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Foreword
Software assurance for safety-critical systems is an increasingly difficult problem as software 

systems are becoming more complex, and ubiquitous. From the perspective of critical 
infrastructures, civilian or military, almost every aspect of all systems are now software 
controlled, be it the drive-by-wire automotive, military vehicles, fly-by-wire fighter jets or civil 
aviation, unmanned vehicles and drones, control of a manufacturing plant, or a power plant, or 
medical devices implanted in patients. Ensuring correctness of software that are going to be used 
for real-time control of so many safety-critical systems is a complex problem, and one can take a 
two prong approach to it. One approach is post-facto verification (testing, modeling checking, 
theorem proving based proof of correctness etc.). The other approach is to enable methods for 
correct-by-construction software synthesis from mathematically sound specifications. It turns out 
that for historical and cultural reasons, the first approach has gotten more research and 
educational attention in the United States in the last 20-30 years, whereas in Europe, correct-by-
construction synthesis has had at least two decades of effort, and educational training. Therefore, 
it is quite reasonable to see that most successful software verification tools (although limited in 
capacity and scope) have originated in the US, whereas most well-known synthesis tools and 
methodologies are from Europe. For example, the SPIN model checker developed in the AT&T 
Bell Labs for verifying software used in telephone call routing has evolved into a software 
verification tool at the Jet Propulsion laboratory in Pasadena California. Since most successful 
semiconductor industries are in the US, the hardware formal verification tool vendors are also US 
centric (Cadence, Jasper Design Automation, and Prover Technologies etc.). On the other hand, 
SCADE is a synthesis tool that is used by Air Bus, and other companies in Europe and even at 
General Electric in the US, and it originated in France. Even though SCADE is very limited in 
scope, and it can only be used for a very specific kind of control loop synthesis, the commercial 
success of SCADE is very Europe Centric.  

Fortunately, since 2001, I have been involved in joint research with the French National 
Institute for Computer Science and Automation (INRIA) in their software synthesis methodology 
based on Polychronous specification language SIGNAL, and the corresponding tool suite. This 
specification formalism is much more powerful when concurrency has to be modeled at the 
specification level (SCADE is a synchronous language and handles concurrency poorly by over 
synchronization of concurrent computation). In order to bring that technology to the US Air 
Force, I started developing an alternative polychronous specification formalism called MRICDF 
(Multi-Rate Instantaneous Channel Connected Data Flow Network), and the corresponding visual 
language, and modeling/synthesis tool called EmCodeSyn. This work originated when I spent a 
summer with Steve Drager and William McKeever at the Air Force Rome Labs during the 
summer of 2008. Immediately after that I spent a sabbatical year in France and in Germany, in 
two groups at two institutes attempting two  different approaches to software synthesis, I got this 
idea of  developing the theory, and tools for software synthesis for concurrent multi-threaded 
applications. Since around 2008-09, the multi-core processors started to become common place 
even on our desktops, it was an imperative to develop tools and frameworks for synthesis of code 
for such platforms.  

However, since the software for embedded safety-critical system are often time constrained, 
and we need real-time multi-threaded software running on a real-time operating system, the 
further enhancement of EmCodeSyn that we planned for was to develop real-time EmCodeSyn, 
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and the corresponding modeling framework, and the schedulability checker, and scheduled code 
synthesis.  

We also planned to enhance EmcodeSyn with some automated redundancy insertion 
techniques for dependability, but due to the budget cut brought on by the sequestration in 2013, 
we had to fall short on that.   
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Preface 
Model-driven embedded software synthesis is an area of research for a while in various 

forms. For example, Mathworks Inc, has a tool ‘real-time workshop’ that can generate C/C++ 
code from Simulink/MatLab specifications. However, since Simulink/Matlab does not have a 
published formal semantics, we are unable to formally guarantee that the generated code is 
correct with respect to the specification. The notion of correctness being that the set of infinite 
behaviors of the generated code is exactly the set of infinite behaviors of the original model. 
Therefore, in many industries, including Boeing, the real-time workshop tool is used to generate 
code only to treat the code as hand-written code, and hence all verification efforts remain the 
same. Moreover, since auto-generated code might not be easy to read, it creates extra burden on 
the verification engineers. As a result, for a ‘correct-by-construction’ synthesis, one needs to start 
with a specification that is formal. The specification language must have precise formal 
semantics, so that the meaning (in terms of the set of behaviors implied by the model) is 
unambiguous. Moreover, having started with a formal specification, one can use step-wise 
refinement techniques to transform the model into an implementation. The process of doing so is 
called ‘software synthesis’. The synthesis process (also called the compilation process) must be 
proven to preserve all the properties of the model. Thus, if the model can be proven to possess all 
requisite properties, one can then assume that the implementation preserves all those properties. 
Proving correctness of the implementation is often more cumbersome, as the implementation 
often contains details, programming language specific idiosyncrasies, and often too large to prove 
correct with today’s formal verification tools. As a result, this ‘correct-by-construction’ approach, 
if it works, can gain much over the traditional post-implementation testing and verification.  

Other than informal modeling languages such as Simulink, Labview, Modelica etc, there have 
been a lot of effort in Europe in defining languages that can model embedded reactive software 
systems. Synchronous languages such as Esterel, Lustre, Quartz, Argos, etc., are the results of 
those efforts. Even though, these languages differ syntactically, and in their implicit model of 
computation, they all simplify embedded computing into a sequence of reactions. The idea is that 
there are sensors through which the embedded controller samples the physical state of the system 
it is controlling, using the measurements from the sensors it computes the present state, and use a 
state machine algorithm to decide what state should the controller be in next, and what actuations 
must be done on the physical system to bring it to the desired state. This entire process can be 
thought of as a reaction. In the synchrony hypothesis underlying all these different languages 
assumes that the time taken for one reaction is small enough so that the when the next inputs are 
obtained, the reaction has already taken place. Therefore, one can abstract the entire reaction time 
to a single logical instant. Thus, the entire computation can be thought as a totally ordered 
sequence of reactions. When to start a new reaction, and when it is time to finish the reaction is 
determined by some periodic clock (usually the clock period must be at least as large as the worst 
case reaction time).  

This model is simple enough, that the Lustre language has given rise to the popular tool 
SCADE that even regular engineers can use to specify a control loop, and then generate the code. 
However, this model of time is called ‘globally linearized time’ or ‘global-clock’ based 
computation. What happens if the reaction requires multiple components who actually 
communicate over a network, and the system has unspecified delays on the network. If 
components are placed in such asynchronous environment, there is no way to guarantee that the 
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components will all compute in unison and finish the reaction before the next global clock ticks. 
Unfortunately, most modern embedded systems are highly concurrent and distributed, and hence 
such synchronization of all the components can be expensive, and inefficient for performance. 
Thus, one requires a modeling formalism where the components do not need to synchronize in all 
reactions, and some of the time, the components can go on computing asynchronous to the other 
components, and synchronize when they need to agree on a value, or participate in a computation 
together. This kind of computation is more common for today’s distributed embedded systems, 
and certainly for multi-threaded embedded software. Thus, the notion of Polychronous model of 
time was invented in early 1990s in France, and the corresponding language SIGNAL, and a tool 
set called Polychrony was developed in the last 20 years.  

However, since the formalism of polychrony is no longer simple linear sequence of reactions, 
and the components must decide when to compute without synchronizing with other components, 
and when to wait for synchronization, the entire mathematical machinery of this formalism 
involves partial ordered notion of time, partial order of reactions, and partial order of       logical 
instants. This is quite cumbersome for regular engineers to use, and hence unlike Lustre, which 
has been popularized by the prevalence of the SCADA tool in the industry, Polychrony did not 
gain the popularity it deserved as it is surely the right model of computation for what we want.  

Having worked with the inventors of the polychrony over 10 years, I decided that we can do 
better semantic framework for polychrony in terms of a Boolean abstraction, and theory of Prime 
Implicates which was unknown the inventors of Polychrony, and we can also enhance the 
formalism in many different ways, for better code generation, checking for code synthesizability, 
and also provide methods for real-time code synthesis.  This resulted in our version of 
Polychrony – which we named MRICDF as we took a more visual approach to the modeling 
language, and we also developed a visual framework for modeling, and code synthesis, 
specification of real-time task structures, and code synthesis for real-time applications etc.  

In this report, we will provide the details on the MRICDF language, our alternative semantics 
that enabled not only sequential code synthesis when possible, but also algorithmic tests for 
sequential implementability, our multi-threaded code synthesis, and real-time code synthesis.  

Note that, one important aspect for safety-critical concurrent systems is that we need to 
synthesize code that is deterministic. If the code could be non-deterministic, then the problem is 
easier, but no software assurance can be given. Thus much of the complexity of the model-driven 
code synthesis – be it for synchronous programming, or polychronous programming is germane 
in the need for determinism. 

While working on EmCodeSyn, we also considered the entire system design problem, rather 
than just the controller software modeling and synthesis. As a result, we started a new approach 
enabled by AADL and MRICDF called APECS, which allow us to formally capture the entire 
system platform (hardware and software architecture), and use MRICDF as software component 
specifications, and then use the EmCodeSyn code synthesis for the system level software 
synthesis. Even though, we did not plan on this topic in the original project proposal, this 
provides us a Segway from the component level software design and synthesis problem to the 
system level design problem, and an initial approach to solving the entire system design problem. 
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1 Summary 
Our past interactions with the U.S. Air Force Labs, Boeing, and Lockheed Martin indicate 

that embedded software is mostly programmed manually even today. Even when synthesized 
from MATLAB/Simulink, the code is not provably correct, and expensive verification is 
required. Anyone experienced with multithreaded programming would recognize the difficulty of 
designing and implementing such software. Resolving concurrency, synchronization, and 
coordination issues, and tackling the non-determinism germane in multi-threaded software is 
extremely difficult. Ensuring correctness with respect to the specification and deterministic 
behavior is necessary for safe execution of such code. It is therefore desirable to synthesize multi-
threaded code from formal specifications using a provably ‘correct-by construction’ approach. In 
Europe, it has been widely claimed that the embedded software for ’fly-by wire’ control of the 
AirBus-380 was mostly automatically generated using SCADE and other French tools based on 
the synchronous programming models. Unfortunately, software generated in those contexts 
usually operates in a time-triggered execution model. Such models are simpler but less efficient 
than multi-threaded software on multi-core processors. Normally they run on multiple processors 
communicating over a time-triggered bus. Hence the execution is less efficient than it could be. 
While time-triggered programming model simplifies code generation, we feel that multi-rate 
event driven execution model is much more efficient. Code synthesis for such execution model 
must be thoroughly investigated. The multi-threaded software generation is inspired by a recent 
shift in the hardware design paradigms from single-core to multi-core processors. This shift has 
brought parallel and concurrent programming to the desktop and embedded arena. In the desk-top 
market, most processors now being sold are multicore, and very soon this trend might conquer 
the embedded world as well. Embedded processors like ARM Cortex-A9 or Renesas SH-2A 
DUAL have already achieved favorable results in implementing multi-core technology. 

In this project we have developed formal models, methods, algorithms and techniques for 
generating provably correct multi-threaded reactive real-time embedded software for mission-
critical applications. For scalable modeling of larger embedded software systems, the 
specification formalism has to be compositional and hierarchical. Our   formalism entails a model 
of computation (MoC) based on a multi-rate synchronous data-flow paradigm. This MoC is code 
named MRICDF (Multi-rate Instantaneous Channel Connected Data Flow Actors Network) that 
we developed during two consecutive summer faculty internships at the AFRL in Rome, NY. 
Once an MRICDF specification is proven to be implementable on a target platform, the 
corresponding multi-threaded code based on Pthreads, Open-MP, or Intel Thread Building Block 
can be generated via formal step-wise refinement based algorithms. Our code synthesis is 
correctness preserving refinement of the original specification into implementation by calculating 
scheduling that preserves the intent of the specification. Therefore, the generated code does not 
require expensive post-development testing or verification. Guaranteed determinism of the 
generated code will provide predictability of the application behavior which is often missing in 
such complex software created manually or generated from MATLAB/Simulink or Ptolemy like 
environments. We must also analyze the real-time guarantees that the reactions to specific events 
should satisfy. The timeliness property is surely platform dependent and hence will require 
profiling of the code for specific platforms. Back annotations of the specification model with 
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timing information, and an additional phase of timing analysis will be performed to providing 
timing guarantees. 

In this work we produced a novel theory of a formal modeling language based specifications, 
namely MRICDF. We demonstrated an implementation of a software specification and code 
synthesis tool based on MRICDF. This work entails new synthesis algorithms, characterization of 
specifications, formal proof techniques for proving the correctness preservation property of the 
refinement steps in our step-wise refinement oriented synthesis technique, multi-core code 
synthesis, endowing the specification with platform specific worst case execution times to check 
real-time schedulability, and some case studies.  

Major Highlights 
 The major highlights of this project are as follows: 

1. Two versions of the EmCodeSyn Graphical User interface one based on C++ libraries and
another based on C# portable to Linux via Mono. The second version is more robust and
scalable.

2. Algorithms for checking if an MRICDF model is synthesizable as a deterministic
sequential software, or as a multi-threaded deterministic software, called endochrony
check, and weak-endochrony check

3. A completely new semantics and compilation scheme for polychronous models – based
on Boolean propositional logic and prime implicate computation

4. Algorithm for multi-threaded code synthesis for weakly endo-chronous MRICDF models
5. New Algorithms for causality detection in MRICDF specifications using SMT Solvers
6. Enhancement of the EmCodeSyn tool to specify task structure with real-time parameters

for schedulability analysis
7. Algorithms for real-time schedulability analysis of MRICDF task structured models, and

real-time multi-threaded code synthesis
8. A new semantic interpretation of polychrony with conditional partial orders, and use of

conditional partial order to do application specific hardware synthesis from Polychrony
9. Combining AADL and MRICDF to allow end-to-end system design for safety-critical

systems
10. 3 PhD students funded – one already completed. One postdoctoral scientist trained.

Multiple undergraduate research assistants trained. One MS thesis forthcoming.

For keeping the report within reasonable length, we will not describe each of these in detail, 
but provide the details of a number of selected works. We have published the following papers 
at international conferences and journals: 

1. Bijoy A. Jose, Formal Model Driven Software Synthesis for Embedded Systems, PhD
Dissertation, August 2011

2. Bijoy A. Jose, Abdoulaye Gamatie, Julien Ouy and Sandeep K. Shukla, "SMT Based False
Causal loop Detection during Code Synthesis from Polychronous Specifications",
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ACM/IEE 9th Intl. Conf. on Formal Methods and Models for Codesign (MEMOCODE), 
Cambridge, UK, July, 2011. 

3. Jens Brandt, Mike Gemuend, Klaus Schneider, Sandeep Shukla, and Jean-Pierre Talpin,
"Integrating System Descriptions by Clocked Guarded Actions", Proceedings of
International Forum on Design Languages (FDL’11), September 2011, Oldenburg,
Germany. (Invited to Springer Journal of Design Automation of Electronic Systems and
current under second review.)

4. A. Matusiewicz, N.V. Murray, and E. Rosenthal. "Tri-based set operations and selective
computation of prime implicates". In Proc. International Symposium on Methodologies for
Intelligent Systems - ISMIS, Warsaw, Poland, June, 2011, 2011. Lecture Notes in Artificial
Intelligence, Springer-Verlag. Vol 6804, 203-213.

5. Jens Brandt, Mike Gemuend, Klaus Schneider, Bijoy A. Jose and Sandeep K. Shukla,
"Causality Analysis of Polychronous Programs, FERMAT Technical Report 2011-02,
2011. 

6. Julien Ouy, Jing Huang and Sandeep Shukla, "Behavioral Compatibility Checking of
Polychronous Components", FERMAT Technical Report 2011-03, 2011.

7. Bijoy A. Jose, Abdoulaye Gamatie, Julien Ouy and Sandeep K. Shukla, "SMT Based False
Causal loop Detection during Code Synthesis from Polychronous Specifications",
FERMAT Technical Report 2011-04, 2011.

8. Jens Brandt, Mike Gemunde, Klaus Schneider, Sandeep K. Shukla and Jean-Pierre Talpin,
"Integrating System Descriptions by Clocked Guarded Actions", FERMAT Technical
Report 2011-06, 2011.

9. Bijoy A. Jose, Sandeep K. Shukla, "New Techniques for Sequential Software Synthesis
from a Polychronous Data Flow Formalism", FERMAT Technical Report 2011-07, 2011.

10. Bijoy A. Jose, Abdoulaye Gamatie, Matthew Kracht and Sandeep K. Shukla, "Improved
False Causal Loop Detection in Polychronous Specificationof Embedded Software", 
FERMAT Technical Report 2011-08, 2011. 
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Disappointments 
One of the biggest disappointments was that the majority of last year’s funding was 

withdrawn due to sequestration which hampered the case study phase of the project. We did not 
get a chance to do a big case study to measure the benefits of code synthesis with respect to hand 
written code. We started working with the UAV lab at Virginia Tech’s Aerospace and Ocean 
engineering department, but the work was abandoned as the lead post-doctoral researcher Dr. 
Julien Ouy had to be let go due to lack of funding.  
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2 Introduction 
2.1 Structuring of the Reported Results 

As discussed before, we are going to present a selected assortment of the results obtained 
during the execution of this project. In Section 3, we describe the MRICDF model, and the 
corresponding formalism. In Section 4, we report the selected assortment of the results, starting 
with the combination of AADL formalism with MRICDF, as this is going to be  the future work 
of our group. The next is our work on better check of causality using polyhedral and SMT based 
analysis, and how to overcome some of the violations. Then we discuss our multi-threaded code 
synthesis algorithms, and finally the real-time extension of EmCodeSyn. 
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3 Methods, Assumptions and Procedures 
This section provides some background information on the methods and techniques that we based 
our work on.  

3.1 Programming Model, and Synthesis Technique 
In the recent past we have developed a programming model called Multi-Rate Instantaneous 

Channel Connected Dataflow Actor Model (MRICDF) [1, 2, 3, 4], to capture the specification of 
a reactive embedded software. We also developed a visual specification and component code 
synthesis tool called EmCodeSyn [2] which accepts MRICDF specifications in visual or textual 
form, and produce C-code that is correct-by-construction with respect to its MRICDF 
specification. Similar to Esterel [18], Lustre [19], and SIGNAL [6], the model of computation of 
MRICDF is based on synchrony hypothesis [20] which provides a suitable abstraction from 
computation and communication time, and allows one to focus on the dataflow and computation 
functionality of the required software. Almost all of these formalisms with the exception of 
MRICDF are developed in Europe. Airbus [24], Renault, and other European avionics and 
automotive companies claim to generate a large percentage of their control software using these 
formal approaches. Even though they have been successful in developing modules through these 
methodologies, for composition of modules, they use an over simplified composition model 
based on Time-Triggered Architecture [17]. This requires that each component itself is time 
triggered, which leads to a number of optimality problems as we pointed out in [1, 4]. The 
semantics of MRICDF is not time triggered but rather event triggered, leading to more optimal 
code synthesis [1]. Time triggered composition has another problem other than optimality. It 
requires precise clock synchronization and the resulting overhead. We want both optimal 
implementation of individual components, and want to avoid the overhead of time 
synchronization over a distributed platform. Therefore, constructing large software systems from 
components synthesized with this tool is much more challenging, but the benefits outweigh the 
difficulty. In this project we are addressing these challenges. 

The programming model of MRICDF is that of a collection of concurrent processes described 
by data flow relations on infinite streams of data values. The synchronization requirements 
between these streams are expressed either implicitly by the data flow relations or by explicit 
constraints. When sequential embedded software is to be synthesized, both data flow relations — 
computation — and synchronization constraints — control — must be considered. This is the 
crux of the compilation/synthesis process for MRICDF. This programming model is more 
suitable for reactive systems compared to other specification models such as temporal logics, 
composition of automata (such as I/O Automata) etc., because it abstracts away timing issues but 
most importantly, it makes specification of synchronization between concurrent activities within 
each component much easier than those other methods. The expression of synchronization 
between concurrently acting behaviors within a system is a major source of errors (deadlocks, 
live-locks, violation of mutual exclusion etc.) in other formalisms.  

Given a specification (visual or textual) in MRICDF, a compilation algorithm must decide 
whether there exists deterministic sequential/multi-threaded code satisfying the constraints, and if 
so, whether it is unique. If not — and thus nondeterministic — the user must provide additional 
constraints to make it so. If this effort fails, the specification is rejected by the compiler. In the 
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process of determining implementability, and subsequent synthesis, the compiler creates a 
Boolean theory and computes its prime implicates.  

3.2 Boolean Theory and Prime Implicates 
A Boolean theory is a set of Boolean clauses. Let the theory B be defined over a set of 

Boolean variables X. Then [X→{0,1}]  denote the space of all assignments to variables in 
X.  

An assignment f∈[X→{0,1}]  is a model for theory B, if and only if by assigning the 
Boolean values to all variables x∈X as f(x), one can satisfy all clauses in B.  

A Boolean theory that is satisfiable has at least one such model. A prime implicate of a 
Boolean theory is a disjunctive Boolean clause C such that any model of B also satisfies C and 
there is no C1 such that C1→C and any model of B also satisfiesC1.

Given an arbitrary Boolean theory, computing prime implicate is often of exponential 
complexity. Most previous algorithms also required that the Boolean clauses in the theory be first 
converted into a conjunctive normal form (CNF) before applying the algorithm. The recent work 
of Murray and Rosenthal [34] has come up with a new algorithm that can produce prime 
implicates (and an implicit representation of all prime implicates) of a Boolean theory where the 
clauses can be in any arbitrary form. However, this algorithm is also time consuming. 

We expect that this algorithm can be sped up substantially because the current algorithm is 
agnostic of any special characteristics of the Boolean theory that are generated from MRICDF 
models during computations of their master triggers.  

It has been shown in the past that algorithms that are agnostic of special nature of the inputs 
on which the algorithm is applied, have higher time and space complexity, than algorithms that 
take into account special nature of their inputs. For example, finding chromatic number of a 
graph is known to be NP-Complete, but if we know that the only graphs we need to compute the 
chromatic number of, belong to a special class of graphs called "Perfect Graphs" then one can 
come up with special algorithms which can compute the chromatic numbers in polynomial time. 
Similarly, the famous SAT problem that is a well-known NP-Complete problem can be shown to 
be solvable in polynomial time, if the clauses we obtain belong to the class of HORN clauses. 
Also, there is a notion of localization of problem instances. For example, if the variables that 
occur in multiple clauses can be limited to reappear is no more than k clauses; we say that that 
SAT problem is k-bounded. In such case, one can devise faster algorithms for solving SAT.  

Since the Boolean theories that we generate from MRICDF is very localized, in the sense that 
a clause x↔y∨z appears only when y and z are inputs to a merge actor in an MRICDF model, one 
can find such locality properties. As a result, Murray and Rosenthal’s algorithms to compute 
prime implicates may not exploit such locality (which we referred to as ’regularity’) and we may 
need to devise new algorithms that work much faster to compute prime implicates for such 
instances.  

The prime implicates enable construction of a hierarchical control structure that creates a 
deterministic schedule of all the computations which is consistent with the control constraints. If 
non-Boolean constraints — for example, x > 10 — are replaced by unrestricted Booleans, the 
resulting theory is a conservative abstraction of a more elaborate theory with further 
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expressiveness. The latter would provide better leverage in optimizing the control structure and in 
reducing redundant paths. To this end, the combination of prime implicate algorithms and SAT 
Modulo Theory (SMT) solvers [25] is concurrently being investigated. 
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4 Result and Discussion 
4.1 APECS: An AADL and Polychrony based Embedded Computing 
Systems Design Environment 

4.1.1 Introduction 
Overview: Distributed real-time embedded (DRE) systems are a widely employed in a 

number of today’s safety critical systems in applications ranging from automotive and avionics to 
medical equipment. These systems are composed of a range of hardware (sensors, actuators, 
microcontrollers) and driving software. The safe operation of these systems is contingent upon 
management of correctness of software/hardware resource allocation and adherence to real-time 
constraints. Verification that the  end  system behavior and  properties adhere to  the constraints 
requires  analysis  of  the  system  as  a  whole  as well as the individual component properties. 
The Architecture Analysis and Design Language (AADL) [68] was originally developed for the 
avionics industry and has since been adapted for use in automotive and other commercial 
applications. AADL allows for the creation of models that capture the full hardware platform 
architecture along with the corresponding software hierarchy. Key static properties of the model, 
such as communication protocols and hardware bindings, are specified as component properties. 
While software behavior specification is  not  a  part  of  the  core  standard, it  can  be  handled 
by the state-machine like language of the Behavioral Annex, one  of  the  available extensions to 
the  AADL  standard. A number of tools have been developed in the past to support the creation 
of AADL models [69] and for comprehensive system property analysis [70]. Among them is 
Ocarina [71], a tool for synthesizing executables for a specified hardware platform from an 
AADL model. With Ocarina, a software component may be associated with a behavioral 
specification given in a C or Ada source file.  More recently, support has been added for 
specifications from source files generated by Esterel [72] and Lustre [73]. While this is an 
attractive option, it still presents verification challenges that stem from a lack of formal semantics 
in the case of the C and Ada or from scheduling and clock constraints when dealing with the 
synchronous languages Esterel and Lustre. In [74] we discussed introducing the polychronous 
formalism of MRICDF into Ocarina and its effect on software verification. In this work, we 
explore the potential advantages of an MRICDF extension when applied to models of 
multithreaded systems. Ocarina specifies behavior at the function level, associating AADL 
subprogram calls with a function from a source file. A thread component may be represented by a 
single such function or it may contain multiples ordered by a call sequence. This requires a 
manual analysis and decomposition of the software into its thread components. Because the 
thread synchronization is  handled  outside  of  a  provably  correct  synthesis  tool,  it adds  an 
additional  verification obligation  to  ensure  proper synchronization. With synthesized 
multithreaded code, the addition of synchronization primitives based on preset templates can 
result in over synchronization if unchecked, possibly creating deadlock situations. Further, 
synchronous languages like Esterel and Lustre artificially force threads to synchronize at the end 
of each execution step to respect the global clock constraints. Using MRICDF it is possible to 
model a software process as a whole, automating the detection and synthesis of its component 
threads. This has a number of advantages, the first of which is that the synthesis and verification 
of the thread synchronization is automated and handled internally. Also, because Polychrony 
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supports a multi-clocked model of execution, threads need not synchronize unless their behavior 
requires it. In [74], we proposed a new design environment, APECS, for end to end system 
modeling of DRE systems and automated code synthesis. While in [74] we focused on the 
environment of APECS, its constituent tools, and the overall approach it takes to modeling, in 
this work, we discuss the unique advantages and new features it brings to multithreaded code 
synthesis in the AADL context. Coming sections will provide a brief background of the major 
tools and formalisms used by this project, as well as an overview of related work in this area, 
introduce the problems addressed by the new extensions and explain the details the 
implementation of our synthesis extensions which will be illustrated by a case study. Finally, 
conclusions and future work will be discussed in last subsection. 

Background and Related Work   

AADL: The Society of Automotive Engineers (SAE) created the AADL standard [75].  It  is  a  
model  based  formalism  for the  comprehensive representation of  DREs. AADL utilizes a 
hierarchical component centric model. Its components can be categorized as either hardware 
(processor, memory, device, bus), software (process, thread, subprogram, data), and systems. The 
latter serve as abstractions that represent composites of other subsystems or components. These 
composite groupings provide the structure that forms model’s hierarchy. Data is passed between 
components through one of a few communication methods. Most commonly, components have 
some number of I/O ports. These ports are typed and bound to the ports of other components. 
Alternatively, components may communicate by shared resources, either through buses or by 
directly accessing shared data. The order in which data passes between ports and through (sub-) 
components is given in flow specifications. Components may have more than one operating 
mode; different modes represent different operational states and may have distinct active 
connections, flows specifications, or operating threads. Each component type may have one or 
more implementation. Distinct implementations will have the same interfaces, but may have 
different subcomponents, internal flows and execution modes. 

There are a number of development environments available that support the AADL standard. 
One such is the Open Source AADL Tool Environment, OSATE [69], which is an eclipse based 
platform. OSATE supports textual representations in AADL and these models persist in XML. It 
also has a number of extensions that support graphical system modeling. Both the tool and the 
standard are highly extensible. The AADL standard accepts extensions in the form of language 
annexes, a number of these extensions already exist with purposes ranging from behavior 
specification to error modeling. The OSATE development environment supports the addition of 
plug-ins for analysis and code synthesis. Eventually, we plan to propose MRICDF as a behavioral 
annex for AADL. 

Ocarina: One of these tools Ocarina [76] analyzes an aadl model and performs automated code 
synthesis. The tool’s operation can be divided into two distinct modular sections. The frontend 
contains modules for the AADLv1 and AADLv2 standards. These modules handle the parsing of 
the input AADL specifications. After lexing and parsing the input, the model is analyzed for 
syntactic and semantic correctness. From this analysis Ocarina constructs an Abstract Syntax 
Tree (AST). An Instance Tree is then derived from the AST. The root of the instance tree is the 
top level system in the model hierarchy. The nodes of the tree are comprised of those component 
implementations that are subcomponents of the root system. This last step prunes out any 
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components unused by the current root as well as verifying the presence and accuracy of 
necessary component properties. 

After the frontend finishes building the instance tree, it is fed to the backend. The backend 
has modules for each of the supported source languages. First it expands the instance tree, 
simplifying complex structures and annotating them with information for future code mapping. 
Using the mapping rules for the chosen source module, Ocarina builds an intermediate syntax 
tree.  Finally it traverses this tree and applies the relevant mapping rules to generate source code 
in the targeted language. This generated code interfaces with the underlying hardware through the 
PolyORB-HI [77] middleware. The defacto language modules in the Ocarina backend are Ada 
and C/C++, with an extension that allows it to use the code output from Esterel and Lustre. In 
[74] we further extended these backend modules to accept code output from MRICDF. 

MRICDF: Multi-Rate Instantaneous Channel Connected Data Flow (MRICDF [78]) is a formal 
polychronous dataflow language.  Like the other synchronous languages previously employed by 
Ocarina, it is based on the synchrony hypothesis, an abstraction in which communication and 
computation are treated as instantaneous. Unlike Esterel and Lustre though, MRICDF’s 
polychronous semantics allow it to pace the activity of the model around the rates of data arrival 
at individual inputs rather than enforcing synchronization with a global clock. 

MRICDF models software as a network of communicating actors. Four primitive actors form 
the foundation of the MRICDF language. The Buffer actor may be of size N and takes a single 
input; that input value is stored and reproduced on the output N execution steps later. The Priority 
Merge and Sampler actors are used to control and route the flow of data between actors. Priority 
Merge has two input channels, one of which is designated the priority. At each execution step, if 
it has only one input value, that value is passed through. If it receives two input values, the value 
on the priority channel is passed through and the other is dropped. Similarly, the Sampler has two 
input channels, one is an input value and the other is a boolean control signal. When the control 
signal is false, input values are blocked from passing through to the output channel. The final 
primitive is the Function actor, (F (n, m)), this actor applies a function F to its n inputs and 
generates m outputs. More complex behaviors can be modeled and stored as composite actors. 
Given a completed model specification, MRICDF performs prime implicate based epoch analysis 
that allows it to formally analyze the models timing as well as detect opportunities for parallel 
execution [79]. 

Related Work: Another project that attempts to leverage polychrony to formally specify AADL 
is detailed in [80]. The authors describe a process by which an AADL specification is translated 
into the Signal language [81]. After being translated, the Polychrony tool is applied; using clock 
calculus it analyzes the clock relations of the new model and ensures determinism. Similarly, in 
[82] AADL models are translated into BIP [83] so that they can exploit existing BIP analysis 
tools. There are a number of other works [84], [85], [86] that deal with the use of formal inter- 
mediate representations for AADL for analysis such as model checking and performance 
evaluation. The Compass tool [87] can be used for fault-tree analysis based model checking of an 
AADL specification, as well as simulation. 

Unlike these approaches, we’re not attempting to create a tool for the simulation or validation 
of AADL models. Instead we wish to create an environment for the development of end-to-end 
DRE systems and their software behavior. Such a model can be gradually refined and 
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reconfigured as it is checked for correctness while still providing comprehensive information for 
checking performance and schedulability. To this end, rather than translating the whole system 
into an intermediate formalism, we extend Ocarina with support for software from polychronous 
specifications. These specifications are at the process level, allowing parallelism to be 
dynamically detected and automatically added to the model before code generation. Information 
about the process of detecting and exploiting parallelism in MRICDF models can be found in 
[70]. 

4.1.2  APECS Methodology 
Platform Modelling with AADL: The first step when building an AADL model is to deter- 
mine the components that will make up the system. Some components, such as processors or 
devices, represent tangible elements of the system. Others components, such as the system, can 
be used as abstractions to organize the system hierarchy. For smaller models it may be possible to 
start by enumerating all the components made necessary by the specification. However, for larger 
projects, a top-down approach is the best for organization and expediency. In AADL, the system 
component serves dual roles. It may be a composite of subcomponents representing a system like 
a processor board or a software application. Alternatively, it may contain no subcomponents or 
only other systems, representing a generic system. Such a generic system may be refined later 
with new sub-system implementations as the design stages progress. So, when creating a top-
level model, the first step is to define a system that will encapsulate the complete specification. 

Declared as subcomponents within this complete system are the other systems and devices 
that comprise the specification. In AADL, devices are abstractions used for objects that interact 
with  or  are  a  part  of  the  environment,  such  as  a  sensor or motor. A system will be used to 
encapsulate objects in the system for which it is valuable to enumerate internal composition. It is 
worth noting that this may include some objects which could otherwise be represented by a 
device, if there is value in modeling the internal properties of that object. For the sake of 
organization, each subsystem is defined in a separate package. This allows the subsystems to be 
included and reused as needed in future. 

system microcontroller 
   Features 
  ... 

   ... 
end microcontroller 

system implementation microcontroller.mc 
   Subcomponents 
         CPU:  processor ... 

  RAM   : memory   ...  
         Comm_Bus  : bus ... 
         Main   : process ... 
   Connections 
    ... 
end microcontroller.mc 

Figure 1: AADL Microcontroller Code 
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After enumerating the top level subsystems and devices, the internals of these subsystems 
must be defined. For complex subsystems, it’s necessary to repeat this process of templating with 
devices and subsystems. Simple subsystems will be modeled with the appropriate hardware and 
software components. For example, the microcontroller for a board can be modeled through a 
combination of hardware and software components. The microcontroller itself is made up of 
processor and memory components communicating via a bus component. Additionally, the driver 
software is modelled as a process containing at least one thread and bound to the processor it is 
driving through use of the Actual_Processor_Binding property. 

Figure 2: Microcontroller Layout 

Each component is defined first with a type block. The interface is also defined as part of the 
type block through the addition of communication ports. Each type block is then associated with 
one or more implementation block, which contain the specification of subcomponents. The 
control and data flow of the system are explicitly specified (see Figure 3) in these blocks. The 
control flows are given by means of end to end flow specifications both between interface ports 
in the type block and between subcomponents in the implementation block. Data flow is given 
through making port connections between components. 

system implementation door.elevdoor 
   Subcomponents 
        CPU:  processor ... 

 RAM   : memory   ...  
        Comm_Bus  : bus ... 
        Main   : process ...  
      Sensor : device ... 
    Motor  : device ... 

   Connections 
  ... 

       EC13  : port  Sensor.obs -> Main.obs; 
  ... 

       EC16  : port Main.OpenCmd  -> Motor.open; 
  ... 
 Flows 

ETE  : end to  end flow Sensor.obs_flow_source  -> EC13  -> Main.obs_flow_path -
> EC16 -> Motor.obs_flow_sink {Latency => ...}; 
end microcontroller.mc 

Figure 3 End to End Flow 
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Figure 4: Latch 

 
The  outputs  of  the  MRICDF  software  are  thus  driven by  the  current state  variable values 
being  fed  through the combinational actor network. 
 
Software Modelling with MRICDF:  Once the architecture of the system has been developed in 
AADL, the next step is to model the software that will drive the controllers. The interface 
requirements for the software are given by the communication ports featured on the 
corresponding thread component. A state machine is derived based on the desired behavior 
specification for the component and the thread interface. 

With the desired behavior codified in the state machine, it is time to create the formal 
software model in MRICDF. The MRICDF model is constructed as an actor network made up of 
corresponding state variables and combinational data flows. The state variables in MRICDF are 
modeled as a latch system, comprised of a buffer actor that feeds back into itself through the low 
priority port of a merge actor (refer to Figure  4). The priority port of the merge is given to some 
event input, so that state may be updated. The  outputs  of  the  MRICDF  software  are  thus  
driven by  the  current state  variable values being  fed  through the combinational actor network. 
thread main 
   Features 
    ... 
    ...  
end  main 
 
thread implementation main.m 
   Properties 

Dispatch_Protocol =>  ... ;  
Period =>  ... ; 
Deadline =>  ... ;  
source_name  =>  "MyMain";  
source_language  =>  MRICDF;                 
source_location =>  "../PATH"; 

end main.m 
Figure 5: Source Code Binding 

 
Code Generation: With the control software for the system formally modeled in MRICDF, it 
only remains to integrate it into the AADL system hierarchy. The process of associating the two 
is syntactically straight forward, but giving AADL the capability to exploit this association 
meaningfully is more challenging. Two string type properties are added to the thread 
components, specifying the source file name and its location. A third property gives the source 
file’s language. Natively, however, AADL has no capability to interact with the associated 
programming models. Therefore, in order to support the automated analysis and generation of 
system code, we propose an extension of the Ocarina [78] tool suite. Ocarina’s front end modules 
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will function just fine, parsing both AADL standards in use by OSATE.  However, we will need 
to create a new backend module so that we can create an intermediate tree with syntax 
compatible with MRICDF. Further work needs to be done to effectively link MRICDF’s 
executable code with the Ocarina’s current middleware. 

Elevator Case Study – AADL Platform Model:  Our case study models a five story building 
that is being served by four elevators. This means that at the top level the system is composed of 
the four elevator cars, the button call panels on each floor, and a central controller to handle the 
scheduling behavior of the elevators. 
1) Button Call Panels:   The call panels are systems containing a set of devices representing a pair
of buttons, a pair of lights, and a sensor that detects when an elevator car is on the floor. There 
are two additional devices that signify the arrival of an elevator car: a light and a chime. When a 
button is pressed, its light is toggled on and an event is transmitted to the central controller 
notifying it of an elevator request call. When the sensor detects an elevator on the floor, two 
events are triggered. First, the button lights are toggled off. Second, the arrival light is toggled on 
until the car leaves, and the chime is rung once. All of this is handled in hardware without the aid 
of a microcontroller. 

The call panel is described in its own package. A floor package is then defined. For our 
model, a floor is a system that contains four call panels and has interface ports for 
communication between the central controller and the panels. 

Figure 6: Floor Model 
2) Elevator  Car:   The elevator cars are systems that are composed of a number of devices and
subsystems. Each car is connected to a device that represent the motor that raises and lowers it in 
the elevator shaft. The door must be modeled as a system. The door system is composed of a 
microcontroller, as described in Figure 6, and devices for interacting with the environment: a 
motor, a sensor, and a timer. The motor opens and shuts the door according to requests from the 
controller. The timer keeps track of how long the door has been open, and relays that information 
to the controller. The sensor performs the important safety task of alerting the controller when an 
obstruction is detected in the path of the door. 
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Figure 7: Door Model 

For the sake of readability in these figures we enumerate only the object composition of the 
system and not all the communication ports. However, to illustrate the system’s device features 
we provide a sample of the interface for the door control process in Figure 8. 
 
 
process Control features 

openReq  : in event port; 
closeReq : in event port; 
isopened : in data port; 
isclosed : in data port; 
obstruction : in data port; 
timeOut : in event port; 
startTimer : out event port; 
openDoor  : out event port; 
closeDoor : out event port; 
opened : out event port; 
closed : out event port; 

... 
end Control; 

Figure 8: Control Interface 
 

Most of these ports are of the event type. For instance, the open and close requests are events 
triggered by pressing the corresponding buttons of the control panel in the elevator car. The only 
required information is that the press event occurred, and it is recorded and handled by the 
internal state of the controller. By contrast, the obstruction signal from the sensor is transmitted 
over a data port (a Boolean). This is important, because the obstruction may persist for some 
amount of time and the controller will need to test this value to proceed safely. 
 

Each car also has an internal control panel.  Much like the call panels on each floor, this 
subsystem is composed of numerous button and light devices. There is a button for each floor. 
There are also two buttons to request that the door open or close and an alarm button. Each 
button is lit when pressed. Floor selection presses are relayed through the communication ports to 
the central controller for scheduling, while open and close requests are dealt with internally by 
the door controller. The alarm presses are relayed outside the system to be handled by an external 
security service. Finally, there is a microcontroller system driving the car behavior, which will be 
covered in more detail in the next section. This microcontroller processes information from the 
button panel and the central controller to relay communications to the door controller and drive 
the elevator motor. As with the panels, the elevator car is encapsulated in a package for 

Approved for Public Release; Distribution Unlimited. 
16 
 



portability and reuse. For organization purposes, this package is then included in a new system 
that defines four elevator car objects. 

3) Central Control:  The central controller is modelled as a microcontroller. It receives
information from all the floor systems and elevator bank system and then uses that information to 
send back scheduling information to the elevator car controllers. 

Figure 9:  Complete System Model 

Behavioral Model:  To ensure correct behavior in an elevator system is complicated by  the  fact 
that  the  behaviors and  the  controlling models  are  distributed  over  a  number  of 
communicating, semi-autonomous systems which communicate over buses and specific interface 
protocols. For example, to arrange a pickup on a particular floor requires: 

• The requesting panel communicates with the central controller
• Central Control schedules a pending stop for a car.
• The selected car detects a pending stop on its floor and stops to request that the door

opens.
• The door remains open for a minimum set time and until its unobstructed before

closing.
In the following sections we will discuss the specialized roles of each controller and its required 
behavior for desired safety and efficiency. 
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1) Central Control:  The central controllers’ job is to process requests from the different floors 
and schedule elevator cars to perform pick ups. When scheduling the cars, the goal is to send the 
car best able to reach the target floor quick. To that end: 

• The chosen elevator should be currently heading towards the target floor, or it should 
be idle. 

• The chosen elevator should be currently heading in the direction requested by the call 
button. 

• The chosen elevator should be the least number of floors from the target, relative to 
any other cars meeting the first two criterion. 

• Should there be no cars available that meet these criterion, the request should be 
stored until one becomes available. 

It is necessary to wait in the last step, because it is impossible to know which of the busy 
elevators will become available soonest without knowing what other requests may be made in the 
interim. 
 

From each call panel, the controller receives up and down call requests as well as whether its 
elevator car is currently on that floor. From each elevator car, the central controller receives 
reports of current direction and whether it is ready to move. From these inputs we can extrapolate 
the values for the central controller states: 

• ”Pending Request 1-5” This 2-bit state is 0 if none of the panels on that floor have an 
unserviced request. Otherwise the state is either 10 (Call Up), 01 (Call Down), or 11 
(Both). A pending request is cleared when an elevator car has been scheduled for that 
floor. 

• ”Elevator   State  1-4” Based on the information from sensor panels, these state variables 
are integers that en- code which floor the elevator is on and in which direction it is 
headed. The base number is the current floor, which is then filtered based on whether the 
car is heading up, down, or idle. 

• ”Ready 1-4” Boolean state that is true if the corresponding elevator car is currently able to 
move, or false if it is in the processor of picking up passengers. 

 
The states are fed into an algorithm to determine the optimal scheduling.  The result of the 

algorithm is the numeric identifier of the chosen elevator. That elevator will be communicated an 
event that updates its pendingStop states. Also, at each step, the central controller uses a data port 
to update the elevator cars on their current position. 
 
2) Elevator Car:   The elevator car controller receives as inputs 

• ”GoTo 1-5” These are input event signals from the central controller assigning stops on 
their respective floors. 

• ”FloorNum” The current location of the elevator. 
• ”FireAlarm” An event indicating the fire alarm has been triggered, puts the elevator into 

an emergency state until the system resets 
• ”Floor  1-5” These are input events from the control panel within the car. They represent 

passenger requests to go to a certain floor and also schedule pending stops. 
• ”Open” An event input representing a passenger request to open the door. 
• ”Close” An event input representing a passenger request to close the door. 
• ”Alarm”  An event input representing a passenger re- quest for external aid. 
• ”Opened”  An  event signal from  the  door  controller, signaling that the door has opened. 
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• ”Closed”  An  event  signal  from  the  door  controller, signaling that the door has
closed.’

The elevator cars travel up and down the building according to the schedule provided by the 
central controller. A properly behaving elevator will adhere to the following behavior: 

• The elevator will continue traveling in the same direction until there are no pending stops
remaining in that direction.

• If there are no remaining stops, it will become idle.
• The elevator will not begin to move until the door is closed.
• The elevator will not allow the door to be opened while the car is in motion.
• When the elevator reaches a  floor that  is  one  of  its pending stops, it will stop moving

and request that the door open. If there are other pending stops, it will resume once it is
signaled the door has been closed again.

To achieve this behavior, certain internal state variables must be created and tracked from the 
inputs. 

• ”PendingRequests (1-5)” Five Boolean state variables, each track whether a floor has an
unserviced request from the control panel and central controller.

• ”NonePending(NP)”  A Boolean that is true if all five PendingRequests are false.
• ”LowestPending(LP)”   An  integer  that  contains  the number corresponding to the

lowest floor with a pending request.
• ”HighestPending(HP)”   An  integer  that  contains  the number corresponding to the

highest floor with a pending request.
• ”OnPending(OP)”  A Boolean that is true if the current floor has a pending request.

Based on the desired behavior and the internal inputs and states, we can construct a state machine 
for the elevator car’s behavior. 

Figure 10: Elevator Car State Machine 
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Table 1: Event Descriptions 

 
When a fire alarm is triggered, all pending requests are cleared except for the first floor. All 

elevators currently in service proceed to the first floor and remain there until the system resets. 
3) Door:  The door is a subsystem of the elevator car. It receives and processes requests from the 
elevator to open and close the door. The primary safety concern is that the door should not close 
on any obstruction. The desired behavior of an elevator door is: 

• If an open request is received, signal the motor to open the door and signal the timer to 
begin a new countdown. 

• If an obstruction is detected, signal the motor to open the door and restart the timer. 
• If a close request is received, signal the motor to close the door. 
• If a timeout from the timer occurs, signal the door to close. 
• Notify the elevator of any changes to the status of the door, from open to closed or closed 

to open. 
  

 
Figure 11: Door State Machine 

 
 
 

Table 2: Door Event Descriptions 

 
In Figure 12 we show the door behavior modeled in MRICDF.  The first OR actor will generate a 
true result. 
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Figure 12: Door Controller MRICDF 

when an OpenRequest is received or when an Obstruction is detected. A true  result from 
this actor, will activate the sampler to which it is connected, propagating the constant value of 
true on its input. This event is routed to the door motor and the timer reset. Similarly, the second 
OR actor receives CloseRequest and Timeout to drive the event sampler for the closeDoor signal 
of the motor. The lower two samplers are controlled by inputs from the door sensor, and relay 
events of the door’s opening or closing back to the elevator car controller. 

The modular nature of this system is ideal for testing different system configurations and 
iterative design refinement. A hybrid formal software and platform model has advantages over 
either model alone. The MRICDF models describe the behavior of systems in a manner such that 
safety specifications are mathematically provable. The platform model, meanwhile, provides 
concrete information about the capabilities and composition of the underlying system, allowing 
us to perform more accurate static analyses. In [88] an extension of MRICDF for defining real-
time tasks as a layover on actor relations and attributing real-time measures has been developed. 
Our next step is to integrate that here. However, for now, we can profile the generated code for 
WCET estimates for schedulability analysis. Using this information and the described code 
generation techniques we will be able to rapidly create testable binaries for the target platform 
after each design iteration. Further we can access additional tools and verification suites that 
aren’t a part of the EmCodeSyn environment, such as Cheddar [71] for thread scheduling. 
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4.1.3  Code Synthesis from MRICDF 
In this section we’ll discuss the methods by which MRICDF code is associated with an 

AADL process (Shown in figure 13) and how multithreading has been implemented. Past   
Ocarina   implementations have   manually   associated each subprogram with a specific function 
through the use of specialized properties. Similarly, we use properties to associate MRICDF 
specification with a particular process, as illustrated in figure 14. 

 
process controller 

Features 
... 
... 

end controller 
 
process  implementation controller.c 

Properties 
source_name =>  "MRICDF_Source"; 
 source_language =>  MRICDF; 
 source_location =>  "../PATH"; 

end controller.c 
 

Figure 13: Source Code Binding 
 

 
Figure 14: Instance Tree 

 
These properties provide the name and location for Ocarina to find the MRICDF network 

specifying the intended behavior of this process. The source language tells Ocarina which 
backend module to employ. After the Ocarina  frontend  has  parsed  the  AADL  files, it  builds  
an instance  tree  containing  a  hierarchical  representation  with the top level system as the root 
and all of the component implementations currently being used by that system as child nodes. 

 
However, unlike other Ocarina sources, this instance tree doesn’t yet have any thread 

subcomponents associated with its processes. The logical next step then is to populate the tree by 
appending thread instances to the tree. This is accomplished by first analyzing the source file and 
determining how many threads exist within the process. For each, a thread instance is added as a 
child node of the process. The thread is then annotated with its critical properties as shown in 
figure 15.  
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thread <name> 
features 

... 
end  <name>; 

thread  implementation ... 
subcomponents 

... : data ...; 

calls  { 
... : subprogram ...; 

}; 

properties 
Dispatch_Protocol =>  ...; Period =>  ...; 

end <name>.<subname>; 

Figure 15: Generated Thread 

Data exchange for thread input and output is accomplished by accessing shared data 
components. Property entries are added to specify the dispatch protocol and timing requirements 
of the thread. Finally, the behavior for each function is specified by adding a single subprogram 
call. MRICDF generates N function threads for the process, named ”Block1”  through ”BlockN”, 
each  subprogram is  associated with  its corresponding block function (shown in figure 16). 

subprogram <name> 
features 
... 
Properties 

source_language =>  C; 
source_name =>  "block#"; 
 source_text =>  ("blocks.cpp"); 

end <name>; 

Figure 16:  Associating Thread Behavior 

Elevator System Code Generation:  To better illustrate these extensions, we’ll use an example of an 
Elevator System [74]. For the purposes of this example we’ll consider a system of four elevator 
cars, servicing a five story building. The scheduling of these elevators is handled by a central 
controller that processes the current state of each elevator along with the requests from the call 
panels on each floor. Figure 17 gives an overview of the top level system and its subcomponents 
and system for the AADL elevator model.  
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Figure 17: Top-Level System 

The full details of the system are outside the scope of this work, more information can be found 
in [74], but some of the subsystems are illustrative of MRICDF’s multithreading potential.  
 

Table 3: Each Actor and Corresponding Shape 

 
Once the specification is of the door controller (see fig 12) is complete, MRICDF applies clock 
epoch analysis [78] to examine its clock relations and look for potential parallelism. Figure 18 
shows the clock tree extracted from the model. 

 
Figure 18:  Clock Trees 
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In this case, we have a forest of clocks rather than a single tree. This is because there are no 
shared dependencies between the output operations. As a result of this, MRICDF creates an 
independently functioning thread for each tree. One for opening the door, one to close it, and two 
that update the elevator car controller on the status of the door. 

Another Example: The door control process provides a  succinct example of how our extensions 
can exploit opportunities for parallelism, but  it  happens  that  all  of  the  threads  in  that 
process  are wholly independent from one another. Now, we’ll look at an example where the 
threads must synchronize with each other occasionally. Consider an alternative implementation 
of the elevator door, to conserve resources we implement the control so that it only checks 
passenger requests periodically rather than constantly. This is a reasonable assertion, because the 
system will be operating much faster than human input and the requests aren’t safety critical 
(unlike obstruction detection) 

Figure 19:  Periodic Controller 

The polychronous pseudo code for these requirements is shown in Figure 19. The variable req 
reads the current request values out of shared memory. Each time a different request arrives the 
request counter, rcnt, is reset until a value has been constant for five execution steps. Meanwhile, 
cnt is tracking the progress of the motor as it opens the door, incrementing on each six degree 
input event. Direction is tracked by dir which updates based on requests, but only after a request 
has been stable for five execution steps. If a change in direction is detected, the count is inverted 
and the process continues. The defined clock relationship between cnt and rcnt, [(cntmod10)  = 0] 
ˆ= [rcnt = 5], serves as a synchronization point between two partially ordered reaction sets. 
Updating reqs is totally ordered, with the clocks open ˆ= close ˆ= req. Similarly, cnts updates are 
totally ordered, with clocks SD ˆ= zcnt ˆ= obsˆ= cnt. However, the timing of the interactions 
between these reaction sets isn’t fully known, only that the occurence of [rcnt == 5] coincides 
with [cnt mod 10 = 0]. Thus MRICDF will create a barrier synchronization at that point, 
whereupon data may be exchanged and dir gets updated. Thus, in the final code synthesis, two 
dependent threads are generated. 
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Conclusions and Future Works:  In this work we present the APECS development environment 
for as a tool suite for the modeling of DRE systems. By leveraging MRICDF’s software 
specification and verification capabilities with the AADL standard’s full hierarchical models, 
APECS is can be used for end to end development of such systems, including analysis of 
software behavior and code synthesis for the final targeted platform. The result is a flexible 
environment capable of iterative model refinement and analysis by an  extensible  tool  suite.  We 
utilize the polychronous clock analysis techniques of MRICDF to detect opportunities for parallel 
execution and to then dynamically generate the corresponding threads. 
 
In the future we plan to extend this work with further improvements to thread timing and 
scheduling analysis. One such consideration is adding the option of annotating the generated 
threads with new, individual timing requirements. This will be further improved upon by 
incorporating developments from work that’s been done on real-time MRICDF [88]. Generating 
threads for handling bus communication between software and other devices and processes is 
also a priority step towards expanding the analysis incorporated the software behavioral 
interactions occurring across the distributed platforms. 
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4.2 A New Multi-Threaded Code Synthesis Methodology and Tool 
for Correct-by-Construction Synthesis from Polychronous 
Specifications 

Embedded software systems respond to multiple events coming from various sources – some 
of which are temporally regular (ex: periodic sampling of continuous time signals) and some are 
intermittent (ex: interrupts, exception events etc.). Timely response to such events while 
executing complex computation, might require multi-threaded implementation – threads 
responsible to compute reactions, threads responsible for Input/Output of regular events, and 
threads dedicated to intermittent events. Multi-core embedded processors are also becoming 
common in the market. As a result of these, design of multi-threaded embedded software is 
gaining increasing importance. However, manual programming of multi-threaded programs is 
error prone, and proving correctness is expensive. In order to guarantee safety of such 
implementation, we believe that a correct-by-construction synthesis of multi-threaded software 
from formal specification is needed. It is also imperative that the multiple threads are capable of 
making progress asynchronous to each other, only synchronizing when shared data is involved or 
information requires to be passed from one thread to other. Especially on a multi-core platform, 
lesser the synchronization between threads, better will be the performance. Also, the ability of the 
threads to make asynchronous progress, rather than barrier synchronize too often, would allow 
better real-time schedulability.  

In this work, we describe our technique for multi-threaded code synthesis from a variant of 
the polychronous programming language SIGNAL, namely MRICDF, and through a series of 
experimental benchmarks show the efficacy of the tool we developed based on our synthesis 
technique. Our tool EMCODESYN which was built originally for sequential code synthesis from 
MRICDF models has been now extended with multi-threaded code synthesis capability. Our 
technique first checks the concurrent implementability of the given MRICDF model. For 
implementable models, we further compute the execution schedule and generate multi-threaded 
code with appropriate synchronization constructs so that the behavior of the implementation is 
latency equivalent to the original MRICDF model. 

4.2.1 Introduction 

Consider a cruise control system of a car that is implemented based on a proportional integral 
(PI), with vr as the target cruise speed, v as the actual sampled speed, T as the number of samples 
between two subsequent control thrust (actuation) outputs u. The pseudo-C code for this system 
is shown in the Listing 1, where S is the local variable accumulating the integral and ki are k are 
constants determined based on PI control. In this pseudo-C code, Sample(v), and Output(u) are 
input/output actions. Now, consider the control loop for the temperature (AC) control system in 
the same car. Assuming the same PI control paradigm, the pseudo-C code for that is shown in the 
Listing 2, where S is integration summand and ci and c are constants. 
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Listing 1.  Cruise Control System Listing 2.  AC Control System 
L : S = 0 ; 
Thrust_Interval = T ; 
while(Thrust_Interval != 0){ 
   Sample v ; 
   e = vr - v ; 
   S = S + e * ki ; 
   Thrust_Interval = Thurst_Interval - 1 ; 
} 
Sample v ; 
u = k * (vr - v ) + S ; 
Output(u) ; 
GOTO L ; 

L : S = 0 ; 
AC_Interval 
while(AC_Interval != 0){ 
   Sample p 
   e = pr - p ; 
   S = S + e * ci ; 
  AC_Interval = AC_Interval - 1 
} 
Sample p ; 
w = c * (pr 
Output(w) ; 
GOTO L ; 

 
In the AC control system, p denotes the currently sampled temperature, pr denotes the target 

temperature set by the thermostat, w is the signal which controls actuators to release hot air or 
cool air, and speed of air. Note that, the AC control loop and the cruise control loop might be 
working at different sampling rates, and their actuation intervals (Thrust_Interval and 
AC_Interval) could also be different. If both these control loops are run on the same processor, 
and scheduled using a real-time scheduling algorithm (with T and T’ being the respective 
deadlines, and periods for the two tasks), one could easily implement them as two real-time 
processes. As these two processes do not have any interaction, there is no dependency or no need 
of any synchronization, and in that case the job of the embedded software designer is simple. 
Now, consider the possibility where, as the sampled temperature goes below a certain threshold, 
the cruise control is to be disengaged to manual control, because such low temperature might be 
indicative of icy weather conditions. This is not necessarily an ideal automotive design example, 
but rather concocted to make a point regarding multi-threaded control. If the temperature loop is 
tasked to generate an interrupt and the interrupt is input to the cruise control loop to disengage it, 
then we have two processes or threads which interact, and timely response to the interrupt needs 
to be guaranteed. The pseudo-C code for both control systems with interrupts is shown in Listing 
3 and 4. In this code, we assume that the intrpt is the name of a single bit buffer, whose value is 
set to true or false, depending on if the temperature control wants to send interrupt or not. Since 
this is shared buffer, a semaphore mechanism is assumed to synchronize the read/write of this 
buffer. The semaphore effectively enforces a barrier synchronization between the two control 
threads at their outer loops. 

 
This is too simple an example, and hence, getting this synchronization correct is trivial with 

the use of a 1 bit semaphore. However, in general, multiple threads may need to synchronize at 
various places of their execution with different threads, and overall behavior must be 
deterministic. Guaranteeing determinism with multiple synchronizations among a group of 
threads, while also ensuring no deadlock is often hard and error prone. 
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Listing 3. Cruise Control System with 
Interrupts 

Listing 4.  AC Control System with Interrupts 

L : S = 0 ; 
Thrust_Interval = T ; 
while(Thrust_Interval != 0){ 
Sample v ; 
e = vr - v ; 
S = S + e * ki ; 
Thrust_Interval = 
Thurst_Interval - 1 ; 
} 

P(semaphore2) ; 
Read intrpt ; 
V(semaphore1) ; 
if(intrpt) GOTO MANUAL_MODE; 
Sample v ; 
u = k * (vr - v ) + S ; 
Output(u) ; 
GOTO L ; 

L : S = 0 ; 
AC_Interval = T’; 
while(AC_Interval != 0){ 
Sample p ; 
e = pr - p ; 
S = S + e * ci ; 
AC_Interval = 
AC_Interval - 1 ; 
} 

Sample p ; 
w = c * (pr - p ) + S ; 
P(semaphore1) ; 
intrpt = p<0? TRUE:FALSE ; 
V(semaphore2) ; 
Output(w) ; 
GOTO L ; 

We want that, the threads responsible for distinct control functions must make progress 
asynchronous to each other except when they interact. Also, we must make sure that the threads 
are not over synchronized. Thus, in this example, the synchronization is done at the outer loop of 
the control and not the sampling loop, which would make the sampling rates in the two threads 
dependent on each other and slow down progress in making corrective actions. We also want to 
make it easy for designers to decide which variables are to be shared (in this case the intrpt), and 
ensure that when a new value is written, it is eventually read by the other thread, and that it does 
not read the same value twice. We also, do not want that the absence of an interrupt hold up the 
other thread too long, and hence absence is encoded as false. Such decisions can be taken by the 
programmer while programming in C or other programming languages, but then proving 
correctness (i.e. to prove that synchronization indeed guarantees that every interrupt is responded 
to, and absence of interrupt does not hamper progress, and that there is no deadlock) is much 
more involved – especially when the number of threads and number of synchronization points are 
large. If we can capture these requirements in a simple formal model, write appropriate 
constraints, and generate multi-threaded C-code with appropriate synchronization code, and this 
code-generation is provably correct, the validation overhead will be much reduced. 

In synchronous programming languages such as Esterel, Quartz or Lustre, these two loops 
will be modeled as two distinct processes since they do not need to move forward by 
synchronizing at every macrostep. If the two threads were modeled in standard Esterel, it has to 
be over designed by making two parallel synchronous threads that synchronize quite tightly. To 
achieve the independence of the sampling rates and the thrust generation intervals by the two 
loops, one has to model them as separate independent processes. Therefore, the proof of 
determinacy of interaction for these have to be reasoned at a meta-level. The interaction between 
the two processes will be external to the model of the processes. Thus proving the correctness 
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will also be done outside the code-synthesis step. Since our goal is ‘correct-by-construction’ code 
synthesis, ideally, the code-synthesis step should guarantee ‘correctness’ without external 
reasoning about the generated code. Therefore, we have chosen polychronous modeling 
paradigms such as SIGNAL or MRICDF, and developed techniques for multi-threaded code 
synthesis which includes the correct synchronization between two asynchronously progressing 
threads, with synchronization on a need basis, and guarantee determinacy. 
 

In order to model these two control loops in MRICDF or SIGNAL, we first create two 
subprocesses, with the cruise control subprocess having an extra Boolean interrupt as a shared 
variable intrpt. When there is a temperature constraint violation, the second subprocess will set 
this shared interrupt variable to true, otherwise it will set the value to false. All we have to 
specify is that the two subprocesses synchronize on reading and writing of this variable, and rest 
is taken care of code generation. The code generation first needs to prove that the synchronization 
can be done deterministically, and without possibility of deadlock. Only then it will progress to 
generate code, by adding synchronization primitives. 

 
This entire process is done by a simple clock calculus on these processes. In the first process, 

the clocks of v, S, e are the same, whereas the clock of intrpt is a subclock, which is the same 
clock as that of the thrust output u. In the second process p, S, e have the same clock, which is 
possibly distinct from the main clock of the other process because the temperature sampling may 
be less frequently done than speed sampling. However, an additional constraint in the MRICDF 
or SIGNAL model will be provided in the model which says that the clock of intrpt must 
synchronize. This statement states that the AC control process must rendezvous with the cruise-
control process when it is time to read/write the interrupt. Thus, the two processes can be 
implemented with two separate threads, which will only synchronize on an interrupt. This multi-
threaded process will be deterministic – that is, for the same flow of input events on the sampled 
speed and temperatures, same flow of outputs will occur. One could make other design decisions 
such as not reading or writing interrupt that often, so they could consider creating further 
conditions for read/write of the interrupts. However, for the correct synchronization synthesis to 
work, both the processes must independently be able to compute such condition. For example, if 
they are supposed to exchange interrupt information every n times thrust is generated, and every 
m times temperature control actuation is generated, that is easy to express as well. 
 
1) Novelty in Our Approach:  

As we have argued, the polychronous (multi-clock) nature of SIGNAL/MRICDF, will allow 
the system to be modeled as a single process and yet yield for ‘correct-by-construction’ multi-
threaded code generation. Also, the reasoning about determinism can be done on the whole 
system, without the need for making any assumptions on the occurrence of interrupts, as the 
reasoning will be embedded in the polychronous clock calculus. 
 

In our work, we have chosen MRICDF - a multi-rate data flow language, as the formal 
modeling language. It is akin to SIGNAL, but graphical and added advantages such as rich data 
types, predefined blocks, etc. A graphical tool, EMCODESYN[4] analyzes the MRICDF models 
and checks for implementability before generating code. The existing tool checks only for 
sequential implementability by conducting, a static Epoch Analysis (explained later) on a set of 
Boolean equations derived from the MRICDF model. This analysis is based on the Boolean 
theory and prime implicates [5]. The challenge we address in this work is – automatic generation 
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of multi-threaded code that behaves deterministically. We extend the capabilities of 
EMCODESYN tool, with a novel technique for checking the concurrent implementability of 
MRICDF models. In this work, we particularly focus on efficiency of the generated code and the 
practicality of the proposed approach. The proposed technique involves identification of systems 
that are weakly-endochronous and if found implementable, the technique further generates the 
execution schedule and multi-threaded code with appropriate synchronization constraints that 
conforms to the schedule. We have implemented these in EMCODESYN tool and conducted 
experiments to test performance and scalability issues. It should be noted that a similar idea could 
be used for generating multi-threaded code for systems specified using SIGNAL language as 
well. In fact, the theory of weakly hierarchical processes developed in [12] for SIGNAL forms 
the basis of our work. However, other approaches to SIGNAL multi-threaded code generation are 
quite different. The approach in [10] approaches the problem with extreme fine granularity by 
enumerating all possible reactions and computing dependence, and the resulting complexity of 
the synthesis is very high. On the other hand, such fine grain approach attempts to exploit all 
possible concurrency whereas we focus on identifying threads that are rooted at distinct 
incomparable clocks in the clock hierarchy. 

Contributions: 
1) A novel technique for determining concurrent implementability of the MRICDF models

based on prime implicate theory 
2) Technique for generating execution schedule and multi-threaded code with appropriate

synchronization constraints for implementable models 
3) Experimental results showing the scalability of the proposed technique and comparing

efficiency of the generated code as compared to hand written code 

4.2.2 Definitions and Overview of Concepts 

A Multi-Rate Instantaneous Channel-connected Data Flow (MRICDF) model is a data flow 
network model that consists of several synchronous modules called as actors, that are 
interconnected using channels. An actor represents a computation with an input interface and 
output interface for input and output signals respectively. Actors communicate with each other 
via channels using signals. Communication is instantaneous and channels can have different 
communicating rates. In all, a MRICDF model represents a network of synchronous modules 
with multiple clocks, which is the basic definition of a polychronous system. 

In the polychrony model of computation, events form the primitive entities. An event is said 
to have occurred whenever there is a change in the value at an input or output port, or change in 
value of a variable etc. 

Definition 1: (Event) We use Ξ, to denote the set of all events, and ,≤ to denote a preorder 
relation among events which indicates the precedence of one event over another is a preorder on 
Ξ: e ≤ f means that, event e occurs before or concurrently with event f. ~ is the equivalence 
relation based on ≤: e ~ f means that, events e and f occur simultaneously, also called as 
synchronous events. 

A logical instant, could be thought of as a maximal set of computations that occur in reaction 
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to one or more events. This set of computations is maximal in the sense that, any other activity 
would require another value to arrive on those inputs which triggered the current set of 
computations. Events within one logical instance are all synchronous with each other. 
 

Definition 2: (Logical Instant or Instant) We use ϒ to denote the quotient of Ξ/~, the set of 
logical instants. Thus a logical instant is a maximal set of events that are synchronous. 

 
The synchronous events within a logical instant may be bound by data dependencies and 

hence are also ordered by a relation. All the dependency relations are captured in the data 
dependency graph. This relation is not defined as an order but the implementation of the 
specification is only possible if the dependency relations do not form a cycle, since it induces an 
order of computation during code generation phase. 

 
Definition 3: (Signal, Epoch, Clock and Clock tree) Let T be the type representing set of 

values a signal can take, ⊥ be a special value used to denote the absence of the signal, and T⊥ = T 
∪{⊥}, then we can define a signal as a function ϒ → T⊥. 

 
For a given signal x, there exists one maximum set of instants γ ⊂ ϒ, such that is a total order 

in and the signal x takes a value from T in each of the instants of ϒ. Such a set is called the epoch 
of the signal represented by σ(x). 

 
The clock of a signal is a characteristic function that tells if a signal x is present or absent at 

any given instant t in ϒ. Clock is a function (ϒ → T⊥) → ϒ → {true, ⊥} that for a signal x 
returns another signal (𝑥�) defined by: 𝑥�(𝑡) = true if x(t)∈T and 𝑥�(t) =⊥ if x(t) =⊥. 

 
A signal is a stream of values that occur at specific instants. The epoch of a signal is a set of 

all logical instants at which the signal is computed or assigned new values. The clock of a signal 
is a boolean signal that tells the presence or absence of the signal. Not all signals at the interface 
are present and computed or assigned input values at every logical instant. Thus signals may have 
different clocks – hence the model of computation is called polychronous or “multi-clocked”. 

 
Using the clock relations, a hierarchy of clocks can be built and the resulting hierarchical 

structure is a clock tree or a forest of clock trees depending on whether the hierarchical structure 
is single rooted or multi-rooted. 

 
Based on the above definition, signals can be classified into, 

• signals x and y are synchronous to each other if their clocks are same: 𝑥�= 𝑦�.  
• if signal x has events in a subset of instants where signal y has events, then 𝑥� is a sub-

clock of 𝑦�.  
• if signal x and y do not have events that belong to same logical instant, then their 

clocks can be either mutually exclusive or they are unrelated.  
 

The information regarding clocks of all signals is stored in clock tree. 
 
Definition 4: (Data Dependency) We use ⇀ to express data dependency between events. The 

binary relation e ⇀ f means, e has to be computed after f, in other words, f precedes e. 
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If the relation ⇀ holds between some pair of synchronous events of two signals, then the data 
dependency is elevated between those signals. ∀ signals x, y and c, ∀t σ (c)(t),  x(t) ⇀ y(t) ⇒ x 
→𝑐y. We can also write x → y for the approximation of x →𝑐y on any clock. 
Definition 5: (MRICDF Actors) Actors in MRICDF language can be classified into two groups,  

(a) Primitive actors 
(b) Composite Actors. The four primitive actors are, 
• Function Actor: This actor performs any user specified computation in any instant when

the inputs have an event. All the inputs and outputs are synchronized with each other. 

Operation: r = a * b 
Clock relation:  𝑟̂ = 𝑎� = 𝑏�

Boolean relation: br = ba = bb 
Dependency relation: r → a, r → b 

• Buffer Actor: This actor is used to temporarily store a value of a signal across instants, in
other words – it delays a signal. The signal must have events in both storing and
retrieving instants. Increasing the buffer size of the Buffer actor produces the same effect
as a series of unit sized Buffer actors cascaded. Both input and output are synchronized
with each other.

Operation: r = b $ n init v1…vn 
Boolean relation: br = bb

Clock relation: 𝑟̂ = 𝑏�

• Sampler Actor: This actor is used to down-sample a signal based on a known Boolean
condition. This actor produces outputs in all instants where there is an input and the
Boolean condition evaluates to true. Hence the output clock is the intersection of input
clock and the clock when Boolean condition is true.

Operation: r = a when b 
Clock relation: 𝑟̂ = 𝑎� * [b], where [b] = b is true 

Boolean relation: br = ba and b[b], bb = b[b] or 𝑏[𝑏�], b[b] and  𝑏[𝑏�] = false 
Dependency relation: r → a 

• Merge Actor: This actor merges two signals (can have different clocks) with a higher
priority for one of the signal. The clock of the output signal is the union of the clocks of
the participating input signals.

Operation: r = a default b 
Clock relation: 𝑟̂ = 𝑎� + 𝑏�

Boolean relation: br = ba or bb 
Dependency relation: r → a, r → b 

Composite actors are hierarchical combination of several primitive actors. 
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Master Trigger and Sequential Implementability 
 

Given an MRICDF model, we need to translate it to runnable reactive software. However, 
before translation one has to ensure if the given model is actually implementable in software or 
not, in other words – one has to determine the sequential implementability of the model. To do 
so, we have to identify the mapping from the abstracted MRICDF entities to actual software. Out 
of the many mappings, we discuss two important ones here. First one is the mapping of the 
discrete time representation of the synchronous specifications onto the real continuous time. To 
achieve this, we have to identify a set of instants that are totally ordered to get a deterministic 
execution. Since time is a continuous quantity, to map each instant to a time interval, we need a 
reference signal that is present in each of the instants. In our terminology, this special signal is 
called as –Master Trigger. The existence of master trigger is a necessary condition for sequential 
implementability. To identify a signal which can be master trigger, we perform epoch analysis on 
the given model. In this process, we first construct a Boolean formula, which is the conjunction 
of Boolean relations for all the actors in the given model. Identifying master trigger for the 
MRICDF model is equivalent to identifying prime implicate in the constructed Boolean formula. 
We use a SMT based technique to identify the prime implicate. 

 
The second important mapping is the scheduling of the computations within an instant. The 

order of computations is constrained by the data dependencies implied from the specifications. 
These specifications are represented in the dependency graph and can be easily read while 
determining the order of computations. 

 
After identifying the master trigger, we can generate schedule of computations using clock 

tree and dependency graph, and eventually we generate the sequential code from this schedule. 
Formal description of the schedule and code generation technique can be found in [8]. 

4.2.3 Concurrent Implementability 
 

Consider a simple MRICDF model shown in Figure 20(a). For readability purposes, its textual 
representation is shown in Listing 5. It has 2 input signals v and u and 1 output signal w. Internal 
signal x’s value is computed in instants where v has events. Similarly y is computed in every 
instant where u has events, but w is computed in instants only when x >= 10, y >= 20 and both u 
and v have events. Hence we can say that, x~v and y~u as 𝑥� = 𝑣� and 𝑦� = 𝑢� . Clock tree for this 
model is shown in Figure 20(b), where each node represents a unique clock. The labels on the 
arrows indicate the constraints from which one clock can be derived from the other. Nodes with 
multiple incoming edges, represent the clocks which can be derived only when the constraints on 
all the incoming edges are satisfied. It must be noted that the clock tree is not single rooted. This 
means that there is no single signal which could be used as a master trigger. If our aim was to 
generate sequential code, then we can synthesize a temporary signal that has events when either u 
or v or both have events, and then use this temporary signal as master trigger. With the addition 
of this temporary signal to the clock tree, it becomes single rooted. But here, our aim is to 
synthesize multi-threaded code and hence, we are not concerned with making the clock tree 
single rooted. For multi-threaded code, instead of a single master trigger, we have a set of partial 
triggers. Each of these partial triggers act as master trigger for the sub-processes. There can be 
instants where some of the partial triggers are present and some are absent but there cannot be 
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any instant which all the partial triggers are absent. Clock tree for such a system will have 
multiple roots as shown in Figure 20(b). 

Figure 20 (a) MRICDF model, (b) simplified clock tree 

Definition 6: (Partial Triggers) Let P be a MRICDF model representing a data flow process and 
let y be any signal in the process. A set of signals S = {x1….xn} belonging to P , is considered as a 
set of partial triggers iff, 

• ∀y ∈ P, ∃xi ∈ S, such that y is absent ⇒ xi is absent, i.e, each signal which is not a partial
trigger has to have an epoch that is subset of epoch of some partial trigger.

• ∄x1, x2 ∈ S, such that x1 is absent ⇒ x2 is absent, i.e, no two partial triggers are under the
same clock tree because each sub-process can have only one master trigger

The partial trigger set S is minimal. 

A. Constraints for Concurrent Implementability 

In [12], the authors define a class of processes for which concurrent scheduling is 
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deterministic. This class consists of processes composed of individual sub-processes with their 
own triggers. A list of conditions that identify those processes was also proposed. Let P , be a 
MRICDF model representing a data flow process that consists of numerous sub-processes. P can 
be scheduled concurrently if, 
 

1) The process P can be partitioned into multiple sub-processes {P1,….Pn} and {x1,…xn} 
represent their respective master triggers.  

2) The dependency graph of the process P does not have cycles.  
3) P is well-clocked: the relations between epochs inside subprocesses are compatible at the 

level of the process. In other words, scheduling of sub-processes does not result in a 
deadlock.  

 
Considering those rules, we define the criteria for concurrent implementability as follows– 

• For each signal y ∈ P, there exists at least one partial trigger x ∈ {x1,…xn}, such that 
epoch of y is a subset of and can be derived from epoch of partial trigger x, i.e, ∀y ∈ P, 
∃x such that, σ(x) ⊃ σ(y) and ∃f a Boolean function such that for each t of σ(x), 𝑦�(t) = 
f(𝑦�(𝑡)).  

• Cyclic causal loops are identified by traversing the dependency graph and evaluating the 
dependencies [9].  

• If a process P has n sub-processes, then the clock trees of the sub-processes intersect at 
most n-1 times.  

 
This intersection is due to computation of some sub-process being dependent on computation 

of other sub-processes. We represent intersection of two processes Pi and Pj as Pi,j, such that Pi,j 
⊂ Pi, Pi,j ⊂ Pj and Pi,j has a master trigger. For ex: In Figure 20(a), the computation of x,y,w can be 
considered as 3 independent sub-processes Px, Py, Pw with 𝑥�, 𝑦�, 𝑤�  as master triggers respectively 
for each sub-process. Px is the upper part of the process that reads v and outputs the sample of x. 
Py is the dual of Px for u and y and Pw is simply the + actor on the right. The clock tree of Pw is a 
result of intersection of clock trees for Px and Py. Scheduling such processes requires 
synchronization constraints and we have to ensure that the schedule does not result in a deadlock. 
This can be achieved by traversing various branches of clock tree and analyzing the constraints. 
 

If the model satisfies all the above conditions, then the resulting {x1,…xn} is the set of partial 
triggers for P. Using these partial triggers and clock trees for the sub-processes, we can generate 
multi-threaded code by the mapping technique explained in subsection 4.2.3 Concurrent 
Implementability. 
 
1) Computing Partial Triggers: Let Bp represent the system of Boolean equations derived from 
all the actors present in P . Computing partial triggers for model P is effectively computing prime 
implicate (non-unitary) for the CNF formula constructed using Bp. But computing prime 
implicate considering entire Bp takes a substantial amount of time. We propose a different 
approach that computes partial triggers almost two orders faster and is shown in Algorithm 1. 
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Let K be set of all signals in model P , Sp be the set of possible partial triggers and S be the 
minimal set of partial triggers for P . A signal y ∈ K, cannot be a possible partial trigger if  ∃z ∈ 
K, such that σ(z) ⊃ σ(y). Now we create another set SubSp, which contains all the subsets formed 
using the elements in Sp. So each element of SubSp, is a set of signals. We then select each 
element ele 2 SubSp, in the increasing order of the number of signals it contains. We set all 
signals in ele to be absent and check if this implies that the rest of the signals in K are also absent. 
To set a signal to be absent, we can set the Boolean equation of the corresponding signal to be 
0=false. To check for absence, we can see if the other Boolean equations can be deduced to be 
0=false. If yes, then S = ele. If no, repeat the procedure with another element of SubSp. At the 
end of Algorithm 1, S contains the set of partial triggers. 

The complexity of Algorithm 1 depends on the complexity of the second for loop, which is 
O(2n), where n is the cardinality of Sp. We use various techniques to keep the cardinality of Sp to 
be as small as possible and hence Algorithm 1 completes very quickly even though its 
complexity is O(2n). This argument is further strengthened by the experimental results in Table 5 
and Figure 22. 

2) Constructing the forest of clock trees T : In case of sequential code generation, the clock
tree has a single root node which corresponds to the master trigger. The child nodes of this clock 
tree correspond to the signals whose epochs are subsets of the epochs of the signal above them. 
For the purpose of understanding, this structure can be thought of as a pyramid, where the top of 
the pyramid corresponds to master trigger of the process and each level below it corresponds to 
the signals whose epochs can be directly computed if the epoch of master trigger is known. This 
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levelization is done by repeatedly computing prime implicate of the reduced Boolean formula. 
This reduced Boolean formula is obtained by setting the boolean variables corresponding to the 
signals above the current level to true. For example, the signal/s at nth level are obtained by 
computing prime implicate of the reduced Boolean formula in which all the boolean variables 
corresponding to the signals in first n-1 levels are true. 
 

In case of multi-threaded code generation, the clock tree has multiple root nodes which 
correspond to the partial triggers. The child nodes of this clock tree are derived by recursive 
prime implicate generation considering one partial trigger at a time. Figure 21(a) shows a pyramid 
representation of the clock tree in case of a single master trigger and Figure 21(b) shows the same 
for multiple partial triggers. Algorithms 2 and 3 build the clock tree. The function setTrue(x) 
produces a reduced Boolean formula that is further used for prime implicate computation. The 
function setFalse(x) does the opposite, it sets the variable passed in parameter to false. We use it 
to indirectly select the Boolean formula corresponding to a sub-process: first we set one partial 
trigger to false (Bx=0), it marks absence of the partial trigger and all its sub-process, then we 
complement it (Bx=B - Bx=0) and get back all sub signals of the partial trigger. The function 
PI_GenSMT(), takes a Boolean formula in CNF form and outputs prime implicate. For a smaller 
Boolean formula, the function PI_GenSMT () is quite fast and hence we use it in building parts of 
clock tree. This function uses [1] SMT solver to generate prime implicates as described in [6]. 
 

 
Figure 21 (a)Pyramid structure of clock tree and (b)forest of clock trees for sequential and concurrent 

specifications 
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3) Check for Data Dependencies and Deadlock: After constructing the clock tree T for model
P, we check for cyclic data dependency issues in T . We also check if there are any deadlocks in 
P. This is done by traversing each branch of the clock tree and analyzing the constraints. If all 
checks are completed, we conclude that P is concurrent implementable and proceed for 
identification of shared epochs. 

B. Identification of Shared Epochs 

Often signals with different epochs will be involved in some operation (For Ex: Line 5 of 
Listing 5 where x and y have different epochs). In such cases, epochs of involved signals will be 
subset of epochs of multiple partial triggers (Ex: In Listing 5, epoch of signal w is subset of 
epoch of signals x and y). Such signals are said to have shared epochs. Identification of such 
epochs is important because they correspond to shared variables in software. To compute such 
shared variables, we need to use synchronization barriers. To identify the signals with shared 
epochs we use a labeling scheme. Algorithm 3 labels each node in the clock tree with a label that 
corresponds to the root node under which it is present. All the nodes corresponding to signals that 
have shared epoch will have multiple labels because they will be under multiple root nodes (For 
Ex: In Fig 20, node corresponding to epoch of w will have 2 labels - u and v). Rest of the nodes 
will have single labels. 
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C. Mapping and Multi-threaded Code Generation 
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After establishing concurrent implementability and build-ing clock tree T , we need to create 
a mapping that can be used for code generation. Algorithms 4 & 5 give an overview of the code 
generation procedure. T has multiple root nodes with each root node corresponding to a partial 
trigger. Each of the partial trigger acts as a master trigger for the corresponding sub-processes, 
which can be handled by a single thread. So we create and associate a thread (thxi ) for each 
partial trigger. Now we traverse T in a depth first manner. For each node we visit, we check the 
number of labels (numLabels()) and the labels it has. The label indicates under which root node/s 
the current node is present. If it has a single label, then it indicates that its under one root node 
(not a shared computation). We export the code for this node and append it to the thread 
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corresponding to the thread pointed by the label (root). Since there are no cyclic data 
dependencies, we only have to ensure that the input signals to this node are computed before the 
start of code for the current node. If the node has multiple labels, then it indicates that its a shared 
computation and we need to wait till the dependencies are computed by other thread/s. We export 
the wait notify constraints (exportWaitNotifyConstraints()) in the current thread’s code and then 
we handle the shared computation in a different thread. To generate code for the thread handling 
the shared computation, we start with a wait constraint (waitConstraint()) for the synchronization 
condition, then we proceed traversing the sub-tree in depth first manner, export code as earlier 
and finally add the notify constraint (notifyConstraint()). In this way we generate the code for the 
complete model. 

4.2.4. Experimental Evaluation and Discussions 
 

We evaluated our proposed approach on the benchmarks listed in Table 4. These benchmarks 
exhibit either data parallelism or task parallelism or sometimes both. In our evaluation approach, 
we first manually implemented an efficient C/C++ multi-threaded version of the benchmark 
using low-level threads. We then modeled the same benchmark in MRICDF and used the tool 
EMCODESYN (proposed approach) to generate multi-threaded C++ code. 

 
Table 4: Benchmark Suite 

No. Benchmark Summary of the benchmark 
1 Array Addition Simple data parallel addition. Input is integer arrays of length 10K. 
2 Box Filter Image processing filter which works by computing the average of 

surrounding pixels. It exhibits both data and task parallelism.  Size  of  
test  input  is 256x256 pixels (can be any size). 

3 Energy Meter A model of the control system used in  any  common  home  energy  
measurement instrument. It exhibits task parallelism. In our test suite, 
we run the system for 3 iterations. 

4 Sieve of 
Eratosthenes 

A prime number sieve for finding all prime numbers up to any given 
limit (10 million in our example). It exhibits both task and data 
parallelism. 

5 Tennessee 
Eastman (TE) 
Plant-wide 
Industrial 
Process [57] 

TE process is a simplified model of a real-life industrial process 
consisting of a reactor – separator – recycler arrangement. In our test 
suite, we run the TE system for 1 iteration. 

 
 

We ensured that the outputs of both versions matched. Finally, we measured the performance 
of both implementations on a workstation that has 4 Intel Xeon E5405 CPUs with 4GB of 
memory running Ubuntu 10.10. Performance comparison results are listed in Table 5. Column 4 of 
Table 5 shows the percentage performance difference between the generated multi-threaded code 
and hand written multi-threaded code. A negative percentage value indicates that the 
performance of the generated code is lower than the performance of the hand written multi-
threaded code by the corresponding percentage. Experimental results show that the performance 
of the generated multi-threaded code is almost comparable to the hand-written multi-threaded 
code. On an average, the generated code for the benchmarks considered is 18.5% slower than the 
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hand written code. On further analysis, we noticed that this performance difference arises due to, 
• Generated code uses a lot of templates as the code generator is implemented keeping a

generic application in mind.
• Generated code sometimes creates more threads than actually required. The work done by

the separate threads could have been merged and done by a single thread. This additional
thread creation and destruction overhead also slows down the performance.

Table 5: Experimental Results 

Model Name Manual Multi- Generated Multi- % Performance Diff. Total Code 
Threaded 
Performance 

Threaded 
Performance Generated vs Manual 

Generation 
Time 

LOC Tmulti (ms) LOC Tgen (ms) 
(- means Gen. code 
slower) (ms) 

Array Addition 48 12 195 14 -16.6 428 
Box Filter 96 67 212 74 -10.4 1274 
Energy Meter 215 17 575 18 -5.8 437 
Sieve 56 4722 178 6103 -22.62 1022 
TE Process 613 3.5 5947 4.8 -37.1 2350 

*LOC stands for Lines of Code, Tmulti, Tgen denotes the execution time of the hand-written multi-
threaded and generated multi-threaded code respectively. 

Theoretically, the scalability of the tool and the proposed approach can be accurately 
determined when it is applied on a realistic model of a large embedded system (ex: A satellite 
system). But, modeling such a large embedded system without knowing all the details of the 
system is not easy. One can also create a large model by duplicating a smaller model. So, we 
created larger benchmarks by duplicating (2, 4, 8, 16, 32 times) an existing benchmark. The 
number of inputs, outputs and actors also got multiplied creating the effect of a large embedded 
system for all practical purposes. Figure 22 shows the time taken for analysis and code generation 
for these increasing large models. As the models get bigger, there is a linear increase in the time 
taken for analysis and code generation. 

Figure 22 Plot of Time taken for analysis and code generation vs number of times model is duplicated 
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4.2.5. Related Work 
 

Numerous efforts have been made in the past to synthesize code from synchronous 
specifications. But most of these efforts were targeted towards generating sequential code rather 
than multi-threaded code. Here, we list some of the multi-threaded code generation efforts. The 
authors of [67] proposed an approach to generate multi-threaded code from Esterel specifications. 
Their approach involved partitioning of concurrently executable Esterel statements into 
communi-cating FSMs and distributing the computation of these FSMs based on the 
communication and synchronization techniques used in reactive processors. In [56], the authors 
provide a way to translate synchronous guarded actions to multi-threaded C code. They build an 
action dependency graph using the synchronous guarded actions, extract concurrently runnable 
tasks from the graph and map them to threads. Both these works are targeted at single clock 
systems while our work focuses on systems with multiple clocks (polychronous). In [61], the 
authors provide a non-invasive methodology which includes generating programming glue to 
generate multi-threaded code from polychronous specifications. This approach requires that, no 
variables are shared between the concurrently executable processes, in other words, the clock 
trees of sub-processes do not intersect. This a big limitation and generating multi-threaded code 
for inde-pendent processes is very trivial. In another similar work [65], the authors focus on 
generating multi-threaded code for mutually independent tasks, which is trivial. In [66], the 
authors have explained the concept of weak-hierarchy and composition of endochronous 
processes. Using these concepts one can identify parts which can be concurrently executed 
without disabling one another. This work also lists some of the rules for composing 
endochronous systems to a weakly endochronous system. To the best of our knowledge, there is 
no implementation of this. The work presented in this article considers and extends the theory 
presented in [66]. We propose a novel efficient technique by which we can test concurrent 
implementability of a given MRICDF model by decomposing it. Our technique also generates 
execution schedule and the multi-threaded code that conforms to the schedule. We present all the 
algorithms involved and investigate the feasibility and scalability of the proposed technique. 

4.2.6. Conclusion and Future Work 
 

Writing concurrent programs, especially for safety critical embedded systems, has always 
been a error prone task. One of the main reasons for this is – immaturity of concurrent 
programming models as compared to sequential programming models. In this work, we presented 
a correct-by-construction approach for multi-threaded code gener-ation from formal MRICDF 
specifications. We presented sound techniques to analyze concurrent implementability of 
MRICDF models and to generate accurate multi-threaded code. Experiments were conducted to 
compare the perfor-mance of the generated multi-threaded code against hand written multi-
threaded code. We also conducted experiments to test the scalability of the proposed approach 
and presented the results. In the current version of the tool, the clock tree construction and the 
code generator implementation are done targeting accuracy and not efficiency of the generated 
code. 
 

To improve efficiency of the generated code, in future, we plan to apply optimization 
transformations on the clock tree which can help in generating load balanced code. Mapping of 
partial triggers to threads might not be the most efficient, especially if the amount of work done 
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by the thread is not substantially large than thread creation and destruction overhead. In future, 
we plan to create a thread pool and map partial triggers to tasks. We also plan in future to include 
formal proofs for all the algorithms and the overall technique.
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4.3 Synthesizing Embedded Software with Safety Wrappers through 
Polyhedral Analysis in a Polychronous Framework 

We investigated the use of various decision making tools to check these properties. First we 
looked into SAT Modulo Theory (SMT) solvers and later on we looked into Polyhedra libraries. 
Below we explain each work with their advantages and limitations. 

4.3.1 SMT based safety property checking 
In this work we show how one can use SMT solvers for checking of a particular safety 

property – causal loop detection. The approach is generic and can be used to verify most of the 
properties. In earlier works [10], causal loop detection was done by generating SMT equations 
for the entire MRICDF model and this set of equations was given as an instance for the SMT 
solver. The disadvantage is that for a large scale example, the SMT instance will become huge 
and can lead to long run times – sometimes never ending. In our work, we first mine the 
specifications for possible causal loops. We then express the clock constraints of the 
dependencies as SMT equations and check if all the equations can be true at same time or not by 
evaluating the SMT instance. If the SMT instance evaluates to true, then there exists a causal 
loop, otherwise no. 

We now illustrate this work with an example. For the reason of expressiveness, we are using 
Signal and Polychrony here instead of MRICDF and EmCodeSyn. Consider the Signal code 
shown in Listing 6. We compile this code using Polychrony to check for presence of possible 
causal loops. From the code in Listing 6, we can observe that, when isMin is true, then avg 
depends on max and max depends on avg causing a true causal loop. Similarly when isMin is 
false, then avg depends on min and min depends on avg causing another true causal loop. Once 
we identify possible causal loops, we mine the information regarding clock constraints leading to 
the possible causal loops. After mining we encode the clock relations as SMT equations and 
construct a SMT instance and test it for satisfiability. Clock relations are shown in Listing 7. It 
can be noticed that there are two sets of clock relations showing two possible true causal loops. 
 

Listing 6: Constructive Causal Loop 
process causal -smt = 
(? integer initial , step 1, intMin ; 
! integer min , avg , max; 
) 
(| initial ^= step 1 ^= intMin ; 
|min := initial when intMin <5 default avg - step 1 
|avg := min+ step 1 when intMin =10 default max - step 1 
|max := avg + step 1 when intMin >10 default initial 
|); 

 
Listing 7: Clock relations 
% Loop 1 
(|{ avg --> max } when C_CLK _0 
|{ max --> avg} when C_ CLK _1 
|) 
% Loop 2 
(|{ min --> avg } when C_CLK _2 
|{ avg --> min} when C_ CLK _3 
|) 
where , C CLK 0 := :(intMin = 10), C CLK 1 := intMin > 10, 
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C CLK 2 := :(intMin < 5) and C CLK 3 := (intMin = 10) 

Any constraint solver enriched with integer theories can be used. In our work, we have used 
the latest YICES SMT solver [44], as a constraint solver. Translating the above clock relations as 
YICES input, we get the equations in Listing 8. Invoking YICES on these equations will give a 
SAT result as explained earlier. Also YICES provides a counter example (intMin=11 & 
intMin=10) where the constraint is satisfied which matches with our earlier interpretation. Hence 
there exists true causal loops in the specification shown in Listing 6 and one possible way they 
can be formed is when intMin=11 & intMin=10. If YICES had given an UNSAT result, then we 
conclude that the property is not satisfied and hence it is a false causal loop. Similarly any safety 
property can be expressed as SMT instance and verified. 

Listing 8: SMT equations for Loop 1 
;; Loop 1 
( define intMin :: int) 
( assert (and (not (= intMin 10)) (> intMin 10) ) ) 
( check ) 

Result :- sat (= intMin 11) 

;; Loop 2 
( define intMin :: int) 
( assert (and (not (< intMin 5)) (= intMin 10) ) ) 
( check ) 

Result :- sat (= intMin 10)

Limitations of this approach: 
Safety property verification such as causal loop detection is not a trivial problem. Given a 

data dependency loop, the complexity of checking if it’s truly causal or not is at least NP-hard. If 
all inputs are Boolean signals, and dependencies can be expressed as Boolean functions using 
ANDs and ORs and NOTs, then the problem would be the same as solving a SAT instance and is 
NP-Complete. But if the dependencies can be expressed as arbitrary functions over integers or 
reals or other complex data types, then the problem is undecidable. This shows that any method 
must be based on heuristics and are likely not complete. One must strive for as close to complete 
a solution but never compromise on soundness. This is what we have tried to achieve in this 
work. Also in this work, we only handle non-floating point and linear constraints. This is because 
of the limitation of YICES and not of the approach. Another disadvantage of this work is that if a 
property fails, the tool will just output one of the many possible scenarios when the property will 
fail and not all the scenarios when property fails. 

4.3.2 Polyhedra based safety property checking 
In this work we try to preserve the advantages of SMT based approach and try to address its 

disadvantages. If the synthesized software has to interact with a physical environment, often 
additional range constraints on various inputs as well as outputs are provided. Analyzing the 
safety of execution often leads to analysis of reachability, invariants, and cyclic dependencies 
which may be affected by such range constraints. As explained in the last paragraph, while 
analyzing a specification for a safety property, even if it violates an invariant property, or shows 
cyclic dependency – in a very limited area of its reachable state space, it will be rejected totally. 
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For such specifications, instead of rejecting the specification outright, the synthesis tool should 
guide the user by showing the exact ranges of the input values (or equational relationships 
between the inputs as appropriate) that could direct the resulting program to such violating area 
of the state space. This is exactly the problem we address in this work. To make decisions with 
range constraints, we use Polyhedral libraries as they can take affine relations as constraints. 
We now illustrate the problem being addressed in this work with an example.  
 

Listing 9: Causal Loop Example 
process AC_ DISPLAY = (? integer minT , curT , maxT ; 
! integer disp _coldT , disp _hotT , disp _ normT ) 
(| minT ^= curT ^= maxT 
| disp _ coldT := minT when curT <70 default curT 
| disp _ normT := ( disp _ coldT +5) when curT =70 default 
( disp _hotT -5) 
| disp _ hotT := ( disp _ normT +5) when curT >80 default maxT 
|); 

 
Consider the example shown in Listing 9. A Boolean abstraction based check would replace 

each predicate by a Boolean variable taking arbitrary values, and will not consider the 
relationship between the predicates in their numerical domain. As a result a causal dependency 
loop will be detected by such analysis because of the interdependency between disp_normT 
and Tdisp_hot . However, if our abstraction is cognizant of a theory of integers with ordering 
relations, then it would lower the Boolean abstraction to a model that considers intervals with 
ordering. On this model, one could prove that when curT>80, only then such causal dependency 
loop will exist. Obviously, if this happens, the system will behave non-deterministically or will 
deadlock. If this information is explicitly presented to the user upon completion of the analysis, 
and the user can guarantee an additional input constraint, 70≤curT≤80, then generating code from 
this specification is completely legitimate – as the program will not display any deadlock 
behavior. In addition, if one wants to ensure safety, one could produce a wrapper that would 
intercept all inputs curT and check against this constraint, and filter out any occurrence of input 
value that violates the user guaranteed constraints. However, if the user can guarantee only 
70≤curT≤90 – the system will exhibit causal behavior when 80<curT≤90. But the system has a 
safe operating area, 70≤curT≤80. One could still apply a wrapper to prevent the system from 
moving outside its safe operating area – if it makes sense for the application. 
We propose a polyhedral model based causality analysis technique which can accept Boolean, 
integer and rational input constraints and check for violation of safety properties (e.g., existence 
of causal loops) in the constrained system. Based on polyhedral analysis of the constraints and 
specifications, we also propose a technique to identify the safe operating area of the system in 
terms of bounds on input and other linear constraints. In case of multiple safe operating areas, our 
technique lists all of them. We also propose a safe code synthesis technique by adding wrappers 
to ensure that the resulting system does not behave non-deterministically or deadlock even when 
the input constraints are accidentally violated. 

 
We illustrate our solution with an example now. Consider the signal program shown in 

Listing 10, which is an extension of the program shown in Listing 9. 
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Listing 10: True Causal Loop 

process AC_ DISPLAY = (? integer minT , curT , maxT , curP , curK  
! integer disp _coldT , disp _hotT , disp _ normalT ) 
(| minT ^= curT ^= maxT ^= curP ^= curK 
% Conditions % 
| cond _1 := (( curT >= 2) and ( curT <= 18)) 
| cond _2 := (( curP >= 3) and ( curP <= 21)) 
| cond _3 := (( curK >= 25) and ( curK <= 35)) 
| cond _4 := (curT - curP >= -10) 
| cond _5 := (( curT + curP >= 11) and ( curT + curP <= 33)) 
% Output Computation % 
| disp _ coldT := minT when (curT < minT ) default curT 
| disp _ normalT := ( disp _ coldT +10) when 
(not( cond _1 and cond _2 and cond _3)) 
default ( disp _hotT -10) 
| disp _ hotT := ( disp _ normalT +10) when ( cond _4 and cond _5) 
default maxT 
|) 
where 
boolean cond _1, cond _2, cond _3, cond _4, cond _5; 
end;

When a Boolean abstraction is analyzed, it identifies the possibility of causal loop because of 
the interdependency between disp_hotT and Tdisp_normal  as shown in Listing 11. One can 
invoke an SMT solver to check for nullity of clock constraints (C_CLK_31∧C_CLK_23) on the 
path of the apparent loop. This is done by extracting the clock constraints and generating the 
predicates for Yices SMT solver as shown in Listing 12. Invoking Yices solver will decide this 
condition as satisfiable (which indicates the existence of true causal loops) and it outputs one 
counter example to show a case where causal loop may create a deadlock. If we include input 
constraints, an SMT solver will not be able to provide us the safe operating region of the input 
space. 

Listing 11: Possible Causal Loop 

(| { disp _ hotT --> disp _ normalT } when C_ CLK _31 
| { disp _ normalT --> disp _ hotT } when C_CLK _23 
|) 
where , C_ CLK _31 = cond _4 and cond _5 
C_CLK _23 = cond _1 and cond _2 and cond _3 

Listing 12: Assertion in SMT solver and Solution 

( define curT :: int) ( define curP :: int) ( define curK :: int) 
( assert (and (<= curT 18) (<= curP 21) (<= curK 35) 
(>= curT 2) (>= curP 3) (>= curK 25) (<= (+ curT curP ) 33) 
(>= (- curT curP ) -10) (>= (+ curT curP ) 11) ) ) 
( check ) 

Result : SAT , Counter example : curT =8, curP =3, curK =25 % 

Constraint Extraction and Transformation for Polyhedral analysis 
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Let us say we are given the input constraints shown in column 1 of Table 6 for the SIGNAL 
program shown in Listing 9. The clock constraints for possible causal loop are also transformed 
to a system of affine inequalities and equations. They are shown in column 2 of Table 6. There 
exists an implicit logical intersection among all the constraints within each column of Table 6. 
The constraints in Table 6, needs to be transformed into affine form to use the PolyLib library 
[51]. The system of translated affine inequalities are shown in Table 7. This system is further 
abstracted to matrices before using Polylib APIs.  

Table 6 Input and True Causal Loop constraints 

 

Figure 23 shows the plot of polyhedras representing both input constraint and true causal loop 
constraints. From multiple views we see that there exists a region of intersection between the two 
polyhedras, which indicates the existence of true causal loops with the current input constraints.  

 
Table 7 Inequalities and Equations from Input and Loop constraints 
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Figure 23: (Top) 3D-plot (multiple views) of Polyhedras representing Input and Loop Constraints. (Bottom) 
3D plots of I ∩ L and I - L 

Polyhedral Analysis 
To obtain the bounds of safe operating region and the region where true causal loop exists, we 
apply two polyhedral operations from the PolyLib library.  

i DomainIntersection(I,L): This operation returns the intersection of two polyhedral 
domains. This is used to compute I∩L. 

ii DomainDifference(I,L): This operation returns a new polyhedral domain which is the 
difference, I−L.  

Both these operations may return many sub-polyhedras instead of one single resultant polyhedra. 
Union of all the sub-polyhedras will give the resultant polyhedra. Figure 23 also shows the plots 
for both I∩L and I−L respectively. One has to observe that the plot of I−L actually is a union of 6 
different polyhedras. 

Limitation of Polyhedral libraries 
Almost all of the existing polyhedral libraries including the one we are using, PolyLib, have 

restrictions that they can only accept integer constraints. In our technique, all rational constraints 
are multiplied by least common multiple to obtain integers, and floating point numbers are 
truncated based on precision specified by the user. Then we multiply the truncated floating point 
constraint by a suitable number such that it becomes an integer. 

Safe code synthesis using Wrapper 
From the result of polyhedral analysis, we obtain the bounds on inputs for safe operating 

region that we must check before actually passing it to the process so that the process remains in 
safe trajectories. Then a wrapper code is inserted which prevents any inputs violating the 
conditions of safety from being passed. The user of the synthesis tool is given an option to choose 
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if such implementation makes sense in the application domain. In Listing 13 we show the 
wrapped code for the SIGNAL program shown in Listing 9. 
 

Listing 13: Signal program of Listing 12 with wrappers 
 
process AC_ DISPLAY = (? integer minT , curT , maxT ; 
! integer disp _coldT , disp _hotT , disp _ normT ) 
(| minT ^= curT ^= maxT ^= cond _1 
| cond _1 := (( curT >= 70) and ( curT <= 80)) 
| disp _ coldT := ( minT when curT <70 default curT ) when cond _1 
default DEFAULT _ VALUE 
| disp _ normT := ( ( disp _ coldT +5) when curT =70 default 
( disp _hotT -5) ) when cond _1 
default DEFAULT _ VALUE 
| disp _ hotT := (( disp _ normT +5) when curT >80 default maxT ) 
when cond _1 default DEFAULT _ VALUE 
|) 
where 
bool cond _1; 
end; 
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4.4 Real-Time Extension and Improved Schedulability Analysis for 
Real-time Code Generation from Polychronous Specifications 

Verifying the hand-written real-time software for complex safety critical applications is 
difficult and time consuming. Testing and simulation techniques are not easily scalable and are 
non-exhaustive. Formal code generation tools have been effectively employed for such purposes. 
These tools accept formal specifications of a complex system and not only generate bug-free 
code, but also guarantee certain safety properties in the generated code. Prelude, is one such 
formal language which can be used to specify complex real-time systems. During schedulability 
analysis, Prelude compiler - preludec, over-approximates and considers certain conditional tasks 
to execute always. This technique though sound is imprecise, which may at times lead to over-
approximation of worst-case execution time (WCET) for the system and rejection of the certain 
set of tasks as un-schedulable, though they can be scheduled in reality. In this work, we first 
propose real-time extensions to MRICDF, a formal polychronous programming language. We 
then adapt the extended precedence encoding technique of Prelude and improve its existing 
schedulability analysis techniques for multi-periodic real-time systems by considering the 
occurrence conditions of tasks. This improved schedulability analysis provides a tighter WCET 
and expands the domain of schedulable tasks. 

4.4.1 Introduction 

As real-time embedded control systems applications become larger and more complicated, 
and the platforms on top of which they run become more complex and diverse, it becomes 
increasingly difficult for software developers to manage all details of a design. Most embedded 
control systems are first developed at high level of abstraction using control theory and other 
techniques and often times the implementation details are left to the software developer to 
manage. Development of software at this level can be very error prone, can make porting the 
design to different platforms difficult, and may not guarantee determinism or any safety 
properties. 

There have been many attempts in the past to address these aforementioned issues within 
works such as Lustre with real-time extensions[94], Simulink with Real-Time Workshop [103], 
and Prelude[93]. However with some of these works, attempts to formalize the language and 
model real-time systems have been an after thought. Prelude is a synchronous language that 
specifically targets real-time systems with a formally defined semantics. The language and 
corresponding compiler preludec provide means to specify multi-periodic real-time systems, 
perform variety of static analysis techniques and compile the specifications into real-time code 
for their real-time operating system, SchedMCore. One of the important static analysis technique 
performed on Prelude specifications is Schedulability Analysis. This determines whether a model 
will meet all deadlines over its execution. One short coming of preludec is that during 
schedulability analysis, it ignores the conditions on which tasks has to execute and assumes that 
the tasks will always execute. This over approximation of execution of conditional tasks tasks 
within their system [97] and leads to the possibility of looser WCET bounds and certain tasks 
being incorrectly rejected as unschedulable. 
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In this work we will explain further the Prelude language, and how the schedulability analysis 
is performed as well as show two potential solutions to this over approximation technique. 
Finally we will show how these two solutions can be used to develop real-time systems using the 
synchronous language, MRICDF, and development framework, EmCodeSyn. 

4.4.1.1 Motivation 

 
 

Figure 24: Location Estimation Unit (f=Rate of occurrence, E=Execution Time, D=Deadline) 
 

Consider the data flow model of a system shown in Figure 24. This system represents a 
location estimation unit that has two main data acquisition modes: obtaining many velocity 
vectors from direction and speed sensors (Task ANGLE ACQ and Task SPEED ACQ) to 
estimate position, or obtaining GPS coordinates (Task GPS ACQ) for a more precise location. 
The location (Loc.) EST task then uses whichever data was obtained to calculate a location and 
sends that value to the Loc.OUT task which outputs the value. Loc. EST also determines the error 
inherent in the measured value and returns that value to LCU task. In order to determine which 
acquisition mode should be used, the LCU uses the error value stored in a buffer from Loc. EST 
to determine if the current uncertainty value ∆Pos has crossed a threshold given as ∆max and 
GPS ACQ must be triggered to return the uncertainty of the estimated location to a safe level. 
Also shown in the figure are the frequency, execution time and deadline of each task. 

 
A real time scheduling problem usually consists of asking the scheduler whether a feasible 

schedule exists for a given set of tasks and a stipulated amount of computing time. In our 
example, we ask the preludec tool, if a feasible schedule exists for the given set of tasks in 100 
ms of computation time. Looking at this system, it is obvious if the conditions on the 
communications from task LCU are considered, there are 2 possible schedules –  
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(a) 1 instant of LCU, 2 instants of Loc. EST and Loc. OUT, and 5 instants of SPEED 
ACQ and ANGLE ACQ,  

(b) 1 instant of LCU, 2 instants of Loc. EST and Loc. OUT, and 1 instant of GPS ACQ. 

The preludec tool ignores the conditional communications originating from LCU because of 
its inability to statically determine task activations and instead are over approximated to be 
always active. Thus, preludec tries to schedule all the tasks within 100 ms of computation time 
and then states that its un-schedulable. But theoretically, there exists 2 possible schedules. 

While the activations of such task communication clocks may not be statically determined, 
there are inferences that can be drawn from the model that can create a more refined view of the 
system and tasks that can result in fewer rejections of schedulable systems. 

4.4.1.2 Contribution 
Specification of an system in a polychronous language such as MRICDF, will provide us with 

the ability to do high level analysis of logical clocks. But without the real-time features, MRIDF 
cannot be used directly to specify real-time systems. Thus, we first propose real-time extensions 
to the formal MRICDF language and the development environment EmCodeSyn that will allow 
for the specification of real-time characteristics of systems, such as tasks, execution times, 
deadlines, etc. 

We then adapt and extend the schedulability analysis found in preludec tool. We introduce 
the concept of conditional task graph and use this graph to explore the execution space of the 
model. We use the exploration results in improving the schedulability analysis there-by 
determining a more refined WCET for the system and also expand the domain of schedulable 
tasks by reducing the false negatives. We compare the results of the proposed technique with the 
results of preludec tool. 

4.4.2 Intro to Prelude 
Prelude is a formal language used in the development of real-time embedded systems. It is in 

the family of data-flow languages such as Signal [98] and MRICDF [100], but specifically 
focuses on defining of software architectures for multi-rate, multi-periodic systems. Prelude does 
automated translation of the multi-rate software into a real-time software implementation and 
verifies certain safety and temporal properties at compile time. 

In this section we will discuss some of the basic clock theory that Prelude uses to generate 
deterministic real-time software from specifications. We will also cover some of the static 
analysis that is performed before code generation; speficially, we will discuss precedence 
encoding and schedulability analysis. 

4.4.2.1 Periodic Clocks 
The Prelude synchronous real-time model relies on the Tagged-Signal Model [96]. In this 

model and similar to other synchronous languages, variables and expressions are represnted as 
flows. A pair, (vi,ti)i∈N, where vi is a value in the domain V and ti is a date in Q, ∀ti ∈ Q, ti < ti+1, 
can be used to represent the value of a variable or expression at a specific date ti. A flow is then a 
sequence of these pairs and represents a variable or expression value over the set of all dates. The 
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clock of a flow is then a set of dates in Q in which the value vi must be computed, and the value vi 
must be computed [ti, ti+1[, or one instant. This means that flows may have different dates for 
when vi must be computed, and thus can have different clocks as well as different instant 
durations. With different clocks comes a variety of relations that can be defined between such 
clocks and flows such as equivalence; two clocks are equivalent if they active for all of the same 
dates. Prelude focuses on a specific subset of clocks called strictly periodic clocks [97]: 
 
Definition 1 (Flow, Flow Clock, Flow Instant) A flow, f is a sequence of pairs, (vi,ti)i∈N, where vi 
is a value in the domain V and ti is a date in Q, ∀ti ∈ Q, ti < ti+1. The flow clock, ck(f), is the set of 
dates in Q where one value vi must be computed. A flow instant is one date in the flow clock.  
 
Definition 2 (Strictly periodic clock). A clock h=(ti), i∈N, ti∈T, is strictly periodic if and only if:  
∃n∈Q, ∀i∈N, ti+1 - ti=n, where n is the period of h, denoted π(h), and t0 is the phase of h, denoted 
φ(h).  
 

Strictly periodic clocks are then able to define a flow’s instants in terms of a rational valued 
real time clock, by giving the period and phase, while the Boolean clock of a flow gives the 
activation condition of a flow for a specific instant. Strictly Periodic clocks offer a way to 
compare and transform different clocks that are not offered with Boolean clocks alone. This 
subset of Boolean clocks can be compared via their period and phase characteristics. 
Transformations on these clocks can be done as well to alter their characteristics. Three strictly 
periodic clock transformations are defined [96]: 
 
Definition 3 (Periodic clock division). Let α be a strictly periodic clock and k∈Q.”α/.k” is a 
strictly periodic clock such that:  

π(α/.k) = k * π(α), φ(α/.k) = φ(α) 
 
Definition 4 (Periodic clock multiplication). Let α be a strictly periodic clock and k∈Q.”α *.k” 
is a strictly periodic clock such that: 

π(α*.k) = π(α)/k, φ(α*.k) = φ(α) 
 
Definition 5 (Phase offset). Let α be a strictly periodic clock and k∈Q.”α→.k”is a strictly 
periodic clock such that:  

π(α→.k) = π(α), φ(α→.k) = φ(α) + k*π(α) 
 

The Prelude software model consists of real-time tasks and communication between tasks. In 
order to produce deterministic code from these models it is a requirement to have formally 
defined communication operators. The periodic clock transformations give three basic operators 
along with an instant delay operator: multiplication, *^, division /^, delay fby, and phase shift:>. 
These operators are used to equate two flows. For example, a flow f with a period that is one third 
of another flow g the expression /^3 would equate the two flows. 

 
Although these operators can equate two flows they must also be deterministic. In the 

previous example if f is writing to g then it must be known for any instant of g which instant of f 
it is dependent on. A function, gops(n), describes this relationship. In this function ops is the rate 

transition operator and n is the specific instant of the independent flow. In our example 𝑓
/^3
�� 𝑔, 
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g/^3(n) will describe the deterministic data relation relation between these two flows. The function 
gops(n) is inductively defined below [96]: 

When two clocks are equivalent there is no transition operator necessary; shown as g(n)=n. 
This means that the nth instant of the producer flow f  is consumed by the nth instant of the 
consumer flow g, or f(n) = g(n). Other transitions are defined in terms of this basic function, 
where more complex operators can be defined from the composition of these basic operators. For 
example, if flow g has a period that is half that of f the rate transition is *^2 and g*^2(n)=2n, or 
f(n)=g(2n). Every other instant of g consumes an instant of f because of the difference in periods. 
A few examples of different rate transitions and corresponding gops(n) functions between flows f 
and g can be seen in Figure 25. 

Figure 25: Variety of ops rate transitions between flows f and g 

Prelude also includes Boolean clock operators; when and whennot. These operators do not 
affect the temporal characteristics such as period or phase of a clock. Instead they give certain 
conditions under which the clock is present or not present. This means that a clock f whenc for a 
flow f and Boolean condition C will have the same period and phase as f  but will only be present 
in an instant if the condition C is true. 

These operators allow a user to express a variety of deterministic communication structures 
between flows. When these are combined with tasks a high level task graph abstraction can be 
formed. 
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4.4.2.2 Task Graph 
In order to perform static schedulability analysis the text present in the user defined Prelude 

process must be translated into a task graph. A task graph is a collection of vertices, where each 
vertex represents a task, and each edge represents a precedence, or data dependence, relationship. 
The first step to create a task graph is to expand the original process. This is done recursively by 
replacing intermediate expressions or vertices with an equivalent set of more basic vertices. This 
is done until the only expressions left are user defined or imported functions. This collection of 
base functions or expressions create the tasks within a process[96]. 

 
In [96], the authors provide the details of translating the expanded program into an 

intermediate graph and then how they reduce the intermediate graph into the final task graph. For 
our purposes it will suffice to understand the structure of the Prelude task graph. A Prelude 
process can be represented with a graph g=(V,E), where V is a set of vertices or tasks and E is a 
set of edges or precedences. Each vertex vi∈V contains a set of characteristics (ini , outi , fi), where 
ini is the set of task inputs, outi is a set of task outputs, and fi is the relation between the inputs 
and outputs. Precedences or edges occur when there is a variable v such that v∈outi, v∈inj and the 
precedence is represented as ti→tj. 

 
A vertex vi represents a task ti which has real-time characteristics. These are represented as 

(Ti,Ci,ri,di). Tasks are treated as synchronous blocks, all inputs and outputs have the same 
periodic clock, pcki. This clock can be used to derive the period, Ti = π(pcki), as well as the 
release date or phase, ri=φ(pcki), of the task ti. The other two characteristics Ci, worst case 
execution time, WCET, and di, deadline, are derived from user specifications. There is no 
analysis done to determine the WCET of a task. Instead the user provides this value by specifying 
execution times within the process. The deadline, di, is by default di=Ti but if the user has 
specified a deadline for any output in outi then di is the minimum specified deadline for all 
outputs in outi [96]. 
 

 
Figure 26: Prelude Task Graph for Location Estimation 

 
The task graph for the Location Estimation example discussed previously can be seen in 

Figure 26. This task graph shows the proper rate transition operators between each task precedence 
relation. Here we are assuming that S is the condition where ∆Pos ≤ ∆max. It also includes the 
buffer operator that exists for the position feedback. 
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4.4.2.3 Static Analysis 
From the task graph abstraction, Prelude performs a variety of static analysis to validate the 

model for both safety and temporal properties. One major tanslation that is done is extended 
precedence encoding. Extended precedence encoding returns a set of indepedent periodic tasks 
with no precedence relations. This is done by adjusting the characteristics of each task in a way 
that guarantees the precedence relation will exist within the operation of the real-time system 
[96]. This is an important translation because most schedulability analysis tools are unable to 
determine a schedule for a graph with multi-rate precedences [104]. Although this translation 
allows for a schedule to be generated for the model, it may not accurately reflect the execution of 
the software during run time. 

When determining the execution of a model it is important to understand what conditions are 
needed for each task to execute. Prelude defines this as the activation condition of a task. An 
activation condition, condi, is a Boolean formula describing the conditions under which the task ti 
will execute. This is important when there are Boolean operators on rate transitions such as when 
and whennot. Let cond() be a function that determines if a given flow is present for an instant, 
where pck is a periodic clock and c is a Boolean condition. The presence or absence of an input 
can be seen below: 

cond(pck) = true 
cond(pck when c) = cond(pck) ˄ c = c 

cond(pck whennot c) = cond(pck) ˄ !c = !c 
The activation for the activation condition of task ti is then the disjunction of cond()for every 

input clock, ck, of a task: 

𝑐𝑜𝑛𝑑𝑖 =  � 𝑐𝑜𝑛𝑑(𝑐𝑘)
𝑐𝑘∈𝑖𝑛𝑠𝑖

 

An important note when discussing the precedence encoding or static analysis techniques of 
Prelude is that the Boolean operators when and whennot are overapproximated during static 
analysis[97]. These operators are still included when generating behaviorally equivalent code 
from the given model, but the Boolean conditions for these operators are simplified to be always 
true for static analysis. This also means that cond(pck whenc) is always true and that tasks are 
assumed to always execute during static analysis. 

Figure 27: Prelude Schedule for Location Estimation 

This overapproximation can create false negatives; models being rejected as unschedulable 
when in fact that meet timing constraints during run-time. The Location Estimation example is 
one such model. If the Boolean operators are ignored and every task is executed then this model 
becomes unschedulable. This can be seen in Figure 27. 
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This model is in fact schedulable though because GPS_Acq and Angle_Acq or Speed_Acq 

are mutually exclusive tasks determined by the Boolean operators. What we will propose in the 
next section is a technique to use the Boolean operators to determine a more refined execution 
schedule. By using a more accurate execution model for static analysis we will avoid some of the 
false negatives that are present when the Prelude overapproximations are made. 

4.4.3 Conditional Task Graph 
Prelude translates a task graph g into a set of indepedent tasks q. They do this through 

extended precedence encoding which alters the task characteristics, such as deadline and release 
date, to guarantee that the precedence holds during execution. This set q is then used for 
schedulability analysis. We refine this set q further via the use of a conditional task graph, or 
CTG, to reduce the propensity of false negatives during schedule analysis. 

 
The conditional task graph has an equivalent structure to the graph g. This means that there 

are the same tasks with the same precedence relations that exist. We use the updated task 
characteristics that were obtained through extended precedence encoding and we simplify the rate 
operators to only include Boolean operators. Instead of using this graph to verify precedence 
relations during execution, the CTG will be used to explore the possible ways the tasks in a real-
time system will execute during run-time. 

 
Before discussing the methods to explore the execution space of a conditional task graph c, 

we will define a few terms to describe such executions. 
 
Definition 6 (Task Instants) Each task ti within c is a synchronous block. This means that 

the periodic clocks of all flows within a task are equivalent. The task instants, ϒi , of ti is the 
maximal set of instants in which every flow in ti can be computed and it represented by the clock 
ci.  

A task instant is a logical event where the activation condition, condi, must be computed. If 
the activation condition is true, meaning the clock of any of the inputs signals to the task is true, 
then the task must be computed. The maximum amount of time that the computation will take in 
continuous time is given by the WCET of the task. We refer to any logical instant where the 
activation condition signal is true, to be a task activation and a computation of WCET duration 
must occur at this instant. 

 
Definition 7 (Task Activation)Let iϒ  be the set of task instants, which represents the set 

of logical events in which the task it  may be computed. The tht  instant in iϒ  where )]([ tcondi , is 
a task activation, denoted )(tai , where ia  is the activation flow. The set of all activations of it  is 
denoted iA . iiA ϒ⊆ .  

 
A task activation denotes the computation of a task at a specific logical time. However, 

within this activation not all flows of the task will be computed. Because these tasks are treated 
as synchronous blocks, determining which flows are actually computed within a task is not 
consequential to the execution time of that task. If the task executes then it always executes for 
the amount of time denoted by the WCET of that task. Although the flows within a task do not 
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change the execution time, they can be used to determine whether an output is generated from a 
task for that given activation. 

For a task it , there is a finite set of output combinations that can occur during one task 
activation. These outputs obviously determine what other tasks within c  will receive inputs, so it 
is required to define these combinations. For determining the worst case execution of a model we 
only need to conern ourselves with the maximal output combinations. Such combinations we will 
call branches. 

Definition 8 (Branch) For any vertex or task it  within c , iout  describes the set of task 
output flows. Each flow has the same strictly periodic clock but can potentially have differing 
Boolean clocks. For any set of output flows iout  there exist a subset of minimal flows 

ioutmins ⊆ , such that ,minsf ∈∀ ∄ fgoutg i ⊂∈ , . A branch, fbr  is then a set of output flows 
that must be present in one task activation given the presence of a minimial flow minsf ∈ . 

A branch, fbr  can be seen as a grouping of outputs that must occur together and each task it  

has a set of branches, iBr , that describe these maximal groupings of outputs. The logical instants 
when these outputs are present can be described in terms of a flow which is referred to as a 
branch flow. A branch flow, fbf  is a flow whose clock is equivalent the minimal flow f  within 
a branch, fbr . 

Definition 9 (Branch Flow, Branch Activation) For any branch fbr  within a branch set 

iBr  of task it , the branch flow fbf  is a flow whose clock is equivalent to to f , the minimal flow 
within the branch. A branch activation is any instant in which the branch flow fbf  is present. 

The relationship between a branch flow fbf  and iA  is determined via the Boolean rate 
operator within the conditional graph c . These are the Boolean rate operators when  and 
whennot  that are present within the Prelude task graph g  but were ignored during schedule 

analysis. Given the task precedence k

condwhen

i tt → , and the corresponding branch flow fbf , then 

fi bfcondA =][∩ . 

Using the set of all task activations and the set of all branch activations for a model, we are 
able to describe an execution of a model. To fully explore the possible activations of a model we 
must denote our independent variables. We must determine which activations are present within 
our independent tasks. These are tasks within the model that do not have predecessor tasks. Then 
from these activations we can determine the activations of all successor tasks by exploring all 
possible branch activations. We will present two methods for exploring model executions in the 
next sections. 
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4.4.3.1  First Method: Per Activation 
 

In this method we are concerned with specific task activations. For instance, if we know that 
an activation has occured in an independent task then we must compute all of the possible 
combinations of depedent task activations that can result for different branch activations. We will 
use a simple CTG shown in Figure 28 to explain further. 

 
   

 
Figure 28: Simple Conditional Example 

 
In Figure 28 we have our simplified conditional task graph. Here, the only rate operators that 

remain are Boolean operators and the numbers under the task names represent the number of 
times that task will execute during the hyper-period, HP, of the model. The hyper-period is the 
least common multiple of all periods of tasks within a model; over this period of time the task 
instants will not repeat. It is over this window of time that we explore the execution of a model 
and also perform our schedulability analysis. If it is schedulable for this window then it will be 
schedulable over all conditions during run-time. 

 
In the example there are 8 possible indepedent task activation combinations: 

(2)}(1),(0),{(1)},...,{(0)},{},{ AAAAA aaaaa∅ . We also have a set of branches that can be taken, 

Cba  and Cba! ; Either Task B and Task D receive an input from Task A, or Task C and Task D 
receive an input from Task A. 

 
At this point we can easily determine the specific activations of Task A as well as the branch 

activations of Task A. What we need to determine is the depedent task activations that occur 
given these indepdent activations. For this we return to the )(ngops  function from Prelude. This 
function determined exactly which task instants in a successor task were dependent on instant n  
of the predecessor task. We can determine the ops  based on the number of HP executions of 
each task within a depedency relation. Given iHP  and jHP  are the number of HP executions for 

tasks it  and jt  respectively, then if j

condwhen

i tt → , ij HPHPops ∧∧ /*= . 

In our example, 34/*= ∧∧ops  between Task A and Task B. The task instants or activations 
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that are dependent are then: 0=(0)g , 2=(1)g , 3=(2)g . Note here that Task B instant 0 is not 
specifically accounted for by the ()g  function. Based on the communication determined in 
Prelude, any instant m  in a dependent task where mng ≤)(  and mng >1)( +  is then dependent 
on instant n  of the independent task. This means that if Aa  and Cba  are present for instant 0=n  
then Task B will be activate for both instant 0=m  and 1=m . 

At this point we can clearly represent executions as a set of task activations and branch 
activations. However, we are not interested in defining all possible executions, merely the worst 
case execution - definied below. In Prelude, the worst case excution was simply all tasks 
executing but even in the simple example in Figure 28, the Prelude method becomes an 
overapproximation. 

Definition 10 (Worst Case Execution) The set of task activations and branch activations 
that results in the highest possible total execution time for a given model. The worst case 
exeuction covers all other possible executions so if it is schedulable then the entire model is 
schedulable.  

When determining the worst case execution we do not need to keep track of every possible 
execution. With respect to the prior example, we do not necessarily care what branch activations 
occur after Task A as long as for each set of task activations of Task A that we know the worst 
case execution. This means that we can condense the total execution state space after we have 
explored it fully from a given node. This will be discussed in future sections when the total 
algorithm is presented. 

4.4.3.2  Second Method: Per Number of Activations 

Sometimes determining the execution of a model by knowing each specific task activation 
and branch activation can result in a very large execution space. For example, in Figure 28, there 
are 32  total combinations of task activations for Task A. Instead we can describe how a task 
behaves by only describe its total number of activations during one HP. This allows us to reduce 
the total number of activation combinations from 32  to simply 4  - from executing 0 times to 
executing 3 total times per HP. In this section we will describe how we can represent a model 
execution using this method instead of the prior method. 

Previously we had discussed how the ()opsg  function can be used to determine dependencies 
between specific task activations. In the case of this method, a new function must be used that 
expands beyond ()opsg . Specifically, this method requires a function that can take the number of 
activations of an independent task and return the maximum number of activations of a dependent 
task within a data dependency. We will refer to this function as ),( inGops , where n  is the number 
of independent task activations and i  is the number of task instants of the independent task, 

in ≤ . The argument i  defines a time window over which we are assuming the activations of the 
independent task will repeat and we can define this window as ]*(0, iTi  where iT  is the period of 
the independent task. 
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Let DA tt
32/* ∧∧

→  be one of the dependencies shown in Figure 28. The function 
4,4,...0,1,2,2,3,=)(

32/*
ng ∧∧  for an increasing n . Using this function, the m3  and 13 −m  instants 

of At  provide inputs to the same instant of Dt  for any integer m .  If we look at three instants of 
At , the possible ()G  values are: 0=(0,3)

32/* ∧∧G , 1=(1,3)
32/* ∧∧G , 2=(2,3)

32/* ∧∧G , and 

2=(3,3)
32/* ∧∧G . There is no change between 2=n  and 3=n  because when there are two 

activations of At , Dt  is already achieving its maximum activations for that period of time. This 
means that the third activation does not cause another activation of Dt  because of the overlap of 
dependent activations in At . The reason the second argument is required for ()opsG  is that 
depending on the time window, the third activation of At  may cause an activation in Dt . If we 
double the interval to six instants, then 3=(3,6)

32/* ∧∧G  because there are four instants of Dt  that 

can be activations in this window and the overlap does not occur. In actuality this overlap may 
occur but because we are concerned with the worst case execution ()opsG  returns the max 
activations the overlap case is ignored. 

 
We can simplify the different communication cases that must be handled by ()opsG . When a 

buffer is used there is no dependency that exists in C . When the phase shift operator, >: , is used 
the ()opsg  function is unaffected. This then means that there is no effect in ()opsG  since it is a 
function based on the grouping of instants returned by ()opsg . This means that the only case over 

which ()opsG  must be defined is mlops ∧∧ /*= . If there are no activations for the independent 
task, 0=)(0,iGops , the definition of the function given 0>n  follows: 

 

i

j
m

li

inG n

jml

−
∑ −

∧∧

*

[]=),( 1

1=/*
 

 
The opsG  function gives the ability to describe dependent activation numbers which is needed 

when determining executions from a given task. We also define a function )( fhp  which returns 
the total number of instants for a given flow within one HP. When looking to the example we can 
use the function )(=))(),((

32/* DAA ahpchpahpG ∧∧ , which gives us the maximum activations of 

Task D given the activations of Task A as well as the total possible instants of Task A, ac . 
 
Knowing the number of activations of all indepdent tasks as well as branch activations we 

can determine via ()opsG  the possible executions of a model. When using this method, some 
granularity will be lossed when compared to the previous method. This is because ()opsG  simply 
returns the maximum number of activations regardless of whether that number is possible based 
on the distribution of the activations over the task instants. However there are many cases where 
this lack of granularity is outweighed by performance increases. This is because the total 
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combination of activations for an indepedent task that executes n  possible times goes from m2  
combiantions to only m  for the different approaches. In the next method we will discuss the 
general algorithm approach that both methods use. The main difference being that the second 
method has a considerably smaller execution space to explore with the same algorithm. 

4.4.3.3  General algorithm 

In the previous sections we discussed finding the worst case execution for a given model. 
Now we will describe our algorithm for determining this execution. First we define a general 
execution. An execution is a set of flows, one set of independent flows and one set of dependent 
flows. 

Definition 11 (Exeuction) An execution, λ  is definied by two sets of flows: an 
independent set, λI , that can consist of task activations as well as branch activations, and a set 
of dependent flows, λD , that are task activations that must occur given the independent flows. 

The algorithm uses a frontier, which is a set of independent tasks, to define executions that 
contain these tasks as well as successor tasks. Initially the frontier only contains the end tasks, 
meaning tasks that have no successsors, and the graph is traversed from these tasks to the initial 
tasks, the tasks that have no predecessors. As tasks are traversed, their activation flows are 
transferred from the set of indepedent flows to the set of dependent flows for all executions. 

The initial set of executions Λ  contains one execution for every combination of task 
activations for the end tasks. The types of combinations considered are based on the method. If 
the first method is used then there is an execution for each combination of activations for the end 
tasks. If the second method is used, then there is a combination for every )( ichp  for all end tasks. 
The general algorithm can be seen in Algorithm 1 where the executions are kept as tasks are 
traversed and finally the execution with the greatest WCET time is worst case execution. For 
brevity we only present the second method to traversing tasks in Algorithm 2. It is a similar 
exercise to traverse a task with the first method except every combination of activations is 
considered instead of the total number. 
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In Algorithm 2, we are traversing across a task it . This means that once this exeuction has 

completed ia  will be a dependent flow and all of its successor task activations and branch 
activations will be independent flows with the execution set Λ . The first step is develop an 
execution for every combination of successor task activations and branch activations. From this 
we can define and remove some illegal combinations. The only illegal condition is that a branch 
activation cannot occur more times than the number of task activations. 
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Once we have a set of all legal combination of these new independent activations we must 
combine them with the current executions that we have already assembled by traversing previous 
tasks. We basically cross this new set of indepdnent activations, SΛ with the previous executions, 
Λ . Again, we do define some illegal combinations. Two executions cannot be crossed if the 
number of activations of it  implied by the independent flows in SΛ  is greater than ia  found in Λ
. 
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As tasks are traversed and the set of independent flows changes there can exist a situation 
where multiple flows are present for the same task activation. If a task has multiple successor 
tasks then it will be added to I  of λ  twice because of the traversal of its successors. This poses 
issues for traversing this task because the number of activations is not correctly represented by 
one single flow. To handle this we must correctly combine these multiple flows representing one 
task activation and also reject illegal combinations. This is presented in Algorithm 3. 

 

 
   

Algorithm 3 is only called when a task has all of its branch activations represented within the 
indepdent flows of the executions. The idea behind this method is to condense this collection of 
branch activations and task activations into one task activation and in the process reduce the 
number of possible executions. Every task has a set of branch flows that are the minimal flows of 
all outputs. We look to the number of activations of these flows to determine the task activations. 
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The task activation total is equal to the sum of all minimal flow activations. If we know the 
number of task activations and the number of activations for each branch flow then we can also 
determine the number of activations of successor tasks. 

Legal executions are then executions where the sum of all branch flow activations is less than 
or equal to the maximum task activations. These executions must also imply the correct number 
of activations in all successor nodes defined by ()opsG . The number of activations for any output 
flow of a task is the sum of activations of all branch activations that are a subflow of that output 
flow; the max activations of any output flow is still the max activations of the task. 

As the total set of indepdent flows is condensed there exists the possibility of two executions 
containing the same combination of indepdent flow activations. In this situation we can ignore 
one of the executions. In Algorithm 3 we used )(λWCET  to describe the total time of a particular 
execution. When we get multiple executions with the same indepdent flow activations we simply 
discard the execution with the lesser execution time as it is covered by the other execution. This 
allows the method to reduce total execution set size as tasks are traversed and branches are 
explored. 

We traverse the entire graph until our frontier consists of initial tasks. At this time we have a 
set of executions that originate from these tasks and the execution with the greatest execution 
time becomes our worst case execution. One issue though is that we have an execution given as a 
total number of activations but what we need for schedule verification are specific instants. In 
Algorithm 1 we use the function ()SetderiveTask . This function merely translates the total task 
activations into specific activations. This is an approximation but in general it is possible to start 
with initial task activations and derive a relatively accurate successor task activations using 

()opsg . This set of specific task activations can be used to determine a schedule for the model. 

In the next section we will discuss the EmCodeSyn environment as well as the synchronous 
language MRICDF and how this real-time system modeling has been implemented within that 
tool chain. 

4.4.4 Implementation in EmCodeSyn/MRICDF 
Multi-Rate Instantaneous Channel connected Data Flow, MRICDF, is a formal data-flow 

language similar to SIGNAL [98]. With MRICDF, inputs to a system can be seen as infinite 
streams. A data flow network represents the computation needed in order to produce the outputs 
of the system which are also infinite streams [99]. These infinite streams are similar to clock 
flows defined in Prelude. These flows though are not defined over continuous time and are 
instead are defined in logical instants. These flows can also be related to one another within a 
model. Any flow x  carries values over a certain set of instants. The set of instants in which x  
has a value is referred to as its clock, denoted x̂ . 

Three possible relationships can be drawn between any two flows x  and y : equivalent, 
subset, or unrelated. If x  and y  are present for the exact same set of instants then it is said that 
the clocks of these two flows are equivalent; they are also synchronous. If the instants where x
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computed is a subset of instants where y  is computed then the clock of x , x̂  is a sub-set of the 
clock of y , ŷ . If x̂  and ŷ  are not equivalent or subset of the other then the flows are unrelated 
unrelated [102]. It is obvious that some specific subsets of relationships may be drawn from 
flows that are deemed unrelated. One type of relationship is mutual exclusion, meaning that x  is 
computed iff y  is not computed and vice versa. These relationships are determined through flow 
relations inherent in actors. 

 
An MRICDF model consists of synchronous modules called actors that are interconnected via 

instantaneous channels [100]. An actor can be of two different types: primitive and composite. 
Primitive actors have four types, function, buffer, merge, and sampler, which are represented by 

},,),,({ SMBmnFTp ∈ , while composite actors are hierarchic compositions of primitive actors 

[100], whose type is defined as cT . Regardless of whether an actor is primitive or composite it 
can be represented by 〉〈 GNOITA ,,,,=  where OI ,  are the set of input signals and output 
signals respectively, T  is the type where },{ pc TTT ∈ . N  is the set of internal actors, which for 
primitive actor types is an empty set, and G  denotes the graph created by the channel 
connections. A primitive actor can then be described by 〉∅〈 GOITA p ,,,,=  [101]. 
 
Definition 12 (Primitive Actor,Composite Actor) A primitive or composite actor is graphically 
represented by a geometric shape and can also be represented by 〉〈 GNOITA ,,,,= . Each actor 
has a set of input and output signals, OI , , which associate input and output signals with the 
actor. T  represents the type; for primitive actor pTT ∈  while cTT ∈  for a composite. N  is the 
set of internal actors which for a primitive actor is null and G  denotes the data flow graph 
created by interconnected channels.  
 

Although MRICDF is presented briefly here, we have covered enough to continue with 
discussion on how the previous real-time verification techniques are integrated within the 
language and tool chain. These additions are presented in the following subsections. 
 

4.4.4.1  Specification of Tasks 
 

We have extended the MRICDF formalism to include the addition of Tasks. Tasks are simply 
composite actors which have real-time characteristics defined by the user. When a task is created 
all flows within the block have the same period and phase, which were given by the user. What 
they do not share is the same logical or Boolean clock. This means that flows within tasks can be 
subsets of one another and these relations are determined during epoch analysis [100]. 
 
Definition 13 (Task) A specialized composite actor that includes a set of task characteristics, 

〉〈 iiii CrdTC ,,,= , is defined via several fields: period ( iT ), deadline ( id ), offset ( ir ), and worst-
case execution time (WCET) ( iC ). These are defined in terms of number of milliseconds.  
 

To construct the conditional task graph c  from these tasks, we must also include the data 
dependencies between the tasks. These connections are easily interpreted via the data flow graph 
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used to represent the model. What must be found is the rate transition operators. Buffer MRICDF 
actors define the buffered communication present in Prelude but to describe other primitive 
operators we use Table 8.  

 Table 8: General Form of Inter-Task Communication 

 Case  General Form 
Buffered  nmlfbyconstops >/*= :∧∧

Non-Buffered   nmlops >/*= :∧∧

For every edge in g , the characteristic functions given in Table 8 must be specified. This is done 
by using the task characteristics given. Given an edge ji tt →  in g , regardless of whether or not 
the communication is buffered, the values for ml,  and n  are determined in the same manner. 
Given that the least common multiple of the periods of it  and jt  is denoted 

),(=, jiji TTLCMLCM  and jr  is the release date of jt ; the formulas for ml,  and j  are given 
below: 

jij LCMTl ,/=

jii LCMTm ,/=

jj Trn /=

From the above formulas and the buffer actors used to create a buffered edge, all edges within 
c  can be defined. We must also determine the branch flows for each task but all flow relations 
are given to us during the MRICDF epoch analysis [100]. We must simply determine which of 
the flows is then a minimum of all output flows for each task and then we can construct the 
when  condition for every output. 

When building the conditional task graph for an MRICDF model the only explicit definitions 
provided by the user are the tasks and their characteristics. The remaining CTG objects are 
interpreted from the flow relations and data flow model. 

4.4.4.2  Worst Case Schedule Refinement 
When determining the worst case schedule for a real-time MRICDF model we follow the 

same method presented earlier. However, the flow relations between task inputs give additional 
refinement. We will cover general improvements that have been implemented to the method in 
this subsection. 

During the compilation process, a clock tree is built for a model [102]. A clock tree is a 
partial order of flows based on instants where each flow is present. This structure is created via 
inherent relations for every actor within MRICDF. For instance, all flows that are inputs or 
outputs to a function actor are all synchronous. There are other operators that create sub-flows 
and mutually exclusive flows [101]. For the purposes of this paper it is enough to understand that 
there is a partial order of all flows within a model. 

This clock tree allows us to expand our original method. Initially only the relationships 
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between output flows were known and no information could be determined about the relationship 
between the input flows to tasks. Because of this all input flows are assumed to be unrelated. This 
means that any combination of inputs to a task for each task instant was considered legal. Using 
the clock tree, relationships can be determined for task input flows and possible executions of a 
model are refined further. 

 
When a task is traversed in the algorithm, all in combinations are considered and are added to 

the frontier. In the MRICDF method we can rule out certain combinations. We begin with an 
explanation of a simple system: two tasks, I  and J , communicate to task K  where Ic  and Jc  
are the two input flows from I  and J  respectively. Initally we will assume all tasks have the 
same period. If Ic  is synchronous with Jc  then tasks I  and J  must imply the same number of 
activations of K , )(=),(=),( KJI AhpHPAGHPAG . The remaining relations are given Table 9 
below: 

Table 9: Input relation restrictions 
   
  
 
  
  
 
 
 
 

These relations and rules are for two inputs only and must be expanded based on the amount 
of inputs there is to a task as well as the relations between all input flows. When considering a set 
of tasks that are multi-periodic the rules do not change. The ()opsG  function handles this 
difference in periods since the rules are restricting the implied activations of the depednent task. 
These rules based on input flow relations allow us to restrict the executions that are considered. 
This makes the algorithm both more efficient since fewer executions are allowed and most 
importantly give a more accurate representation of the model than is possible in Prelude. 
 

4.4.4.3  Code Generation 
If a model is determined to be schedulable, then code is automatically generated for the given 

model. The current implementation targets ChronOS, a real-time operating system built around 
the Linux kernel with real-time extensions [95]. The current implemenation uses the API calls for 
creating real-time tasks and also creates a light weight scheduler thread that releases tasks at the 
proper time. 

4.4.5 Results, Future Work, and Conclusion 

4.4.5.1 Results 
 

The first method presented in Section 4.4.3.1, the number of possible executions per node is 
exponentially increasing. The specific number of paths per node is shown below: 

Flow Relation   Activation Rules  
ji cc =∧    )(=),(=),( KJI AhpHPAGHPAG   

ji cc ⊆    )(=),(),( KJI AhpHPAGHPAG ≤   
ji cc ⊕    )(=),(),( KJI AhpHPAGHPAG +   

ji cc∅    )(),(),( KJI AhpHPAGHPAG ≥+   
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))*(*),((
1=

nmmmaxCmax

m∑  

In this equation max  is the maximum number of activations per HP of a task and n  is the 
number of branches. Given m  number of activations, there are ),( mmaxC  combinations that 
these activations can occur and )*( nm  number of branch activations that can occur. This number 
must be determined for all possible m  which is shown in the equation. Given the two variables - 
maximum number of activations and number of branches - for a node, the maximum number of 
activations is the most significant wrt to execution space increasing. This can be seen in Table 10. 
The process used to collect these timings has 3 task, where the first task contains two branches, 
each branch going to one task. Leaving the process the same and only changing the HP length 
produces the Method 1 timings in the Table 10. This clearly shows that the first method will cause 
unusable compile times as the HP executions of a process increases. Because the HP of a process 
is the least common multiple of the tasks’ periods, the HP of a process will in general increase as 
more tasks are added to a process. This means that as processes become larger the compilation 
time will quickly become unwieldy. 

In the second method, we aimed to prevent this exponential increase in compile time by 
reducing the rate of increase due to the max  term. The max  term was targeted because the 
hyper-period of a model can become very large creating large numbers of activations per node. 
On the other hand the number of branches m  within a node is bounded by EmCodeSyn at 10 and 
in no processes did we find a model that came close to this limit. 

1))1,((
0=

−−+∑ nnmCmax

m
 

In the second method the number of paths from one node is given as 1)1,( −−+ nnmC , 
where m  is the number of total activations and n  is the number of branches from the node. This 
can be seen as the number of ways m  objects can be partioned into n  possible groups where a 
single group can receive 0  objects. For the same example process discussed in the previous 
paragraph, where 2=m , the number of possible paths is only n , which is linearly increasing. 
This is a vast improvement over the first method which must still consider the max  term. The 
improvement in compilation times between the first and second methods are shown in Table 10. 

 Table 10: Increasing number of Activations of one Node 

 Branches = 2 
Activ.  Meth. 1 (ms)  Meth. 2 (ms) 

1  46.3  44.7 
5  47.3  41.7 
10  109.7  49.0 
15  957.0  45.0 
20  32037.0  53.7 

 The number of branches from one node is bounded, but the number of branches within a 
process is not. With increasing number of branches in a process, an increase in the size of the 
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front can be expected. As front sizes become larger the performance of the algorithm should 
deteriorate due to the number of combinations of possible paths to be quite high. To look at this 
performance penalty, a process was created where the basic node contained one activation and 
had two branches. In order to increase the number of branches and nodes in the graph these 
would be connected in series, creating a tree like structure, where the size of the fronts effect on 
timings could be seen. This is presented in Table 11. Both methods perform slightly worse as the 
number of branches increases to 64, which is the maximum number of nodes in front. In order to 
determine if this performance penalty was significant wrt to the penalty of increase the HP 
executions per node, the number of activations in each node was increased. It is very clear that 
the performance of of the algorithm under large numbers of activations affects the compilation 
time more significantly than the front size. 
 

 Table 11: Increasing Branches of a Total Process 
 

 Activations per Node = 1  
Branches   Method 1 (ms)   Method 2 (ms)  

2  1.0   1.3  
4  1.0   2.0  
8  1.3   4.3  
16  3.3   8.7  
32  6.3   24.0  
64  17.7   66.7  

Activations per Node > 1 
64  340.3   70.0  
64  32673.3   77.3  

  
 The second method presents a much better approach wrt speed of analysis but will not 

always give as refined of a schedule as the first method which will be discussed next. 
 

4.4.5.2  Process Schedulability 
 

The main goal of this work is to refine the worst possible execution of a hard real-time 
process. By doing so, it would allow for developers to be able to implement larger and more 
complex processes while still being able to guarantee the temporal properties within their model. 
In Table 12 we show a few examples, giving both the overhead in our computations as well as the 
worst case execution timing, WCET, determined for each model by our two methods and 
Prelude. As we have already compared the timings between our two methods, the comparison of 
the worst case execution can be seen in the Table 12. While the first method tends to have higher 
compile times it does present a more refined worst case than the second method for some 
examples. In implementation, the second method is used to create worst case schedule quickly, 
and if that schedule is not feasible then the first method is used to create a more refined schedule 
for analysis.   
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Table 12: Comparison of Worst Case Schedules 

 Compile (ms)  WCET (ms) 
Model  M1  M2  M1  M2  Prel. 

Coll. Avoid  62.7  56.7  42  42  53 
Switch  48.3  41.7  10  10  12 

Loc Est.  110.7  64.3  90  90  110 
MFG  2637.7  129.0  231  241  251 

LCD Drive  160.7  88.7  65  65  79 

Also, we draw a comparison between our worst case schedule and the schedule given by 
Prelude for the same model. The examples in the Table 12 all contain a task with at least one 
branch which allows for a lower execution time of the worst case schedule, without a branch in a 
process the schedules would be the same as Prelude. This lower execution time may present a 
developer with opportunities to take advantage of the extra cycles that can be found when 
modeling a real-time system using EmCodeSyn and MRICDF. Utilizing this time could mean 
sampling inputs at a more frequent interval, or being able to include more extensive computations 
to reduce error within the system. 
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5 Conclusions & Recommendations 
In this project we have developed formal models, methods, algorithms and techniques for 

generating provably correct multi-threaded reactive real-time embedded software for mission-
critical applications. For scalable modeling of larger embedded software systems, the 
specification formalism has to be compositional and hierarchical. Our formalism entails a model 
of computation (MoC) based on a multi-rate synchronous data-flow paradigm. This MoC is code 
named MRICDF (Multi-rate Instantaneous Channel Connected Data Flow Actors Network). 
Once an MRICDF specification is proven to be implementable on a target platform, the 
corresponding multi-threaded code based on Pthreads, Open-MP, or Intel Thread Building Block 
can be generated via formal step-wise refinement based algorithms. Our code synthesis is 
correctness preserving refinement of the original specification into implementation by calculating 
scheduling that preserves the intent of the specification. Therefore, the generated code does not 
require expensive post-development testing or verification. Guaranteed determinism of the 
generated code will provide predictability of the application behavior which is often missing in 
such complex software created manually or generated from MATLAB/Simulink or Ptolemy like 
environments. We also analyze the real-time guarantees that the reactions to specific events 
should satisfy. The timeliness property is surely platform dependent and hence will require 
profiling of the code for specific platforms. Back annotations of the specification model with 
timing information, and an additional phase of timing analysis will be performed to providing 
timing guarantees. 

 
In this work we produced a novel theory of a formal modeling language based specifications, 

namely MRICDF. We demonstrated an implementation of a software specification and code 
synthesis tool based on MRICDF. This work entailed new synthesis algorithms, characterization 
of specifications, formal proof techniques for proving the correctness preservation property of the 
refinement steps in our step-wise refinement oriented synthesis technique, multi-core code 
synthesis, endowing the specification with platform specific worst case execution times to check 
real-time schedulability, and some case studies.  
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