock trees for sequential and concurrent

specifications .. 38
Figure 22 Plot of Time taken for analysis and code generation vs number of times model is duplicated 43
Figure 23: (Top) 3D-plot (multiple views) of Polyhedras representing Input and Loop Constraints. (Bottom) 3D

plots of I ∩ L and I - L ... 51
Figure 24: Location Estimation Unit (f=Rate of occurrence, E=Execution Time, D=Deadline) 54
Figure 25: Variety of ops rate transitions between flows f and g .. 57
Figure 26: Prelude Task Graph for Location Estimation ... 58
Figure 27: Prelude Schedule for Location Estimation .. 59
Figure 28: Simple Conditional Example ... 62

List of Tables
Table 1: Event Descriptions ... 20
Table 2: Door Event Descriptions .. 20
Table 3: Each Actor and Corresponding Shape .. 24
Table 4: Benchmark Suite ... 42
Table 5: Experimental Results ... 43
Table 6 Input and True Causal Loop constraints .. 50
Table 7 Inequalities and Equations from Input and Loop constraints .. 50
Table 8: General Form of Inter-Task Communication .. 71
Table 9: Input relation restrictions .. 72
Table 10: Increasing number of Activations of one Node .. 73
Table 11: Increasing Branches of a Total Process .. 74
Table 12: Comparison of Worst Case Schedules .. 75

ii

Foreword
Software assurance for safety-critical systems is an increasingly difficult problem as software

systems are becoming more complex, and ubiquitous. From the perspective of critical
infrastructures, civilian or military, almost every aspect of all systems are now software
controlled, be it the drive-by-wire automotive, military vehicles, fly-by-wire fighter jets or civil
aviation, unmanned vehicles and drones, control of a manufacturing plant, or a power plant, or
medical devices implanted in patients. Ensuring correctness of software that are going to be used
for real-time control of so many safety-critical systems is a complex problem, and one can take a
two prong approach to it. One approach is post-facto verification (testing, modeling checking,
theorem proving based proof of correctness etc.). The other approach is to enable methods for
correct-by-construction software synthesis from mathematically sound specifications. It turns out
that for historical and cultural reasons, the first approach has gotten more research and
educational attention in the United States in the last 20-30 years, whereas in Europe, correct-by-
construction synthesis has had at least two decades of effort, and educational training. Therefore,
it is quite reasonable to see that most successful software verification tools (although limited in
capacity and scope) have originated in the US, whereas most well-known synthesis tools and
methodologies are from Europe. For example, the SPIN model checker developed in the AT&T
Bell Labs for verifying software used in telephone call routing has evolved into a software
verification tool at the Jet Propulsion laboratory in Pasadena California. Since most successful
semiconductor industries are in the US, the hardware formal verification tool vendors are also US
centric (Cadence, Jasper Design Automation, and Prover Technologies etc.). On the other hand,
SCADE is a synthesis tool that is used by Air Bus, and other companies in Europe and even at
General Electric in the US, and it originated in France. Even though SCADE is very limited in
scope, and it can only be used for a very specific kind of control loop synthesis, the commercial
success of SCADE is very Europe Centric.

Fortunately, since 2001, I have been involved in joint research with the French National
Institute for Computer Science and Automation (INRIA) in their software synthesis methodology
based on Polychronous specification language SIGNAL, and the corresponding tool suite. This
specification formalism is much more powerful when concurrency has to be modeled at the
specification level (SCADE is a synchronous language and handles concurrency poorly by over
synchronization of concurrent computation). In order to bring that technology to the US Air
Force, I started developing an alternative polychronous specification formalism called MRICDF
(Multi-Rate Instantaneous Channel Connected Data Flow Network), and the corresponding visual
language, and modeling/synthesis tool called EmCodeSyn. This work originated when I spent a
summer with Steve Drager and William McKeever at the Air Force Rome Labs during the
summer of 2008. Immediately after that I spent a sabbatical year in France and in Germany, in
two groups at two institutes attempting two different approaches to software synthesis, I got this
idea of developing the theory, and tools for software synthesis for concurrent multi-threaded
applications. Since around 2008-09, the multi-core processors started to become common place
even on our desktops, it was an imperative to develop tools and frameworks for synthesis of code
for such platforms.

However, since the software for embedded safety-critical system are often time constrained,
and we need real-time multi-threaded software running on a real-time operating system, the
further enhancement of EmCodeSyn that we planned for was to develop real-time EmCodeSyn,

iii

and the corresponding modeling framework, and the schedulability checker, and scheduled code
synthesis.

We also planned to enhance EmcodeSyn with some automated redundancy insertion
techniques for dependability, but due to the budget cut brought on by the sequestration in 2013,
we had to fall short on that.

iv

Preface
Model-driven embedded software synthesis is an area of research for a while in various

forms. For example, Mathworks Inc, has a tool ‘real-time workshop’ that can generate C/C++
code from Simulink/MatLab specifications. However, since Simulink/Matlab does not have a
published formal semantics, we are unable to formally guarantee that the generated code is
correct with respect to the specification. The notion of correctness being that the set of infinite
behaviors of the generated code is exactly the set of infinite behaviors of the original model.
Therefore, in many industries, including Boeing, the real-time workshop tool is used to generate
code only to treat the code as hand-written code, and hence all verification efforts remain the
same. Moreover, since auto-generated code might not be easy to read, it creates extra burden on
the verification engineers. As a result, for a ‘correct-by-construction’ synthesis, one needs to start
with a specification that is formal. The specification language must have precise formal
semantics, so that the meaning (in terms of the set of behaviors implied by the model) is
unambiguous. Moreover, having started with a formal specification, one can use step-wise
refinement techniques to transform the model into an implementation. The process of doing so is
called ‘software synthesis’. The synthesis process (also called the compilation process) must be
proven to preserve all the properties of the model. Thus, if the model can be proven to possess all
requisite properties, one can then assume that the implementation preserves all those properties.
Proving correctness of the implementation is often more cumbersome, as the implementation
often contains details, programming language specific idiosyncrasies, and often too large to prove
correct with today’s formal verification tools. As a result, this ‘correct-by-construction’ approach,
if it works, can gain much over the traditional post-implementation testing and verification.

Other than informal modeling languages such as Simulink, Labview, Modelica etc, there have
been a lot of effort in Europe in defining languages that can model embedded reactive software
systems. Synchronous languages such as Esterel, Lustre, Quartz, Argos, etc., are the results of
those efforts. Even though, these languages differ syntactically, and in their implicit model of
computation, they all simplify embedded computing into a sequence of reactions. The idea is that
there are sensors through which the embedded controller samples the physical state of the system
it is controlling, using the measurements from the sensors it computes the present state, and use a
state machine algorithm to decide what state should the controller be in next, and what actuations
must be done on the physical system to bring it to the desired state. This entire process can be
thought of as a reaction. In the synchrony hypothesis underlying all these different languages
assumes that the time taken for one reaction is small enough so that the when the next inputs are
obtained, the reaction has already taken place. Therefore, one can abstract the entire reaction time
to a single logical instant. Thus, the entire computation can be thought as a totally ordered
sequence of reactions. When to start a new reaction, and when it is time to finish the reaction is
determined by some periodic clock (usually the clock period must be at least as large as the worst
case reaction time).

This model is simple enough, that the Lustre language has given rise to the popular tool
SCADE that even regular engineers can use to specify a control loop, and then generate the code.
However, this model of time is called ‘globally linearized time’ or ‘global-clock’ based
computation. What happens if the reaction requires multiple components who actually
communicate over a network, and the system has unspecified delays on the network. If
components are placed in such asynchronous environment, there is no way to guarantee that the

v

components will all compute in unison and finish the reaction before the next global clock ticks.
Unfortunately, most modern embedded systems are highly concurrent and distributed, and hence
such synchronization of all the components can be expensive, and inefficient for performance.
Thus, one requires a modeling formalism where the components do not need to synchronize in all
reactions, and some of the time, the components can go on computing asynchronous to the other
components, and synchronize when they need to agree on a value, or participate in a computation
together. This kind of computation is more common for today’s distributed embedded systems,
and certainly for multi-threaded embedded software. Thus, the notion of Polychronous model of
time was invented in early 1990s in France, and the corresponding language SIGNAL, and a tool
set called Polychrony was developed in the last 20 years.

However, since the formalism of polychrony is no longer simple linear sequence of reactions,
and the components must decide when to compute without synchronizing with other components,
and when to wait for synchronization, the entire mathematical machinery of this formalism
involves partial ordered notion of time, partial order of reactions, and partial order of logical
instants. This is quite cumbersome for regular engineers to use, and hence unlike Lustre, which
has been popularized by the prevalence of the SCADA tool in the industry, Polychrony did not
gain the popularity it deserved as it is surely the right model of computation for what we want.

Having worked with the inventors of the polychrony over 10 years, I decided that we can do
better semantic framework for polychrony in terms of a Boolean abstraction, and theory of Prime
Implicates which was unknown the inventors of Polychrony, and we can also enhance the
formalism in many different ways, for better code generation, checking for code synthesizability,
and also provide methods for real-time code synthesis. This resulted in our version of
Polychrony – which we named MRICDF as we took a more visual approach to the modeling
language, and we also developed a visual framework for modeling, and code synthesis,
specification of real-time task structures, and code synthesis for real-time applications etc.

In this report, we will provide the details on the MRICDF language, our alternative semantics
that enabled not only sequential code synthesis when possible, but also algorithmic tests for
sequential implementability, our multi-threaded code synthesis, and real-time code synthesis.

Note that, one important aspect for safety-critical concurrent systems is that we need to
synthesize code that is deterministic. If the code could be non-deterministic, then the problem is
easier, but no software assurance can be given. Thus much of the complexity of the model-driven
code synthesis – be it for synchronous programming, or polychronous programming is germane
in the need for determinism.

While working on EmCodeSyn, we also considered the entire system design problem, rather
than just the controller software modeling and synthesis. As a result, we started a new approach
enabled by AADL and MRICDF called APECS, which allow us to formally capture the entire
system platform (hardware and software architecture), and use MRICDF as software component
specifications, and then use the EmCodeSyn code synthesis for the system level software
synthesis. Even though, we did not plan on this topic in the original project proposal, this
provides us a Segway from the component level software design and synthesis problem to the
system level design problem, and an initial approach to solving the entire system design problem.

vi

Acknowledgement

We acknowledge the support of William McKeever, and Steve Drager from the Air Force
Rome Laboratory (AFRL) throughout the project. Besides funding this project, they have
continuously provided feedback and helped us in many different technical and nontechnical
issues related to this project.

The ESPRESSO research team at the French National Institute of Computer Science and
Automation (INRIA) – particularly Jean-Pierre Talpin has provided valuable advice and feedback
on the use of Polychrony and polychronous model of computation. Jens Brandt from the Quartz
project at the Technical University of Kaiserslautern, Germany also helped in many ways - as the
theme of this project is also of great interest in Europe.

vii

1 Summary
Our past interactions with the U.S. Air Force Labs, Boeing, and Lockheed Martin indicate

that embedded software is mostly programmed manually even today. Even when synthesized
from MATLAB/Simulink, the code is not provably correct, and expensive verification is
required. Anyone experienced with multithreaded programming would recognize the difficulty of
designing and implementing such software. Resolving concurrency, synchronization, and
coordination issues, and tackling the non-determinism germane in multi-threaded software is
extremely difficult. Ensuring correctness with respect to the specification and deterministic
behavior is necessary for safe execution of such code. It is therefore desirable to synthesize multi-
threaded code from formal specifications using a provably ‘correct-by construction’ approach. In
Europe, it has been widely claimed that the embedded software for ’fly-by wire’ control of the
AirBus-380 was mostly automatically generated using SCADE and other French tools based on
the synchronous programming models. Unfortunately, software generated in those contexts
usually operates in a time-triggered execution model. Such models are simpler but less efficient
than multi-threaded software on multi-core processors. Normally they run on multiple processors
communicating over a time-triggered bus. Hence the execution is less efficient than it could be.
While time-triggered programming model simplifies code generation, we feel that multi-rate
event driven execution model is much more efficient. Code synthesis for such execution model
must be thoroughly investigated. The multi-threaded software generation is inspired by a recent
shift in the hardware design paradigms from single-core to multi-core processors. This shift has
brought parallel and concurrent programming to the desktop and embedded arena. In the desk-top
market, most processors now being sold are multicore, and very soon this trend might conquer
the embedded world as well. Embedded processors like ARM Cortex-A9 or Renesas SH-2A
DUAL have already achieved favorable results in implementing multi-core technology.

In this project we have developed formal models, methods, algorithms and techniques for
generating provably correct multi-threaded reactive real-time embedded software for mission-
critical applications. For scalable modeling of larger embedded software systems, the
specification formalism has to be compositional and hierarchical. Our formalism entails a model
of computation (MoC) based on a multi-rate synchronous data-flow paradigm. This MoC is code
named MRICDF (Multi-rate Instantaneous Channel Connected Data Flow Actors Network) that
we developed during two consecutive summer faculty internships at the AFRL in Rome, NY.
Once an MRICDF specification is proven to be implementable on a target platform, the
corresponding multi-threaded code based on Pthreads, Open-MP, or Intel Thread Building Block
can be generated via formal step-wise refinement based algorithms. Our code synthesis is
correctness preserving refinement of the original specification into implementation by calculating
scheduling that preserves the intent of the specification. Therefore, the generated code does not
require expensive post-development testing or verification. Guaranteed determinism of the
generated code will provide predictability of the application behavior which is often missing in
such complex software created manually or generated from MATLAB/Simulink or Ptolemy like
environments. We must also analyze the real-time guarantees that the reactions to specific events
should satisfy. The timeliness property is surely platform dependent and hence will require
profiling of the code for specific platforms. Back annotations of the specification model with

Approved for Public Release; Distribution Unlimited.
1

timing information, and an additional phase of timing analysis will be performed to providing
timing guarantees.

In this work we produced a novel theory of a formal modeling language based specifications,
namely MRICDF. We demonstrated an implementation of a software specification and code
synthesis tool based on MRICDF. This work entails new synthesis algorithms, characterization of
specifications, formal proof techniques for proving the correctness preservation property of the
refinement steps in our step-wise refinement oriented synthesis technique, multi-core code
synthesis, endowing the specification with platform specific worst case execution times to check
real-time schedulability, and some case studies.

Major Highlights
 The major highlights of this project are as follows:

1. Two versions of the EmCodeSyn Graphical User interface one based on C++ libraries and
another based on C# portable to Linux via Mono. The second version is more robust and
scalable.

2. Algorithms for checking if an MRICDF model is synthesizable as a deterministic
sequential software, or as a multi-threaded deterministic software, called endochrony
check, and weak-endochrony check

3. A completely new semantics and compilation scheme for polychronous models – based
on Boolean propositional logic and prime implicate computation

4. Algorithm for multi-threaded code synthesis for weakly endo-chronous MRICDF models
5. New Algorithms for causality detection in MRICDF specifications using SMT Solvers
6. Enhancement of the EmCodeSyn tool to specify task structure with real-time parameters

for schedulability analysis
7. Algorithms for real-time schedulability analysis of MRICDF task structured models, and

real-time multi-threaded code synthesis
8. A new semantic interpretation of polychrony with conditional partial orders, and use of

conditional partial order to do application specific hardware synthesis from Polychrony
9. Combining AADL and MRICDF to allow end-to-end system design for safety-critical

systems
10. 3 PhD students funded – one already completed. One postdoctoral scientist trained.

Multiple undergraduate research assistants trained. One MS thesis forthcoming.

For keeping the report within reasonable length, we will not describe each of these in detail,
but provide the details of a number of selected works. We have published the following papers
at international conferences and journals:

1. Bijoy A. Jose, Formal Model Driven Software Synthesis for Embedded Systems, PhD
Dissertation, August 2011

2. Bijoy A. Jose, Abdoulaye Gamatie, Julien Ouy and Sandeep K. Shukla, "SMT Based False
Causal loop Detection during Code Synthesis from Polychronous Specifications",

Approved for Public Release; Distribution Unlimited.
2

ACM/IEE 9th Intl. Conf. on Formal Methods and Models for Codesign (MEMOCODE),
Cambridge, UK, July, 2011.

3. Jens Brandt, Mike Gemuend, Klaus Schneider, Sandeep Shukla, and Jean-Pierre Talpin,
"Integrating System Descriptions by Clocked Guarded Actions", Proceedings of
International Forum on Design Languages (FDL’11), September 2011, Oldenburg,
Germany. (Invited to Springer Journal of Design Automation of Electronic Systems and
current under second review.)

4. A. Matusiewicz, N.V. Murray, and E. Rosenthal. "Tri-based set operations and selective
computation of prime implicates". In Proc. International Symposium on Methodologies for
Intelligent Systems - ISMIS, Warsaw, Poland, June, 2011, 2011. Lecture Notes in Artificial
Intelligence, Springer-Verlag. Vol 6804, 203-213.

5. Jens Brandt, Mike Gemuend, Klaus Schneider, Bijoy A. Jose and Sandeep K. Shukla,
"Causality Analysis of Polychronous Programs, FERMAT Technical Report 2011-02,
2011.

6. Julien Ouy, Jing Huang and Sandeep Shukla, "Behavioral Compatibility Checking of
Polychronous Components", FERMAT Technical Report 2011-03, 2011.

7. Bijoy A. Jose, Abdoulaye Gamatie, Julien Ouy and Sandeep K. Shukla, "SMT Based False
Causal loop Detection during Code Synthesis from Polychronous Specifications",
FERMAT Technical Report 2011-04, 2011.

8. Jens Brandt, Mike Gemunde, Klaus Schneider, Sandeep K. Shukla and Jean-Pierre Talpin,
"Integrating System Descriptions by Clocked Guarded Actions", FERMAT Technical
Report 2011-06, 2011.

9. Bijoy A. Jose, Sandeep K. Shukla, "New Techniques for Sequential Software Synthesis
from a Polychronous Data Flow Formalism", FERMAT Technical Report 2011-07, 2011.

10. Bijoy A. Jose, Abdoulaye Gamatie, Matthew Kracht and Sandeep K. Shukla, "Improved
False Causal Loop Detection in Polychronous Specificationof Embedded Software",
FERMAT Technical Report 2011-08, 2011.

11. M. Nanjundappa, M. Kracht, J. Ouy, and S. K. Shukla. Synthesizing embedded software
with safety wrappers through polyhedral analysis in a polychronous framework. In ES-
Lsyn’12, pages 24 –29, june 2012

12. M. Nanjundappa, M. Kracht, J. Ouy, and S. K. Shukla. A New Multi-Threaded Code
Synthesis Methodology and Tool for Correct-by-Construction Synthesis from
Polychronous Specifications. In ACSD 2013, Jan 2013

13. M. Anderson and S. shukla, ""APECS: An AADL and Polychrony based embedded
computing system design environment with an elevator control case study."," in ACM/IEE
International Conference on Formal Methods and Models for Co-Design (MEMOCODE),
Portland, 2013

14. "Constructive POLYCHRONOUS Systems". J.-P. Talpin, J. Brandt, M. Gemünde, K. Schneider,
and S. Shukla. In Science of Computer Programming. Elsevier, 2014 (to appear)

15. Jens Brandt, Mike Gemunde, Klaus Schneider, Sandeep K. Shukla, Jean-Pierre
Talpin: Embedding Polychrony into Synchrony. IEEE Trans. Software Eng. 39(7): 917-
929 (2013)

16. Julien Ouy, Matthew Kracht, Sandeep K. Shukla: Abstraction of polychronous dataflow
specifications into mode-automata. ICSAMOS 2013: 33-40

Approved for Public Release; Distribution Unlimited.
3

http://www.informatik.uni-trier.de/%7E%20ley/pers/hd/b/Brandt:Jens.html
http://www.informatik.uni-trier.de/%7E%20ley/pers/hd/g/Gemunde:Mike.html
http://www.informatik.uni-trier.de/%7E%20ley/pers/hd/s/Schneider:Klaus.html
http://www.informatik.uni-trier.de/%7E%20ley/pers/hd/t/Talpin:Jean=Pierre.html
http://www.informatik.uni-trier.de/%7E%20ley/pers/hd/t/Talpin:Jean=Pierre.html
http://www.informatik.uni-trier.de/%7E%20ley/db/journals/tse/tse39.html%23BrandtGSST13
http://www.informatik.uni-trier.de/%7E%20ley/pers/hd/o/Ouy:Julien.html
http://www.informatik.uni-trier.de/%7E%20ley/pers/hd/k/Kracht:Matthew.html
http://www.informatik.uni-trier.de/%7E%20ley/db/conf/samos/samos2013ic.html%23OuyKS13

17. Jean-Pierre Talpin, Jens Brandt, Mike Gemünde, Klaus Schneider, Sandeep K.
Shukla: Constructive Polychronous Systems. LFCS 2013: 335-349

18. Sandeep K. Shukla, Jean-Pierre Talpin: Guest Editors' Introduction: Special Section on
Science of Design for Safety Critical Systems. IEEE Trans. Computers 60(8): 1057-1058
(2011)

19. Jens Brandt, Mike Gemunde, Klaus Schneider, Sandeep K. Shukla, Jean-Pierre
Talpin: Integrating system descriptions by clocked guarded actions. FDL 2011: 1-8

20. Prabhat Mishra, Zeljko Zilic, Sandeep K. Shukla: Guest Editors' Introduction:
Multicore SoC Validation with Transaction-Level Models. IEEE Design & Test of
Computers 28(3): 6-9 (2011)

Disappointments
One of the biggest disappointments was that the majority of last year’s funding was

withdrawn due to sequestration which hampered the case study phase of the project. We did not
get a chance to do a big case study to measure the benefits of code synthesis with respect to hand
written code. We started working with the UAV lab at Virginia Tech’s Aerospace and Ocean
engineering department, but the work was abandoned as the lead post-doctoral researcher Dr.
Julien Ouy had to be let go due to lack of funding.

Approved for Public Release; Distribution Unlimited.
4

http://www.informatik.uni-trier.de/%7E%20ley/pers/hd/t/Talpin:Jean=Pierre.html
http://www.informatik.uni-trier.de/%7E%20ley/pers/hd/b/Brandt:Jens.html
http://www.informatik.uni-trier.de/%7E%20ley/pers/hd/g/Gemunde:Mike.html
http://www.informatik.uni-trier.de/%7E%20ley/pers/hd/s/Schneider:Klaus.html
http://www.informatik.uni-trier.de/%7E%20ley/db/conf/lfcs/lfcs2013.html%23TalpinBGSS13
http://www.informatik.uni-trier.de/%7E%20ley/pers/hd/t/Talpin:Jean=Pierre.html
http://www.informatik.uni-trier.de/%7E%20ley/db/journals/tc/tc60.html%23ShuklaT11
http://www.informatik.uni-trier.de/%7E%20ley/pers/hd/b/Brandt:Jens.html
http://www.informatik.uni-trier.de/%7E%20ley/pers/hd/g/Gemunde:Mike.html
http://www.informatik.uni-trier.de/%7E%20ley/pers/hd/s/Schneider:Klaus.html
http://www.informatik.uni-trier.de/%7E%20ley/pers/hd/t/Talpin:Jean=Pierre.html
http://www.informatik.uni-trier.de/%7E%20ley/pers/hd/t/Talpin:Jean=Pierre.html
http://www.informatik.uni-trier.de/%7E%20ley/db/conf/fdl/fdl2011.html%23BrandtGSST11
http://www.informatik.uni-trier.de/%7E%20ley/pers/hd/m/Mishra:Prabhat.html
http://www.informatik.uni-trier.de/%7E%20ley/pers/hd/z/Zilic:Zeljko.html
http://www.informatik.uni-trier.de/%7E%20ley/db/journals/dt/dt28.html%23MishraZS11
http://www.informatik.uni-trier.de/%7E%20ley/db/journals/dt/dt28.html%23MishraZS11

2 Introduction
2.1 Structuring of the Reported Results

As discussed before, we are going to present a selected assortment of the results obtained
during the execution of this project. In Section 3, we describe the MRICDF model, and the
corresponding formalism. In Section 4, we report the selected assortment of the results, starting
with the combination of AADL formalism with MRICDF, as this is going to be the future work
of our group. The next is our work on better check of causality using polyhedral and SMT based
analysis, and how to overcome some of the violations. Then we discuss our multi-threaded code
synthesis algorithms, and finally the real-time extension of EmCodeSyn.

Approved for Public Release; Distribution Unlimited.
5

3 Methods, Assumptions and Procedures
This section provides some background information on the methods and techniques that we based
our work on.

3.1 Programming Model, and Synthesis Technique
In the recent past we have developed a programming model called Multi-Rate Instantaneous

Channel Connected Dataflow Actor Model (MRICDF) [1, 2, 3, 4], to capture the specification of
a reactive embedded software. We also developed a visual specification and component code
synthesis tool called EmCodeSyn [2] which accepts MRICDF specifications in visual or textual
form, and produce C-code that is correct-by-construction with respect to its MRICDF
specification. Similar to Esterel [18], Lustre [19], and SIGNAL [6], the model of computation of
MRICDF is based on synchrony hypothesis [20] which provides a suitable abstraction from
computation and communication time, and allows one to focus on the dataflow and computation
functionality of the required software. Almost all of these formalisms with the exception of
MRICDF are developed in Europe. Airbus [24], Renault, and other European avionics and
automotive companies claim to generate a large percentage of their control software using these
formal approaches. Even though they have been successful in developing modules through these
methodologies, for composition of modules, they use an over simplified composition model
based on Time-Triggered Architecture [17]. This requires that each component itself is time
triggered, which leads to a number of optimality problems as we pointed out in [1, 4]. The
semantics of MRICDF is not time triggered but rather event triggered, leading to more optimal
code synthesis [1]. Time triggered composition has another problem other than optimality. It
requires precise clock synchronization and the resulting overhead. We want both optimal
implementation of individual components, and want to avoid the overhead of time
synchronization over a distributed platform. Therefore, constructing large software systems from
components synthesized with this tool is much more challenging, but the benefits outweigh the
difficulty. In this project we are addressing these challenges.

The programming model of MRICDF is that of a collection of concurrent processes described
by data flow relations on infinite streams of data values. The synchronization requirements
between these streams are expressed either implicitly by the data flow relations or by explicit
constraints. When sequential embedded software is to be synthesized, both data flow relations —
computation — and synchronization constraints — control — must be considered. This is the
crux of the compilation/synthesis process for MRICDF. This programming model is more
suitable for reactive systems compared to other specification models such as temporal logics,
composition of automata (such as I/O Automata) etc., because it abstracts away timing issues but
most importantly, it makes specification of synchronization between concurrent activities within
each component much easier than those other methods. The expression of synchronization
between concurrently acting behaviors within a system is a major source of errors (deadlocks,
live-locks, violation of mutual exclusion etc.) in other formalisms.

Given a specification (visual or textual) in MRICDF, a compilation algorithm must decide
whether there exists deterministic sequential/multi-threaded code satisfying the constraints, and if
so, whether it is unique. If not — and thus nondeterministic — the user must provide additional
constraints to make it so. If this effort fails, the specification is rejected by the compiler. In the

Approved for Public Release; Distribution Unlimited.
6

process of determining implementability, and subsequent synthesis, the compiler creates a
Boolean theory and computes its prime implicates.

3.2 Boolean Theory and Prime Implicates
A Boolean theory is a set of Boolean clauses. Let the theory B be defined over a set of

Boolean variables X. Then [X→{0,1}] denote the space of all assignments to variables in
X.

An assignment f∈[X→{0,1}] is a model for theory B, if and only if by assigning the
Boolean values to all variables x∈X as f(x), one can satisfy all clauses in B.

A Boolean theory that is satisfiable has at least one such model. A prime implicate of a
Boolean theory is a disjunctive Boolean clause C such that any model of B also satisfies C and
there is no C1 such that C1→C and any model of B also satisfiesC1.

Given an arbitrary Boolean theory, computing prime implicate is often of exponential
complexity. Most previous algorithms also required that the Boolean clauses in the theory be first
converted into a conjunctive normal form (CNF) before applying the algorithm. The recent work
of Murray and Rosenthal [34] has come up with a new algorithm that can produce prime
implicates (and an implicit representation of all prime implicates) of a Boolean theory where the
clauses can be in any arbitrary form. However, this algorithm is also time consuming.

We expect that this algorithm can be sped up substantially because the current algorithm is
agnostic of any special characteristics of the Boolean theory that are generated from MRICDF
models during computations of their master triggers.

It has been shown in the past that algorithms that are agnostic of special nature of the inputs
on which the algorithm is applied, have higher time and space complexity, than algorithms that
take into account special nature of their inputs. For example, finding chromatic number of a
graph is known to be NP-Complete, but if we know that the only graphs we need to compute the
chromatic number of, belong to a special class of graphs called "Perfect Graphs" then one can
come up with special algorithms which can compute the chromatic numbers in polynomial time.
Similarly, the famous SAT problem that is a well-known NP-Complete problem can be shown to
be solvable in polynomial time, if the clauses we obtain belong to the class of HORN clauses.
Also, there is a notion of localization of problem instances. For example, if the variables that
occur in multiple clauses can be limited to reappear is no more than k clauses; we say that that
SAT problem is k-bounded. In such case, one can devise faster algorithms for solving SAT.

Since the Boolean theories that we generate from MRICDF is very localized, in the sense that
a clause x↔y∨z appears only when y and z are inputs to a merge actor in an MRICDF model, one
can find such locality properties. As a result, Murray and Rosenthal’s algorithms to compute
prime implicates may not exploit such locality (which we referred to as ’regularity’) and we may
need to devise new algorithms that work much faster to compute prime implicates for such
instances.

The prime implicates enable construction of a hierarchical control structure that creates a
deterministic schedule of all the computations which is consistent with the control constraints. If
non-Boolean constraints — for example, x > 10 — are replaced by unrestricted Booleans, the
resulting theory is a conservative abstraction of a more elaborate theory with further

Approved for Public Release; Distribution Unlimited.
7

expressiveness. The latter would provide better leverage in optimizing the control structure and in
reducing redundant paths. To this end, the combination of prime implicate algorithms and SAT
Modulo Theory (SMT) solvers [25] is concurrently being investigated.

Approved for Public Release; Distribution Unlimited.
8

4 Result and Discussion
4.1 APECS: An AADL and Polychrony based Embedded Computing
Systems Design Environment

4.1.1 Introduction
Overview: Distributed real-time embedded (DRE) systems are a widely employed in a

number of today’s safety critical systems in applications ranging from automotive and avionics to
medical equipment. These systems are composed of a range of hardware (sensors, actuators,
microcontrollers) and driving software. The safe operation of these systems is contingent upon
management of correctness of software/hardware resource allocation and adherence to real-time
constraints. Verification that the end system behavior and properties adhere to the constraints
requires analysis of the system as a whole as well as the individual component properties.
The Architecture Analysis and Design Language (AADL) [68] was originally developed for the
avionics industry and has since been adapted for use in automotive and other commercial
applications. AADL allows for the creation of models that capture the full hardware platform
architecture along with the corresponding software hierarchy. Key static properties of the model,
such as communication protocols and hardware bindings, are specified as component properties.
While software behavior specification is not a part of the core standard, it can be handled
by the state-machine like language of the Behavioral Annex, one of the available extensions to
the AADL standard. A number of tools have been developed in the past to support the creation
of AADL models [69] and for comprehensive system property analysis [70]. Among them is
Ocarina [71], a tool for synthesizing executables for a specified hardware platform from an
AADL model. With Ocarina, a software component may be associated with a behavioral
specification given in a C or Ada source file. More recently, support has been added for
specifications from source files generated by Esterel [72] and Lustre [73]. While this is an
attractive option, it still presents verification challenges that stem from a lack of formal semantics
in the case of the C and Ada or from scheduling and clock constraints when dealing with the
synchronous languages Esterel and Lustre. In [74] we discussed introducing the polychronous
formalism of MRICDF into Ocarina and its effect on software verification. In this work, we
explore the potential advantages of an MRICDF extension when applied to models of
multithreaded systems. Ocarina specifies behavior at the function level, associating AADL
subprogram calls with a function from a source file. A thread component may be represented by a
single such function or it may contain multiples ordered by a call sequence. This requires a
manual analysis and decomposition of the software into its thread components. Because the
thread synchronization is handled outside of a provably correct synthesis tool, it adds an
additional verification obligation to ensure proper synchronization. With synthesized
multithreaded code, the addition of synchronization primitives based on preset templates can
result in over synchronization if unchecked, possibly creating deadlock situations. Further,
synchronous languages like Esterel and Lustre artificially force threads to synchronize at the end
of each execution step to respect the global clock constraints. Using MRICDF it is possible to
model a software process as a whole, automating the detection and synthesis of its component
threads. This has a number of advantages, the first of which is that the synthesis and verification
of the thread synchronization is automated and handled internally. Also, because Polychrony

Approved for Public Release; Distribution Unlimited.
9

supports a multi-clocked model of execution, threads need not synchronize unless their behavior
requires it. In [74], we proposed a new design environment, APECS, for end to end system
modeling of DRE systems and automated code synthesis. While in [74] we focused on the
environment of APECS, its constituent tools, and the overall approach it takes to modeling, in
this work, we discuss the unique advantages and new features it brings to multithreaded code
synthesis in the AADL context. Coming sections will provide a brief background of the major
tools and formalisms used by this project, as well as an overview of related work in this area,
introduce the problems addressed by the new extensions and explain the details the
implementation of our synthesis extensions which will be illustrated by a case study. Finally,
conclusions and future work will be discussed in last subsection.

Background and Related Work

AADL: The Society of Automotive Engineers (SAE) created the AADL standard [75]. It is a
model based formalism for the comprehensive representation of DREs. AADL utilizes a
hierarchical component centric model. Its components can be categorized as either hardware
(processor, memory, device, bus), software (process, thread, subprogram, data), and systems. The
latter serve as abstractions that represent composites of other subsystems or components. These
composite groupings provide the structure that forms model’s hierarchy. Data is passed between
components through one of a few communication methods. Most commonly, components have
some number of I/O ports. These ports are typed and bound to the ports of other components.
Alternatively, components may communicate by shared resources, either through buses or by
directly accessing shared data. The order in which data passes between ports and through (sub-)
components is given in flow specifications. Components may have more than one operating
mode; different modes represent different operational states and may have distinct active
connections, flows specifications, or operating threads. Each component type may have one or
more implementation. Distinct implementations will have the same interfaces, but may have
different subcomponents, internal flows and execution modes.

There are a number of development environments available that support the AADL standard.
One such is the Open Source AADL Tool Environment, OSATE [69], which is an eclipse based
platform. OSATE supports textual representations in AADL and these models persist in XML. It
also has a number of extensions that support graphical system modeling. Both the tool and the
standard are highly extensible. The AADL standard accepts extensions in the form of language
annexes, a number of these extensions already exist with purposes ranging from behavior
specification to error modeling. The OSATE development environment supports the addition of
plug-ins for analysis and code synthesis. Eventually, we plan to propose MRICDF as a behavioral
annex for AADL.

Ocarina: One of these tools Ocarina [76] analyzes an aadl model and performs automated code
synthesis. The tool’s operation can be divided into two distinct modular sections. The frontend
contains modules for the AADLv1 and AADLv2 standards. These modules handle the parsing of
the input AADL specifications. After lexing and parsing the input, the model is analyzed for
syntactic and semantic correctness. From this analysis Ocarina constructs an Abstract Syntax
Tree (AST). An Instance Tree is then derived from the AST. The root of the instance tree is the
top level system in the model hierarchy. The nodes of the tree are comprised of those component
implementations that are subcomponents of the root system. This last step prunes out any

Approved for Public Release; Distribution Unlimited.
10

components unused by the current root as well as verifying the presence and accuracy of
necessary component properties.

After the frontend finishes building the instance tree, it is fed to the backend. The backend
has modules for each of the supported source languages. First it expands the instance tree,
simplifying complex structures and annotating them with information for future code mapping.
Using the mapping rules for the chosen source module, Ocarina builds an intermediate syntax
tree. Finally it traverses this tree and applies the relevant mapping rules to generate source code
in the targeted language. This generated code interfaces with the underlying hardware through the
PolyORB-HI [77] middleware. The defacto language modules in the Ocarina backend are Ada
and C/C++, with an extension that allows it to use the code output from Esterel and Lustre. In
[74] we further extended these backend modules to accept code output from MRICDF.

MRICDF: Multi-Rate Instantaneous Channel Connected Data Flow (MRICDF [78]) is a formal
polychronous dataflow language. Like the other synchronous languages previously employed by
Ocarina, it is based on the synchrony hypothesis, an abstraction in which communication and
computation are treated as instantaneous. Unlike Esterel and Lustre though, MRICDF’s
polychronous semantics allow it to pace the activity of the model around the rates of data arrival
at individual inputs rather than enforcing synchronization with a global clock.

MRICDF models software as a network of communicating actors. Four primitive actors form
the foundation of the MRICDF language. The Buffer actor may be of size N and takes a single
input; that input value is stored and reproduced on the output N execution steps later. The Priority
Merge and Sampler actors are used to control and route the flow of data between actors. Priority
Merge has two input channels, one of which is designated the priority. At each execution step, if
it has only one input value, that value is passed through. If it receives two input values, the value
on the priority channel is passed through and the other is dropped. Similarly, the Sampler has two
input channels, one is an input value and the other is a boolean control signal. When the control
signal is false, input values are blocked from passing through to the output channel. The final
primitive is the Function actor, (F (n, m)), this actor applies a function F to its n inputs and
generates m outputs. More complex behaviors can be modeled and stored as composite actors.
Given a completed model specification, MRICDF performs prime implicate based epoch analysis
that allows it to formally analyze the models timing as well as detect opportunities for parallel
execution [79].

Related Work: Another project that attempts to leverage polychrony to formally specify AADL
is detailed in [80]. The authors describe a process by which an AADL specification is translated
into the Signal language [81]. After being translated, the Polychrony tool is applied; using clock
calculus it analyzes the clock relations of the new model and ensures determinism. Similarly, in
[82] AADL models are translated into BIP [83] so that they can exploit existing BIP analysis
tools. There are a number of other works [84], [85], [86] that deal with the use of formal inter-
mediate representations for AADL for analysis such as model checking and performance
evaluation. The Compass tool [87] can be used for fault-tree analysis based model checking of an
AADL specification, as well as simulation.

Unlike these approaches, we’re not attempting to create a tool for the simulation or validation
of AADL models. Instead we wish to create an environment for the development of end-to-end
DRE systems and their software behavior. Such a model can be gradually refined and

Approved for Public Release; Distribution Unlimited.
11

reconfigured as it is checked for correctness while still providing comprehensive information for
checking performance and schedulability. To this end, rather than translating the whole system
into an intermediate formalism, we extend Ocarina with support for software from polychronous
specifications. These specifications are at the process level, allowing parallelism to be
dynamically detected and automatically added to the model before code generation. Information
about the process of detecting and exploiting parallelism in MRICDF models can be found in
[70].

4.1.2 APECS Methodology
Platform Modelling with AADL: The first step when building an AADL model is to deter-
mine the components that will make up the system. Some components, such as processors or
devices, represent tangible elements of the system. Others components, such as the system, can
be used as abstractions to organize the system hierarchy. For smaller models it may be possible to
start by enumerating all the components made necessary by the specification. However, for larger
projects, a top-down approach is the best for organization and expediency. In AADL, the system
component serves dual roles. It may be a composite of subcomponents representing a system like
a processor board or a software application. Alternatively, it may contain no subcomponents or
only other systems, representing a generic system. Such a generic system may be refined later
with new sub-system implementations as the design stages progress. So, when creating a top-
level model, the first step is to define a system that will encapsulate the complete specification.

Declared as subcomponents within this complete system are the other systems and devices
that comprise the specification. In AADL, devices are abstractions used for objects that interact
with or are a part of the environment, such as a sensor or motor. A system will be used to
encapsulate objects in the system for which it is valuable to enumerate internal composition. It is
worth noting that this may include some objects which could otherwise be represented by a
device, if there is value in modeling the internal properties of that object. For the sake of
organization, each subsystem is defined in a separate package. This allows the subsystems to be
included and reused as needed in future.

system microcontroller
 Features
 ...

 ...
end microcontroller

system implementation microcontroller.mc
 Subcomponents
 CPU: processor ...

 RAM : memory ...
 Comm_Bus : bus ...
 Main : process ...
 Connections
 ...
end microcontroller.mc

Figure 1: AADL Microcontroller Code

Approved for Public Release; Distribution Unlimited.
12

After enumerating the top level subsystems and devices, the internals of these subsystems
must be defined. For complex subsystems, it’s necessary to repeat this process of templating with
devices and subsystems. Simple subsystems will be modeled with the appropriate hardware and
software components. For example, the microcontroller for a board can be modeled through a
combination of hardware and software components. The microcontroller itself is made up of
processor and memory components communicating via a bus component. Additionally, the driver
software is modelled as a process containing at least one thread and bound to the processor it is
driving through use of the Actual_Processor_Binding property.

Figure 2: Microcontroller Layout

Each component is defined first with a type block. The interface is also defined as part of the
type block through the addition of communication ports. Each type block is then associated with
one or more implementation block, which contain the specification of subcomponents. The
control and data flow of the system are explicitly specified (see Figure 3) in these blocks. The
control flows are given by means of end to end flow specifications both between interface ports
in the type block and between subcomponents in the implementation block. Data flow is given
through making port connections between components.

system implementation door.elevdoor
 Subcomponents
 CPU: processor ...

 RAM : memory ...
 Comm_Bus : bus ...
 Main : process ...
 Sensor : device ...
 Motor : device ...

 Connections
 ...

 EC13 : port Sensor.obs -> Main.obs;
 ...

 EC16 : port Main.OpenCmd -> Motor.open;
 ...
 Flows

ETE : end to end flow Sensor.obs_flow_source -> EC13 -> Main.obs_flow_path -
> EC16 -> Motor.obs_flow_sink {Latency => ...};
end microcontroller.mc

Figure 3 End to End Flow

Approved for Public Release; Distribution Unlimited.
13

Figure 4: Latch

The outputs of the MRICDF software are thus driven by the current state variable values
being fed through the combinational actor network.

Software Modelling with MRICDF: Once the architecture of the system has been developed in
AADL, the next step is to model the software that will drive the controllers. The interface
requirements for the software are given by the communication ports featured on the
corresponding thread component. A state machine is derived based on the desired behavior
specification for the component and the thread interface.

With the desired behavior codified in the state machine, it is time to create the formal
software model in MRICDF. The MRICDF model is constructed as an actor network made up of
corresponding state variables and combinational data flows. The state variables in MRICDF are
modeled as a latch system, comprised of a buffer actor that feeds back into itself through the low
priority port of a merge actor (refer to Figure 4). The priority port of the merge is given to some
event input, so that state may be updated. The outputs of the MRICDF software are thus
driven by the current state variable values being fed through the combinational actor network.
thread main
 Features
 ...
 ...
end main

thread implementation main.m
 Properties

Dispatch_Protocol => ... ;
Period => ... ;
Deadline => ... ;
source_name => "MyMain";
source_language => MRICDF;
source_location => "../PATH";

end main.m
Figure 5: Source Code Binding

Code Generation: With the control software for the system formally modeled in MRICDF, it
only remains to integrate it into the AADL system hierarchy. The process of associating the two
is syntactically straight forward, but giving AADL the capability to exploit this association
meaningfully is more challenging. Two string type properties are added to the thread
components, specifying the source file name and its location. A third property gives the source
file’s language. Natively, however, AADL has no capability to interact with the associated
programming models. Therefore, in order to support the automated analysis and generation of
system code, we propose an extension of the Ocarina [78] tool suite. Ocarina’s front end modules

Approved for Public Release; Distribution Unlimited.
14

will function just fine, parsing both AADL standards in use by OSATE. However, we will need
to create a new backend module so that we can create an intermediate tree with syntax
compatible with MRICDF. Further work needs to be done to effectively link MRICDF’s
executable code with the Ocarina’s current middleware.

Elevator Case Study – AADL Platform Model: Our case study models a five story building
that is being served by four elevators. This means that at the top level the system is composed of
the four elevator cars, the button call panels on each floor, and a central controller to handle the
scheduling behavior of the elevators.
1) Button Call Panels: The call panels are systems containing a set of devices representing a pair
of buttons, a pair of lights, and a sensor that detects when an elevator car is on the floor. There
are two additional devices that signify the arrival of an elevator car: a light and a chime. When a
button is pressed, its light is toggled on and an event is transmitted to the central controller
notifying it of an elevator request call. When the sensor detects an elevator on the floor, two
events are triggered. First, the button lights are toggled off. Second, the arrival light is toggled on
until the car leaves, and the chime is rung once. All of this is handled in hardware without the aid
of a microcontroller.

The call panel is described in its own package. A floor package is then defined. For our
model, a floor is a system that contains four call panels and has interface ports for
communication between the central controller and the panels.

Figure 6: Floor Model
2) Elevator Car: The elevator cars are systems that are composed of a number of devices and
subsystems. Each car is connected to a device that represent the motor that raises and lowers it in
the elevator shaft. The door must be modeled as a system. The door system is composed of a
microcontroller, as described in Figure 6, and devices for interacting with the environment: a
motor, a sensor, and a timer. The motor opens and shuts the door according to requests from the
controller. The timer keeps track of how long the door has been open, and relays that information
to the controller. The sensor performs the important safety task of alerting the controller when an
obstruction is detected in the path of the door.

Approved for Public Release; Distribution Unlimited.
15

Figure 7: Door Model

For the sake of readability in these figures we enumerate only the object composition of the
system and not all the communication ports. However, to illustrate the system’s device features
we provide a sample of the interface for the door control process in Figure 8.

process Control features

openReq : in event port;
closeReq : in event port;
isopened : in data port;
isclosed : in data port;
obstruction : in data port;
timeOut : in event port;
startTimer : out event port;
openDoor : out event port;
closeDoor : out event port;
opened : out event port;
closed : out event port;

...
end Control;

Figure 8: Control Interface

Most of these ports are of the event type. For instance, the open and close requests are events
triggered by pressing the corresponding buttons of the control panel in the elevator car. The only
required information is that the press event occurred, and it is recorded and handled by the
internal state of the controller. By contrast, the obstruction signal from the sensor is transmitted
over a data port (a Boolean). This is important, because the obstruction may persist for some
amount of time and the controller will need to test this value to proceed safely.

Each car also has an internal control panel. Much like the call panels on each floor, this
subsystem is composed of numerous button and light devices. There is a button for each floor.
There are also two buttons to request that the door open or close and an alarm button. Each
button is lit when pressed. Floor selection presses are relayed through the communication ports to
the central controller for scheduling, while open and close requests are dealt with internally by
the door controller. The alarm presses are relayed outside the system to be handled by an external
security service. Finally, there is a microcontroller system driving the car behavior, which will be
covered in more detail in the next section. This microcontroller processes information from the
button panel and the central controller to relay communications to the door controller and drive
the elevator motor. As with the panels, the elevator car is encapsulated in a package for

Approved for Public Release; Distribution Unlimited.
16

portability and reuse. For organization purposes, this package is then included in a new system
that defines four elevator car objects.

3) Central Control: The central controller is modelled as a microcontroller. It receives
information from all the floor systems and elevator bank system and then uses that information to
send back scheduling information to the elevator car controllers.

Figure 9: Complete System Model

Behavioral Model: To ensure correct behavior in an elevator system is complicated by the fact
that the behaviors and the controlling models are distributed over a number of
communicating, semi-autonomous systems which communicate over buses and specific interface
protocols. For example, to arrange a pickup on a particular floor requires:

• The requesting panel communicates with the central controller
• Central Control schedules a pending stop for a car.
• The selected car detects a pending stop on its floor and stops to request that the door

opens.
• The door remains open for a minimum set time and until its unobstructed before

closing.
In the following sections we will discuss the specialized roles of each controller and its required
behavior for desired safety and efficiency.

Approved for Public Release; Distribution Unlimited.
17

1) Central Control: The central controllers’ job is to process requests from the different floors
and schedule elevator cars to perform pick ups. When scheduling the cars, the goal is to send the
car best able to reach the target floor quick. To that end:

• The chosen elevator should be currently heading towards the target floor, or it should
be idle.

• The chosen elevator should be currently heading in the direction requested by the call
button.

• The chosen elevator should be the least number of floors from the target, relative to
any other cars meeting the first two criterion.

• Should there be no cars available that meet these criterion, the request should be
stored until one becomes available.

It is necessary to wait in the last step, because it is impossible to know which of the busy
elevators will become available soonest without knowing what other requests may be made in the
interim.

From each call panel, the controller receives up and down call requests as well as whether its
elevator car is currently on that floor. From each elevator car, the central controller receives
reports of current direction and whether it is ready to move. From these inputs we can extrapolate
the values for the central controller states:

• ”Pending Request 1-5” This 2-bit state is 0 if none of the panels on that floor have an
unserviced request. Otherwise the state is either 10 (Call Up), 01 (Call Down), or 11
(Both). A pending request is cleared when an elevator car has been scheduled for that
floor.

• ”Elevator State 1-4” Based on the information from sensor panels, these state variables
are integers that en- code which floor the elevator is on and in which direction it is
headed. The base number is the current floor, which is then filtered based on whether the
car is heading up, down, or idle.

• ”Ready 1-4” Boolean state that is true if the corresponding elevator car is currently able to
move, or false if it is in the processor of picking up passengers.

The states are fed into an algorithm to determine the optimal scheduling. The result of the

algorithm is the numeric identifier of the chosen elevator. That elevator will be communicated an
event that updates its pendingStop states. Also, at each step, the central controller uses a data port
to update the elevator cars on their current position.

2) Elevator Car: The elevator car controller receives as inputs

• ”GoTo 1-5” These are input event signals from the central controller assigning stops on
their respective floors.

• ”FloorNum” The current location of the elevator.
• ”FireAlarm” An event indicating the fire alarm has been triggered, puts the elevator into

an emergency state until the system resets
• ”Floor 1-5” These are input events from the control panel within the car. They represent

passenger requests to go to a certain floor and also schedule pending stops.
• ”Open” An event input representing a passenger request to open the door.
• ”Close” An event input representing a passenger request to close the door.
• ”Alarm” An event input representing a passenger re- quest for external aid.
• ”Opened” An event signal from the door controller, signaling that the door has opened.

Approved for Public Release; Distribution Unlimited.
18

• ”Closed” An event signal from the door controller, signaling that the door has
closed.’

The elevator cars travel up and down the building according to the schedule provided by the
central controller. A properly behaving elevator will adhere to the following behavior:

• The elevator will continue traveling in the same direction until there are no pending stops
remaining in that direction.

• If there are no remaining stops, it will become idle.
• The elevator will not begin to move until the door is closed.
• The elevator will not allow the door to be opened while the car is in motion.
• When the elevator reaches a floor that is one of its pending stops, it will stop moving

and request that the door open. If there are other pending stops, it will resume once it is
signaled the door has been closed again.

To achieve this behavior, certain internal state variables must be created and tracked from the
inputs.

• ”PendingRequests (1-5)” Five Boolean state variables, each track whether a floor has an
unserviced request from the control panel and central controller.

• ”NonePending(NP)” A Boolean that is true if all five PendingRequests are false.
• ”LowestPending(LP)” An integer that contains the number corresponding to the

lowest floor with a pending request.
• ”HighestPending(HP)” An integer that contains the number corresponding to the

highest floor with a pending request.
• ”OnPending(OP)” A Boolean that is true if the current floor has a pending request.

Based on the desired behavior and the internal inputs and states, we can construct a state machine
for the elevator car’s behavior.

Figure 10: Elevator Car State Machine

Approved for Public Release; Distribution Unlimited.
19

Table 1: Event Descriptions

When a fire alarm is triggered, all pending requests are cleared except for the first floor. All

elevators currently in service proceed to the first floor and remain there until the system resets.
3) Door: The door is a subsystem of the elevator car. It receives and processes requests from the
elevator to open and close the door. The primary safety concern is that the door should not close
on any obstruction. The desired behavior of an elevator door is:

• If an open request is received, signal the motor to open the door and signal the timer to
begin a new countdown.

• If an obstruction is detected, signal the motor to open the door and restart the timer.
• If a close request is received, signal the motor to close the door.
• If a timeout from the timer occurs, signal the door to close.
• Notify the elevator of any changes to the status of the door, from open to closed or closed

to open.

Figure 11: Door State Machine

Table 2: Door Event Descriptions

In Figure 12 we show the door behavior modeled in MRICDF. The first OR actor will generate a
true result.

Approved for Public Release; Distribution Unlimited.
20

Figure 12: Door Controller MRICDF

when an OpenRequest is received or when an Obstruction is detected. A true result from
this actor, will activate the sampler to which it is connected, propagating the constant value of
true on its input. This event is routed to the door motor and the timer reset. Similarly, the second
OR actor receives CloseRequest and Timeout to drive the event sampler for the closeDoor signal
of the motor. The lower two samplers are controlled by inputs from the door sensor, and relay
events of the door’s opening or closing back to the elevator car controller.

The modular nature of this system is ideal for testing different system configurations and
iterative design refinement. A hybrid formal software and platform model has advantages over
either model alone. The MRICDF models describe the behavior of systems in a manner such that
safety specifications are mathematically provable. The platform model, meanwhile, provides
concrete information about the capabilities and composition of the underlying system, allowing
us to perform more accurate static analyses. In [88] an extension of MRICDF for defining real-
time tasks as a layover on actor relations and attributing real-time measures has been developed.
Our next step is to integrate that here. However, for now, we can profile the generated code for
WCET estimates for schedulability analysis. Using this information and the described code
generation techniques we will be able to rapidly create testable binaries for the target platform
after each design iteration. Further we can access additional tools and verification suites that
aren’t a part of the EmCodeSyn environment, such as Cheddar [71] for thread scheduling.

Approved for Public Release; Distribution Unlimited.
21

4.1.3 Code Synthesis from MRICDF
In this section we’ll discuss the methods by which MRICDF code is associated with an

AADL process (Shown in figure 13) and how multithreading has been implemented. Past
Ocarina implementations have manually associated each subprogram with a specific function
through the use of specialized properties. Similarly, we use properties to associate MRICDF
specification with a particular process, as illustrated in figure 14.

process controller

Features
...
...

end controller

process implementation controller.c

Properties
source_name => "MRICDF_Source";
 source_language => MRICDF;
 source_location => "../PATH";

end controller.c

Figure 13: Source Code Binding

Figure 14: Instance Tree

These properties provide the name and location for Ocarina to find the MRICDF network

specifying the intended behavior of this process. The source language tells Ocarina which
backend module to employ. After the Ocarina frontend has parsed the AADL files, it builds
an instance tree containing a hierarchical representation with the top level system as the root
and all of the component implementations currently being used by that system as child nodes.

However, unlike other Ocarina sources, this instance tree doesn’t yet have any thread

subcomponents associated with its processes. The logical next step then is to populate the tree by
appending thread instances to the tree. This is accomplished by first analyzing the source file and
determining how many threads exist within the process. For each, a thread instance is added as a
child node of the process. The thread is then annotated with its critical properties as shown in
figure 15.

Approved for Public Release; Distribution Unlimited.
22

thread <name>
features

...
end <name>;

thread implementation ...
subcomponents

... : data ...;

calls {
... : subprogram ...;

};

properties
Dispatch_Protocol => ...; Period => ...;

end <name>.<subname>;

Figure 15: Generated Thread

Data exchange for thread input and output is accomplished by accessing shared data
components. Property entries are added to specify the dispatch protocol and timing requirements
of the thread. Finally, the behavior for each function is specified by adding a single subprogram
call. MRICDF generates N function threads for the process, named ”Block1” through ”BlockN”,
each subprogram is associated with its corresponding block function (shown in figure 16).

subprogram <name>
features
...
Properties

source_language => C;
source_name => "block#";
 source_text => ("blocks.cpp");

end <name>;

Figure 16: Associating Thread Behavior

Elevator System Code Generation: To better illustrate these extensions, we’ll use an example of an
Elevator System [74]. For the purposes of this example we’ll consider a system of four elevator
cars, servicing a five story building. The scheduling of these elevators is handled by a central
controller that processes the current state of each elevator along with the requests from the call
panels on each floor. Figure 17 gives an overview of the top level system and its subcomponents
and system for the AADL elevator model.

Approved for Public Release; Distribution Unlimited.
23

Figure 17: Top-Level System

The full details of the system are outside the scope of this work, more information can be found
in [74], but some of the subsystems are illustrative of MRICDF’s multithreading potential.

Table 3: Each Actor and Corresponding Shape

Once the specification is of the door controller (see fig 12) is complete, MRICDF applies clock
epoch analysis [78] to examine its clock relations and look for potential parallelism. Figure 18
shows the clock tree extracted from the model.

Figure 18: Clock Trees

Approved for Public Release; Distribution Unlimited.
24

In this case, we have a forest of clocks rather than a single tree. This is because there are no
shared dependencies between the output operations. As a result of this, MRICDF creates an
independently functioning thread for each tree. One for opening the door, one to close it, and two
that update the elevator car controller on the status of the door.

Another Example: The door control process provides a succinct example of how our extensions
can exploit opportunities for parallelism, but it happens that all of the threads in that
process are wholly independent from one another. Now, we’ll look at an example where the
threads must synchronize with each other occasionally. Consider an alternative implementation
of the elevator door, to conserve resources we implement the control so that it only checks
passenger requests periodically rather than constantly. This is a reasonable assertion, because the
system will be operating much faster than human input and the requests aren’t safety critical
(unlike obstruction detection)

Figure 19: Periodic Controller

The polychronous pseudo code for these requirements is shown in Figure 19. The variable req
reads the current request values out of shared memory. Each time a different request arrives the
request counter, rcnt, is reset until a value has been constant for five execution steps. Meanwhile,
cnt is tracking the progress of the motor as it opens the door, incrementing on each six degree
input event. Direction is tracked by dir which updates based on requests, but only after a request
has been stable for five execution steps. If a change in direction is detected, the count is inverted
and the process continues. The defined clock relationship between cnt and rcnt, [(cntmod10) = 0]
ˆ= [rcnt = 5], serves as a synchronization point between two partially ordered reaction sets.
Updating reqs is totally ordered, with the clocks open ˆ= close ˆ= req. Similarly, cnts updates are
totally ordered, with clocks SD ˆ= zcnt ˆ= obsˆ= cnt. However, the timing of the interactions
between these reaction sets isn’t fully known, only that the occurence of [rcnt == 5] coincides
with [cnt mod 10 = 0]. Thus MRICDF will create a barrier synchronization at that point,
whereupon data may be exchanged and dir gets updated. Thus, in the final code synthesis, two
dependent threads are generated.

Approved for Public Release; Distribution Unlimited.
25

Conclusions and Future Works: In this work we present the APECS development environment
for as a tool suite for the modeling of DRE systems. By leveraging MRICDF’s software
specification and verification capabilities with the AADL standard’s full hierarchical models,
APECS is can be used for end to end development of such systems, including analysis of
software behavior and code synthesis for the final targeted platform. The result is a flexible
environment capable of iterative model refinement and analysis by an extensible tool suite. We
utilize the polychronous clock analysis techniques of MRICDF to detect opportunities for parallel
execution and to then dynamically generate the corresponding threads.

In the future we plan to extend this work with further improvements to thread timing and
scheduling analysis. One such consideration is adding the option of annotating the generated
threads with new, individual timing requirements. This will be further improved upon by
incorporating developments from work that’s been done on real-time MRICDF [88]. Generating
threads for handling bus communication between software and other devices and processes is
also a priority step towards expanding the analysis incorporated the software behavioral
interactions occurring across the distributed platforms.

Approved for Public Release; Distribution Unlimited.
26

4.2 A New Multi-Threaded Code Synthesis Methodology and Tool
for Correct-by-Construction Synthesis from Polychronous
Specifications

Embedded software systems respond to multiple events coming from various sources – some
of which are temporally regular (ex: periodic sampling of continuous time signals) and some are
intermittent (ex: interrupts, exception events etc.). Timely response to such events while
executing complex computation, might require multi-threaded implementation – threads
responsible to compute reactions, threads responsible for Input/Output of regular events, and
threads dedicated to intermittent events. Multi-core embedded processors are also becoming
common in the market. As a result of these, design of multi-threaded embedded software is
gaining increasing importance. However, manual programming of multi-threaded programs is
error prone, and proving correctness is expensive. In order to guarantee safety of such
implementation, we believe that a correct-by-construction synthesis of multi-threaded software
from formal specification is needed. It is also imperative that the multiple threads are capable of
making progress asynchronous to each other, only synchronizing when shared data is involved or
information requires to be passed from one thread to other. Especially on a multi-core platform,
lesser the synchronization between threads, better will be the performance. Also, the ability of the
threads to make asynchronous progress, rather than barrier synchronize too often, would allow
better real-time schedulability.

In this work, we describe our technique for multi-threaded code synthesis from a variant of
the polychronous programming language SIGNAL, namely MRICDF, and through a series of
experimental benchmarks show the efficacy of the tool we developed based on our synthesis
technique. Our tool EMCODESYN which was built originally for sequential code synthesis from
MRICDF models has been now extended with multi-threaded code synthesis capability. Our
technique first checks the concurrent implementability of the given MRICDF model. For
implementable models, we further compute the execution schedule and generate multi-threaded
code with appropriate synchronization constructs so that the behavior of the implementation is
latency equivalent to the original MRICDF model.

4.2.1 Introduction

Consider a cruise control system of a car that is implemented based on a proportional integral
(PI), with vr as the target cruise speed, v as the actual sampled speed, T as the number of samples
between two subsequent control thrust (actuation) outputs u. The pseudo-C code for this system
is shown in the Listing 1, where S is the local variable accumulating the integral and ki are k are
constants determined based on PI control. In this pseudo-C code, Sample(v), and Output(u) are
input/output actions. Now, consider the control loop for the temperature (AC) control system in
the same car. Assuming the same PI control paradigm, the pseudo-C code for that is shown in the
Listing 2, where S is integration summand and ci and c are constants.

Approved for Public Release; Distribution Unlimited.
27

Listing 1. Cruise Control System Listing 2. AC Control System
L : S = 0 ;
Thrust_Interval = T ;
while(Thrust_Interval != 0){
 Sample v ;
 e = vr - v ;
 S = S + e * ki ;
 Thrust_Interval = Thurst_Interval - 1 ;
}
Sample v ;
u = k * (vr - v) + S ;
Output(u) ;
GOTO L ;

L : S = 0 ;
AC_Interval
while(AC_Interval != 0){
 Sample p
 e = pr - p ;
 S = S + e * ci ;
 AC_Interval = AC_Interval - 1
}
Sample p ;
w = c * (pr
Output(w) ;
GOTO L ;

In the AC control system, p denotes the currently sampled temperature, pr denotes the target

temperature set by the thermostat, w is the signal which controls actuators to release hot air or
cool air, and speed of air. Note that, the AC control loop and the cruise control loop might be
working at different sampling rates, and their actuation intervals (Thrust_Interval and
AC_Interval) could also be different. If both these control loops are run on the same processor,
and scheduled using a real-time scheduling algorithm (with T and T’ being the respective
deadlines, and periods for the two tasks), one could easily implement them as two real-time
processes. As these two processes do not have any interaction, there is no dependency or no need
of any synchronization, and in that case the job of the embedded software designer is simple.
Now, consider the possibility where, as the sampled temperature goes below a certain threshold,
the cruise control is to be disengaged to manual control, because such low temperature might be
indicative of icy weather conditions. This is not necessarily an ideal automotive design example,
but rather concocted to make a point regarding multi-threaded control. If the temperature loop is
tasked to generate an interrupt and the interrupt is input to the cruise control loop to disengage it,
then we have two processes or threads which interact, and timely response to the interrupt needs
to be guaranteed. The pseudo-C code for both control systems with interrupts is shown in Listing
3 and 4. In this code, we assume that the intrpt is the name of a single bit buffer, whose value is
set to true or false, depending on if the temperature control wants to send interrupt or not. Since
this is shared buffer, a semaphore mechanism is assumed to synchronize the read/write of this
buffer. The semaphore effectively enforces a barrier synchronization between the two control
threads at their outer loops.

This is too simple an example, and hence, getting this synchronization correct is trivial with

the use of a 1 bit semaphore. However, in general, multiple threads may need to synchronize at
various places of their execution with different threads, and overall behavior must be
deterministic. Guaranteeing determinism with multiple synchronizations among a group of
threads, while also ensuring no deadlock is often hard and error prone.

Approved for Public Release; Distribution Unlimited.
28

Listing 3. Cruise Control System with
Interrupts

Listing 4. AC Control System with Interrupts

L : S = 0 ;
Thrust_Interval = T ;
while(Thrust_Interval != 0){
Sample v ;
e = vr - v ;
S = S + e * ki ;
Thrust_Interval =
Thurst_Interval - 1 ;
}

P(semaphore2) ;
Read intrpt ;
V(semaphore1) ;
if(intrpt) GOTO MANUAL_MODE;
Sample v ;
u = k * (vr - v) + S ;
Output(u) ;
GOTO L ;

L : S = 0 ;
AC_Interval = T’;
while(AC_Interval != 0){
Sample p ;
e = pr - p ;
S = S + e * ci ;
AC_Interval =
AC_Interval - 1 ;
}

Sample p ;
w = c * (pr - p) + S ;
P(semaphore1) ;
intrpt = p<0? TRUE:FALSE ;
V(semaphore2) ;
Output(w) ;
GOTO L ;

We want that, the threads responsible for distinct control functions must make progress
asynchronous to each other except when they interact. Also, we must make sure that the threads
are not over synchronized. Thus, in this example, the synchronization is done at the outer loop of
the control and not the sampling loop, which would make the sampling rates in the two threads
dependent on each other and slow down progress in making corrective actions. We also want to
make it easy for designers to decide which variables are to be shared (in this case the intrpt), and
ensure that when a new value is written, it is eventually read by the other thread, and that it does
not read the same value twice. We also, do not want that the absence of an interrupt hold up the
other thread too long, and hence absence is encoded as false. Such decisions can be taken by the
programmer while programming in C or other programming languages, but then proving
correctness (i.e. to prove that synchronization indeed guarantees that every interrupt is responded
to, and absence of interrupt does not hamper progress, and that there is no deadlock) is much
more involved – especially when the number of threads and number of synchronization points are
large. If we can capture these requirements in a simple formal model, write appropriate
constraints, and generate multi-threaded C-code with appropriate synchronization code, and this
code-generation is provably correct, the validation overhead will be much reduced.

In synchronous programming languages such as Esterel, Quartz or Lustre, these two loops
will be modeled as two distinct processes since they do not need to move forward by
synchronizing at every macrostep. If the two threads were modeled in standard Esterel, it has to
be over designed by making two parallel synchronous threads that synchronize quite tightly. To
achieve the independence of the sampling rates and the thrust generation intervals by the two
loops, one has to model them as separate independent processes. Therefore, the proof of
determinacy of interaction for these have to be reasoned at a meta-level. The interaction between
the two processes will be external to the model of the processes. Thus proving the correctness

Approved for Public Release; Distribution Unlimited.
29

will also be done outside the code-synthesis step. Since our goal is ‘correct-by-construction’ code
synthesis, ideally, the code-synthesis step should guarantee ‘correctness’ without external
reasoning about the generated code. Therefore, we have chosen polychronous modeling
paradigms such as SIGNAL or MRICDF, and developed techniques for multi-threaded code
synthesis which includes the correct synchronization between two asynchronously progressing
threads, with synchronization on a need basis, and guarantee determinacy.

In order to model these two control loops in MRICDF or SIGNAL, we first create two
subprocesses, with the cruise control subprocess having an extra Boolean interrupt as a shared
variable intrpt. When there is a temperature constraint violation, the second subprocess will set
this shared interrupt variable to true, otherwise it will set the value to false. All we have to
specify is that the two subprocesses synchronize on reading and writing of this variable, and rest
is taken care of code generation. The code generation first needs to prove that the synchronization
can be done deterministically, and without possibility of deadlock. Only then it will progress to
generate code, by adding synchronization primitives.

This entire process is done by a simple clock calculus on these processes. In the first process,

the clocks of v, S, e are the same, whereas the clock of intrpt is a subclock, which is the same
clock as that of the thrust output u. In the second process p, S, e have the same clock, which is
possibly distinct from the main clock of the other process because the temperature sampling may
be less frequently done than speed sampling. However, an additional constraint in the MRICDF
or SIGNAL model will be provided in the model which says that the clock of intrpt must
synchronize. This statement states that the AC control process must rendezvous with the cruise-
control process when it is time to read/write the interrupt. Thus, the two processes can be
implemented with two separate threads, which will only synchronize on an interrupt. This multi-
threaded process will be deterministic – that is, for the same flow of input events on the sampled
speed and temperatures, same flow of outputs will occur. One could make other design decisions
such as not reading or writing interrupt that often, so they could consider creating further
conditions for read/write of the interrupts. However, for the correct synchronization synthesis to
work, both the processes must independently be able to compute such condition. For example, if
they are supposed to exchange interrupt information every n times thrust is generated, and every
m times temperature control actuation is generated, that is easy to express as well.

1) Novelty in Our Approach:

As we have argued, the polychronous (multi-clock) nature of SIGNAL/MRICDF, will allow
the system to be modeled as a single process and yet yield for ‘correct-by-construction’ multi-
threaded code generation. Also, the reasoning about determinism can be done on the whole
system, without the need for making any assumptions on the occurrence of interrupts, as the
reasoning will be embedded in the polychronous clock calculus.

In our work, we have chosen MRICDF - a multi-rate data flow language, as the formal
modeling language. It is akin to SIGNAL, but graphical and added advantages such as rich data
types, predefined blocks, etc. A graphical tool, EMCODESYN[4] analyzes the MRICDF models
and checks for implementability before generating code. The existing tool checks only for
sequential implementability by conducting, a static Epoch Analysis (explained later) on a set of
Boolean equations derived from the MRICDF model. This analysis is based on the Boolean
theory and prime implicates [5]. The challenge we address in this work is – automatic generation

Approved for Public Release; Distribution Unlimited.
30

of multi-threaded code that behaves deterministically. We extend the capabilities of
EMCODESYN tool, with a novel technique for checking the concurrent implementability of
MRICDF models. In this work, we particularly focus on efficiency of the generated code and the
practicality of the proposed approach. The proposed technique involves identification of systems
that are weakly-endochronous and if found implementable, the technique further generates the
execution schedule and multi-threaded code with appropriate synchronization constraints that
conforms to the schedule. We have implemented these in EMCODESYN tool and conducted
experiments to test performance and scalability issues. It should be noted that a similar idea could
be used for generating multi-threaded code for systems specified using SIGNAL language as
well. In fact, the theory of weakly hierarchical processes developed in [12] for SIGNAL forms
the basis of our work. However, other approaches to SIGNAL multi-threaded code generation are
quite different. The approach in [10] approaches the problem with extreme fine granularity by
enumerating all possible reactions and computing dependence, and the resulting complexity of
the synthesis is very high. On the other hand, such fine grain approach attempts to exploit all
possible concurrency whereas we focus on identifying threads that are rooted at distinct
incomparable clocks in the clock hierarchy.

Contributions:
1) A novel technique for determining concurrent implementability of the MRICDF models

based on prime implicate theory
2) Technique for generating execution schedule and multi-threaded code with appropriate

synchronization constraints for implementable models
3) Experimental results showing the scalability of the proposed technique and comparing

efficiency of the generated code as compared to hand written code

4.2.2 Definitions and Overview of Concepts

A Multi-Rate Instantaneous Channel-connected Data Flow (MRICDF) model is a data flow
network model that consists of several synchronous modules called as actors, that are
interconnected using channels. An actor represents a computation with an input interface and
output interface for input and output signals respectively. Actors communicate with each other
via channels using signals. Communication is instantaneous and channels can have different
communicating rates. In all, a MRICDF model represents a network of synchronous modules
with multiple clocks, which is the basic definition of a polychronous system.

In the polychrony model of computation, events form the primitive entities. An event is said
to have occurred whenever there is a change in the value at an input or output port, or change in
value of a variable etc.

Definition 1: (Event) We use Ξ, to denote the set of all events, and ,≤ to denote a preorder
relation among events which indicates the precedence of one event over another is a preorder on
Ξ: e ≤ f means that, event e occurs before or concurrently with event f. ~ is the equivalence
relation based on ≤: e ~ f means that, events e and f occur simultaneously, also called as
synchronous events.

A logical instant, could be thought of as a maximal set of computations that occur in reaction

Approved for Public Release; Distribution Unlimited.
31

to one or more events. This set of computations is maximal in the sense that, any other activity
would require another value to arrive on those inputs which triggered the current set of
computations. Events within one logical instance are all synchronous with each other.

Definition 2: (Logical Instant or Instant) We use ϒ to denote the quotient of Ξ/~, the set of
logical instants. Thus a logical instant is a maximal set of events that are synchronous.

The synchronous events within a logical instant may be bound by data dependencies and

hence are also ordered by a relation. All the dependency relations are captured in the data
dependency graph. This relation is not defined as an order but the implementation of the
specification is only possible if the dependency relations do not form a cycle, since it induces an
order of computation during code generation phase.

Definition 3: (Signal, Epoch, Clock and Clock tree) Let T be the type representing set of

values a signal can take, ⊥ be a special value used to denote the absence of the signal, and T⊥ = T
∪{⊥}, then we can define a signal as a function ϒ → T⊥.

For a given signal x, there exists one maximum set of instants γ ⊂ ϒ, such that is a total order

in and the signal x takes a value from T in each of the instants of ϒ. Such a set is called the epoch
of the signal represented by σ(x).

The clock of a signal is a characteristic function that tells if a signal x is present or absent at

any given instant t in ϒ. Clock is a function (ϒ → T⊥) → ϒ → {true, ⊥} that for a signal x
returns another signal (𝑥�) defined by: 𝑥�(𝑡) = true if x(t)∈T and 𝑥�(t) =⊥ if x(t) =⊥.

A signal is a stream of values that occur at specific instants. The epoch of a signal is a set of

all logical instants at which the signal is computed or assigned new values. The clock of a signal
is a boolean signal that tells the presence or absence of the signal. Not all signals at the interface
are present and computed or assigned input values at every logical instant. Thus signals may have
different clocks – hence the model of computation is called polychronous or “multi-clocked”.

Using the clock relations, a hierarchy of clocks can be built and the resulting hierarchical

structure is a clock tree or a forest of clock trees depending on whether the hierarchical structure
is single rooted or multi-rooted.

Based on the above definition, signals can be classified into,

• signals x and y are synchronous to each other if their clocks are same: 𝑥�= 𝑦�.
• if signal x has events in a subset of instants where signal y has events, then 𝑥� is a sub-

clock of 𝑦�.
• if signal x and y do not have events that belong to same logical instant, then their

clocks can be either mutually exclusive or they are unrelated.

The information regarding clocks of all signals is stored in clock tree.

Definition 4: (Data Dependency) We use ⇀ to express data dependency between events. The

binary relation e ⇀ f means, e has to be computed after f, in other words, f precedes e.

Approved for Public Release; Distribution Unlimited.
32

If the relation ⇀ holds between some pair of synchronous events of two signals, then the data
dependency is elevated between those signals. ∀ signals x, y and c, ∀t σ (c)(t), x(t) ⇀ y(t) ⇒ x
→𝑐y. We can also write x → y for the approximation of x →𝑐y on any clock.
Definition 5: (MRICDF Actors) Actors in MRICDF language can be classified into two groups,

(a) Primitive actors
(b) Composite Actors. The four primitive actors are,
• Function Actor: This actor performs any user specified computation in any instant when

the inputs have an event. All the inputs and outputs are synchronized with each other.

Operation: r = a * b
Clock relation: 𝑟̂ = 𝑎� = 𝑏�

Boolean relation: br = ba = bb
Dependency relation: r → a, r → b

• Buffer Actor: This actor is used to temporarily store a value of a signal across instants, in
other words – it delays a signal. The signal must have events in both storing and
retrieving instants. Increasing the buffer size of the Buffer actor produces the same effect
as a series of unit sized Buffer actors cascaded. Both input and output are synchronized
with each other.

Operation: r = b $ n init v1…vn
Boolean relation: br = bb

Clock relation: 𝑟̂ = 𝑏�

• Sampler Actor: This actor is used to down-sample a signal based on a known Boolean
condition. This actor produces outputs in all instants where there is an input and the
Boolean condition evaluates to true. Hence the output clock is the intersection of input
clock and the clock when Boolean condition is true.

Operation: r = a when b
Clock relation: 𝑟̂ = 𝑎� * [b], where [b] = b is true

Boolean relation: br = ba and b[b], bb = b[b] or 𝑏[𝑏�], b[b] and 𝑏[𝑏�] = false
Dependency relation: r → a

• Merge Actor: This actor merges two signals (can have different clocks) with a higher
priority for one of the signal. The clock of the output signal is the union of the clocks of
the participating input signals.

Operation: r = a default b
Clock relation: 𝑟̂ = 𝑎� + 𝑏�

Boolean relation: br = ba or bb
Dependency relation: r → a, r → b

Composite actors are hierarchical combination of several primitive actors.

Approved for Public Release; Distribution Unlimited.
33

Master Trigger and Sequential Implementability

Given an MRICDF model, we need to translate it to runnable reactive software. However,
before translation one has to ensure if the given model is actually implementable in software or
not, in other words – one has to determine the sequential implementability of the model. To do
so, we have to identify the mapping from the abstracted MRICDF entities to actual software. Out
of the many mappings, we discuss two important ones here. First one is the mapping of the
discrete time representation of the synchronous specifications onto the real continuous time. To
achieve this, we have to identify a set of instants that are totally ordered to get a deterministic
execution. Since time is a continuous quantity, to map each instant to a time interval, we need a
reference signal that is present in each of the instants. In our terminology, this special signal is
called as –Master Trigger. The existence of master trigger is a necessary condition for sequential
implementability. To identify a signal which can be master trigger, we perform epoch analysis on
the given model. In this process, we first construct a Boolean formula, which is the conjunction
of Boolean relations for all the actors in the given model. Identifying master trigger for the
MRICDF model is equivalent to identifying prime implicate in the constructed Boolean formula.
We use a SMT based technique to identify the prime implicate.

The second important mapping is the scheduling of the computations within an instant. The

order of computations is constrained by the data dependencies implied from the specifications.
These specifications are represented in the dependency graph and can be easily read while
determining the order of computations.

After identifying the master trigger, we can generate schedule of computations using clock

tree and dependency graph, and eventually we generate the sequential code from this schedule.
Formal description of the schedule and code generation technique can be found in [8].

4.2.3 Concurrent Implementability

Consider a simple MRICDF model shown in Figure 20(a). For readability purposes, its textual
representation is shown in Listing 5. It has 2 input signals v and u and 1 output signal w. Internal
signal x’s value is computed in instants where v has events. Similarly y is computed in every
instant where u has events, but w is computed in instants only when x >= 10, y >= 20 and both u
and v have events. Hence we can say that, x~v and y~u as 𝑥� = 𝑣� and 𝑦� = 𝑢� . Clock tree for this
model is shown in Figure 20(b), where each node represents a unique clock. The labels on the
arrows indicate the constraints from which one clock can be derived from the other. Nodes with
multiple incoming edges, represent the clocks which can be derived only when the constraints on
all the incoming edges are satisfied. It must be noted that the clock tree is not single rooted. This
means that there is no single signal which could be used as a master trigger. If our aim was to
generate sequential code, then we can synthesize a temporary signal that has events when either u
or v or both have events, and then use this temporary signal as master trigger. With the addition
of this temporary signal to the clock tree, it becomes single rooted. But here, our aim is to
synthesize multi-threaded code and hence, we are not concerned with making the clock tree
single rooted. For multi-threaded code, instead of a single master trigger, we have a set of partial
triggers. Each of these partial triggers act as master trigger for the sub-processes. There can be
instants where some of the partial triggers are present and some are absent but there cannot be

Approved for Public Release; Distribution Unlimited.
34

any instant which all the partial triggers are absent. Clock tree for such a system will have
multiple roots as shown in Figure 20(b).

Figure 20 (a) MRICDF model, (b) simplified clock tree

Definition 6: (Partial Triggers) Let P be a MRICDF model representing a data flow process and
let y be any signal in the process. A set of signals S = {x1….xn} belonging to P , is considered as a
set of partial triggers iff,

• ∀y ∈ P, ∃xi ∈ S, such that y is absent ⇒ xi is absent, i.e, each signal which is not a partial
trigger has to have an epoch that is subset of epoch of some partial trigger.

• ∄x1, x2 ∈ S, such that x1 is absent ⇒ x2 is absent, i.e, no two partial triggers are under the
same clock tree because each sub-process can have only one master trigger

The partial trigger set S is minimal.

A. Constraints for Concurrent Implementability

In [12], the authors define a class of processes for which concurrent scheduling is
Approved for Public Release; Distribution Unlimited.

35

deterministic. This class consists of processes composed of individual sub-processes with their
own triggers. A list of conditions that identify those processes was also proposed. Let P , be a
MRICDF model representing a data flow process that consists of numerous sub-processes. P can
be scheduled concurrently if,

1) The process P can be partitioned into multiple sub-processes {P1,….Pn} and {x1,…xn}
represent their respective master triggers.

2) The dependency graph of the process P does not have cycles.
3) P is well-clocked: the relations between epochs inside subprocesses are compatible at the

level of the process. In other words, scheduling of sub-processes does not result in a
deadlock.

Considering those rules, we define the criteria for concurrent implementability as follows–

• For each signal y ∈ P, there exists at least one partial trigger x ∈ {x1,…xn}, such that
epoch of y is a subset of and can be derived from epoch of partial trigger x, i.e, ∀y ∈ P,
∃x such that, σ(x) ⊃ σ(y) and ∃f a Boolean function such that for each t of σ(x), 𝑦�(t) =
f(𝑦�(𝑡)).

• Cyclic causal loops are identified by traversing the dependency graph and evaluating the
dependencies [9].

• If a process P has n sub-processes, then the clock trees of the sub-processes intersect at
most n-1 times.

This intersection is due to computation of some sub-process being dependent on computation

of other sub-processes. We represent intersection of two processes Pi and Pj as Pi,j, such that Pi,j
⊂ Pi, Pi,j ⊂ Pj and Pi,j has a master trigger. For ex: In Figure 20(a), the computation of x,y,w can be
considered as 3 independent sub-processes Px, Py, Pw with 𝑥�, 𝑦�, 𝑤� as master triggers respectively
for each sub-process. Px is the upper part of the process that reads v and outputs the sample of x.
Py is the dual of Px for u and y and Pw is simply the + actor on the right. The clock tree of Pw is a
result of intersection of clock trees for Px and Py. Scheduling such processes requires
synchronization constraints and we have to ensure that the schedule does not result in a deadlock.
This can be achieved by traversing various branches of clock tree and analyzing the constraints.

If the model satisfies all the above conditions, then the resulting {x1,…xn} is the set of partial
triggers for P. Using these partial triggers and clock trees for the sub-processes, we can generate
multi-threaded code by the mapping technique explained in subsection 4.2.3 Concurrent
Implementability.

1) Computing Partial Triggers: Let Bp represent the system of Boolean equations derived from
all the actors present in P . Computing partial triggers for model P is effectively computing prime
implicate (non-unitary) for the CNF formula constructed using Bp. But computing prime
implicate considering entire Bp takes a substantial amount of time. We propose a different
approach that computes partial triggers almost two orders faster and is shown in Algorithm 1.

Approved for Public Release; Distribution Unlimited.
36

Let K be set of all signals in model P , Sp be the set of possible partial triggers and S be the
minimal set of partial triggers for P . A signal y ∈ K, cannot be a possible partial trigger if ∃z ∈
K, such that σ(z) ⊃ σ(y). Now we create another set SubSp, which contains all the subsets formed
using the elements in Sp. So each element of SubSp, is a set of signals. We then select each
element ele 2 SubSp, in the increasing order of the number of signals it contains. We set all
signals in ele to be absent and check if this implies that the rest of the signals in K are also absent.
To set a signal to be absent, we can set the Boolean equation of the corresponding signal to be
0=false. To check for absence, we can see if the other Boolean equations can be deduced to be
0=false. If yes, then S = ele. If no, repeat the procedure with another element of SubSp. At the
end of Algorithm 1, S contains the set of partial triggers.

The complexity of Algorithm 1 depends on the complexity of the second for loop, which is
O(2n), where n is the cardinality of Sp. We use various techniques to keep the cardinality of Sp to
be as small as possible and hence Algorithm 1 completes very quickly even though its
complexity is O(2n). This argument is further strengthened by the experimental results in Table 5
and Figure 22.

2) Constructing the forest of clock trees T : In case of sequential code generation, the clock
tree has a single root node which corresponds to the master trigger. The child nodes of this clock
tree correspond to the signals whose epochs are subsets of the epochs of the signal above them.
For the purpose of understanding, this structure can be thought of as a pyramid, where the top of
the pyramid corresponds to master trigger of the process and each level below it corresponds to
the signals whose epochs can be directly computed if the epoch of master trigger is known. This

Approved for Public Release; Distribution Unlimited.
37

levelization is done by repeatedly computing prime implicate of the reduced Boolean formula.
This reduced Boolean formula is obtained by setting the boolean variables corresponding to the
signals above the current level to true. For example, the signal/s at nth level are obtained by
computing prime implicate of the reduced Boolean formula in which all the boolean variables
corresponding to the signals in first n-1 levels are true.

In case of multi-threaded code generation, the clock tree has multiple root nodes which
correspond to the partial triggers. The child nodes of this clock tree are derived by recursive
prime implicate generation considering one partial trigger at a time. Figure 21(a) shows a pyramid
representation of the clock tree in case of a single master trigger and Figure 21(b) shows the same
for multiple partial triggers. Algorithms 2 and 3 build the clock tree. The function setTrue(x)
produces a reduced Boolean formula that is further used for prime implicate computation. The
function setFalse(x) does the opposite, it sets the variable passed in parameter to false. We use it
to indirectly select the Boolean formula corresponding to a sub-process: first we set one partial
trigger to false (Bx=0), it marks absence of the partial trigger and all its sub-process, then we
complement it (Bx=B - Bx=0) and get back all sub signals of the partial trigger. The function
PI_GenSMT(), takes a Boolean formula in CNF form and outputs prime implicate. For a smaller
Boolean formula, the function PI_GenSMT () is quite fast and hence we use it in building parts of
clock tree. This function uses [1] SMT solver to generate prime implicates as described in [6].

Figure 21 (a)Pyramid structure of clock tree and (b)forest of clock trees for sequential and concurrent

specifications

Approved for Public Release; Distribution Unlimited.
38

3) Check for Data Dependencies and Deadlock: After constructing the clock tree T for model
P, we check for cyclic data dependency issues in T . We also check if there are any deadlocks in
P. This is done by traversing each branch of the clock tree and analyzing the constraints. If all
checks are completed, we conclude that P is concurrent implementable and proceed for
identification of shared epochs.

B. Identification of Shared Epochs

Often signals with different epochs will be involved in some operation (For Ex: Line 5 of
Listing 5 where x and y have different epochs). In such cases, epochs of involved signals will be
subset of epochs of multiple partial triggers (Ex: In Listing 5, epoch of signal w is subset of
epoch of signals x and y). Such signals are said to have shared epochs. Identification of such
epochs is important because they correspond to shared variables in software. To compute such
shared variables, we need to use synchronization barriers. To identify the signals with shared
epochs we use a labeling scheme. Algorithm 3 labels each node in the clock tree with a label that
corresponds to the root node under which it is present. All the nodes corresponding to signals that
have shared epoch will have multiple labels because they will be under multiple root nodes (For
Ex: In Fig 20, node corresponding to epoch of w will have 2 labels - u and v). Rest of the nodes
will have single labels.

Approved for Public Release; Distribution Unlimited.
39

C. Mapping and Multi-threaded Code Generation

Approved for Public Release; Distribution Unlimited.
40

After establishing concurrent implementability and build-ing clock tree T , we need to create
a mapping that can be used for code generation. Algorithms 4 & 5 give an overview of the code
generation procedure. T has multiple root nodes with each root node corresponding to a partial
trigger. Each of the partial trigger acts as a master trigger for the corresponding sub-processes,
which can be handled by a single thread. So we create and associate a thread (thxi) for each
partial trigger. Now we traverse T in a depth first manner. For each node we visit, we check the
number of labels (numLabels()) and the labels it has. The label indicates under which root node/s
the current node is present. If it has a single label, then it indicates that its under one root node
(not a shared computation). We export the code for this node and append it to the thread

Approved for Public Release; Distribution Unlimited.
41

corresponding to the thread pointed by the label (root). Since there are no cyclic data
dependencies, we only have to ensure that the input signals to this node are computed before the
start of code for the current node. If the node has multiple labels, then it indicates that its a shared
computation and we need to wait till the dependencies are computed by other thread/s. We export
the wait notify constraints (exportWaitNotifyConstraints()) in the current thread’s code and then
we handle the shared computation in a different thread. To generate code for the thread handling
the shared computation, we start with a wait constraint (waitConstraint()) for the synchronization
condition, then we proceed traversing the sub-tree in depth first manner, export code as earlier
and finally add the notify constraint (notifyConstraint()). In this way we generate the code for the
complete model.

4.2.4. Experimental Evaluation and Discussions

We evaluated our proposed approach on the benchmarks listed in Table 4. These benchmarks
exhibit either data parallelism or task parallelism or sometimes both. In our evaluation approach,
we first manually implemented an efficient C/C++ multi-threaded version of the benchmark
using low-level threads. We then modeled the same benchmark in MRICDF and used the tool
EMCODESYN (proposed approach) to generate multi-threaded C++ code.

Table 4: Benchmark Suite

No. Benchmark Summary of the benchmark
1 Array Addition Simple data parallel addition. Input is integer arrays of length 10K.
2 Box Filter Image processing filter which works by computing the average of

surrounding pixels. It exhibits both data and task parallelism. Size of
test input is 256x256 pixels (can be any size).

3 Energy Meter A model of the control system used in any common home energy
measurement instrument. It exhibits task parallelism. In our test suite,
we run the system for 3 iterations.

4 Sieve of
Eratosthenes

A prime number sieve for finding all prime numbers up to any given
limit (10 million in our example). It exhibits both task and data
parallelism.

5 Tennessee
Eastman (TE)
Plant-wide
Industrial
Process [57]

TE process is a simplified model of a real-life industrial process
consisting of a reactor – separator – recycler arrangement. In our test
suite, we run the TE system for 1 iteration.

We ensured that the outputs of both versions matched. Finally, we measured the performance
of both implementations on a workstation that has 4 Intel Xeon E5405 CPUs with 4GB of
memory running Ubuntu 10.10. Performance comparison results are listed in Table 5. Column 4 of
Table 5 shows the percentage performance difference between the generated multi-threaded code
and hand written multi-threaded code. A negative percentage value indicates that the
performance of the generated code is lower than the performance of the hand written multi-
threaded code by the corresponding percentage. Experimental results show that the performance
of the generated multi-threaded code is almost comparable to the hand-written multi-threaded
code. On an average, the generated code for the benchmarks considered is 18.5% slower than the

Approved for Public Release; Distribution Unlimited.
42

hand written code. On further analysis, we noticed that this performance difference arises due to,
• Generated code uses a lot of templates as the code generator is implemented keeping a

generic application in mind.
• Generated code sometimes creates more threads than actually required. The work done by

the separate threads could have been merged and done by a single thread. This additional
thread creation and destruction overhead also slows down the performance.

Table 5: Experimental Results

Model Name Manual Multi- Generated Multi- % Performance Diff. Total Code
Threaded
Performance

Threaded
Performance Generated vs Manual

Generation
Time

LOC Tmulti (ms) LOC Tgen (ms)
(- means Gen. code
slower) (ms)

Array Addition 48 12 195 14 -16.6 428
Box Filter 96 67 212 74 -10.4 1274
Energy Meter 215 17 575 18 -5.8 437
Sieve 56 4722 178 6103 -22.62 1022
TE Process 613 3.5 5947 4.8 -37.1 2350

*LOC stands for Lines of Code, Tmulti, Tgen denotes the execution time of the hand-written multi-
threaded and generated multi-threaded code respectively.

Theoretically, the scalability of the tool and the proposed approach can be accurately
determined when it is applied on a realistic model of a large embedded system (ex: A satellite
system). But, modeling such a large embedded system without knowing all the details of the
system is not easy. One can also create a large model by duplicating a smaller model. So, we
created larger benchmarks by duplicating (2, 4, 8, 16, 32 times) an existing benchmark. The
number of inputs, outputs and actors also got multiplied creating the effect of a large embedded
system for all practical purposes. Figure 22 shows the time taken for analysis and code generation
for these increasing large models. As the models get bigger, there is a linear increase in the time
taken for analysis and code generation.

Figure 22 Plot of Time taken for analysis and code generation vs number of times model is duplicated

Approved for Public Release; Distribution Unlimited.
43

4.2.5. Related Work

Numerous efforts have been made in the past to synthesize code from synchronous
specifications. But most of these efforts were targeted towards generating sequential code rather
than multi-threaded code. Here, we list some of the multi-threaded code generation efforts. The
authors of [67] proposed an approach to generate multi-threaded code from Esterel specifications.
Their approach involved partitioning of concurrently executable Esterel statements into
communi-cating FSMs and distributing the computation of these FSMs based on the
communication and synchronization techniques used in reactive processors. In [56], the authors
provide a way to translate synchronous guarded actions to multi-threaded C code. They build an
action dependency graph using the synchronous guarded actions, extract concurrently runnable
tasks from the graph and map them to threads. Both these works are targeted at single clock
systems while our work focuses on systems with multiple clocks (polychronous). In [61], the
authors provide a non-invasive methodology which includes generating programming glue to
generate multi-threaded code from polychronous specifications. This approach requires that, no
variables are shared between the concurrently executable processes, in other words, the clock
trees of sub-processes do not intersect. This a big limitation and generating multi-threaded code
for inde-pendent processes is very trivial. In another similar work [65], the authors focus on
generating multi-threaded code for mutually independent tasks, which is trivial. In [66], the
authors have explained the concept of weak-hierarchy and composition of endochronous
processes. Using these concepts one can identify parts which can be concurrently executed
without disabling one another. This work also lists some of the rules for composing
endochronous systems to a weakly endochronous system. To the best of our knowledge, there is
no implementation of this. The work presented in this article considers and extends the theory
presented in [66]. We propose a novel efficient technique by which we can test concurrent
implementability of a given MRICDF model by decomposing it. Our technique also generates
execution schedule and the multi-threaded code that conforms to the schedule. We present all the
algorithms involved and investigate the feasibility and scalability of the proposed technique.

4.2.6. Conclusion and Future Work

Writing concurrent programs, especially for safety critical embedded systems, has always
been a error prone task. One of the main reasons for this is – immaturity of concurrent
programming models as compared to sequential programming models. In this work, we presented
a correct-by-construction approach for multi-threaded code gener-ation from formal MRICDF
specifications. We presented sound techniques to analyze concurrent implementability of
MRICDF models and to generate accurate multi-threaded code. Experiments were conducted to
compare the perfor-mance of the generated multi-threaded code against hand written multi-
threaded code. We also conducted experiments to test the scalability of the proposed approach
and presented the results. In the current version of the tool, the clock tree construction and the
code generator implementation are done targeting accuracy and not efficiency of the generated
code.

To improve efficiency of the generated code, in future, we plan to apply optimization
transformations on the clock tree which can help in generating load balanced code. Mapping of
partial triggers to threads might not be the most efficient, especially if the amount of work done

Approved for Public Release; Distribution Unlimited.
44

by the thread is not substantially large than thread creation and destruction overhead. In future,
we plan to create a thread pool and map partial triggers to tasks. We also plan in future to include
formal proofs for all the algorithms and the overall technique.

Approved for Public Release; Distribution Unlimited.
45

4.3 Synthesizing Embedded Software with Safety Wrappers through
Polyhedral Analysis in a Polychronous Framework

We investigated the use of various decision making tools to check these properties. First we
looked into SAT Modulo Theory (SMT) solvers and later on we looked into Polyhedra libraries.
Below we explain each work with their advantages and limitations.

4.3.1 SMT based safety property checking
In this work we show how one can use SMT solvers for checking of a particular safety

property – causal loop detection. The approach is generic and can be used to verify most of the
properties. In earlier works [10], causal loop detection was done by generating SMT equations
for the entire MRICDF model and this set of equations was given as an instance for the SMT
solver. The disadvantage is that for a large scale example, the SMT instance will become huge
and can lead to long run times – sometimes never ending. In our work, we first mine the
specifications for possible causal loops. We then express the clock constraints of the
dependencies as SMT equations and check if all the equations can be true at same time or not by
evaluating the SMT instance. If the SMT instance evaluates to true, then there exists a causal
loop, otherwise no.

We now illustrate this work with an example. For the reason of expressiveness, we are using
Signal and Polychrony here instead of MRICDF and EmCodeSyn. Consider the Signal code
shown in Listing 6. We compile this code using Polychrony to check for presence of possible
causal loops. From the code in Listing 6, we can observe that, when isMin is true, then avg
depends on max and max depends on avg causing a true causal loop. Similarly when isMin is
false, then avg depends on min and min depends on avg causing another true causal loop. Once
we identify possible causal loops, we mine the information regarding clock constraints leading to
the possible causal loops. After mining we encode the clock relations as SMT equations and
construct a SMT instance and test it for satisfiability. Clock relations are shown in Listing 7. It
can be noticed that there are two sets of clock relations showing two possible true causal loops.

Listing 6: Constructive Causal Loop
process causal -smt =
(? integer initial , step 1, intMin ;
! integer min , avg , max;
)
(| initial ^= step 1 ^= intMin ;
|min := initial when intMin <5 default avg - step 1
|avg := min+ step 1 when intMin =10 default max - step 1
|max := avg + step 1 when intMin >10 default initial
|);

Listing 7: Clock relations
% Loop 1
(|{ avg --> max } when C_CLK _0
|{ max --> avg} when C_ CLK _1
|)
% Loop 2
(|{ min --> avg } when C_CLK _2
|{ avg --> min} when C_ CLK _3
|)
where , C CLK 0 := :(intMin = 10), C CLK 1 := intMin > 10,

Approved for Public Release; Distribution Unlimited.
46

C CLK 2 := :(intMin < 5) and C CLK 3 := (intMin = 10)

Any constraint solver enriched with integer theories can be used. In our work, we have used
the latest YICES SMT solver [44], as a constraint solver. Translating the above clock relations as
YICES input, we get the equations in Listing 8. Invoking YICES on these equations will give a
SAT result as explained earlier. Also YICES provides a counter example (intMin=11 &
intMin=10) where the constraint is satisfied which matches with our earlier interpretation. Hence
there exists true causal loops in the specification shown in Listing 6 and one possible way they
can be formed is when intMin=11 & intMin=10. If YICES had given an UNSAT result, then we
conclude that the property is not satisfied and hence it is a false causal loop. Similarly any safety
property can be expressed as SMT instance and verified.

Listing 8: SMT equations for Loop 1
;; Loop 1
(define intMin :: int)
(assert (and (not (= intMin 10)) (> intMin 10)))
(check)

Result :- sat (= intMin 11)

;; Loop 2
(define intMin :: int)
(assert (and (not (< intMin 5)) (= intMin 10)))
(check)

Result :- sat (= intMin 10)

Limitations of this approach:
Safety property verification such as causal loop detection is not a trivial problem. Given a

data dependency loop, the complexity of checking if it’s truly causal or not is at least NP-hard. If
all inputs are Boolean signals, and dependencies can be expressed as Boolean functions using
ANDs and ORs and NOTs, then the problem would be the same as solving a SAT instance and is
NP-Complete. But if the dependencies can be expressed as arbitrary functions over integers or
reals or other complex data types, then the problem is undecidable. This shows that any method
must be based on heuristics and are likely not complete. One must strive for as close to complete
a solution but never compromise on soundness. This is what we have tried to achieve in this
work. Also in this work, we only handle non-floating point and linear constraints. This is because
of the limitation of YICES and not of the approach. Another disadvantage of this work is that if a
property fails, the tool will just output one of the many possible scenarios when the property will
fail and not all the scenarios when property fails.

4.3.2 Polyhedra based safety property checking
In this work we try to preserve the advantages of SMT based approach and try to address its

disadvantages. If the synthesized software has to interact with a physical environment, often
additional range constraints on various inputs as well as outputs are provided. Analyzing the
safety of execution often leads to analysis of reachability, invariants, and cyclic dependencies
which may be affected by such range constraints. As explained in the last paragraph, while
analyzing a specification for a safety property, even if it violates an invariant property, or shows
cyclic dependency – in a very limited area of its reachable state space, it will be rejected totally.

Approved for Public Release; Distribution Unlimited.
47

For such specifications, instead of rejecting the specification outright, the synthesis tool should
guide the user by showing the exact ranges of the input values (or equational relationships
between the inputs as appropriate) that could direct the resulting program to such violating area
of the state space. This is exactly the problem we address in this work. To make decisions with
range constraints, we use Polyhedral libraries as they can take affine relations as constraints.
We now illustrate the problem being addressed in this work with an example.

Listing 9: Causal Loop Example
process AC_ DISPLAY = (? integer minT , curT , maxT ;
! integer disp _coldT , disp _hotT , disp _ normT)
(| minT ^= curT ^= maxT
| disp _ coldT := minT when curT <70 default curT
| disp _ normT := (disp _ coldT +5) when curT =70 default
(disp _hotT -5)
| disp _ hotT := (disp _ normT +5) when curT >80 default maxT
|);

Consider the example shown in Listing 9. A Boolean abstraction based check would replace

each predicate by a Boolean variable taking arbitrary values, and will not consider the
relationship between the predicates in their numerical domain. As a result a causal dependency
loop will be detected by such analysis because of the interdependency between disp_normT
and Tdisp_hot . However, if our abstraction is cognizant of a theory of integers with ordering
relations, then it would lower the Boolean abstraction to a model that considers intervals with
ordering. On this model, one could prove that when curT>80, only then such causal dependency
loop will exist. Obviously, if this happens, the system will behave non-deterministically or will
deadlock. If this information is explicitly presented to the user upon completion of the analysis,
and the user can guarantee an additional input constraint, 70≤curT≤80, then generating code from
this specification is completely legitimate – as the program will not display any deadlock
behavior. In addition, if one wants to ensure safety, one could produce a wrapper that would
intercept all inputs curT and check against this constraint, and filter out any occurrence of input
value that violates the user guaranteed constraints. However, if the user can guarantee only
70≤curT≤90 – the system will exhibit causal behavior when 80<curT≤90. But the system has a
safe operating area, 70≤curT≤80. One could still apply a wrapper to prevent the system from
moving outside its safe operating area – if it makes sense for the application.
We propose a polyhedral model based causality analysis technique which can accept Boolean,
integer and rational input constraints and check for violation of safety properties (e.g., existence
of causal loops) in the constrained system. Based on polyhedral analysis of the constraints and
specifications, we also propose a technique to identify the safe operating area of the system in
terms of bounds on input and other linear constraints. In case of multiple safe operating areas, our
technique lists all of them. We also propose a safe code synthesis technique by adding wrappers
to ensure that the resulting system does not behave non-deterministically or deadlock even when
the input constraints are accidentally violated.

We illustrate our solution with an example now. Consider the signal program shown in

Listing 10, which is an extension of the program shown in Listing 9.

Approved for Public Release; Distribution Unlimited.
48

Listing 10: True Causal Loop

process AC_ DISPLAY = (? integer minT , curT , maxT , curP , curK
! integer disp _coldT , disp _hotT , disp _ normalT)
(| minT ^= curT ^= maxT ^= curP ^= curK
% Conditions %
| cond _1 := ((curT >= 2) and (curT <= 18))
| cond _2 := ((curP >= 3) and (curP <= 21))
| cond _3 := ((curK >= 25) and (curK <= 35))
| cond _4 := (curT - curP >= -10)
| cond _5 := ((curT + curP >= 11) and (curT + curP <= 33))
% Output Computation %
| disp _ coldT := minT when (curT < minT) default curT
| disp _ normalT := (disp _ coldT +10) when
(not(cond _1 and cond _2 and cond _3))
default (disp _hotT -10)
| disp _ hotT := (disp _ normalT +10) when (cond _4 and cond _5)
default maxT
|)
where
boolean cond _1, cond _2, cond _3, cond _4, cond _5;
end;

When a Boolean abstraction is analyzed, it identifies the possibility of causal loop because of
the interdependency between disp_hotT and Tdisp_normal as shown in Listing 11. One can
invoke an SMT solver to check for nullity of clock constraints (C_CLK_31∧C_CLK_23) on the
path of the apparent loop. This is done by extracting the clock constraints and generating the
predicates for Yices SMT solver as shown in Listing 12. Invoking Yices solver will decide this
condition as satisfiable (which indicates the existence of true causal loops) and it outputs one
counter example to show a case where causal loop may create a deadlock. If we include input
constraints, an SMT solver will not be able to provide us the safe operating region of the input
space.

Listing 11: Possible Causal Loop

(| { disp _ hotT --> disp _ normalT } when C_ CLK _31
| { disp _ normalT --> disp _ hotT } when C_CLK _23
|)
where , C_ CLK _31 = cond _4 and cond _5
C_CLK _23 = cond _1 and cond _2 and cond _3

Listing 12: Assertion in SMT solver and Solution

(define curT :: int) (define curP :: int) (define curK :: int)
(assert (and (<= curT 18) (<= curP 21) (<= curK 35)
(>= curT 2) (>= curP 3) (>= curK 25) (<= (+ curT curP) 33)
(>= (- curT curP) -10) (>= (+ curT curP) 11)))
(check)

Result : SAT , Counter example : curT =8, curP =3, curK =25 %

Constraint Extraction and Transformation for Polyhedral analysis

Approved for Public Release; Distribution Unlimited.
49

Let us say we are given the input constraints shown in column 1 of Table 6 for the SIGNAL
program shown in Listing 9. The clock constraints for possible causal loop are also transformed
to a system of affine inequalities and equations. They are shown in column 2 of Table 6. There
exists an implicit logical intersection among all the constraints within each column of Table 6.
The constraints in Table 6, needs to be transformed into affine form to use the PolyLib library
[51]. The system of translated affine inequalities are shown in Table 7. This system is further
abstracted to matrices before using Polylib APIs.

Table 6 Input and True Causal Loop constraints

Figure 23 shows the plot of polyhedras representing both input constraint and true causal loop
constraints. From multiple views we see that there exists a region of intersection between the two
polyhedras, which indicates the existence of true causal loops with the current input constraints.

Table 7 Inequalities and Equations from Input and Loop constraints

Approved for Public Release; Distribution Unlimited.
50

Figure 23: (Top) 3D-plot (multiple views) of Polyhedras representing Input and Loop Constraints. (Bottom)
3D plots of I ∩ L and I - L

Polyhedral Analysis
To obtain the bounds of safe operating region and the region where true causal loop exists, we
apply two polyhedral operations from the PolyLib library.

i DomainIntersection(I,L): This operation returns the intersection of two polyhedral
domains. This is used to compute I∩L.

ii DomainDifference(I,L): This operation returns a new polyhedral domain which is the
difference, I−L.

Both these operations may return many sub-polyhedras instead of one single resultant polyhedra.
Union of all the sub-polyhedras will give the resultant polyhedra. Figure 23 also shows the plots
for both I∩L and I−L respectively. One has to observe that the plot of I−L actually is a union of 6
different polyhedras.

Limitation of Polyhedral libraries
Almost all of the existing polyhedral libraries including the one we are using, PolyLib, have

restrictions that they can only accept integer constraints. In our technique, all rational constraints
are multiplied by least common multiple to obtain integers, and floating point numbers are
truncated based on precision specified by the user. Then we multiply the truncated floating point
constraint by a suitable number such that it becomes an integer.

Safe code synthesis using Wrapper
From the result of polyhedral analysis, we obtain the bounds on inputs for safe operating

region that we must check before actually passing it to the process so that the process remains in
safe trajectories. Then a wrapper code is inserted which prevents any inputs violating the
conditions of safety from being passed. The user of the synthesis tool is given an option to choose

Approved for Public Release; Distribution Unlimited.
51

if such implementation makes sense in the application domain. In Listing 13 we show the
wrapped code for the SIGNAL program shown in Listing 9.

Listing 13: Signal program of Listing 12 with wrappers

process AC_ DISPLAY = (? integer minT , curT , maxT ;
! integer disp _coldT , disp _hotT , disp _ normT)
(| minT ^= curT ^= maxT ^= cond _1
| cond _1 := ((curT >= 70) and (curT <= 80))
| disp _ coldT := (minT when curT <70 default curT) when cond _1
default DEFAULT _ VALUE
| disp _ normT := ((disp _ coldT +5) when curT =70 default
(disp _hotT -5)) when cond _1
default DEFAULT _ VALUE
| disp _ hotT := ((disp _ normT +5) when curT >80 default maxT)
when cond _1 default DEFAULT _ VALUE
|)
where
bool cond _1;
end;

Approved for Public Release; Distribution Unlimited.
52

4.4 Real-Time Extension and Improved Schedulability Analysis for
Real-time Code Generation from Polychronous Specifications

Verifying the hand-written real-time software for complex safety critical applications is
difficult and time consuming. Testing and simulation techniques are not easily scalable and are
non-exhaustive. Formal code generation tools have been effectively employed for such purposes.
These tools accept formal specifications of a complex system and not only generate bug-free
code, but also guarantee certain safety properties in the generated code. Prelude, is one such
formal language which can be used to specify complex real-time systems. During schedulability
analysis, Prelude compiler - preludec, over-approximates and considers certain conditional tasks
to execute always. This technique though sound is imprecise, which may at times lead to over-
approximation of worst-case execution time (WCET) for the system and rejection of the certain
set of tasks as un-schedulable, though they can be scheduled in reality. In this work, we first
propose real-time extensions to MRICDF, a formal polychronous programming language. We
then adapt the extended precedence encoding technique of Prelude and improve its existing
schedulability analysis techniques for multi-periodic real-time systems by considering the
occurrence conditions of tasks. This improved schedulability analysis provides a tighter WCET
and expands the domain of schedulable tasks.

4.4.1 Introduction

As real-time embedded control systems applications become larger and more complicated,
and the platforms on top of which they run become more complex and diverse, it becomes
increasingly difficult for software developers to manage all details of a design. Most embedded
control systems are first developed at high level of abstraction using control theory and other
techniques and often times the implementation details are left to the software developer to
manage. Development of software at this level can be very error prone, can make porting the
design to different platforms difficult, and may not guarantee determinism or any safety
properties.

There have been many attempts in the past to address these aforementioned issues within
works such as Lustre with real-time extensions[94], Simulink with Real-Time Workshop [103],
and Prelude[93]. However with some of these works, attempts to formalize the language and
model real-time systems have been an after thought. Prelude is a synchronous language that
specifically targets real-time systems with a formally defined semantics. The language and
corresponding compiler preludec provide means to specify multi-periodic real-time systems,
perform variety of static analysis techniques and compile the specifications into real-time code
for their real-time operating system, SchedMCore. One of the important static analysis technique
performed on Prelude specifications is Schedulability Analysis. This determines whether a model
will meet all deadlines over its execution. One short coming of preludec is that during
schedulability analysis, it ignores the conditions on which tasks has to execute and assumes that
the tasks will always execute. This over approximation of execution of conditional tasks tasks
within their system [97] and leads to the possibility of looser WCET bounds and certain tasks
being incorrectly rejected as unschedulable.

Approved for Public Release; Distribution Unlimited.
53

In this work we will explain further the Prelude language, and how the schedulability analysis
is performed as well as show two potential solutions to this over approximation technique.
Finally we will show how these two solutions can be used to develop real-time systems using the
synchronous language, MRICDF, and development framework, EmCodeSyn.

4.4.1.1 Motivation

Figure 24: Location Estimation Unit (f=Rate of occurrence, E=Execution Time, D=Deadline)

Consider the data flow model of a system shown in Figure 24. This system represents a
location estimation unit that has two main data acquisition modes: obtaining many velocity
vectors from direction and speed sensors (Task ANGLE ACQ and Task SPEED ACQ) to
estimate position, or obtaining GPS coordinates (Task GPS ACQ) for a more precise location.
The location (Loc.) EST task then uses whichever data was obtained to calculate a location and
sends that value to the Loc.OUT task which outputs the value. Loc. EST also determines the error
inherent in the measured value and returns that value to LCU task. In order to determine which
acquisition mode should be used, the LCU uses the error value stored in a buffer from Loc. EST
to determine if the current uncertainty value ∆Pos has crossed a threshold given as ∆max and
GPS ACQ must be triggered to return the uncertainty of the estimated location to a safe level.
Also shown in the figure are the frequency, execution time and deadline of each task.

A real time scheduling problem usually consists of asking the scheduler whether a feasible

schedule exists for a given set of tasks and a stipulated amount of computing time. In our
example, we ask the preludec tool, if a feasible schedule exists for the given set of tasks in 100
ms of computation time. Looking at this system, it is obvious if the conditions on the
communications from task LCU are considered, there are 2 possible schedules –

Approved for Public Release; Distribution Unlimited.
54

(a) 1 instant of LCU, 2 instants of Loc. EST and Loc. OUT, and 5 instants of SPEED
ACQ and ANGLE ACQ,

(b) 1 instant of LCU, 2 instants of Loc. EST and Loc. OUT, and 1 instant of GPS ACQ.

The preludec tool ignores the conditional communications originating from LCU because of
its inability to statically determine task activations and instead are over approximated to be
always active. Thus, preludec tries to schedule all the tasks within 100 ms of computation time
and then states that its un-schedulable. But theoretically, there exists 2 possible schedules.

While the activations of such task communication clocks may not be statically determined,
there are inferences that can be drawn from the model that can create a more refined view of the
system and tasks that can result in fewer rejections of schedulable systems.

4.4.1.2 Contribution
Specification of an system in a polychronous language such as MRICDF, will provide us with

the ability to do high level analysis of logical clocks. But without the real-time features, MRIDF
cannot be used directly to specify real-time systems. Thus, we first propose real-time extensions
to the formal MRICDF language and the development environment EmCodeSyn that will allow
for the specification of real-time characteristics of systems, such as tasks, execution times,
deadlines, etc.

We then adapt and extend the schedulability analysis found in preludec tool. We introduce
the concept of conditional task graph and use this graph to explore the execution space of the
model. We use the exploration results in improving the schedulability analysis there-by
determining a more refined WCET for the system and also expand the domain of schedulable
tasks by reducing the false negatives. We compare the results of the proposed technique with the
results of preludec tool.

4.4.2 Intro to Prelude
Prelude is a formal language used in the development of real-time embedded systems. It is in

the family of data-flow languages such as Signal [98] and MRICDF [100], but specifically
focuses on defining of software architectures for multi-rate, multi-periodic systems. Prelude does
automated translation of the multi-rate software into a real-time software implementation and
verifies certain safety and temporal properties at compile time.

In this section we will discuss some of the basic clock theory that Prelude uses to generate
deterministic real-time software from specifications. We will also cover some of the static
analysis that is performed before code generation; speficially, we will discuss precedence
encoding and schedulability analysis.

4.4.2.1 Periodic Clocks
The Prelude synchronous real-time model relies on the Tagged-Signal Model [96]. In this

model and similar to other synchronous languages, variables and expressions are represnted as
flows. A pair, (vi,ti)i∈N, where vi is a value in the domain V and ti is a date in Q, ∀ti ∈ Q, ti < ti+1,
can be used to represent the value of a variable or expression at a specific date ti. A flow is then a
sequence of these pairs and represents a variable or expression value over the set of all dates. The

Approved for Public Release; Distribution Unlimited.
55

clock of a flow is then a set of dates in Q in which the value vi must be computed, and the value vi
must be computed [ti, ti+1[, or one instant. This means that flows may have different dates for
when vi must be computed, and thus can have different clocks as well as different instant
durations. With different clocks comes a variety of relations that can be defined between such
clocks and flows such as equivalence; two clocks are equivalent if they active for all of the same
dates. Prelude focuses on a specific subset of clocks called strictly periodic clocks [97]:

Definition 1 (Flow, Flow Clock, Flow Instant) A flow, f is a sequence of pairs, (vi,ti)i∈N, where vi
is a value in the domain V and ti is a date in Q, ∀ti ∈ Q, ti < ti+1. The flow clock, ck(f), is the set of
dates in Q where one value vi must be computed. A flow instant is one date in the flow clock.

Definition 2 (Strictly periodic clock). A clock h=(ti), i∈N, ti∈T, is strictly periodic if and only if:
∃n∈Q, ∀i∈N, ti+1 - ti=n, where n is the period of h, denoted π(h), and t0 is the phase of h, denoted
φ(h).

Strictly periodic clocks are then able to define a flow’s instants in terms of a rational valued
real time clock, by giving the period and phase, while the Boolean clock of a flow gives the
activation condition of a flow for a specific instant. Strictly Periodic clocks offer a way to
compare and transform different clocks that are not offered with Boolean clocks alone. This
subset of Boolean clocks can be compared via their period and phase characteristics.
Transformations on these clocks can be done as well to alter their characteristics. Three strictly
periodic clock transformations are defined [96]:

Definition 3 (Periodic clock division). Let α be a strictly periodic clock and k∈Q.”α/.k” is a
strictly periodic clock such that:

π(α/.k) = k * π(α), φ(α/.k) = φ(α)

Definition 4 (Periodic clock multiplication). Let α be a strictly periodic clock and k∈Q.”α *.k”
is a strictly periodic clock such that:

π(α*.k) = π(α)/k, φ(α*.k) = φ(α)

Definition 5 (Phase offset). Let α be a strictly periodic clock and k∈Q.”α→.k”is a strictly
periodic clock such that:

π(α→.k) = π(α), φ(α→.k) = φ(α) + k*π(α)

The Prelude software model consists of real-time tasks and communication between tasks. In
order to produce deterministic code from these models it is a requirement to have formally
defined communication operators. The periodic clock transformations give three basic operators
along with an instant delay operator: multiplication, *^, division /^, delay fby, and phase shift:>.
These operators are used to equate two flows. For example, a flow f with a period that is one third
of another flow g the expression /^3 would equate the two flows.

Although these operators can equate two flows they must also be deterministic. In the

previous example if f is writing to g then it must be known for any instant of g which instant of f
it is dependent on. A function, gops(n), describes this relationship. In this function ops is the rate

transition operator and n is the specific instant of the independent flow. In our example 𝑓
/^3
�� 𝑔,

Approved for Public Release; Distribution Unlimited.
56

g/^3(n) will describe the deterministic data relation relation between these two flows. The function
gops(n) is inductively defined below [96]:

When two clocks are equivalent there is no transition operator necessary; shown as g(n)=n.
This means that the nth instant of the producer flow f is consumed by the nth instant of the
consumer flow g, or f(n) = g(n). Other transitions are defined in terms of this basic function,
where more complex operators can be defined from the composition of these basic operators. For
example, if flow g has a period that is half that of f the rate transition is *^2 and g*^2(n)=2n, or
f(n)=g(2n). Every other instant of g consumes an instant of f because of the difference in periods.
A few examples of different rate transitions and corresponding gops(n) functions between flows f
and g can be seen in Figure 25.

Figure 25: Variety of ops rate transitions between flows f and g

Prelude also includes Boolean clock operators; when and whennot. These operators do not
affect the temporal characteristics such as period or phase of a clock. Instead they give certain
conditions under which the clock is present or not present. This means that a clock f whenc for a
flow f and Boolean condition C will have the same period and phase as f but will only be present
in an instant if the condition C is true.

These operators allow a user to express a variety of deterministic communication structures
between flows. When these are combined with tasks a high level task graph abstraction can be
formed.

Approved for Public Release; Distribution Unlimited.
57

4.4.2.2 Task Graph
In order to perform static schedulability analysis the text present in the user defined Prelude

process must be translated into a task graph. A task graph is a collection of vertices, where each
vertex represents a task, and each edge represents a precedence, or data dependence, relationship.
The first step to create a task graph is to expand the original process. This is done recursively by
replacing intermediate expressions or vertices with an equivalent set of more basic vertices. This
is done until the only expressions left are user defined or imported functions. This collection of
base functions or expressions create the tasks within a process[96].

In [96], the authors provide the details of translating the expanded program into an

intermediate graph and then how they reduce the intermediate graph into the final task graph. For
our purposes it will suffice to understand the structure of the Prelude task graph. A Prelude
process can be represented with a graph g=(V,E), where V is a set of vertices or tasks and E is a
set of edges or precedences. Each vertex vi∈V contains a set of characteristics (ini , outi , fi), where
ini is the set of task inputs, outi is a set of task outputs, and fi is the relation between the inputs
and outputs. Precedences or edges occur when there is a variable v such that v∈outi, v∈inj and the
precedence is represented as ti→tj.

A vertex vi represents a task ti which has real-time characteristics. These are represented as

(Ti,Ci,ri,di). Tasks are treated as synchronous blocks, all inputs and outputs have the same
periodic clock, pcki. This clock can be used to derive the period, Ti = π(pcki), as well as the
release date or phase, ri=φ(pcki), of the task ti. The other two characteristics Ci, worst case
execution time, WCET, and di, deadline, are derived from user specifications. There is no
analysis done to determine the WCET of a task. Instead the user provides this value by specifying
execution times within the process. The deadline, di, is by default di=Ti but if the user has
specified a deadline for any output in outi then di is the minimum specified deadline for all
outputs in outi [96].

Figure 26: Prelude Task Graph for Location Estimation

The task graph for the Location Estimation example discussed previously can be seen in

Figure 26. This task graph shows the proper rate transition operators between each task precedence
relation. Here we are assuming that S is the condition where ∆Pos ≤ ∆max. It also includes the
buffer operator that exists for the position feedback.

Approved for Public Release; Distribution Unlimited.
58

4.4.2.3 Static Analysis
From the task graph abstraction, Prelude performs a variety of static analysis to validate the

model for both safety and temporal properties. One major tanslation that is done is extended
precedence encoding. Extended precedence encoding returns a set of indepedent periodic tasks
with no precedence relations. This is done by adjusting the characteristics of each task in a way
that guarantees the precedence relation will exist within the operation of the real-time system
[96]. This is an important translation because most schedulability analysis tools are unable to
determine a schedule for a graph with multi-rate precedences [104]. Although this translation
allows for a schedule to be generated for the model, it may not accurately reflect the execution of
the software during run time.

When determining the execution of a model it is important to understand what conditions are
needed for each task to execute. Prelude defines this as the activation condition of a task. An
activation condition, condi, is a Boolean formula describing the conditions under which the task ti
will execute. This is important when there are Boolean operators on rate transitions such as when
and whennot. Let cond() be a function that determines if a given flow is present for an instant,
where pck is a periodic clock and c is a Boolean condition. The presence or absence of an input
can be seen below:

cond(pck) = true
cond(pck when c) = cond(pck) ˄ c = c

cond(pck whennot c) = cond(pck) ˄ !c = !c
The activation for the activation condition of task ti is then the disjunction of cond()for every

input clock, ck, of a task:

𝑐𝑜𝑛𝑑𝑖 = � 𝑐𝑜𝑛𝑑(𝑐𝑘)
𝑐𝑘∈𝑖𝑛𝑠𝑖

An important note when discussing the precedence encoding or static analysis techniques of
Prelude is that the Boolean operators when and whennot are overapproximated during static
analysis[97]. These operators are still included when generating behaviorally equivalent code
from the given model, but the Boolean conditions for these operators are simplified to be always
true for static analysis. This also means that cond(pck whenc) is always true and that tasks are
assumed to always execute during static analysis.

Figure 27: Prelude Schedule for Location Estimation

This overapproximation can create false negatives; models being rejected as unschedulable
when in fact that meet timing constraints during run-time. The Location Estimation example is
one such model. If the Boolean operators are ignored and every task is executed then this model
becomes unschedulable. This can be seen in Figure 27.

Approved for Public Release; Distribution Unlimited.
59

This model is in fact schedulable though because GPS_Acq and Angle_Acq or Speed_Acq

are mutually exclusive tasks determined by the Boolean operators. What we will propose in the
next section is a technique to use the Boolean operators to determine a more refined execution
schedule. By using a more accurate execution model for static analysis we will avoid some of the
false negatives that are present when the Prelude overapproximations are made.

4.4.3 Conditional Task Graph
Prelude translates a task graph g into a set of indepedent tasks q. They do this through

extended precedence encoding which alters the task characteristics, such as deadline and release
date, to guarantee that the precedence holds during execution. This set q is then used for
schedulability analysis. We refine this set q further via the use of a conditional task graph, or
CTG, to reduce the propensity of false negatives during schedule analysis.

The conditional task graph has an equivalent structure to the graph g. This means that there

are the same tasks with the same precedence relations that exist. We use the updated task
characteristics that were obtained through extended precedence encoding and we simplify the rate
operators to only include Boolean operators. Instead of using this graph to verify precedence
relations during execution, the CTG will be used to explore the possible ways the tasks in a real-
time system will execute during run-time.

Before discussing the methods to explore the execution space of a conditional task graph c,

we will define a few terms to describe such executions.

Definition 6 (Task Instants) Each task ti within c is a synchronous block. This means that

the periodic clocks of all flows within a task are equivalent. The task instants, ϒi , of ti is the
maximal set of instants in which every flow in ti can be computed and it represented by the clock
ci.

A task instant is a logical event where the activation condition, condi, must be computed. If
the activation condition is true, meaning the clock of any of the inputs signals to the task is true,
then the task must be computed. The maximum amount of time that the computation will take in
continuous time is given by the WCET of the task. We refer to any logical instant where the
activation condition signal is true, to be a task activation and a computation of WCET duration
must occur at this instant.

Definition 7 (Task Activation)Let iϒ be the set of task instants, which represents the set

of logical events in which the task it may be computed. The tht instant in iϒ where)]([tcondi , is
a task activation, denoted)(tai , where ia is the activation flow. The set of all activations of it is
denoted iA . iiA ϒ⊆ .

A task activation denotes the computation of a task at a specific logical time. However,

within this activation not all flows of the task will be computed. Because these tasks are treated
as synchronous blocks, determining which flows are actually computed within a task is not
consequential to the execution time of that task. If the task executes then it always executes for
the amount of time denoted by the WCET of that task. Although the flows within a task do not

Approved for Public Release; Distribution Unlimited.
60

change the execution time, they can be used to determine whether an output is generated from a
task for that given activation.

For a task it , there is a finite set of output combinations that can occur during one task
activation. These outputs obviously determine what other tasks within c will receive inputs, so it
is required to define these combinations. For determining the worst case execution of a model we
only need to conern ourselves with the maximal output combinations. Such combinations we will
call branches.

Definition 8 (Branch) For any vertex or task it within c , iout describes the set of task
output flows. Each flow has the same strictly periodic clock but can potentially have differing
Boolean clocks. For any set of output flows iout there exist a subset of minimal flows

ioutmins ⊆ , such that ,minsf ∈∀ ∄ fgoutg i ⊂∈ , . A branch, fbr is then a set of output flows
that must be present in one task activation given the presence of a minimial flow minsf ∈ .

A branch, fbr can be seen as a grouping of outputs that must occur together and each task it

has a set of branches, iBr , that describe these maximal groupings of outputs. The logical instants
when these outputs are present can be described in terms of a flow which is referred to as a
branch flow. A branch flow, fbf is a flow whose clock is equivalent the minimal flow f within
a branch, fbr .

Definition 9 (Branch Flow, Branch Activation) For any branch fbr within a branch set

iBr of task it , the branch flow fbf is a flow whose clock is equivalent to to f , the minimal flow
within the branch. A branch activation is any instant in which the branch flow fbf is present.

The relationship between a branch flow fbf and iA is determined via the Boolean rate
operator within the conditional graph c . These are the Boolean rate operators when and
whennot that are present within the Prelude task graph g but were ignored during schedule

analysis. Given the task precedence k

condwhen

i tt → , and the corresponding branch flow fbf , then

fi bfcondA =][∩ .

Using the set of all task activations and the set of all branch activations for a model, we are
able to describe an execution of a model. To fully explore the possible activations of a model we
must denote our independent variables. We must determine which activations are present within
our independent tasks. These are tasks within the model that do not have predecessor tasks. Then
from these activations we can determine the activations of all successor tasks by exploring all
possible branch activations. We will present two methods for exploring model executions in the
next sections.

Approved for Public Release; Distribution Unlimited.
61

4.4.3.1 First Method: Per Activation

In this method we are concerned with specific task activations. For instance, if we know that
an activation has occured in an independent task then we must compute all of the possible
combinations of depedent task activations that can result for different branch activations. We will
use a simple CTG shown in Figure 28 to explain further.

Figure 28: Simple Conditional Example

In Figure 28 we have our simplified conditional task graph. Here, the only rate operators that

remain are Boolean operators and the numbers under the task names represent the number of
times that task will execute during the hyper-period, HP, of the model. The hyper-period is the
least common multiple of all periods of tasks within a model; over this period of time the task
instants will not repeat. It is over this window of time that we explore the execution of a model
and also perform our schedulability analysis. If it is schedulable for this window then it will be
schedulable over all conditions during run-time.

In the example there are 8 possible indepedent task activation combinations:

(2)}(1),(0),{(1)},...,{(0)},{},{ AAAAA aaaaa∅ . We also have a set of branches that can be taken,

Cba and Cba! ; Either Task B and Task D receive an input from Task A, or Task C and Task D
receive an input from Task A.

At this point we can easily determine the specific activations of Task A as well as the branch

activations of Task A. What we need to determine is the depedent task activations that occur
given these indepdent activations. For this we return to the)(ngops function from Prelude. This
function determined exactly which task instants in a successor task were dependent on instant n
of the predecessor task. We can determine the ops based on the number of HP executions of
each task within a depedency relation. Given iHP and jHP are the number of HP executions for

tasks it and jt respectively, then if j

condwhen

i tt → , ij HPHPops ∧∧ /*= .

In our example, 34/*= ∧∧ops between Task A and Task B. The task instants or activations

Approved for Public Release; Distribution Unlimited.
62

that are dependent are then: 0=(0)g , 2=(1)g , 3=(2)g . Note here that Task B instant 0 is not
specifically accounted for by the ()g function. Based on the communication determined in
Prelude, any instant m in a dependent task where mng ≤)(and mng >1)(+ is then dependent
on instant n of the independent task. This means that if Aa and Cba are present for instant 0=n
then Task B will be activate for both instant 0=m and 1=m .

At this point we can clearly represent executions as a set of task activations and branch
activations. However, we are not interested in defining all possible executions, merely the worst
case execution - definied below. In Prelude, the worst case excution was simply all tasks
executing but even in the simple example in Figure 28, the Prelude method becomes an
overapproximation.

Definition 10 (Worst Case Execution) The set of task activations and branch activations
that results in the highest possible total execution time for a given model. The worst case
exeuction covers all other possible executions so if it is schedulable then the entire model is
schedulable.

When determining the worst case execution we do not need to keep track of every possible
execution. With respect to the prior example, we do not necessarily care what branch activations
occur after Task A as long as for each set of task activations of Task A that we know the worst
case execution. This means that we can condense the total execution state space after we have
explored it fully from a given node. This will be discussed in future sections when the total
algorithm is presented.

4.4.3.2 Second Method: Per Number of Activations

Sometimes determining the execution of a model by knowing each specific task activation
and branch activation can result in a very large execution space. For example, in Figure 28, there
are 32 total combinations of task activations for Task A. Instead we can describe how a task
behaves by only describe its total number of activations during one HP. This allows us to reduce
the total number of activation combinations from 32 to simply 4 - from executing 0 times to
executing 3 total times per HP. In this section we will describe how we can represent a model
execution using this method instead of the prior method.

Previously we had discussed how the ()opsg function can be used to determine dependencies
between specific task activations. In the case of this method, a new function must be used that
expands beyond ()opsg . Specifically, this method requires a function that can take the number of
activations of an independent task and return the maximum number of activations of a dependent
task within a data dependency. We will refer to this function as),(inGops , where n is the number
of independent task activations and i is the number of task instants of the independent task,

in ≤ . The argument i defines a time window over which we are assuming the activations of the
independent task will repeat and we can define this window as]*(0, iTi where iT is the period of
the independent task.

Approved for Public Release; Distribution Unlimited.
63

Let DA tt
32/* ∧∧

→ be one of the dependencies shown in Figure 28. The function
4,4,...0,1,2,2,3,=)(

32/*
ng ∧∧ for an increasing n . Using this function, the m3 and 13 −m instants

of At provide inputs to the same instant of Dt for any integer m . If we look at three instants of
At , the possible ()G values are: 0=(0,3)

32/* ∧∧G , 1=(1,3)
32/* ∧∧G , 2=(2,3)

32/* ∧∧G , and

2=(3,3)
32/* ∧∧G . There is no change between 2=n and 3=n because when there are two

activations of At , Dt is already achieving its maximum activations for that period of time. This
means that the third activation does not cause another activation of Dt because of the overlap of
dependent activations in At . The reason the second argument is required for ()opsG is that
depending on the time window, the third activation of At may cause an activation in Dt . If we
double the interval to six instants, then 3=(3,6)

32/* ∧∧G because there are four instants of Dt that

can be activations in this window and the overlap does not occur. In actuality this overlap may
occur but because we are concerned with the worst case execution ()opsG returns the max
activations the overlap case is ignored.

We can simplify the different communication cases that must be handled by ()opsG . When a

buffer is used there is no dependency that exists in C . When the phase shift operator, >: , is used
the ()opsg function is unaffected. This then means that there is no effect in ()opsG since it is a
function based on the grouping of instants returned by ()opsg . This means that the only case over

which ()opsG must be defined is mlops ∧∧ /*= . If there are no activations for the independent
task, 0=)(0,iGops , the definition of the function given 0>n follows:

i

j
m

li

inG n

jml

−
∑ −

∧∧

*

[]=),(1

1=/*

The opsG function gives the ability to describe dependent activation numbers which is needed

when determining executions from a given task. We also define a function)(fhp which returns
the total number of instants for a given flow within one HP. When looking to the example we can
use the function)(=))(),((

32/* DAA ahpchpahpG ∧∧ , which gives us the maximum activations of

Task D given the activations of Task A as well as the total possible instants of Task A, ac .

Knowing the number of activations of all indepdent tasks as well as branch activations we

can determine via ()opsG the possible executions of a model. When using this method, some
granularity will be lossed when compared to the previous method. This is because ()opsG simply
returns the maximum number of activations regardless of whether that number is possible based
on the distribution of the activations over the task instants. However there are many cases where
this lack of granularity is outweighed by performance increases. This is because the total

Approved for Public Release; Distribution Unlimited.
64

combination of activations for an indepedent task that executes n possible times goes from m2
combiantions to only m for the different approaches. In the next method we will discuss the
general algorithm approach that both methods use. The main difference being that the second
method has a considerably smaller execution space to explore with the same algorithm.

4.4.3.3 General algorithm

In the previous sections we discussed finding the worst case execution for a given model.
Now we will describe our algorithm for determining this execution. First we define a general
execution. An execution is a set of flows, one set of independent flows and one set of dependent
flows.

Definition 11 (Exeuction) An execution, λ is definied by two sets of flows: an
independent set, λI , that can consist of task activations as well as branch activations, and a set
of dependent flows, λD , that are task activations that must occur given the independent flows.

The algorithm uses a frontier, which is a set of independent tasks, to define executions that
contain these tasks as well as successor tasks. Initially the frontier only contains the end tasks,
meaning tasks that have no successsors, and the graph is traversed from these tasks to the initial
tasks, the tasks that have no predecessors. As tasks are traversed, their activation flows are
transferred from the set of indepedent flows to the set of dependent flows for all executions.

The initial set of executions Λ contains one execution for every combination of task
activations for the end tasks. The types of combinations considered are based on the method. If
the first method is used then there is an execution for each combination of activations for the end
tasks. If the second method is used, then there is a combination for every)(ichp for all end tasks.
The general algorithm can be seen in Algorithm 1 where the executions are kept as tasks are
traversed and finally the execution with the greatest WCET time is worst case execution. For
brevity we only present the second method to traversing tasks in Algorithm 2. It is a similar
exercise to traverse a task with the first method except every combination of activations is
considered instead of the total number.

Approved for Public Release; Distribution Unlimited.
65

In Algorithm 2, we are traversing across a task it . This means that once this exeuction has

completed ia will be a dependent flow and all of its successor task activations and branch
activations will be independent flows with the execution set Λ . The first step is develop an
execution for every combination of successor task activations and branch activations. From this
we can define and remove some illegal combinations. The only illegal condition is that a branch
activation cannot occur more times than the number of task activations.

Approved for Public Release; Distribution Unlimited.
66

Once we have a set of all legal combination of these new independent activations we must
combine them with the current executions that we have already assembled by traversing previous
tasks. We basically cross this new set of indepdnent activations, SΛ with the previous executions,
Λ . Again, we do define some illegal combinations. Two executions cannot be crossed if the
number of activations of it implied by the independent flows in SΛ is greater than ia found in Λ
.

Approved for Public Release; Distribution Unlimited.
67

As tasks are traversed and the set of independent flows changes there can exist a situation
where multiple flows are present for the same task activation. If a task has multiple successor
tasks then it will be added to I of λ twice because of the traversal of its successors. This poses
issues for traversing this task because the number of activations is not correctly represented by
one single flow. To handle this we must correctly combine these multiple flows representing one
task activation and also reject illegal combinations. This is presented in Algorithm 3.

Algorithm 3 is only called when a task has all of its branch activations represented within the
indepdent flows of the executions. The idea behind this method is to condense this collection of
branch activations and task activations into one task activation and in the process reduce the
number of possible executions. Every task has a set of branch flows that are the minimal flows of
all outputs. We look to the number of activations of these flows to determine the task activations.

Approved for Public Release; Distribution Unlimited.
68

The task activation total is equal to the sum of all minimal flow activations. If we know the
number of task activations and the number of activations for each branch flow then we can also
determine the number of activations of successor tasks.

Legal executions are then executions where the sum of all branch flow activations is less than
or equal to the maximum task activations. These executions must also imply the correct number
of activations in all successor nodes defined by ()opsG . The number of activations for any output
flow of a task is the sum of activations of all branch activations that are a subflow of that output
flow; the max activations of any output flow is still the max activations of the task.

As the total set of indepdent flows is condensed there exists the possibility of two executions
containing the same combination of indepdent flow activations. In this situation we can ignore
one of the executions. In Algorithm 3 we used)(λWCET to describe the total time of a particular
execution. When we get multiple executions with the same indepdent flow activations we simply
discard the execution with the lesser execution time as it is covered by the other execution. This
allows the method to reduce total execution set size as tasks are traversed and branches are
explored.

We traverse the entire graph until our frontier consists of initial tasks. At this time we have a
set of executions that originate from these tasks and the execution with the greatest execution
time becomes our worst case execution. One issue though is that we have an execution given as a
total number of activations but what we need for schedule verification are specific instants. In
Algorithm 1 we use the function ()SetderiveTask . This function merely translates the total task
activations into specific activations. This is an approximation but in general it is possible to start
with initial task activations and derive a relatively accurate successor task activations using

()opsg . This set of specific task activations can be used to determine a schedule for the model.

In the next section we will discuss the EmCodeSyn environment as well as the synchronous
language MRICDF and how this real-time system modeling has been implemented within that
tool chain.

4.4.4 Implementation in EmCodeSyn/MRICDF
Multi-Rate Instantaneous Channel connected Data Flow, MRICDF, is a formal data-flow

language similar to SIGNAL [98]. With MRICDF, inputs to a system can be seen as infinite
streams. A data flow network represents the computation needed in order to produce the outputs
of the system which are also infinite streams [99]. These infinite streams are similar to clock
flows defined in Prelude. These flows though are not defined over continuous time and are
instead are defined in logical instants. These flows can also be related to one another within a
model. Any flow x carries values over a certain set of instants. The set of instants in which x
has a value is referred to as its clock, denoted x̂ .

Three possible relationships can be drawn between any two flows x and y : equivalent,
subset, or unrelated. If x and y are present for the exact same set of instants then it is said that
the clocks of these two flows are equivalent; they are also synchronous. If the instants where x

Approved for Public Release; Distribution Unlimited.
69

computed is a subset of instants where y is computed then the clock of x , x̂ is a sub-set of the
clock of y , ŷ . If x̂ and ŷ are not equivalent or subset of the other then the flows are unrelated
unrelated [102]. It is obvious that some specific subsets of relationships may be drawn from
flows that are deemed unrelated. One type of relationship is mutual exclusion, meaning that x is
computed iff y is not computed and vice versa. These relationships are determined through flow
relations inherent in actors.

An MRICDF model consists of synchronous modules called actors that are interconnected via

instantaneous channels [100]. An actor can be of two different types: primitive and composite.
Primitive actors have four types, function, buffer, merge, and sampler, which are represented by

},,),,({ SMBmnFTp ∈ , while composite actors are hierarchic compositions of primitive actors

[100], whose type is defined as cT . Regardless of whether an actor is primitive or composite it
can be represented by 〉〈 GNOITA ,,,,= where OI , are the set of input signals and output
signals respectively, T is the type where },{ pc TTT ∈ . N is the set of internal actors, which for
primitive actor types is an empty set, and G denotes the graph created by the channel
connections. A primitive actor can then be described by 〉∅〈 GOITA p ,,,,= [101].

Definition 12 (Primitive Actor,Composite Actor) A primitive or composite actor is graphically
represented by a geometric shape and can also be represented by 〉〈 GNOITA ,,,,= . Each actor
has a set of input and output signals, OI , , which associate input and output signals with the
actor. T represents the type; for primitive actor pTT ∈ while cTT ∈ for a composite. N is the
set of internal actors which for a primitive actor is null and G denotes the data flow graph
created by interconnected channels.

Although MRICDF is presented briefly here, we have covered enough to continue with
discussion on how the previous real-time verification techniques are integrated within the
language and tool chain. These additions are presented in the following subsections.

4.4.4.1 Specification of Tasks

We have extended the MRICDF formalism to include the addition of Tasks. Tasks are simply
composite actors which have real-time characteristics defined by the user. When a task is created
all flows within the block have the same period and phase, which were given by the user. What
they do not share is the same logical or Boolean clock. This means that flows within tasks can be
subsets of one another and these relations are determined during epoch analysis [100].

Definition 13 (Task) A specialized composite actor that includes a set of task characteristics,

〉〈 iiii CrdTC ,,,= , is defined via several fields: period (iT), deadline (id), offset (ir), and worst-
case execution time (WCET) (iC). These are defined in terms of number of milliseconds.

To construct the conditional task graph c from these tasks, we must also include the data
dependencies between the tasks. These connections are easily interpreted via the data flow graph

Approved for Public Release; Distribution Unlimited.
70

used to represent the model. What must be found is the rate transition operators. Buffer MRICDF
actors define the buffered communication present in Prelude but to describe other primitive
operators we use Table 8.

 Table 8: General Form of Inter-Task Communication

 Case General Form
Buffered nmlfbyconstops >/*= :∧∧

Non-Buffered nmlops >/*= :∧∧

For every edge in g , the characteristic functions given in Table 8 must be specified. This is done
by using the task characteristics given. Given an edge ji tt → in g , regardless of whether or not
the communication is buffered, the values for ml, and n are determined in the same manner.
Given that the least common multiple of the periods of it and jt is denoted

),(=, jiji TTLCMLCM and jr is the release date of jt ; the formulas for ml, and j are given
below:

jij LCMTl ,/=

jii LCMTm ,/=

jj Trn /=

From the above formulas and the buffer actors used to create a buffered edge, all edges within
c can be defined. We must also determine the branch flows for each task but all flow relations
are given to us during the MRICDF epoch analysis [100]. We must simply determine which of
the flows is then a minimum of all output flows for each task and then we can construct the
when condition for every output.

When building the conditional task graph for an MRICDF model the only explicit definitions
provided by the user are the tasks and their characteristics. The remaining CTG objects are
interpreted from the flow relations and data flow model.

4.4.4.2 Worst Case Schedule Refinement
When determining the worst case schedule for a real-time MRICDF model we follow the

same method presented earlier. However, the flow relations between task inputs give additional
refinement. We will cover general improvements that have been implemented to the method in
this subsection.

During the compilation process, a clock tree is built for a model [102]. A clock tree is a
partial order of flows based on instants where each flow is present. This structure is created via
inherent relations for every actor within MRICDF. For instance, all flows that are inputs or
outputs to a function actor are all synchronous. There are other operators that create sub-flows
and mutually exclusive flows [101]. For the purposes of this paper it is enough to understand that
there is a partial order of all flows within a model.

This clock tree allows us to expand our original method. Initially only the relationships
Approved for Public Release; Distribution Unlimited.

71

between output flows were known and no information could be determined about the relationship
between the input flows to tasks. Because of this all input flows are assumed to be unrelated. This
means that any combination of inputs to a task for each task instant was considered legal. Using
the clock tree, relationships can be determined for task input flows and possible executions of a
model are refined further.

When a task is traversed in the algorithm, all in combinations are considered and are added to

the frontier. In the MRICDF method we can rule out certain combinations. We begin with an
explanation of a simple system: two tasks, I and J , communicate to task K where Ic and Jc
are the two input flows from I and J respectively. Initally we will assume all tasks have the
same period. If Ic is synchronous with Jc then tasks I and J must imply the same number of
activations of K ,)(=),(=),(KJI AhpHPAGHPAG . The remaining relations are given Table 9
below:

Table 9: Input relation restrictions

These relations and rules are for two inputs only and must be expanded based on the amount
of inputs there is to a task as well as the relations between all input flows. When considering a set
of tasks that are multi-periodic the rules do not change. The ()opsG function handles this
difference in periods since the rules are restricting the implied activations of the depednent task.
These rules based on input flow relations allow us to restrict the executions that are considered.
This makes the algorithm both more efficient since fewer executions are allowed and most
importantly give a more accurate representation of the model than is possible in Prelude.

4.4.4.3 Code Generation
If a model is determined to be schedulable, then code is automatically generated for the given

model. The current implementation targets ChronOS, a real-time operating system built around
the Linux kernel with real-time extensions [95]. The current implemenation uses the API calls for
creating real-time tasks and also creates a light weight scheduler thread that releases tasks at the
proper time.

4.4.5 Results, Future Work, and Conclusion

4.4.5.1 Results

The first method presented in Section 4.4.3.1, the number of possible executions per node is
exponentially increasing. The specific number of paths per node is shown below:

Flow Relation Activation Rules
ji cc =∧)(=),(=),(KJI AhpHPAGHPAG

ji cc ⊆)(=),(),(KJI AhpHPAGHPAG ≤
ji cc ⊕)(=),(),(KJI AhpHPAGHPAG +

ji cc∅)(),(),(KJI AhpHPAGHPAG ≥+

Approved for Public Release; Distribution Unlimited.
72

))*(*),((
1=

nmmmaxCmax

m∑

In this equation max is the maximum number of activations per HP of a task and n is the
number of branches. Given m number of activations, there are),(mmaxC combinations that
these activations can occur and)*(nm number of branch activations that can occur. This number
must be determined for all possible m which is shown in the equation. Given the two variables -
maximum number of activations and number of branches - for a node, the maximum number of
activations is the most significant wrt to execution space increasing. This can be seen in Table 10.
The process used to collect these timings has 3 task, where the first task contains two branches,
each branch going to one task. Leaving the process the same and only changing the HP length
produces the Method 1 timings in the Table 10. This clearly shows that the first method will cause
unusable compile times as the HP executions of a process increases. Because the HP of a process
is the least common multiple of the tasks’ periods, the HP of a process will in general increase as
more tasks are added to a process. This means that as processes become larger the compilation
time will quickly become unwieldy.

In the second method, we aimed to prevent this exponential increase in compile time by
reducing the rate of increase due to the max term. The max term was targeted because the
hyper-period of a model can become very large creating large numbers of activations per node.
On the other hand the number of branches m within a node is bounded by EmCodeSyn at 10 and
in no processes did we find a model that came close to this limit.

1))1,((
0=

−−+∑ nnmCmax

m

In the second method the number of paths from one node is given as 1)1,(−−+ nnmC ,
where m is the number of total activations and n is the number of branches from the node. This
can be seen as the number of ways m objects can be partioned into n possible groups where a
single group can receive 0 objects. For the same example process discussed in the previous
paragraph, where 2=m , the number of possible paths is only n , which is linearly increasing.
This is a vast improvement over the first method which must still consider the max term. The
improvement in compilation times between the first and second methods are shown in Table 10.

 Table 10: Increasing number of Activations of one Node

 Branches = 2
Activ. Meth. 1 (ms) Meth. 2 (ms)

1 46.3 44.7
5 47.3 41.7
10 109.7 49.0
15 957.0 45.0
20 32037.0 53.7

 The number of branches from one node is bounded, but the number of branches within a
process is not. With increasing number of branches in a process, an increase in the size of the

Approved for Public Release; Distribution Unlimited.
73

front can be expected. As front sizes become larger the performance of the algorithm should
deteriorate due to the number of combinations of possible paths to be quite high. To look at this
performance penalty, a process was created where the basic node contained one activation and
had two branches. In order to increase the number of branches and nodes in the graph these
would be connected in series, creating a tree like structure, where the size of the fronts effect on
timings could be seen. This is presented in Table 11. Both methods perform slightly worse as the
number of branches increases to 64, which is the maximum number of nodes in front. In order to
determine if this performance penalty was significant wrt to the penalty of increase the HP
executions per node, the number of activations in each node was increased. It is very clear that
the performance of of the algorithm under large numbers of activations affects the compilation
time more significantly than the front size.

 Table 11: Increasing Branches of a Total Process

 Activations per Node = 1
Branches Method 1 (ms) Method 2 (ms)

2 1.0 1.3
4 1.0 2.0
8 1.3 4.3
16 3.3 8.7
32 6.3 24.0
64 17.7 66.7

Activations per Node > 1
64 340.3 70.0
64 32673.3 77.3

 The second method presents a much better approach wrt speed of analysis but will not

always give as refined of a schedule as the first method which will be discussed next.

4.4.5.2 Process Schedulability

The main goal of this work is to refine the worst possible execution of a hard real-time
process. By doing so, it would allow for developers to be able to implement larger and more
complex processes while still being able to guarantee the temporal properties within their model.
In Table 12 we show a few examples, giving both the overhead in our computations as well as the
worst case execution timing, WCET, determined for each model by our two methods and
Prelude. As we have already compared the timings between our two methods, the comparison of
the worst case execution can be seen in the Table 12. While the first method tends to have higher
compile times it does present a more refined worst case than the second method for some
examples. In implementation, the second method is used to create worst case schedule quickly,
and if that schedule is not feasible then the first method is used to create a more refined schedule
for analysis.

Approved for Public Release; Distribution Unlimited.
74

Table 12: Comparison of Worst Case Schedules

 Compile (ms) WCET (ms)
Model M1 M2 M1 M2 Prel.

Coll. Avoid 62.7 56.7 42 42 53
Switch 48.3 41.7 10 10 12

Loc Est. 110.7 64.3 90 90 110
MFG 2637.7 129.0 231 241 251

LCD Drive 160.7 88.7 65 65 79

Also, we draw a comparison between our worst case schedule and the schedule given by
Prelude for the same model. The examples in the Table 12 all contain a task with at least one
branch which allows for a lower execution time of the worst case schedule, without a branch in a
process the schedules would be the same as Prelude. This lower execution time may present a
developer with opportunities to take advantage of the extra cycles that can be found when
modeling a real-time system using EmCodeSyn and MRICDF. Utilizing this time could mean
sampling inputs at a more frequent interval, or being able to include more extensive computations
to reduce error within the system.

Approved for Public Release; Distribution Unlimited.
75

5 Conclusions & Recommendations
In this project we have developed formal models, methods, algorithms and techniques for

generating provably correct multi-threaded reactive real-time embedded software for mission-
critical applications. For scalable modeling of larger embedded software systems, the
specification formalism has to be compositional and hierarchical. Our formalism entails a model
of computation (MoC) based on a multi-rate synchronous data-flow paradigm. This MoC is code
named MRICDF (Multi-rate Instantaneous Channel Connected Data Flow Actors Network).
Once an MRICDF specification is proven to be implementable on a target platform, the
corresponding multi-threaded code based on Pthreads, Open-MP, or Intel Thread Building Block
can be generated via formal step-wise refinement based algorithms. Our code synthesis is
correctness preserving refinement of the original specification into implementation by calculating
scheduling that preserves the intent of the specification. Therefore, the generated code does not
require expensive post-development testing or verification. Guaranteed determinism of the
generated code will provide predictability of the application behavior which is often missing in
such complex software created manually or generated from MATLAB/Simulink or Ptolemy like
environments. We also analyze the real-time guarantees that the reactions to specific events
should satisfy. The timeliness property is surely platform dependent and hence will require
profiling of the code for specific platforms. Back annotations of the specification model with
timing information, and an additional phase of timing analysis will be performed to providing
timing guarantees.

In this work we produced a novel theory of a formal modeling language based specifications,

namely MRICDF. We demonstrated an implementation of a software specification and code
synthesis tool based on MRICDF. This work entailed new synthesis algorithms, characterization
of specifications, formal proof techniques for proving the correctness preservation property of the
refinement steps in our step-wise refinement oriented synthesis technique, multi-core code
synthesis, endowing the specification with platform specific worst case execution times to check
real-time schedulability, and some case studies.

Approved for Public Release; Distribution Unlimited.
76

Bibliography
[1] B. A. Jose and S. K. Shukla, “An Alternative Polychronous Model and Synthesis

Methodology for Model-Driven Embedded Software,” Proc. of IEEE Asia and South Pacific
Design Automation Conf. (ASP-DAC 2010), pp. 13–18, January 2010.

[2] B. A. Jose, J. Pribble, L. Stewart, and S. K. Shukla, “EmCodeSyn: A Visual Framework for
Multi-Rate Data flow Specifications and Code Synthesis for Embedded Application,” 12th
IEEE Forum on specification and Design Languages (FDL’09), pp. 1–6, September 2009.

[3] B. A. Jose, J. Pribble, and S. K. Shukla, “An Actor Elimination Technique for Efficient
Embedded Software Synthesis,” To appear in the Proceedings of the International
Conference on Applications of Concurrency in System Design (ACSD’10), Portugal July
2010.

[4] B. A. Jose and S. K. Shukla, “MRICDF : A polychronous Model for Embedded Software
Synthesis,” Chapter in Synthesis of embedded software - frameworks and methodologies for
correctness by construction software design, Springer, November 2010.

[5] ESPRESSO Project, IRISA, “The Polychrony Toolset,” www.irisa.fr/espresso/Polychrony.
[6] A. Gamatié, Designing Embedded Systems with the SIGNAL Programming Language:

Synchronous, Reactive Specification.1em plus 0.5em minus 0.4emSpringer-Verlag New
York, 2009.

[7] B. A. Jose, J. Pribble, and S. K. Shukla, “Technical Report on MRICDF models,”
https://filebox.vt.edu/users/bijoyaj/files/mricdfmodels.pdf, 2010, fERMAT Technical Report
2010-01.

[8] B. A. Jose, H. D. Patel, S. K. Shukla, and J.-P. Talpin. Generating Multi-Threaded code
from Polychronous Specifications. In Synchronous Languages, Applications, and
Programming (SLAP’08), Budapest, Hungary, April 2008.

[9] B. A. Jose, S. K. Shukla, H. D. Patel, and J.-P. Talpin. On the Deterministic Multi-threaded
Software Synthesis from Polychronous Specifications. In Formal Models and Methods in
Co-Design (MEMOCODE’08), Anaheim, California, June 2008.

[10] B. A. Jose, A. Gamatie, J. Ouy, and S. Shukla. Smt based false causal loop detection during
code synthesis from polychronous specifications. In MEMOCODE Conference Proceedings,
July 2011.

[11] B. Jose, B. Xue, S. Shukla, and J.-P. Talpin. An analysis of the composition of synchronous
systems. In Proceedings of the 4th International Workshop on Formal Methods for GALS
Design. Elsevier ENTCS, 2009.

[12] G. Kahn. The Semantics of a Simple Language for Parallel Programming. Proc. of
Information Processing, pages 471–475, 1974.

[13] Roberto Lublinerman, Christian Szegedy, and Stavros Tripakis. Modular code generation
from synchronous block diagrams: modularity vs. code size. In Proceedings of the 36th
annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
POPL ’09, pages 78–89, New York, NY, USA, 2009. ACM.

[14] Philip K. McKinley, Seyed Masoud Sadjadi, Eric P. Kasten, and Betty H.C. Cheng.
Composing adaptive software. Computer, 37:56–64, 2004.

[15] Oscar Nierstrasz and Theo Dirk Meijler. Research directions in software composition. ACM
Comput. Surv., 27(2):262–264, 1995.

[16] Frantisek Plasil and Stanislav Visnovsky. Behavior protocols for software components.
IEEE Transactions on Software Engineering, 28:1056–1076, 2002.

Approved for Public Release; Distribution Unlimited.
77

[17] H. Kopetz and G. Bauer. The time-triggered architecture. Proceedings of the IEEE,
91(1):112–126, Jan 2003.

[18] F. Boussinot and R. D. Simone, “The ESTEREL language,” Proc. of the IEEE, vol. 79,
no. 9, pp. 1293–1304, September 1991.

[19] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “The Synchronous Data-Flow
Programming Language LUSTRE,” Proc. of the IEEE, vol. 79, no. 9, pp. 1305–1320,
September 1991.

[20] N. Halbwachs, “Synchronous Programming of Reactive systems,” Kluwer Academic
Publishers, Netherlands, 1993.

[21] J.-P. Talpin, P. L. Guernic, S. K. Shukla, and R. Gupta. A compositional behavioral
modeling framework for embedded system design and conformance checking. Int. J.
Parallel Program., 33(6):613–643, 2005.

[22] Microsoft Research. What Really Happened on Mars? http://research.microsoft.com/en-
us/um/people/mbj/Mars_Pathfinder/Authoritative_Account.html.

[23] ABC News. Electronic Design Flaw Linked to Runaway Toyotas
http://abcnews.go.com/Blotter/toyota-recall-electronic-design-flaw-linked-toyota-runaway-
acceleration-problems/story? id=9909319 .

[24] Esterel technologies. SCADE Display On-Board the Airbus A380 and A400M
http://www.esterel-technologies.com/technology/success-stories/airbus-display.

[25] SMT Solvers SMT solver page at University of Iowa
http://goedel.cs.uiowa.edu/smtlib/solvers.html.

[26] Bittencourt, G., Combining syntax and semantics through prime form representation. of
Logic and Computation, 18, (2008) 13–33.

[27] Coudert, O. and Madre, J. Implicit and incremental computation of primes and essential
implicant primes of boolean functions. In Proceedings of the 29th ACM/IEEE Design
Automation Conference, (1992) 36-39.

[28] de Kleer, J. An improved incremental algorithm for computing prime implicants.
Proceedings of AAAI-92, San Jose, CA, (1992) 780–785.

[29] Fredkin, E., Trie memory, Communications of the ACM, 3,9 (1960), 490–499.
[30] Jackson, P. Computing prime implicants incrementally. Proceedings of the 11th

International Conference on Automated Deduction, Saratoga Springs, NY, June, 1992. In
Lecture Notes in Artificial Intelligence, Springer-Verlag, Vol. 607 (1992) 253-267.

[31] Jackson, P. and Pais, J., Computing prime implicants. Proceedings of the 10th International
Conference on Automated Deductions, Kaiserslautern, Germany, July, 1990. In Lecture
Notes in Artificial Intelligence, Springer-Verlag, Vol. 449 (1990), 543-557.

[32] Kean, A. and Tsiknis, G. An incremental method for generating prime implicants/implicates.
Journal of Symbolic Computation 9 (1990), 185-206.

[33] Manquinho, V.M., Flores, P.F., Silva, J.P.M. and Oliveira, A.L. Prime implicant
computation using satisfiability algorithms. of the International Conference on Tools with
Artificial Intelligence, Newport Beach, U.S.A., November, 1997", 232–239.

[34] A. Matusiewicz, N.V. Murray and E. Rosenthal. Prime implicate tries. Proceedings of the
International Conference TABLEAUX 2009 - Analytic Tableaux and Related Methods, Oslo,
Norway, July 2009. Lecture Notes in Artificial Intelligence, Springer-Verlag. Vol. 5607,
250-264.

[35] A. Matusiewicz, N.V. Murray, and E. Rosenthal. Trie-based subsumption and improving the
pi-trie algorithm. In Workshop on Practical Aspects of Automated Reasoning. (Part of
IJCAR 2010 within FLoC 2010), Edingurgh, UK, July 2010., 2010.

Approved for Public Release; Distribution Unlimited.
78

[36] A. Matusiewicz, N.V. Murray, and E. Rosenthal. Tri-based set operations and selective
computation of prime implicates. In Proc. International Symposium on Methodologies for
Intelligent Systems - ISMIS, Warsaw, Poland, June, 2011, 2011. Lecture Notes in Artificial
Intelligence, Springer-Verlag. Vol 6804, 203-213.

[37] Morrison, D.R. PATRICIA — practical algorithm to retrieve information coded in
alphanumeric. Journal of the ACM, 15,4, 514–34, 1968.

[38] Ngair, T. A new algorithm for incremental prime implicate generation. Proc of IJCAI-93,
Chambery, France, (1993).

[39] Ramesh, A., Becker, G. and Murray, N.V. CNF and DNF considered harmful for computing
prime implicants/implicates. Journal of Automated Reasoning 18,3 (1997), Kluwer, 337–
356.

[40] Reiter, R. and de Kleer, J. Foundations of assumption-based truth maintenance systems:
preliminary report. Proceedings of the 6th National Conference on Artificial Intelligence,
Seattle, WA, (July 12-17, 1987), 183-188.

[41] Slagle, J. R., Chang, C. L. and Lee, R. C. T. A new algorithm for generating prime
implicants. IEEE transactions on Computers C-19(4) (1970), 304-310.

[42] Strzemecki, T. Polynomial-time algorithm for generation of prime implicants. Journal of
Complexity 8 (1992), 37-63.

[43] De Alfaro, L., Henzinger, T. A. “Interface theories for component-based design”.
International Workshop on Embedded Software. Lecture Notes in Computer Science v.
2211. Springer-Verlag, 2001.

[44] The yices smt solver - b. dutertre and l. de moura, http://yices.csl.sri.com/.
[45] P. Amagbégnon, L. Besnard, and P. Le Guernic. Implementation of the data-flow

synchronous language signal. In Proceedings of the ACM SIGPLAN 1995 conference on
Programming language design and implementation, PLDI ’95, pages 163–173, New York,
NY, USA, 1995. ACM.

[46] A. Benveniste, B. Caillaud, and P. Le Guernic. From synchrony to asynchrony. In J. Baeten
and S. Mauw, editors, CONCURÃ‚â™99 Concurrency Theory, volume 1664 of Lecture
Notes in Computer Science, pages 776–776. Springer Berlin / Heidelberg, 1999.

[47] A. Benveniste, B. Caillaud, and P. Le Guernic. Compositionality in dataflow synchronous
languages: specification and distributed code generation. Inf. Comput., 163:125–171,
November 2000.

[48] T. Gautier, P. L. Guernic, and L. Besnard. Signal: A declarative language for synchronous
programming of real-time systems. In Proc. of a conference on Functional programming
languages and computer architecture, pages 257–277, London, UK, 1987. Springer-Verlag.

[49] J. Ouy, J.-P. Talpin, L. Besnard, and P. Le Guernic. Separate compilation of polychronous
specifications. Electron. Notes Theor. Comput. Sci., 200:51–70, February 2008.

[50] D. Potop Butucaru, B. Caillaud, and A. Benveniste. Concurrency in Synchronous Systems.
Formal Methods in System Design, 28:111–130, 2006.

[51] F. Remondino and N. Borlin. Polylib - a library of polyhedral functions. In Int. Archives of
Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXIV, H.-G.
Maas and D. Schneider (Eds), 2004.

[52] J.-P. Talpin and P. Guernic. An algebraic theory for behavioral modeling and protocol
synthesis in system design. Form. Methods Syst. Des., 28:131–151, March 2006.

[53] J.-P. Talpin, J. Ouy, L. Besnard, and P. Le Guernic. Compositional design of isochronous
systems. In Proceedings of the conference on Design, automation and test in Europe, DATE
’08, pages 928–933, New York, NY, USA, 2008. ACM.

Approved for Public Release; Distribution Unlimited.
79

[54] R. Tamassia. Handbook of Graph Drawing and Visualization (Discrete Mathematics and Its
Applications). Chapman & Hall/CRC, 2007.

[55] The yices smt solver - b. dutertre and l. de moura, http://yices.csl.sri.com/.
[56] D. Baudisch, J. Brandt, and K. Schneider. Multithreaded code from synchronous programs:

Extracting independent threads for OpenMP. In Design, Automation and Test in Europe,
Dresden, Germany, 2010.

[57] J. J. Downs and E. F. Vogel. A plant-wide industrial pro-cess control problem. Computers &
Chemical Engineering, 17(3):245–255, Mar. 1993.

[58] B. Jose, J. Pribble, L. Stewart, and S. Shukla. Emcodesyn: A visual framework for multi-rate
data flow specifications and code synthesis for embedded applications. In Forum on
Specification Design Languages, pages 1–6, sept. 2009.

[59] B. Jose and S. Shukla. An alternative polychronous model and synthesis methodology for
model-driven embedded software. In 15th ASPDAC,, Jan. 2010.

[60] B. A. Jose, A. Gamatie, M. Kracht, and S. K. Shukla. Improved false causal loop detection
in polychronous specifi-cation of embedded software, fermat technical report 2011-08.

[61] B. A. Jose, H. D. Patel, S. K. Shukla, and J.-P. Talpin. Gener-ating multi-threaded code from
polychronous specifications. Electron. Notes Theor. Comput. Sci., 238, June 2009.

[62] B. A. Jose and S. K. Shukla. Mricdf: A polychronous model for embedded software
synthesis. In Synthesis of Embedded Software, pages 173–199. Springer US, 2010.

[63] M. Nanjundappa, M. Kracht, J. Ouy, and S. K. Shukla. Syn-thesizing embedded software
with safety wrappers through polyhedral analysis in a polychronous framework. In ES-
Lsyn’12, pages 24 –29, june 2012.

[64] V. Papailiopoulou, D. Potop-Butucaru, Y. Sorel, de Si-mone R., L. Besnard, and J. Talpin.
From design-time con-currency to effective implementation parallelism: The multi-clock
reactive case. In ESLsyn’11, june 2011.

[65] D. Potop-Butucaru, Y. Sorel, R. de Simone, and J.-P. Talpin. From concurrent multi-clock
programs to deterministic asyn-chronous implementations. Fundam. Inf., 108(1-2):91–118,
Jan. 2011.

[66] J.-P. Talpin, J. Ouy, L. Besnard, and P. L. Guernic. Compo-sitional design of isochronous
systems. Design, Automation and Test Conference, 0:928–933, 2008.

[67] S. Yuan, L. H. Yoong, and P. S. Roop. Compiling esterel for multi-core execution. In DSD,
pages 727–735, 2011.

[68] M. Nanjundappa, M. Kracht, J. Ouy and S. Shukla, ""A new multi-threaded code
synthesis methodology and tool for correct-by-construction synthesis from polychronous
specifications."," in Application of Concurrency to System Design (ACSD), 2013.

[69] B. Jose and S. Shukla, ""An alternative polychronous model and synthesis methodology
for model-driven embedded software"," in Design Automation Conference (ASP-DAC),
2010.

[70] M. Anderson and S. shukla, ""APECS: An AADL and Polychrony based embedded
computing system design environment with an elevator control case study."," in ACM/IEE
International Conference on Formal Methods and Models for Co-Design (MEMOCODE),
Portland, 2013.

[71] F. Singhoff, J. Legrand, L. Nana and L. Marc, ""Cheddar: a flexible real time scheduling
framework"," in International ACM SIGADA Conference, Atlanta, 2004.

[72] J. Delangea, J. Hugues, L. Pautetand and B. Zalila., ""Code generation strategies from
aadl architectural descriptions targeting the high integrity domain."," in 4th European
Congress ERTS, Toulouse, 2008.

Approved for Public Release; Distribution Unlimited.
80

[73] J. Talpin, J. Ouy, L. Besnard and P. L. Guernic, ""Compositional design of isochronous
systems"," in Design Automation and Test in Europe (DATE), 2008.

[74] B. Berthomieu, J. Bodeveix, P. Farail, M. Filali, H. Garavel, P. Gaufillet, F. Lang and F.
Vernadat, ""Fiacre: an Intermediate Language for Model Verification in the Topcased
Environment"," in ERTS, Toulouse, 2008.

[75] SEI, "Getting Started with AADL and OSATE: An Introductory Tutorial", 2007.
[76] P. H. Feiler and D. P. gluch, "Model-Based Engineering with AADL: An introduction to

the SAE Architecture Analysis & Design Language", Addison-Wesley Professional, 2012.
[77] N. Muhammad, Y. Vandewoude, Y. Berbers and S. v. Loo, in "New Advanced

Technologies", New York, NY, InTech, 2010, p. ch. 15.
[78] G. Lasnier, B. Zalila, L. Pautet and J. Hugues, ""Ocarina: An environment for AADL

model analysis and automatic code generation for high integrity applications."," in 14th Ada-
Europe International Conference on Reliable Software Technologies, Berlin, 2009.

[79] P. LeGuernic, T. Gautier, M. L. Borgne and C. L. Maire, ""Programming real-time
applications with signal"," Proceedings of the IEEE, vol. 79, no. 9, pp. 1321-1336, 1991.

[80] M. Kracht, "Real-time EmCodeSyn", Blacksburg: Virginia Tech, Under-Preparation.
[81] M. Bozzano, A. Cimatti and J. Katoen, ""Safety, Dependability, and performance analysis

of extended AADL models"," The Computer Journal, vol. 54, no. 5, pp. 754-775, 2011.
[82] V. Y. Nguyen, T. Noll and M. Odenbrett, ""Slicing AADL specifications for model

checking"," in NASA Formal Methods, 2010.
[83] Y. Ma, H. Yu, T. Gautier, J. Talpin, L. Besnard and a. P. L. Guernic, ""System synthesis

from aadl using polychrony"," in Electronic System Level Synthesis (ESLsyn), 2011.
[84] F. Boussinot and R. D. Simone, ""The Esterel Language"," IEEE, vol. 79, no. 9, pp. 1293-

1304, 1991.
[85] N. Halbwachs, P. Caspi, P. Raymond and D. Pilaud, ""The synchronous dataflow

programming language lustre"," IEEE, vol. 79, no. 9, pp. 1305-1320, 1991.
[86] Y. Ma, H. Yu, T. Gautier, P. L. Guernic, J. Talpin, L. Besnard and M. Heitz, ""Toward

polychronous analysis and validation for timed software architectures in aadl"," in Design
Automation Test in Europe (DATE) Conference Exhibition, 2013.

[87] B. Zalila, L. Pautet and J. Hugues, ""Towards automatic middleware generation"," in 11th
IEEE Symposium on Object Oriented Real-Time Distributed Computing, Washington D.C.,
2008.

[88] M. Y. Chkouri, A. Robert, M. Bozga and J. sifakis, ""Translating AADL into BIP -
Application to the Verification of Real-Time Systems"," in "Models in software
engineering", Berlin, Springer-Verlag, 2009, pp. 5-19.

[89] SAE, Architecture Analysis and Design Language v 2.0, 2008.
[90] "Ocarina Case Study: Esterel," Telecom Paris Tech, [Online]. Available:

http://penelope.enst.fr/aadl/wiki/CaseStudyEsterel. [Accessed 2013].
[91] "Ocarina Case Study: Lustre," Telecom Paris Tech, [Online]. Available:

http://penelope.enst.fr/aadl/wiki/CaseStudyLustre. [Accessed 2013].
[92] "The BIP component framework," VeriMAG, [Online]. Available: http://www-

verimag.imag.fr/~async/bipMetamodel.php. [Accessed 2013].
[93] CORDOVILLA, M., BONIOL, F., FORGET, J., NOULARD, E., AND PAGETTI, C.

Developing critical embedded systems on multicore architectures: the Prelude-SchedMCore
toolset. In 19th International Conference on Real-Time and Network Systems (Nantes,
France, Sept. 2011), Irccyn.

Approved for Public Release; Distribution Unlimited.
81

[94] CURIC, A. Implementing Lustre Programs on Distributed Platforms with Real-time
Constrains. 2005.

[95] DELLINGER, M., GARYALI, P., AND RAVINDRAN, B. Chronos linux: A best-effort
real-time multiprocessor linux kernel. In Design Automation Conference (DAC), 2011 48th
ACM/EDAC/IEEE (2011), pp. 474–479.

[96] FORGET, J. A Synchronous Language for Critical Embedded Systems with Multiple Real-
Time Constraints. PhD thesis, Universit’e de Toulouse - ISAE/ONERA, Toulouse, France,
November 2009.

[97] FORGET, J., BONIOL, F., LESENS, D., AND PAGETTI, C. A multi-periodic synchronous
data-flow language. In High Assurance Systems Engineering Symposium, 2008. HASE
2008. 11th IEEE (dec. 2008), pp. 251 –260.

[98] GAMATI, A. Designing Embedded Systems with the SIGNAL Programming Language:
Synchronous, Reactive Specification, 1st ed. Springer Publishing Company, Incorporated,
2009.

[99] JOSE, B., PRIBBLE, J., AND SHUKLA, S. Faster software synthesis using actor
elimination techniques for polychronous formalism. In Application of Concurrency to
System Design (ACSD), 2010 10th International Conference on (2010), pp. 147–156.

[100] JOSE, B., AND SHUKLA, S. An alternative polychronous model and synthesis
methodology for model-driven embedded software. In Design Automation Conference
(ASP-DAC), 2010 15th Asia and South Pacific (2010), pp. 13–18.

[101] JOSE, B., AND SHUKLA, S. MRICDF: A polychronous model for embedded software
synthesis. In Synthesis of Embedded Software, S. K. Shukla and J.-P. Talpin, Eds. Springer
US, 2010, pp. 173–199.

[102] MAHESH NANJUNDAPPA, MATTHEW KRACHT, J. O., AND SHUKLA, S. K. A new
multi-threaded code synthesis methodology and tool for correct-by-construction synthesis
from polychronous specifications. 2013.

[103] MATHWORKS, I. SIMULINK real-time workshop: user’s guide. Math Works Inc., 1997.
[104] SINGHOFF, F., LEGRAND, J., NANA, L., AND MARC, L. Cheddar: a flexible real time

scheduling framework, 2004.

Approved for Public Release; Distribution Unlimited.
82

6 Appendix: Publications, Technical Reports,
Dissertations supported by the project
The following were partially or completely supported by this project:

1. Bijoy A. Jose, Formal Model Driven Software Synthesis for Embedded Systems, PhD Dissertation,
August 2011

2. Bijoy A. Jose, Abdoulaye Gamatie, Julien Ouy and Sandeep K. Shukla, "SMT Based False Causal
loop Detection during Code Synthesis from Polychronous Specifications", ACM/IEE 9th Intl. Conf.
on Formal Methods and Models for Codesign (MEMOCODE), Cambridge, UK, July, 2011.

3. Jens Brandt, Mike Gemuend, Klaus Schneider, Sandeep Shukla, and Jean-Pierre Talpin,
"Integrating System Descriptions by Clocked Guarded Actions", Proceedings of International
Forum on Design Languages (FDL’11), September 2011, Oldenburg, Germany. (Invited to
Springer Journal of Design Automation of Electronic Systems and current under second review.)

4. A. Matusiewicz, N.V. Murray, and E. Rosenthal. "Tri-based set operations and selective
computation of prime implicates". In Proc. International Symposium on Methodologies for
Intelligent Systems - ISMIS, Warsaw, Poland, June, 2011, 2011. Lecture Notes in Artificial
Intelligence, Springer-Verlag. Vol 6804, 203-213.

5. Jens Brandt, Mike Gemuend, Klaus Schneider, Bijoy A. Jose and Sandeep K. Shukla, "Causality
Analysis of Polychronous Programs, FERMAT Technical Report 2011-02, 2011.

6. Julien Ouy, Jing Huang and Sandeep Shukla, "Behavioral Compatibility Checking of Polychronous
Components", FERMAT Technical Report 2011-03, 2011.

7. Bijoy A. Jose, Abdoulaye Gamatie, Julien Ouy and Sandeep K. Shukla, "SMT Based False Causal
loop Detection during Code Synthesis from Polychronous Specifications", FERMAT Technical
Report 2011-04, 2011.

8. Jens Brandt, Mike Gemunde, Klaus Schneider, Sandeep K. Shukla and Jean-Pierre Talpin,
"Integrating System Descriptions by Clocked Guarded Actions", FERMAT Technical Report 2011-
06, 2011.

9. Bijoy A. Jose, Sandeep K. Shukla, "New Techniques for Sequential Software Synthesis from a
Polychronous Data Flow Formalism", FERMAT Technical Report 2011-07, 2011.

10. Bijoy A. Jose, Abdoulaye Gamatie, Matthew Kracht and Sandeep K. Shukla, "Improved False
Causal Loop Detection in Polychronous Specificationof Embedded Software", FERMAT Technical
Report 2011-08, 2011.

11. M. Nanjundappa, M. Kracht, J. Ouy, and S. K. Shukla. Synthesizing embedded software with
safety wrappers through polyhedral analysis in a polychronous framework. In ES-Lsyn’12, pages
24 –29, june 2012

12. M. Nanjundappa, M. Kracht, J. Ouy, and S. K. Shukla. A New Multi-Threaded Code Synthesis
Methodology and Tool for Correct-by-Construction Synthesis from Polychronous Specifications. In
ACSD 2013, Jan 2013

13. M. Anderson and S. shukla, ""APECS: An AADL and Polychrony based embedded computing
system design environment with an elevator control case study."," in ACM/IEE International
Conference on Formal Methods and Models for Co-Design (MEMOCODE), Portland, 2013

Approved for Public Release; Distribution Unlimited.
83

List of Acronyms
AADL Architecture Analysis and Design Language
ACQ Acquisition
AFRL Air Force Research Laboratory
APECS Advanced Process Engineering Co-Simulator
AST Abstract Syntax Tree
CNF Conjunctive Normal Form
DRE Distributed real-time embedded
EmCodeSyn Embedded Code Synthesis
EST Estimation
FSM Finite State Machine
HP Hyper Period
GALS Globally Asynchronous Locally Synchronous
INRIA Institute for Computer Science and Automation
LCU Location Control Unit
LOC Location
LOC Lines of Code
MOC Model of Computation
MRICDF Multi-Rate Instantaneous Channel Connected Data Flow
OSATE Open-Source AADL Tool Environment
SAE Society of Automotive Engineers
SAT Satisfiability
SCADA Supervisory Control and Data Acquisition
SMT Satisfiability Modulo Theories
TE Tennessee Eastman
UAV Unmanned Air Vehicle
WCET Worst Case Execution Time

Approved for Public Release; Distribution Unlimited.
84

	List of Figures
	List of Tables
	Foreword
	Preface
	1 Summary
	Major Highlights
	Disappointments

	2 Introduction
	2.1 Structuring of the Reported Results

	3 Methods, Assumptions and Procedures
	3.1 Programming Model, and Synthesis Technique
	3.2 Boolean Theory and Prime Implicates

	4 Result and Discussion
	4.1 APECS: An AADL and Polychrony based Embedded Computing Systems Design Environment
	4.1.1 Introduction
	4.1.2 APECS Methodology
	4.1.3 Code Synthesis from MRICDF

	4.2 A New Multi-Threaded Code Synthesis Methodology and Tool for Correct-by-Construction Synthesis from Polychronous Specifications
	4.2.1 Introduction
	4.2.2 Definitions and Overview of Concepts
	Master Trigger and Sequential Implementability

	4.2.3 Concurrent Implementability
	A. Constraints for Concurrent Implementability
	B. Identification of Shared Epochs
	C. Mapping and Multi-threaded Code Generation

	4.2.4. Experimental Evaluation and Discussions
	4.2.5. Related Work
	4.2.6. Conclusion and Future Work

	4.3 Synthesizing Embedded Software with Safety Wrappers through Polyhedral Analysis in a Polychronous Framework
	4.3.1 SMT based safety property checking
	4.3.2 Polyhedra based safety property checking

	4.4 Real-Time Extension and Improved Schedulability Analysis for Real-time Code Generation from Polychronous Specifications
	4.4.1 Introduction
	4.4.1.1 Motivation
	4.4.1.2 Contribution

	4.4.2 Intro to Prelude
	4.4.2.1 Periodic Clocks
	4.4.2.2 Task Graph
	4.4.2.3 Static Analysis

	4.4.3 Conditional Task Graph
	4.4.3.1 First Method: Per Activation
	4.4.3.2 Second Method: Per Number of Activations
	4.4.3.3 General algorithm

	4.4.4 Implementation in EmCodeSyn/MRICDF
	4.4.4.1 Specification of Tasks
	4.4.4.2 Worst Case Schedule Refinement
	4.4.4.3 Code Generation

	4.4.5 Results, Future Work, and Conclusion
	4.4.5.1 Results
	4.4.5.2 Process Schedulability

	5 Conclusions & Recommendations
	6 Appendix: Publications, Technical Reports, Dissertations supported by the project
	List of Acronyms

