Nearshore Berm Discussion
Environmental Impacts

Coraggio Maglio
ERDC

Aubree Hershorin
Jacksonville District

Nearshore Berm Workshop
13 February 2013

http://myfwc.com
1. REPORT DATE
 13 FEB 2013

2. REPORT TYPE

3. DATES COVERED
 00-00-2013 to 00-00-2013

4. TITLE AND SUBTITLE
 Nearshore Berm Discussion Environmental Impacts

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)
 Army Engineer Research and Development Center, Coastal and Hydraulics Laboratory, 3909 Halls Ferry Road, Vicksburg, MS, 39180

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
 Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
 a. REPORT
 unclassified
 b. ABSTRACT
 unclassified
 c. THIS PAGE
 unclassified

17. LIMITATION OF ABSTRACT
 Same as Report (SAR)

18. NUMBER OF PAGES
 17

19a. NAME OF RESPONSIBLE PERSON

Standard Form 298 (Rev. 8-98)
Prepared by ANSI Std Z39-18
Definitions

- **Fines** – very fine sand passing 200 sieve, silts and clays
- **Nephelometric Turbidity Units (NTU)** – Measures the Light that is Scattered at 90° from the Light Source
- **Total Suspended Solids (TSS)** - Measure of the Total Mass of Particles in a Sample
- **Turbidity** – Optical property that causes light to be scattered and absorbed rather than transmitted in straight lines through the sample*

*Standard Methods for Examination of Water and Wastewater
Definitions

• **Traditional Placement** – placement of material to “build a beach”

• **Submerged Aquatic Vegetation** - any combination of seagrasses, oligohaline grasses, attached macroalgae and drift algae that covers 10 to 100 percent of a substrate*

* http://myfwc.com
Definition of Placement Operations

Hopper or Split Barge Placement

Hydraulic Placement

- Methodologies have very different dynamics
Topics to Discuss - Outline

• Resources of concern
• Potential environmental impacts
• Modeling & field measurements
• Reduced impacts vs. traditional placement
• Drawbacks vs. traditional placement
• Research to further “Engineering with Nature”
Regional Resources

Northeast
- Hardbottom
- Manatees
- Right Whales
- Sea Turtles
- Shorebirds

East central
- Hardbottom
- Manatees
- Sea Turtles
- Shorebirds

Southeast
- Corals
- Hardbottom
- Manatees
- Sea Turtles
- Shorebirds

Southwest
- Hardbottom
- Manatees
- Sea Turtles
- Shorebirds

West central
- Hardbottom
- Manatees
- Sea Turtles
- Shorebirds

Northwest
- Hardbottom
- Manatees
- Sea Turtles
- Shorebirds
Potential Environmental Impacts

Corals

- Concern about sedimentation impacting corals.
- Mitigated by NMFS requirement to that placement occur 400 ft from Acropora spp. (Boynton Beach and south).

Shorebirds

- Nearshore placement may be preferable to beach placement:
 - May create emergent or ephemeral shoals utilized as foraging habitat; and
 - No direct impacts to beaches (nesting, foraging, roosting).

Photo Credit: National Audubon Society, Inc.
Potential Environmental Impacts

Nearshore Hardbottom

- Support diverse assemblages of algae, invertebrates, fishes, and sea turtles.
- Impacts can occur from direct burial during placement, or from movement of sand onto hardbottom habitats.
- Resource surveys required for SPPs.

Sea Turtles

- Nesting turtles may be precluded from reaching nesting beaches, resulting in false crawls.
- Hatchling turtles may be prevented from reaching the open ocean.
- More of an impact on the Gulf Coast due to shallow nearshore waters.
- USFWS typically requires that no sand be placed higher than MLLW.

Photo Credit: Nova Southeastern University
Potential Environmental Impacts

Cultural Resources

- Cultural resources in the nearshore area must be buffered to prevent impacts from equipment or dredged materials.
 - Ponce Inlet
 - Egmont Key

Photo Credit: Kat McConnell, USACE
Potential Environmental Impacts

Turbidity

• Light attenuation – reduced photic depth
• Gill abrasion
• Settlement of suspended solids resulting in habitat coverage
Potential Environmental Impacts

Secondary Impacts

• Turbidity
 • Reduced biological productivity

• Settlement of suspended solids
 • Reduced biological productivity
 • Larger re-suspendable bed loads
Modeling

- **Sediment transport models**
 - Based on our understanding of physical processes
 - Nearshore processes are extremely complex
 - Site-Specific sediment data
 - Mixed sediments pushing the envelope of transport model capabilities
 - Based on process research/data collection
 - Must be aware of model limitations
Field Measurements

- Process Measurements
 - Hydrodynamic conditions (tides, currents, waves, salinity, …)
 - Sediment settling (disposition/sedimentation)
 - Water column concentrations
 - Sediment bed composition
 - Morphologic evolution
 - Monitor dredging process
Reduced Impacts vs. Traditional Placement

- **Lower cost**
 - Construction – no beach grading equipment
 - Maintenance – less escarpment, tilling

- **Reduced beach traditional use impacts**
 - Sunbathing
 - Water sports

- **Reduced environmental Impacts**
 - Turtle nest relocations avoided
 - Cemotation potential eliminated
 - Beach Munsell Color change reduced as sediment is spread out and bleaches more naturally
 - Shorebird impacts eliminated
Drawbacks vs. Traditional Placement

- Material is not immediately visible to public
- Remediation for unacceptable material far more difficult
- If parameters imposed on nearshore placement are overly restrictive this placement method could become more expensive than traditional beach placement
Research to Further “Engineering with Nature”

- **Modeling development efforts**
 - Improve mixed sediment transport algorithms
 - Improve site-specific parameterization methods
 - Improve far field modeling of fines

- **Field data collection efforts**
 - Long term background turbidity/sedimentation data collection
 - Site specific correlation for NTU to SSC
 - Near and far field dispersion and settlement of fines
 - Threshold of turbidity, SSC, and sedimentation required for resource impacts
Thank You!

Coraggio Maglio
Coraggio.Maglio@usace.army.mil
Phone: (601) 634-4150

Aubree Hershorin
Aubree.G.Hershorin@usace.army.mil
Phone: (904) 232-2136